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PSEUDOGAPS IN INCOMMENSURATE CHARGE DENSITY WAVESAND ONE-DIMENSIONAL SEMICONDUCTORSS. A. Brazovskii a;b, S. I. Matveenko b*a Laboratoire de Physique Théorique et des Modèle StatistiquesCNRS, Bât.100, Université Paris-Sud, 91405 Orsay Cedex, Fran
eb L. D. Landau Institute for Theoreti
al Physi
s117940, Mos
ow, RussiaSubmitted 25 September 2002We 
onsider pseudogap e�e
ts for ele
trons intera
ting with gapless modes. We study generi
 1D semi
ondu
-tors with a
ousti
 phonons and in
ommensurate 
harge density waves. We 
al
ulate the subgap absorption asit 
an be observed by means of photoele
tron or tunneling spe
tros
opy. Within the formalism of fun
tionalintegration and adiabati
 approximation, the probabilities are des
ribed by nonlinear 
on�gurations of an in-stanton type. Parti
ularities of both 
ases are determined by the topologi
al nature of stationary ex
ited states(a
ousti
 polarons or amplitude solitons) and by the presen
e of gapless phonons that 
hange the usual dynam-i
s to the quantum dissipation regime. Below the free-parti
le edge, the pseudogap starts with an exponential(stret
hed exponential for gapful phonons) de
rease of the transition rates. Deeply within the pseudogap, theyare dominated by a power law, in 
ontrast to a nearly exponential law for gapful modes.PACS: 72.15.Nj, 78.40.Me, 78.70.Dm, 71.45.Lr1. INTRODUCTION: PSEUDOGAPS IN 1DSYSTEMSThis paper is devoted to the theory of pseudogaps inele
troni
 spe
tra in appli
ation to photoele
tron spe
-tros
opy (PES). We study the in�uen
e of quantum lat-ti
e �u
tuations on ele
troni
 transitions in the subgapregion for one-dimensional (1D) systems with gaplessphonons. Low-symmetry systems with gapful spe
trawere re
ently addressed by the authors [1℄, and we referto this paper for a more 
omprehensive review and ref-eren
es. Here, we show that sound bran
hes of phononspe
tra drasti
ally 
hange the transition rates makingthem mu
h more pronoun
ed deeply within the pseu-dogap. We 
onsider two types of systems: generi
 1Dsemi
ondu
tors with a
ousti
 ele
tron�photon (e�ph)
oupling (
ondu
ting polymers, quantum wires, andnanotubes) and in
ommensurate 
harge density waves(CDWs) [2℄, whi
h possess a gapless 
olle
tive phasemode.The pseudogap 
on
ept [3℄ refers to various sys-tems where the gap in their bare ele
troni
 spe
tra is*E-mail: matveen�landau.a
.ru

partly �lled and subgap tails o

ur. Even for pure sys-tems and at temperature T = 0, there 
an be a rathersmeared edge E0g , while the spe
trum extends deeplyinward the gap until some absolute edge Eg , whi
h
an be even zero (no true gap at all). A most gen-eral reason is that stationary ex
itations (eigenstatesof the total e�ph system) are self-trapped states, po-larons or solitons, whose energiesWp andWs are belowthe free ele
tron ones, thus forming the absolute edgeat Eg < E0g . Nonstationary states �lling the pseudo-gap range E0g > E > Eg 
an be observed only viainstantaneous measurements like opti
s, PES, or tun-neling. Parti
ularly near E0g , the states resemble freeele
trons in the �eld of un
orrelated quantum �u
tua-tions of the latti
e [4℄; here, the self-trapping does nothave enough time to develop. But approa
hing the ex-a
t threshold Eg , the ex
itations evolve towards eigen-states, whi
h are self-trapped e�ph 
omplexes. Thepseudogaps must be 
ommon in 1D semi
ondu
torsjust be
ause of favorable 
onditions for self-trapping [5℄.The pseudogap is espe
ially pronoun
ed when the baregap is opened spontaneously as a symmetry breakinge�e
t. In quasi-1D 
ondu
tors, this symmetry break-13 ÆÝÒÔ, âûï. 3 625
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h instability leadingto the CDW formation. Here, the pi
ture of the pseu-dogap was �rst suggested theoreti
ally [3℄ (we also re-
all [6℄ and another model [7℄) in relation to the absen
eof a long-range order in 1D CDWs at a �nite tempera-ture. In this approa
h, the smearing of the mean-�eldele
troni
 gap 2�0 
orresponds to the disappearan
e ofthe true Peierls�Fröhli
h transition in favor of a smooth
rossover. The pseudogap shape was related to, andderived from, the temperature-dependent �nite 
orre-lation length �. An alternative pi
ture was suggestedin [4℄ and further developed in [8℄. It 
on
entrates one�e
ts that persist even at zero temperature and aredue to a strong intera
tion between bare ele
troni
 ex-
itations and perturbations (the amplitude and phasephonons) of the CDW ground state. Here, the pseu-dogap in instantaneous ele
troni
 spe
tra is related tothe transformation of ele
trons into solitons.Experimentally, pseudogaps in in
ommensurateCDWs were �rst addressed by opti
 [9�11℄ and morere
ently by the PES and ARPES (momentum-resolvedPES) methods [12℄. The earlier experiments weretheoreti
ally interpreted in [13℄ by 
ompilation ofthe approa
hes in [3, 4, 7℄. Detailed theories of thesubgap absorption in opti
s have been developed forsystems with low symmetries (nondegenerate, likesemi
ondu
tors with gapful phonons, or dis
retelydegenerate like the dimerized Peierls state). They�rst addressed the general type of polaroni
 semi
on-du
tors [14℄ with emphasis on long-range Coulombe�e
ts, and then the 1D Peierls system, emphasizingsolitoni
 pro
esses (see [15℄ and referen
es therein).The authors re
ently [1℄ extended the theory of pseu-dogaps to single ele
troni
 spe
tra in appli
ation toPES, and parti
ularly intriguing, to ARPES probes.But properties of in
ommensurate CDWs are further
ompli
ated by the appearan
e of a gapless 
olle
tivemode resulting in drasti
 
