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PSEUDOGAPS IN INCOMMENSURATE CHARGE DENSITY WAVESAND ONE-DIMENSIONAL SEMICONDUCTORSS. A. Brazovskii a;b, S. I. Matveenko b*a Laboratoire de Physique Théorique et des Modèle StatistiquesCNRS, Bât.100, Université Paris-Sud, 91405 Orsay Cedex, Franeb L. D. Landau Institute for Theoretial Physis117940, Mosow, RussiaSubmitted 25 September 2002We onsider pseudogap e�ets for eletrons interating with gapless modes. We study generi 1D semiondu-tors with aousti phonons and inommensurate harge density waves. We alulate the subgap absorption asit an be observed by means of photoeletron or tunneling spetrosopy. Within the formalism of funtionalintegration and adiabati approximation, the probabilities are desribed by nonlinear on�gurations of an in-stanton type. Partiularities of both ases are determined by the topologial nature of stationary exited states(aousti polarons or amplitude solitons) and by the presene of gapless phonons that hange the usual dynam-is to the quantum dissipation regime. Below the free-partile edge, the pseudogap starts with an exponential(strethed exponential for gapful phonons) derease of the transition rates. Deeply within the pseudogap, theyare dominated by a power law, in ontrast to a nearly exponential law for gapful modes.PACS: 72.15.Nj, 78.40.Me, 78.70.Dm, 71.45.Lr1. INTRODUCTION: PSEUDOGAPS IN 1DSYSTEMSThis paper is devoted to the theory of pseudogaps ineletroni spetra in appliation to photoeletron spe-trosopy (PES). We study the in�uene of quantum lat-tie �utuations on eletroni transitions in the subgapregion for one-dimensional (1D) systems with gaplessphonons. Low-symmetry systems with gapful spetrawere reently addressed by the authors [1℄, and we referto this paper for a more omprehensive review and ref-erenes. Here, we show that sound branhes of phononspetra drastially hange the transition rates makingthem muh more pronouned deeply within the pseu-dogap. We onsider two types of systems: generi 1Dsemiondutors with aousti eletron�photon (e�ph)oupling (onduting polymers, quantum wires, andnanotubes) and inommensurate harge density waves(CDWs) [2℄, whih possess a gapless olletive phasemode.The pseudogap onept [3℄ refers to various sys-tems where the gap in their bare eletroni spetra is*E-mail: matveen�landau.a.ru

partly �lled and subgap tails our. Even for pure sys-tems and at temperature T = 0, there an be a rathersmeared edge E0g , while the spetrum extends deeplyinward the gap until some absolute edge Eg , whihan be even zero (no true gap at all). A most gen-eral reason is that stationary exitations (eigenstatesof the total e�ph system) are self-trapped states, po-larons or solitons, whose energiesWp andWs are belowthe free eletron ones, thus forming the absolute edgeat Eg < E0g . Nonstationary states �lling the pseudo-gap range E0g > E > Eg an be observed only viainstantaneous measurements like optis, PES, or tun-neling. Partiularly near E0g , the states resemble freeeletrons in the �eld of unorrelated quantum �utua-tions of the lattie [4℄; here, the self-trapping does nothave enough time to develop. But approahing the ex-at threshold Eg , the exitations evolve towards eigen-states, whih are self-trapped e�ph omplexes. Thepseudogaps must be ommon in 1D semiondutorsjust beause of favorable onditions for self-trapping [5℄.The pseudogap is espeially pronouned when the baregap is opened spontaneously as a symmetry breakinge�et. In quasi-1D ondutors, this symmetry break-13 ÆÝÒÔ, âûï. 3 625