hanges. The 
ase of a
ousti
polarons in a 1D semi
ondu
tor belongs to the same
lass, although this is not usually noti
ed.A spe
i�
 property of 1D systems with 
ontinuousdegenera
y (with respe
t to the phase for in
ommensu-rate CDWs and to displa
ements for usual 
rystals) isthat even a single ele
troni
 pro
ess 
an 
reate topolog-i
ally nontrivial ex
itations, solitons. For in
ommensu-rate CDWs, a single ele
tron or hole with the energynear the gap edges ��0 spontaneously evolves to anearly amplitude soliton while the original parti
le istrapped at the lo
al level near the gap 
enter. The en-ergy near 0:3�0 is released, at �rst sight, within thetime !�1ph � 10�12 s. We see in what follows that therea
tually also exists a long-s
ale adaptation pro
ess that

determines shapes of transition probabilities. Simi-larly, the usual a
ousti
 polaron in 1D semi
ondu
torsis 
hara
terized by the ele
troni
 density � � �'=�xself-lo
alized within the potential well, and hen
e, thereis a �nite in
rement '(+1) � '(�1) � R �dx ofthe latti
e displa
ements ' over the length x, whi
his the signature of topologi
ally nontrivial solitons.These systems with 
ontinuous degenera
y form a spe-
ial 
lass that shows parti
ular properties and must bestudied di�erently than in [1℄. They are addressed inthis paper.2. FUNCTIONAL INTEGRALS ANDINSTANTONS FOR PESAs a fun
tion of the frequen
y 
 and momentumP , the absorption rate I(
; P ) for ARPES 
an be ex-pressed in terms of the spe
tral density of the one-ele
tron retarded Green's fun
tion G(t; t0;x; x0) asI(P;
) / Im Z dXe�iPX 1Z0 dTei
TG(X;T; 0; 0): (1)We here address the simple PES, not resolved in mo-menta, whi
h measures the integrated absorption in-tensity I(
) = 12� Z I(P;
)dP:(From now on, we omit all 
onstant fa
tors and set thePlan
k 
onstant ~ = 1; 
 is then measured with respe
tto a 
onvenient level, the band edge for semi
ondu
torsor the middle of the gap for CDWs.)We use the adiabati
 approximation, whi
h isvalid when 
hanges of ele
troni
 energies are mu
hlarger than the relevant phonon frequen
ies. Ele
-trons move in a slowly varying phonon potential, e.g.,Re[�(x; t) exp(2ikFx)℄ for an in
ommensurate CDW,and at any instant t their energies E(t) and wave fun
-tions  (x; t) are therefore de�ned as eigenstates for theinstantaneous latti
e 
on�guration and depend on timeonly parametri
ally. In what follows, we work in theEu
lidean spa
e it ! t, whi
h is adequate for studiesof 
lassi
ally forbidden pro
esses [14, 16, 17℄. The inte-grated absorption intensity is then given by a fun
tionalintegral over latti
e 
on�gurations,I(
) / 1Z0 dT Z D[�(x; t)℄ 0(0; T ) +0 (0; 0)e�S; (2)where  0 is the wave fun
tion of the parti
le (whi
h isa
tually a hole for PES) added and extra
ted at mo-ments 0 and T . Only the lowest singly �lled lo
alized626
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ommensurate 
harge density waves : : :state is relevant for 
al
ulations of subgap pro
esses.The energy E0 of this state is split inside the gap. Thea
tionS = S[�(x; t); T ℄ = 0� 0Z�1 + 1ZT 1A dtL0 ++ TZ0 dt (L1 �
); L1 � L0 = E0 (3)is expressed through the Lagrangians Lj [�℄, where thesubs
ripts j = 0; 1 
orrespond to ground states for 2M(the bare number) and 2M � 1 ele
trons in the poten-tial �(x; t). The main 
ontribution 
omes from saddlepoints of S, the instantons, whi
h are extremums withrespe
t to both the fun
tion �(x; t) and the time T .There are also spe
ial 
ases [1℄, parti
ularly importantfor ARPES, where the extremum must be taken forthe entire integrand in (2), with the wave fun
tions inthe prefa
tor taken into a