S. A. Brazovskii, S. I. Matveenko ÆÝÒÔ, òîì 123, âûï. 3, 2003ing is known as the Peierls�Fröhlih instability leadingto the CDW formation. Here, the piture of the pseu-dogap was �rst suggested theoretially [3℄ (we also re-all [6℄ and another model [7℄) in relation to the abseneof a long-range order in 1D CDWs at a �nite tempera-ture. In this approah, the smearing of the mean-�eldeletroni gap 2�0 orresponds to the disappearane ofthe true Peierls�Fröhlih transition in favor of a smoothrossover. The pseudogap shape was related to, andderived from, the temperature-dependent �nite orre-lation length �. An alternative piture was suggestedin [4℄ and further developed in [8℄. It onentrates one�ets that persist even at zero temperature and aredue to a strong interation between bare eletroni ex-itations and perturbations (the amplitude and phasephonons) of the CDW ground state. Here, the pseu-dogap in instantaneous eletroni spetra is related tothe transformation of eletrons into solitons.Experimentally, pseudogaps in inommensurateCDWs were �rst addressed by opti [9�11℄ and morereently by the PES and ARPES (momentum-resolvedPES) methods [12℄. The earlier experiments weretheoretially interpreted in [13℄ by ompilation ofthe approahes in [3, 4, 7℄. Detailed theories of thesubgap absorption in optis have been developed forsystems with low symmetries (nondegenerate, likesemiondutors with gapful phonons, or disretelydegenerate like the dimerized Peierls state). They�rst addressed the general type of polaroni semion-dutors [14℄ with emphasis on long-range Coulombe�ets, and then the 1D Peierls system, emphasizingsolitoni proesses (see [15℄ and referenes therein).The authors reently [1℄ extended the theory of pseu-dogaps to single eletroni spetra in appliation toPES, and partiularly intriguing, to ARPES probes.But properties of inommensurate CDWs are furtherompliated by the appearane of a gapless olletivemode resulting in drasti hanges. The ase of aoustipolarons in a 1D semiondutor belongs to the samelass, although this is not usually notied.A spei� property of 1D systems with ontinuousdegeneray (with respet to the phase for inommensu-rate CDWs and to displaements for usual rystals) isthat even a single eletroni proess an reate topolog-ially nontrivial exitations, solitons. For inommensu-rate CDWs, a single eletron or hole with the energynear the gap edges ��0 spontaneously evolves to anearly amplitude soliton while the original partile istrapped at the loal level near the gap enter. The en-ergy near 0:3�0 is released, at �rst sight, within thetime !�1ph � 10�12 s. We see in what follows that thereatually also exists a long-sale adaptation proess that

determines shapes of transition probabilities. Simi-larly, the usual aousti polaron in 1D semiondutorsis haraterized by the eletroni density � � �'=�xself-loalized within the potential well, and hene, thereis a �nite inrement '(+1) � '(�1) � R �dx ofthe lattie displaements ' over the length x, whihis the signature of topologially nontrivial solitons.These systems with ontinuous degeneray form a spe-ial lass that shows partiular properties and must bestudied di�erently than in [1℄. They are addressed inthis paper.2. FUNCTIONAL INTEGRALS ANDINSTANTONS FOR PESAs a funtion of the frequeny 
 and momentumP , the absorption rate I(
; P ) for ARPES an be ex-pressed in terms of the spetral density of the one-eletron retarded Green's funtion G(t; t0;x; x0) asI(P;
) / Im Z dXe�iPX 1Z0 dTei
TG(X;T; 0; 0): (1)We here address the simple PES, not resolved in mo-menta, whih measures the integrated absorption in-tensity I(
) = 12� Z I(P;
)dP:(From now on, we omit all onstant fators and set thePlank onstant ~ = 1; 
 is then measured with respetto a onvenient level, the band edge for semiondutorsor the middle of the gap for CDWs.)We use the adiabati approximation, whih isvalid when hanges of eletroni energies are muhlarger than the relevant phonon frequenies. Ele-trons move in a slowly varying phonon potential, e.g.,Re[�(x; t) exp(2ikFx)℄ for an inommensurate CDW,and at any instant t their energies E(t) and wave fun-tions  (x; t) are therefore de�ned as eigenstates for theinstantaneous lattie on�guration and depend on timeonly parametrially. In what follows, we work in theEulidean spae it ! t, whih is adequate for studiesof lassially forbidden proesses [14, 16, 17℄. The inte-grated absorption intensity is then given by a funtionalintegral over lattie on�gurations,I(
) / 1Z0 dT Z D[�(x; t)℄ 0(0; T ) +0 (0; 0)e�S; (2)where  0 is the wave funtion of the partile (whih isatually a hole for PES) added and extrated at mo-ments 0 and T . Only the lowest singly �lled loalized626



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Pseudogaps in inommensurate harge density waves : : :state is relevant for alulations of subgap proesses.The energy E0 of this state is split inside the gap. TheationS = S[�(x; t); T ℄ = 0� 0Z�1 + 1ZT 1A dtL0 ++ TZ0 dt (L1 �
); L1 � L0 = E0 (3)is expressed through the Lagrangians Lj [�℄, where thesubsripts j = 0; 1 orrespond to ground states for 2M(the bare number) and 2M � 1 eletrons in the poten-tial �(x; t). The main ontribution omes from saddlepoints of S, the instantons, whih are extremums withrespet to both the funtion �(x; t) and the time T .There are also speial ases [1℄, partiularly importantfor ARPES, where the extremum must be taken forthe entire integrand in (2), with the wave funtions inthe prefator taken into aount. Otherwise, the sta-tionary point is determined by dS=dT = 0, that is,E0(0) = E0(T ) = 
, whih determines T (
).In what follows, we onentrate on most prinipalfeatures, leaving aside alulations of prefators andthe problem of the momentum dependene neessaryfor ARPES. For a simpler ase of nondegenerate sys-tems, they have been studied in [1℄.3. CREATION OF AMPLITUDE SOLITONS ININCOMMENSURATE CDWsWe �rst onsider the subgap eletroni spetra forthe inommensurate CDW desribed by the Peierls�Fröhlih model. The inommensurate CDW order pa-rameter is the omplex �eld � = j�(x; t)j exp[i'(x; t)℄ating on eletrons by mixing states near the Fermi mo-menta points �kF . The Lagrangians Lj onsist of thebare kineti and potential lattie energies and of thesum over the �lled eletron levels, in the jth state,Lj = Z dx2j�t�j2�vF!20 + Vj [�(x; t)℄;where vF is the Fermi veloity in the metalli state and!0 is the amplitude mode frequeny (!0 � �0 is theondition for the adiabati approximation).The important fat is that the stationary state ofthe system with an odd number of partiles, the min-imum of V1, is an amplitude soliton, with the midgapstate E0 = 0 oupied by a singe eletron. Evolutionof the free eletron with the initial energy E0 = �0to the amplitude soliton with Ws = 2�0=� < �0

Im�s(x)
Re�s(x)� E0

Fig. 1. Trajetory of the hordus soliton with phasetails in the omplex plane �an be desribed by the known exat solution for in-termediate on�gurations haraterized by the singleintragap E0 = �0 os � with 0 � � � �, whene��0 � E0 � �0. It was found [8℄ (see also re-views [18, 19℄) to be the hordus soliton with 2� asthe total hiral angle, �(+1)=�(�1) = exp(2i�),see Fig. 1 and the Appendix for details. The �llingnumbers � = 0; 1 of the intragap state orrespond tolabels j = 0; 1. The term V0(�) monotonially in-reases from V0(0) = 0 for the 2M ground state toV0(�) = 2�0 for the 2M + 2 ground state with twofree holes. The term V1(�) = V1(� � �) is symmetriand desribes both a partile on the 2M ground stateand a hole on the 2M + 2 ground state. Obviously,V1(0) = V1(�) = �0, while the minimum is reahedat � = �=2, that is for a purely amplitude solution:minV (�) = V1(�=2) = Ws < �0, where Ws = 2�0=�is the amplitude solution energy, see Fig. 2. Therefore,to reate a nearly amplitude soliton with � = 90Æ, thelight with 
 �Ws is absorbed by the quantum �utu-ation with E0(�) = Ws, whih is lose to the hordussoliton with the angle � � 50Æ.We note that the amplitude soliton, being an un-harged spin arrier with the topologial harge one, isa quasilassial realization of a spinon in systems withnonretarded attration of eletrons (that is, with high,rather than low, phonon frequenies). Therefore, ouranalysis is also qualitatively applied to arbitrary nona-diabati eletroni systems provided they are found inthe spin-gap regime. (See also the next setion.)It is tempting to use the stati solution, with somefree parameter, as an ansatz for the time-dependentproess; this proved to be suessful in gapful ases627 13*
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Fig. 2. Selftrapping terms V� for hordus solitons asfuntions of the hiral angle 2� for various �llings �[1, 15℄. But here, putting � ! �(t), we would arrive at�t� 6= 0 for all x, and the ation would therefore be in-�nite, S is proportional to the system length. The van-ishing probability simply re�ets the fat that a glob-ally �nite perturbation, harateristi of topologiallynontrivial solitons, annot spread over the whole lengthin a �nite time. More generally, as a topologially non-trivial objet, the amplitude soliton annot be reatedin a pure form: adaptational deformations must appearto ompensate the topologial harge. These deforma-tions develop over long spae�time sales and an bedesribed in terms of the gapless mode, the phase ',alone. Allowing the time evolution of the hiral an-gle � ! �(t) within the ore, we must therefore alsounhinder the �eld ' ! '(x; t) for all x and t. Theresulting trajetory is shown in Fig. 1 for an instant oftime. Starting from x! �1 and returning to x!1,the on�guration losely follows the irle j�j = �0hanging almost entirely by phase. Approahing thesoliton ore, the phase approximately mathes the an-gles �� that delimit the hordus part of the trajetory.The entire trajetory is losed, whih leads to a �niteation.Exept for a short time sale T < �0=u (see Se. 4.2)haraterized by small � and large lengths � = �0= sin �,the on�guration �(x; t) an be divided into the innerpart, the ore at jxj � �, and the outer part jxj � �,where only perturbations of the phase '(x; t) are im-portant. The inner part an be desribed by the hor-dus soliton �ChS(x; t). The hordus angle 2�(t) evolvesin time from �(�1) = 0 to �m in the middle of the Tinterval. As T ! 1, that is, near the stationary stateof the amplitude soliton, �m ! �=2. This value is a-tually preserved during most of the T interval, and the