ount. Otherwise, the sta-tionary point is determined by dS=dT = 0, that is,E0(0) = E0(T ) = 
, whi
h determines T (
).In what follows, we 
on
entrate on most prin
ipalfeatures, leaving aside 
al
ulations of prefa
tors andthe problem of the momentum dependen
e ne
essaryfor ARPES. For a simpler 
ase of nondegenerate sys-tems, they have been studied in [1℄.3. CREATION OF AMPLITUDE SOLITONS ININCOMMENSURATE CDWsWe �rst 
onsider the subgap ele
troni
 spe
tra forthe in
ommensurate CDW des
ribed by the Peierls�Fröhli
h model. The in
ommensurate CDW order pa-rameter is the 
omplex �eld � = j�(x; t)j exp[i'(x; t)℄a
ting on ele
trons by mixing states near the Fermi mo-menta points �kF . The Lagrangians Lj 
onsist of thebare kineti
 and potential latti
e energies and of thesum over the �lled ele
tron levels, in the jth state,Lj = Z dx2j�t�j2�vF!20 + Vj [�(x; t)℄;where vF is the Fermi velo
ity in the metalli
 state and!0 is the amplitude mode frequen
y (!0 � �0 is the
ondition for the adiabati
 approximation).The important fa
t is that the stationary state ofthe system with an odd number of parti
les, the min-imum of V1, is an amplitude soliton, with the midgapstate E0 = 0 o

upied by a singe ele
tron. Evolutionof the free ele
tron with the initial energy E0 = �0to the amplitude soliton with Ws = 2�0=� < �0

Im�s(x)
Re�s(x)� E0

Fig. 1. Traje
tory of the 
hordus soliton with phasetails in the 
omplex plane �
an be des
ribed by the known exa
t solution for in-termediate 
on�gurations 
hara
terized by the singleintragap E0 = �0 
os � with 0 � � � �, when
e��0 � E0 � �0. It was found [8℄ (see also re-views [18, 19℄) to be the 
hordus soliton with 2� asthe total 
hiral angle, �(+1)=�(�1) = exp(2i�),see Fig. 1 and the Appendix for details. The �llingnumbers � = 0; 1 of the intragap state 
orrespond tolabels j = 0; 1. The term V0(�) monotoni
ally in-
reases from V0(0) = 0 for the 2M ground state toV0(�) = 2�0 for the 2M + 2 ground state with twofree holes. The term V1(�) = V1(� � �) is symmetri
and des
ribes both a parti
le on the 2M ground stateand a hole on the 2M + 2 ground state. Obviously,V1(0) = V1(�) = �0, while the minimum is rea
hedat � = �=2, that is for a purely amplitude solution:minV (�) = V1(�=2) = Ws < �0, where Ws = 2�0=�is the amplitude solution energy, see Fig. 2. Therefore,to 
reate a nearly amplitude soliton with � = 90Æ, thelight with 
 �Ws is absorbed by the quantum �u
tu-ation with E0(�) = Ws, whi
h is 
lose to the 
hordussoliton with the angle � � 50Æ.We note that the amplitude soliton, being an un-
harged spin 
arrier with the topologi
al 
harge one, isa quasi
lassi
al realization of a spinon in systems withnonretarded attra
tion of ele
trons (that is, with high,rather than low, phonon frequen
ies). Therefore, ouranalysis is also qualitatively applied to arbitrary nona-diabati
 ele
troni
 systems provided they are found inthe spin-gap regime. (See also the next se
tion.)It is tempting to use the stati
 solution, with somefree parameter, as an ansatz for the time-dependentpro
ess; this proved to be su

essful in gapful 
ases627 13*
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Fig. 2. Selftrapping terms V� for 
hordus solitons asfun
tions of the 
hiral angle 2� for various �llings �[1, 15℄. But here, putting � ! �(t), we would arrive at�t� 6= 0 for all x, and the a
tion would therefore be in-�nite, S is proportional to the system length. The van-ishing probability simply re�e
ts the fa
t that a glob-ally �nite perturbation, 
hara
teristi
 of topologi
allynontrivial solitons, 
annot spread over the whole lengthin a �nite time. More generally, as a topologi
ally non-trivial obje
t, the amplitude soliton 
annot be 
reatedin a pure form: adaptational deformations must appearto 
ompensate the topologi
al 
harge. These deforma-tions develop over long spa
e�time s
ales and 
an bedes
ribed in terms of the gapless mode, the phase ',alone. Allowing the time evolution of the 
hiral an-gle � ! �(t) within the 
ore, we must therefore alsounhinder the �eld ' ! '(x; t) for all x and t. Theresulting traje
tory is shown in Fig. 1 for an instant oftime. Starting from x! �1 and returning to x!1,the 
on�guration 
losely follows the 
ir
le j�j = �0
hanging almost entirely by phase. Approa
hing thesoliton 
ore, the phase approximately mat
hes the an-gles �� that delimit the 
hordus part of the traje
tory.The entire traje
tory is 
losed, whi
h leads to a �nitea
tion.Ex
ept for a short time s
ale T < �0=u (see Se
. 4.2)
hara
terized by small � and large lengths � = �0= sin �,the 
on�guration �(x; t) 
an be divided into the innerpart, the 
ore at jxj � �, and the outer part jxj � �,where only perturbations of the phase '(x; t) are im-portant. The inner part 
an be des
ribed by the 
hor-dus soliton �ChS(x; t). The 
hordus angle 2�(t) evolvesin time from �(�1) = 0 to �m in the middle of the Tinterval. As T ! 1, that is, near the stationary stateof the amplitude soliton, �m ! �=2. This value is a
-tually preserved during most of the T interval, and the


hanges between � = 0 and � = �=2 are therefore 
on-
entrated within �nite ranges �0 � �0=u� T near thetermination points. At large s
ales, we 
an see only ajump '(x; t) � �(t) signx with �(t) � �m�(t)�(T � t),where � is the standard step fun
tion. Be
ause the
on�guration stays 
lose to the amplitude soliton dur-ing the time T , the main 
ore 
ontribution to the a
-tion is S
ore = (Ws �
)T + ÆS
ore; (4)where the �rst 
orre
tion ÆS0
ore = 
onst 
omes form re-gions around the instants 0 and T independently. Thesigni�
ant T -dependent 
ontribution ÆS(T ) 
omes frominterferen
e of regions 0 and T . Their intera
tion viagapful ex
itations like the amplitude mode de
ays ex-ponentially as ÆSgap / exp(�!0T ). There are no other
ontributions for low-symmetry systems, but for an in-
ommensurate CDW, there are sound modes providingthe main e�e
t to be addressed below.Mat
hing the inner and outer regions is not well de-�ned unless we 
onsider the full mi
ros
opi
 time-de-pendent model, whi
h is impossible. But fortunately,the long-range e�e
ts 
an be treated easily if we gener-alize the s
heme suggested earlier for stati
 problems ofsolitons in the presen
e of inter
hain intera
tions [8; 20℄.The outer region is des
ribed by the a
tion for thesound-like phase mode,Ssnd['(x; t); �(t)℄ == vF4� ZZ dx dt"��t'u �2 + (�x')2# ;'(t; xs � 0) = ��(t); (5)where u is the phase velo
ity. The 
onditions on ' atxs � 0 are due to the sour
e provided by the 
hordussoliton that is formed around xs and enfor
es the dis-
ontinuity 2�. Integrating exp[�Ssnd('; �)℄ over '(x; t)with this 
ondition, we arrive at the a
tion for �(t),Ssnd[�℄ � vF2�2u ZZ dt1;2 _�(t1) ln j(t1 � t2)j _�(t2) == vF2�2u ZZ dt1;2��(t1)� �(t2)t1 � t2 �2 : (6)The last form of this a
tion is typi
al of the quantumdissipation problem [21℄, where S �P j!jj�!j2. In our
ase, this dissipation arises from the emission of phasephonons forming a long-range tail in the 
ourse of the
hordus soliton development. Together with Vj , thisa
tion 
an be used to prove the above statements onthe time evolution of the 
hordus soliton 
ore.628
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ommensurate 
harge density waves : : :We now re
all that _� = �t� is peaked within narrowregions of the order of �0=u around the time instantst = 0 and T = 0 and is 
lose to zero elsewhere. ThenSsnd � vF4u ln uT�0 : (7)There is an even more phenomenologi
al standpoint(see [22℄ for more details and examples of 
ombinedtopologi
al defe
ts). The amplitude soliton 
reates the�-dis
ontinuity along its world line (0 < t < T; 0). Tobe topologi
ally allowed, that is, to have a �nite a
-tion, the line must terminate with half integer vorti
eslo
ated at (0; 0) and (0; T ), whose 
ir
ulation must pro-vide the 
ompensating jump Æ' = � along the interval(� ! �� 
ombined with ' ! ' + � leaves the or-der parameter �exp(i') invariant). The standard en-ergy of vorti
es for (5) then leads to a
tion (7). Con-trary to the usual 2�-vorti
es, the line 
onne
ting thehalf-integer ones is a physi
al singularity whose tensiongives (4).Minimizing Stot = S
ore + Ssndwith respe
t to T ,we obtain the power law near the amplitude solitonedge 
 �Ws,I(
) / �
�WsWs �� ; � = vF4u ; (8)whi
h is mu
h more pronoun
ed than the exponentiallaw for gapful 
ases (see (15) below).Our derivation suggests a literal long-range orderat large (x; t) distan
es and negle
ts all �u
tuationsof the phase ex
ept perturbations enfor
ed by the in-stanton. But the mean �u
tuations of the phase di-verge and the order parameter de
ays in a

ordan
ewith a power law. These long-range �u
tuations arenot related to the instanton and 
an be taken into a
-
ount a posteriori. This 
an be easily done by noti
ingthat the eigenfun
tions in the prefa
tor in (2) trans-form as 	0 ! 	0 exp[i'(x; t)=2℄, and being averaged,
ontribute the a
tion termÆS' = 18 h['(0; 0)� '(0; T )℄2i � u4vF ln uT�0 :Therefore, the e�e
t of phase �u
tuations, as well as themajor role of the formfa
tor, is simply a 
orre
tion tothe value of the index in (8), � ! �� = vF =4u+u=4vF .Within our adiabati
 approximation u=vF � 1, the
orre
tion is small but it builds a bridge to quan-tum nonadiabati
 models where exa
tly �� appears asthe index of the single-parti
le Green's fun
tion with
� = u=vF identi�ed as the 
harge 
hannel exponent.The link is 
ompleted by noting that the amplitudesoliton is a realization of the spinon and that the phase