hanges between � = 0 and � = �=2 are therefore on-entrated within �nite ranges �0 � �0=u� T near thetermination points. At large sales, we an see only ajump '(x; t) � �(t) signx with �(t) � �m�(t)�(T � t),where � is the standard step funtion. Beause theon�guration stays lose to the amplitude soliton dur-ing the time T , the main ore ontribution to the a-tion is Sore = (Ws �
)T + ÆSore; (4)where the �rst orretion ÆS0ore = onst omes form re-gions around the instants 0 and T independently. Thesigni�ant T -dependent ontribution ÆS(T ) omes frominterferene of regions 0 and T . Their interation viagapful exitations like the amplitude mode deays ex-ponentially as ÆSgap / exp(�!0T ). There are no otherontributions for low-symmetry systems, but for an in-ommensurate CDW, there are sound modes providingthe main e�et to be addressed below.Mathing the inner and outer regions is not well de-�ned unless we onsider the full mirosopi time-de-pendent model, whih is impossible. But fortunately,the long-range e�ets an be treated easily if we gener-alize the sheme suggested earlier for stati problems ofsolitons in the presene of interhain interations [8; 20℄.The outer region is desribed by the ation for thesound-like phase mode,Ssnd['(x; t); �(t)℄ == vF4� ZZ dx dt"��t'u �2 + (�x')2# ;'(t; xs � 0) = ��(t); (5)where u is the phase veloity. The onditions on ' atxs � 0 are due to the soure provided by the hordussoliton that is formed around xs and enfores the dis-ontinuity 2�. Integrating exp[�Ssnd('; �)℄ over '(x; t)with this ondition, we arrive at the ation for �(t),Ssnd[�℄ � vF2�2u ZZ dt1;2 _�(t1) ln j(t1 � t2)j _�(t2) == vF2�2u ZZ dt1;2��(t1)� �(t2)t1 � t2 �2 : (6)The last form of this ation is typial of the quantumdissipation problem [21℄, where S �P j!jj�!j2. In ourase, this dissipation arises from the emission of phasephonons forming a long-range tail in the ourse of thehordus soliton development. Together with Vj , thisation an be used to prove the above statements onthe time evolution of the hordus soliton ore.628