dis
ontinuity in (5) is equivalent, together with �u
tu-ations, to applying the operatorexp� i2 '(x; t) + i�2 ÆÆ' signx�(t)�(T � t)� ;whi
h is our limit for bosonization.4. ACOUSTIC POLARON AND THE FREEEDGE4.1. 1D semi
ondu
tors with a
ousti
 andopti
al polaronsBehavior near the free edge 
 � �0 is dominated bysmall �u
tuations � in the gap amplitude, j�j = �0+�,and at the Fermi level, ÆEF = '0vF =2, via the phasegradient '0 = �x'. We 
onsider it in the framework ofthe general problem of a 
ombined (gapful and a
ous-ti
) polaron. The more simple, 
ompared to the CDW,single-parti
le formulation bears similar qualitative fea-tures but allows a more detailed analysis. We 
onsiderele
tron (hole) states in a 1D diele
tri
 near the edge ofa 
ondu
ting (valen
e) band. We a

ount for the gap-ful mode � with the 
oupling g0 and the sound mode(for whi
h we keep the �phase� notation ') with thevelo
ity u and the 
oupling gs. In generi
 semi
ondu
-tors, the sound mode is always present as the usuala
ousti
 phonon, while the gapful mode 
an be presentas an additional degree of freedom. In all CDWs, thegapful mode is always present as the amplitude �u
tu-ation j�j = �0 + �, while the sound mode appears inin
ommensurate CDWs as the phase � = j�j exp(i').Within the adiabati
 approximation for the ele
tronwave fun
tion 	, the a
tion S (at imaginary time) isgiven byS = Z dx TZ0 dt�� 12m j�x	j2 �
 j	j2�++ (gs�x'+ g0�)	y	�++ Z dx 1Z�1 dt(Ks2 "��t'u �2 + (�x')2#++ K02 "��t�!0 �2 + �2#) : (9)For the in
ommensurate CDW 
ase, we therefore havem = �0=v2F , g0 = 1, gs = vF =2, Ks = vF =2�,K0 = 4vF =�, 23=2u=vF = !0=�0, and 
 is 
ountedwith respe
t to the edge �0 rather than to the middleof the gap as in the previous se
tion.629



S. A. Brazovskii, S. I. Matveenko ÆÝÒÔ, òîì 123, âûï. 3, 2003It is well known [5℄ that the stationary state, i.e.,the time-independent extremum of (9), 
orresponds tothe selftrapped 
omplex, the polaron. Here, it is 
om-posed equally by � and '0, whi
h 
ontribute additivelyto the stati
 
oupling (while the dynami
s is 
ompletelydi�erent): � = �s + �0 = g2sKs + g20K0 :The polaroni
 length s
ale l for � � '0 � j	j2 � �p(x)is l = 2�=m and the total energy is Wp = �m�2=24.The 
onditions jWpj � !0 and � � u de�ne theadiabati
, Born�Oppenheimer, approximation. Forthe CDW 
ase, �s = vF�=2 and �0 = vF�=4, andtherefore, � � vF and we arrive at jWpj � �0 andl � �0 = vF =�0, whi
h are the mi
ros
opi
 s
aleswhere the single ele
troni
 model 
an be used onlyqualitatively. The full-s
ale approa
h for nearly sta-tionary states was 
onsidered in Se
. 3, but the upperpseudogap region near the free edge �0 is des
ribed bymodel (9) even quantitatively and most e�
iently.We 
an integrate over the �elds ' and � at all (x; t)to obtain the a
tion in terms of  alone, whi
h is nowde�ned only on the interval (0; T ) for t,Sf	;Tg = Z dxdt� 12m j�x	j2 �
 j	j2��� 12 ZZ dt1;2 ZZ dx1;2 �� fU0(x1 � x2; t1 � t2)�(x1; t1)�(x2; t2)++ Us(x1 � x2; t1 � t2)�x�(x1; t1)�x�(x2; t2)g : (10)Here, the retarded self-attra
tion potentials areUs = �su2� lnpx2 + t2u2;U0 = 12�0!0 exp[�!0jtj℄Æ(x): (11)An equivalent form, suitable at large T , is obtained viaintegrating by parts,Sf	;Tg = Z dx TZ0 dt � 12m j�x	j2 �
�� �2 �2�++ 12 ZZ dt1;2 ZZ dx1;2�t�(x1; t1)�t�(x2; t1)�� U(x1 � x2; t1 � t2); (12)where U(x; t) = u�2Us + !�20 U0.The absorption near the absolute edge 
 � Wpis determined by long-time pro
esses when the latti
e
on�guration is almost stati
ally self-
onsistent. The

�rst term in (12) is nothing but the a
tion Sst of thestati
 polaron whose extremum at a given T isSst � �TÆ
; Æ
 = 
�Wp:The se
ond term in (12), Str, 
olle
ts 
ontributionsonly from short transient pro
esses near the impa
t mo-ments t = 0; T , whi
h are seen by the long-length partas �t�(x; t) � �p(x)[Æ(t) � Æ(t � T )℄, where �p is thedensity for the stati
 polaron solution. We obtainStr � ZZ dx1;2�p(x1)�p(x2)U(x1 � x2; T ) == �s2�u ln uTl + C0�0=l!0 exp(�!0T ) + 
onstwith C0 � 1. We see the dominant 
ontribution of thesound mode that grows logarithmi
ally in T , while thepart of the gapful mode de
ays exponentially. If thesound mode is present, the extremum over T isT � �s2�u 1Æ
 ; S � �s2�u ln CsjWpjÆ
 ; Cs � 0:9: (13)We �nd that near the absolute edge 
 � Wp, the ab-sorption is given by a power law with the index � thatmust be large within our adiabati
 assumption, �� 1,I � � Æ
jWpj�� ; � = �s2�u: (14)For in
ommensurate CDW parameters, we obtain� = vF =4u, in full a

ordan
e with the exa
t treat-ment (8).Only in the absen
e of sound modes, �s = 0, thegapful 
ontribution 
an determine the absolute edge.Minimization of S = S
ore + ÆSgap over T then leadsqualitatively to the result in [1℄,T � !�10 ln ���� WpWp �
 ���� ;I / exp��
onst � jWpj!0 +
�Wp!0 ln ���� Wp
�Wp ����� (15)for 
 �Wp.4.2. Free-ele
tron edge vi
inityWe now 
onsider the opposite regime near the freeedge 
 � 0 (
 ! 
 � �0 for the in
ommensurateCDW). Here, entering the pseudogap at 
 < 0, theabsorption is determined by fast pro
esses of quan-tum �u
tuations: their 
hara
teristi
 time T = T (
)is short 
ompared to the relevant phonon frequen
y,T � !0; u=L, where L = L(
) is the 
hara
teristi
630
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ommensurate 
harge density waves : : :lo
alization length for the �u
tuational ele
tron levelat E0 = 
. Be
ause T is small, we 
an negle
t allvariations in time within (0; T ). We then estimate a
-tion (10), term by term, asS � C1TmL2 �
T � C2�su�TL�2 � C3�0!0T 2L ; (16)where Ci � 1. The 
ondition for its extremum withrespe
t to both L and T yieldsS � j
j3=2=m1=2max�jm
j1=2u�s;!0�0	 ;whi
h provides a reasonable interpolation for the ab-sorption in the 
losest and the more distant vi
initiesof the free-ele
tron edge. For the purely a
ousti
 
ase�0 = 0, a variational estimation of the numeri
al 
oef-�
ient as C1 � 1=6; C2 � 0:06 givesI / exp(�
onst � j
j=mu�s); 
onst � 2:8: (17)The validity 
ondition uT=L � p�
=Wp � 1 is sat-is�ed by de�nition of the edge region. This 
onditionis 
ompatible with the low boundary for the frequen
y,S � 1, and hen
e, �
=Wp � u=�s, whi
h is small asour basi
 adiabati
 parameter.For gapful phonons alone, �s = 0 and we arrive atthe known resultI / exp[�
onst � j
j3=2=!0℄; 
 < 0(see [1℄ and referen
es therein). But it was not quitepredi
table that among the laws S / j
j3=2 andS / j
j, it is the smallest 
ontribution to S that wins,proportional to j
j3=2 at lowest j
j and to j
j for largerj
j. For the in
ommensurate CDW, in parti
ular, wehave �0=�s � 1 and u=!0 � �0, and there is no spa
efor the intermediate asymptoti
 regime ln I / 
 atj
j � �0: beyond the region with S / j
j3=2, the am-plitude �u
tuations dominate, the phase-only des
rip-tion is invalid, and the parti
ular nature of amplitudesolitons must be taken into a

ount. This regime was
onsidered in Se
. 3.The di�eren
e between the laws ln I / �j
j=u andln I / �j
j3=2=!0 
an be interpreted easily. Indeed,for gapful phonons, we expe
t the frequen
y s
ale tobe !0 ! !k = uk � u=L � uj
j1=2, where k � 1=L isa 
hara
teristi
 wave number and L is the lo
alizationlength of the �u
tuation providing the bound state at�
. Then j
j3=2=!0 ! j
j3=2=!k � j
j=u.While law (17) appears to be the simplest one, it isa
tually quite un
ommon and its derivation is problem-ati
 in all systems, 
f. [14℄. In our 
ase, we note that

only at �0 6= 0, a
tion (16) has the usual saddle point,a minimum over L and a maximum over T . But forthe purely a
ousti
 