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Pseudogaps in inommensurate harge density waves : : :We now reall that _� = �t� is peaked within narrowregions of the order of �0=u around the time instantst = 0 and T = 0 and is lose to zero elsewhere. ThenSsnd � vF4u ln uT�0 : (7)There is an even more phenomenologial standpoint(see [22℄ for more details and examples of ombinedtopologial defets). The amplitude soliton reates the�-disontinuity along its world line (0 < t < T; 0). Tobe topologially allowed, that is, to have a �nite a-tion, the line must terminate with half integer vortiesloated at (0; 0) and (0; T ), whose irulation must pro-vide the ompensating jump Æ' = � along the interval(� ! �� ombined with ' ! ' + � leaves the or-der parameter �exp(i') invariant). The standard en-ergy of vorties for (5) then leads to ation (7). Con-trary to the usual 2�-vorties, the line onneting thehalf-integer ones is a physial singularity whose tensiongives (4).Minimizing Stot = Sore + Ssndwith respet to T ,we obtain the power law near the amplitude solitonedge 
 �Ws,I(
) / �
�WsWs �� ; � = vF4u ; (8)whih is muh more pronouned than the exponentiallaw for gapful ases (see (15) below).Our derivation suggests a literal long-range orderat large (x; t) distanes and neglets all �utuationsof the phase exept perturbations enfored by the in-stanton. But the mean �utuations of the phase di-verge and the order parameter deays in aordanewith a power law. These long-range �utuations arenot related to the instanton and an be taken into a-ount a posteriori. This an be easily done by notiingthat the eigenfuntions in the prefator in (2) trans-form as 	0 ! 	0 exp[i'(x; t)=2℄, and being averaged,ontribute the ation termÆS' = 18 h['(0; 0)� '(0; T )℄2i � u4vF ln uT�0 :Therefore, the e�et of phase �utuations, as well as themajor role of the formfator, is simply a orretion tothe value of the index in (8), � ! �� = vF =4u+u=4vF .Within our adiabati approximation u=vF � 1, theorretion is small but it builds a bridge to quan-tum nonadiabati models where exatly �� appears asthe index of the single-partile Green's funtion with� = u=vF identi�ed as the harge hannel exponent.The link is ompleted by noting that the amplitudesoliton is a realization of the spinon and that the phase

disontinuity in (5) is equivalent, together with �utu-ations, to applying the operatorexp� i2 '(x; t) + i�2 ÆÆ' signx�(t)�(T � t)� ;whih is our limit for bosonization.4. ACOUSTIC POLARON AND THE FREEEDGE4.1. 1D semiondutors with aousti andoptial polaronsBehavior near the free edge 
 � �0 is dominated bysmall �utuations � in the gap amplitude, j�j = �0+�,and at the Fermi level, ÆEF = '0vF =2, via the phasegradient '0 = �x'. We onsider it in the framework ofthe general problem of a ombined (gapful and aous-ti) polaron. The more simple, ompared to the CDW,single-partile formulation bears similar qualitative fea-tures but allows a more detailed analysis. We onsidereletron (hole) states in a 1D dieletri near the edge ofa onduting (valene) band. We aount for the gap-ful mode � with the oupling g0 and the sound mode(for whih we keep the �phase� notation ') with theveloity u and the oupling gs. In generi semiondu-tors, the sound mode is always present as the usualaousti phonon, while the gapful mode an be presentas an additional degree of freedom. In all CDWs, thegapful mode is always present as the amplitude �utu-ation j�j = �0 + �, while the sound mode appears ininommensurate CDWs as the phase � = j�j exp(i').Within the adiabati approximation for the eletronwave funtion 	, the ation S (at imaginary time) isgiven byS = Z dx TZ0 dt�� 12m j�x	j2 �
 j	j2�++ (gs�x'+ g0�)	y	�++ Z dx 1Z�1 dt(Ks2 "��t'u �2 + (�x')2#++ K02 "��t�!0 �2 + �2#) : (9)For the inommensurate CDW ase, we therefore havem = �0=v2F , g0 = 1, gs = vF =2, Ks = vF =2�,K0 = 4vF =�, 23=2u=vF = !0=�0, and 
 is ountedwith respet to the edge �0 rather than to the middleof the gap as in the previous setion.629



S. A. Brazovskii, S. I. Matveenko ÆÝÒÔ, òîì 123, âûï. 3, 2003It is well known [5℄ that the stationary state, i.e.,the time-independent extremum of (9), orresponds tothe selftrapped omplex, the polaron. Here, it is om-posed equally by � and '0, whih ontribute additivelyto the stati oupling (while the dynamis is ompletelydi�erent): � = �s + �0 = g2sKs + g20K0 :The polaroni length sale l for � � '0 � j	j2 � �p(x)is l = 2�=m and the total energy is Wp = �m�2=24.The onditions jWpj � !0 and � � u de�ne theadiabati, Born�Oppenheimer, approximation. Forthe CDW ase, �s = vF�=2 and �0 = vF�=4, andtherefore, � � vF and we arrive at jWpj � �0 andl � �0 = vF =�0, whih are the mirosopi saleswhere the single eletroni model an be used onlyqualitatively. The full-sale approah for nearly sta-tionary states was onsidered in Se. 3, but the upperpseudogap region near the free edge �0 is desribed bymodel (9) even quantitatively and most e�iently.We an integrate over the �elds ' and � at all (x; t)to obtain the ation in terms of  alone, whih is nowde�ned only on the interval (0; T ) for t,Sf	;Tg = Z dxdt� 12m j�x	j2 �
 j	j2��� 12 ZZ dt1;2 ZZ dx1;2 �� fU0(x1 � x2; t1 � t2)�(x1; t1)�(x2; t2)++ Us(x1 � x2; t1 � t2)�x�(x1; t1)�x�(x2; t2)g : (10)Here, the retarded self-attration potentials areUs = �su2� lnpx2 + t2u2;U0 = 12�0!0 exp[�!0jtj℄Æ(x): (11)An equivalent form, suitable at large T , is obtained viaintegrating by parts,Sf	;Tg = Z dx TZ0 dt � 12m j�x	j2 �
�� �2 �2�++ 12 ZZ dt1;2 ZZ dx1;2�t�(x1; t1)�t�(x2; t1)�� U(x1 � x2; t1 � t2); (12)where U(x; t) = u�2Us + !�20 U0.The absorption near the absolute edge 
 � Wpis determined by long-time proesses when the lattieon�guration is almost statially self-onsistent. The

�rst term in (12) is nothing but the ation Sst of thestati polaron whose extremum at a given T isSst � �TÆ
; Æ
 = 
�Wp:The seond term in (12), Str, ollets ontributionsonly from short transient proesses near the impat mo-ments t = 0; T , whih are seen by the long-length partas �t�(x; t) � �p(x)[Æ(t) � Æ(t � T )℄, where �p is thedensity for the stati polaron solution. We obtainStr � ZZ dx1;2�p(x1)�p(x2)U(x1 � x2; T ) == �s2�u ln uTl + C0�0=l!0 exp(�!0T ) + onstwith C0 � 1. We see the dominant ontribution of thesound mode that grows logarithmially in T , while thepart of the gapful mode deays exponentially. If thesound mode is present, the extremum over T isT � �s2�u 1Æ
 ; S � �s2�u ln CsjWpjÆ
 ; Cs � 0:9: (13)We �nd that near the absolute edge 
 � Wp, the ab-sorption is given by a power law with the index � thatmust be large within our adiabati assumption, �� 1,I � � Æ
jWpj�� ; � = �s2�u: (14)For inommensurate CDW parameters, we obtain� = vF =4u, in full aordane with the exat treat-ment (8).Only in the absene of sound modes, �s = 0, thegapful ontribution an determine the absolute edge.Minimization of S = Sore + ÆSgap over T then leadsqualitatively to the result in [1℄,T � !�10 ln ���� WpWp �
 ���� ;I / exp��onst � jWpj!0 +
�Wp!0 ln ���� Wp
�Wp ����� (15)for 
 �Wp.4.2. Free-eletron edge viinityWe now onsider the opposite regime near the freeedge 
 � 0 (
 ! 
 � �0 for the inommensurateCDW). Here, entering the pseudogap at 
 < 0, theabsorption is determined by fast proesses of quan-tum �utuations: their harateristi time T = T (
)is short ompared to the relevant phonon frequeny,T � !0; u=L, where L = L(
) is the harateristi630



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Pseudogaps in inommensurate harge density waves : : :loalization length for the �utuational eletron levelat E0 = 
. Beause T is small, we an neglet allvariations in time within (0; T ). We then estimate a-tion (10), term by term, asS � C1TmL2 �
T � C2�su�TL�2 � C3�0!0T 2L ; (16)where Ci � 1. The ondition for its extremum withrespet to both L and T yieldsS � j
j3=2=m1=2max�jm
j1=2u�s;!0�0	 ;whih provides a reasonable interpolation for the ab-sorption in the losest and the more distant viinitiesof the free-eletron edge. For the purely aousti ase�0 = 0, a variational estimation of the numerial oef-�ient as C1 � 1=6; C2 � 0:06 givesI / exp(�onst � j
j=mu�s); onst � 2:8: (17)The validity ondition uT=L � p�
=Wp � 1 is sat-is�ed by de�nition of the edge region. This onditionis ompatible with the low boundary for the frequeny,S � 1, and hene, �
=Wp � u=�s, whih is small asour basi adiabati parameter.For gapful phonons alone, �s = 0 and we arrive atthe known resultI / exp[�onst � j
j3=2=!0℄; 
 < 0(see [1℄ and referenes therein). But it was not quitepreditable that among the laws S / j
j3=2 andS / j
j, it is the smallest ontribution to S that wins,proportional to j
j3=2 at lowest j
j and to j
j for largerj
j. For the inommensurate CDW, in partiular, wehave �0=�s � 1 and u=!0 � �0, and there is no spaefor the intermediate asymptoti regime ln I / 
 atj
j � �0: beyond the region with S / j
j3=2, the am-plitude �utuations dominate, the phase-only desrip-tion is invalid, and the partiular nature of amplitudesolitons must be taken into aount. This regime wasonsidered in Se. 3.The di�erene between the laws ln I / �j
j=u andln I / �j
j3=2=!0 an be interpreted easily. Indeed,for gapful phonons, we expet the frequeny sale tobe !0 ! !k = uk � u=L � uj
j1=2, where k � 1=L isa harateristi wave number and L is the loalizationlength of the �utuation providing the bound state at�
. Then j
j3=2=!0 ! j
j3=2=!k � j
j=u.While law (17) appears to be the simplest one, it isatually quite unommon and its derivation is problem-ati in all systems, f. [14℄. In our ase, we note that