ase �0 = 0, the minimum over Lappears only along the extremal line over T . Contrar-ily, at a given T , the a
tion 
ollapses to either L ! 0or L ! 1 depending on the value of T with respe
tto the threshold T � � (mu�s)�1, whi
h is just the in-verse width in (17). The paradox 
an be resolved byinspe
ting the generi
 real time formulation (2). Butthe ne
essary insight is obtained more easily by anothertreatment presented in the next se
tion.4.3. Quantum �u
tuations as an instantaneousdisorder with long-range spa
e 
orrelationsIt has already been noti
ed that in a 1D system,the opti
al absorption near the band edge 
an beviewed as for a quen
hed disorder emulated by instan-taneous quantum �u
tuations. This asymptoti
ally ex-a
t redu
tion to the time-independent model 
an bedone as follows. After negle
ting the retardation atT � !0; u=L, the self-intera
tion term in (10) 
an bede
oupled by the Hubbard�Stratonovi
h transforma-tion via a time-independent �eld � with the 
orrelatorD(x) = U0(x; 0) + �2xUs(x; 0),Sf	; �;Tg = T Z dx� 12m j�x	j2 + �(x)�(x)� ++ 12 ZZ dx1;2�(x1)D�1(x1 � x2)�(x2): (18)After integration over 	 and rotation to the real time,it �nally be
omes the density of statesZ D[�(x)℄Æ(E[�(x)℄ �
)�� exp ��12 ZZ dx1dx2�(x1)D�1(x1 � x2)�(x2)� ;where E[�(x)℄ is the eigenfun
tion in the random�eld �, � �2x2m	+ �	 = E	 :For the dispersionless phonon alone, e.g., the amplitudemode in the CDW, D(x) = U0(x; 0) � Æ(x), and theknown exa
t results for the un
orrelated disorder [23℄provide us with the asymptoti
 pseudogap formulaI(
) / exp"� 833=2 jWpj!0 ���� 
Wp ����3=2# : (19)631
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��=2

�=2 ' x
Fig. 3. The a
ousti
 polaron �eld '(x; t) as a fun
tionof x at some moment tFor the CDW parameters, it be
omesI(
) / exp"� 163� �2 �0 �
(�0!20)1=3�3=2# : (20)Below, we 
on
entrate only on a more problem-ati
 
ase of the sound mode. The 
orrelator D(x)of the �disordered potential� � is just the meansquare of quantum �u
tuations of the phonon poten-tial � = vF =2'0(x; t) at 
oin
iding times: in the Fourierrepresentation, we haveDk = Z d!2� �sk2(!=u)2 + k2 = 12�sujkj :The probability distribution for the Fourier 
ompo-nents �k is P [�k℄ / exp�� Z dk2� j�kj2�sujkj� ; (21)whi
h implies that the 
omponent with k = 0 is ex-
luded, P (�0) = 0. The 
onstraint�0 = 1Z�1 �(x)dx = 0 (22)agrees with the properties of the potential proportionalto '0 in the time-dependent pi
ture of the previousse
tion, whi
h satis�es 
ondition (22) at any �nite t,see Fig. 3. Contrary to the usual expe
tations of themethod of optimal �u
tuations, the potential well 
re-ating the levelE must here be a

ompanied by 
ompen-sating barriers. Condition (22) is linked to the paradoxin the pervious se
tion, i.e., the absen
e of a �nite min-imum over the length s
ale at a given T . Indeed, we
an no longer rely on the existen
e of a bound state atan arbitrarily shallow potential, E0 � �m �R dx�(x)�2,whi
h is zero under 
ondition (22).While the divergen
y at small k (large x) is phys-i
al, the one at large k in (21) must be regularized to

apply in the real spa
e. We pro
eed by introdu
ing anauxiliary �eld �(x) su
h that � = d�=dx = �0. We�nally arrive at the model of the �nonlo
al a
ousti
disorder�,I(
) / Z D[�(x)℄Æ(E[�x�(x)℄�
)�� exp"��s2u ZZ dx1dx2 (�(x1)� �(x2))2jx1 � x2j2 # : (23)Here, the integral in the exponent is already regularat small x. The divergen
e at large x maintains 
on-straint (22), otherwise�(+1)� �(�1) = 1Z�1 �(x)dx 6= 0and the integral in (23) would diverge logarithmi
ally,leading to zero probability.Unfortunately, we are unaware of exa
t studies fordisordered systems with su
h long-range 
orrelations.Usual s
aling estimations [24℄ for 
hara
teristi
 � andl give j
j � 1=ml2 � j�j=l, then j�j � j
=mj1=2, andtherefore, ln I � ��2�s=u � �j
j�s=u, in a

ordan
ewith dire
t estimations and result (17) for the generaltime-dependent model.5. DISCUSSION AND CONCLUSIONSWe summarize the obtained results as follows.The pseudogap starts below the free edge by(stret
hed) exponential dependen
esI / exp [�
onst � (�j
j)
 ℄ (24)with di�erent powers 
 = 3=2 for gapful phonons and
 = 1 for sound photons. If both modes are present,then the smallest one, with 
 = 3=2, dominates at small
. This regime 
orresponds to free ele
troni
 statessmeared by instantaneous un
orrelated quantum �u
-tuations of the latti
e.Deeply within the pseudogap, approa
hing the ab-solute thresholdWs orWp, the exponential law 
hangesfor the power law I(
) / (
�Ws)� with a large expo-nent �. This 
ontribution dominates over the smoothone from gapful modes I / exp(
onst � Æ
 ln Æ
). Thepower-law regime 
orresponds to 
reation of nearly am-plitude solitons surmounted be 
ompensating phasetails. Its des
ription provides a semi
lassi
al interpre-tation for pro
esses in fully quantum systems of 
orre-lated ele
trons in the spin-gap regime, with the ampli-tude soliton being a version of the spinon.632