only at �0 6= 0, ation (16) has the usual saddle point,a minimum over L and a maximum over T . But forthe purely aousti ase �0 = 0, the minimum over Lappears only along the extremal line over T . Contrar-ily, at a given T , the ation ollapses to either L ! 0or L ! 1 depending on the value of T with respetto the threshold T � � (mu�s)�1, whih is just the in-verse width in (17). The paradox an be resolved byinspeting the generi real time formulation (2). Butthe neessary insight is obtained more easily by anothertreatment presented in the next setion.4.3. Quantum �utuations as an instantaneousdisorder with long-range spae orrelationsIt has already been notied that in a 1D system,the optial absorption near the band edge an beviewed as for a quenhed disorder emulated by instan-taneous quantum �utuations. This asymptotially ex-at redution to the time-independent model an bedone as follows. After negleting the retardation atT � !0; u=L, the self-interation term in (10) an bedeoupled by the Hubbard�Stratonovih transforma-tion via a time-independent �eld � with the orrelatorD(x) = U0(x; 0) + �2xUs(x; 0),Sf	; �;Tg = T Z dx� 12m j�x	j2 + �(x)�(x)� ++ 12 ZZ dx1;2�(x1)D�1(x1 � x2)�(x2): (18)After integration over 	 and rotation to the real time,it �nally beomes the density of statesZ D[�(x)℄Æ(E[�(x)℄ �
)�� exp ��12 ZZ dx1dx2�(x1)D�1(x1 � x2)�(x2)� ;where E[�(x)℄ is the eigenfuntion in the random�eld �, � �2x2m	+ �	 = E	 :For the dispersionless phonon alone, e.g., the amplitudemode in the CDW, D(x) = U0(x; 0) � Æ(x), and theknown exat results for the unorrelated disorder [23℄provide us with the asymptoti pseudogap formulaI(
) / exp"� 833=2 jWpj!0 ���� 
Wp ����3=2# : (19)631
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��=2

�=2 ' x
Fig. 3. The aousti polaron �eld '(x; t) as a funtionof x at some moment tFor the CDW parameters, it beomesI(
) / exp"� 163� �2 �0 �
(�0!20)1=3�3=2# : (20)Below, we onentrate only on a more problem-ati ase of the sound mode. The orrelator D(x)of the �disordered potential� � is just the meansquare of quantum �utuations of the phonon poten-tial � = vF =2'0(x; t) at oiniding times: in the Fourierrepresentation, we haveDk = Z d!2� �sk2(!=u)2 + k2 = 12�sujkj :The probability distribution for the Fourier ompo-nents �k is P [�k℄ / exp�� Z dk2� j�kj2�sujkj� ; (21)whih implies that the omponent with k = 0 is ex-luded, P (�0) = 0. The onstraint�0 = 1Z�1 �(x)dx = 0 (22)agrees with the properties of the potential proportionalto '0 in the time-dependent piture of the previoussetion, whih satis�es ondition (22) at any �nite t,see Fig. 3. Contrary to the usual expetations of themethod of optimal �utuations, the potential well re-ating the levelE must here be aompanied by ompen-sating barriers. Condition (22) is linked to the paradoxin the pervious setion, i.e., the absene of a �nite min-imum over the length sale at a given T . Indeed, wean no longer rely on the existene of a bound state atan arbitrarily shallow potential, E0 � �m �R dx�(x)�2,whih is zero under ondition (22).While the divergeny at small k (large x) is phys-ial, the one at large k in (21) must be regularized to