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Pseudogaps in in
ommensurate 
harge density waves : : :These results are di�erent from anything used ear-lier in either theoreti
al dis
ussions or interpretation ofexperimental data [13℄. They 
an vaguely explain un-usually wide pseudogaps observed in experiments evenat low temperatures for well-formed in
ommensurateCDWs.Our results have been derived for single ele
troni
transitions, PES and tunneling. They 
an also be ap-plied to intergap (parti
le�hole) opti
al transitions aslong as semi
ondu
tors are 
on
erned. For in
ommen-surate CDWs, the results are applied to a vi
inity ofthe free edge. But the edge at 2Es disappears in favorof the opti
ally a
tive gapless phase mode.We empliasize in this respe
t that there 
annot be a
ommon pseudogap for pro
esses 
hara
terized by dif-ferent time s
ales. We must distinguish [8℄ betweenshort-living states observed in opti
al, PES (and maybetunneling) experiments and long-living states (ampli-tude solitons and phase solitons) 
ontributing to thespin sus
eptibility, NMR relaxation, heat 
apa
itan
e,
ondu
tivity, et
. States forming the opti
al pseudo-gap are 
reated instantaneously; parti
ularly near thefree edge, they are tested over times that are shorterthan the inverse phonon frequen
ies �opt � ~=Eg < !�1phand many orders of magnitude beyond the lifetimesrequired for 
urrent 
arriers, and even mu
h longertimes for thermodynami
 
ontributions. It then fol-lows that the analysis of di�erent groups of experimen-tal data [13℄ within the same pi
ture must be re
onsid-ered. The la
k of dis
riminating di�erent time s
alesalso 
on
erns typi
al dis
ussions of pseudogaps in high-T
 super
ondu
tors.We 
on
lude that the subgap absorption in systemswith gapless phonons is dominated by formation oflong spa
e�time tails of relaxation. It applies to botha
ousti
 polarons in 1D semi
ondu
tors and solitonsin CDWs. Near the free edge, a simple exponential,Urba
h-type law appears 
ompeting with stret
hedexponential laws of tails from optimal �u
tuations.A deeper part of the pseudogap is dominated by apower-law singularity near the absolute edge.One of the authors (S. M.) a
knowledges hospitalityof the Laboratoire de Physique Théorique et des Mod-eles Statistiques, Orsay and support of the CNRS andthe ENS�Landau foundation. This work was partlyperformed within the INTAS grant � 2212.

APPENDIXEle
troni
 energies in a 
omplex �eld � are deter-mined by the Dira
 Hamiltonian����� �ivF�x ��� ivF�x ����� ; � = j�jei':In the ground state, j�(x; t)j = �0, we have ' = 
onst,and the ele
troni
 spe
trum is E2 = v2F k2 +�20, wherevF is the Fermi velo
ity. But these free states are notproper ex
itations. The evolution of added ele
tronsor holes with the initial energy E0 � �0 to the am-plitude soliton with Ws = 2�0=� < �0 
an be de-s
ribed by an exa
t solution for intermediate 
on�gura-tions 
hara
terized by the singly o

upied arbitrary po-sitioned intragap state E0 = �0 
os � with 0 � � � �,when
e ��0 < E0 < �0. It was found [8℄ to be the
hordus soliton with 2� being the total 
hiral angle,�(�1) = exp(�i�), see Fig. 1. Namely,�ChS(x; �) = �0[
os �+i sin � th(k0x)℄ exp(i'0);k0 = �0 sin � (25)with an arbitrary '0 = 
onst. The potentials V� areknown [8℄ to be given by (see Fig. 2)V�(�) = �0 ��� � 2� �� 
os � + 2� sin �� ;where � is the �lling number of the intragap state, thatis, � = 0; 1 for j = 0; 1 while � = 2 is equivalent toj = 0 for the ground state extended by the two par-ti
les, N = 2M + 2. The term V0(�) monotoni
allyin
reases from V0(0) = 0 for the 2M ground state toV0(�) = 2�0 for the 2M + 2 ground state with twofree holes. Obviously, there is an opposite dependen
efor V2(�) = V0(� � �). Therefore, the total phases slip2� = 0 ! 2� = 2� realizes the spe
tral �ow a
ross thegap, also a

ompanied by the �ow of parti
les for � = 2that makes it favorable. The term V1(�) = V1(� � �)is symmetri
 and des
ribes both the parti
le on the2M ground state and the hole on the 2M + 2 groundstate. Apparently, V1(0) = V1(�) = �0 (the degener-ate ground states are the 2M one with an additionalfree ele
tron for � = 0 and the 2M + 2 one with anadditional free hole for � = �), while the minimum isV1(�=2) = Ws < �0, where Ws = 2�0=� is the ampli-tude soliton energy. Therefore, the stationary state ofthe system with an odd number of parti
les, the min-imum of V1, is the amplitude soliton with the midgapstate E0 = 0 o

upied by a singe ele
tron.We note that being an un
harged spin 
arrier withthe topologi
al 
harge equal to unity, the amplitude633



S. A. Brazovskii, S. I. Matveenko ÆÝÒÔ, òîì 123, âûï. 3, 2003soliton is a semi
lassi
al realization of a spinon in sys-tems with nonretarded attra
tion of ele
trons (that is,with high, rather than low, phonon frequen
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