apply in the real spae. We proeed by introduing anauxiliary �eld �(x) suh that � = d�=dx = �0. We�nally arrive at the model of the �nonloal aoustidisorder�,I(
) / Z D[�(x)℄Æ(E[�x�(x)℄�
)�� exp"��s2u ZZ dx1dx2 (�(x1)� �(x2))2jx1 � x2j2 # : (23)Here, the integral in the exponent is already regularat small x. The divergene at large x maintains on-straint (22), otherwise�(+1)� �(�1) = 1Z�1 �(x)dx 6= 0and the integral in (23) would diverge logarithmially,leading to zero probability.Unfortunately, we are unaware of exat studies fordisordered systems with suh long-range orrelations.Usual saling estimations [24℄ for harateristi � andl give j
j � 1=ml2 � j�j=l, then j�j � j
=mj1=2, andtherefore, ln I � ��2�s=u � �j
j�s=u, in aordanewith diret estimations and result (17) for the generaltime-dependent model.5. DISCUSSION AND CONCLUSIONSWe summarize the obtained results as follows.The pseudogap starts below the free edge by(strethed) exponential dependenesI / exp [�onst � (�j
j) ℄ (24)with di�erent powers  = 3=2 for gapful phonons and = 1 for sound photons. If both modes are present,then the smallest one, with  = 3=2, dominates at small
. This regime orresponds to free eletroni statessmeared by instantaneous unorrelated quantum �u-tuations of the lattie.Deeply within the pseudogap, approahing the ab-solute thresholdWs orWp, the exponential law hangesfor the power law I(
) / (
�Ws)� with a large expo-nent �. This ontribution dominates over the smoothone from gapful modes I / exp(onst � Æ
 ln Æ
). Thepower-law regime orresponds to reation of nearly am-plitude solitons surmounted be ompensating phasetails. Its desription provides a semilassial interpre-tation for proesses in fully quantum systems of orre-lated eletrons in the spin-gap regime, with the ampli-tude soliton being a version of the spinon.632



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Pseudogaps in inommensurate harge density waves : : :These results are di�erent from anything used ear-lier in either theoretial disussions or interpretation ofexperimental data [13℄. They an vaguely explain un-usually wide pseudogaps observed in experiments evenat low temperatures for well-formed inommensurateCDWs.Our results have been derived for single eletronitransitions, PES and tunneling. They an also be ap-plied to intergap (partile�hole) optial transitions aslong as semiondutors are onerned. For inommen-surate CDWs, the results are applied to a viinity ofthe free edge. But the edge at 2Es disappears in favorof the optially ative gapless phase mode.We empliasize in this respet that there annot be aommon pseudogap for proesses haraterized by dif-ferent time sales. We must distinguish [8℄ betweenshort-living states observed in optial, PES (and maybetunneling) experiments and long-living states (ampli-tude solitons and phase solitons) ontributing to thespin suseptibility, NMR relaxation, heat apaitane,ondutivity, et. States forming the optial pseudo-gap are reated instantaneously; partiularly near thefree edge, they are tested over times that are shorterthan the inverse phonon frequenies �opt � ~=Eg < !�1phand many orders of magnitude beyond the lifetimesrequired for urrent arriers, and even muh longertimes for thermodynami ontributions. It then fol-lows that the analysis of di�erent groups of experimen-tal data [13℄ within the same piture must be reonsid-ered. The lak of disriminating di�erent time salesalso onerns typial disussions of pseudogaps in high-T superondutors.We onlude that the subgap absorption in systemswith gapless phonons is dominated by formation oflong spae�time tails of relaxation. It applies to bothaousti polarons in 1D semiondutors and solitonsin CDWs. Near the free edge, a simple exponential,Urbah-type law appears ompeting with strethedexponential laws of tails from optimal �utuations.A deeper part of the pseudogap is dominated by apower-law singularity near the absolute edge.One of the authors (S. M.) aknowledges hospitalityof the Laboratoire de Physique Théorique et des Mod-eles Statistiques, Orsay and support of the CNRS andthe ENS�Landau foundation. This work was partlyperformed within the INTAS grant � 2212.

APPENDIXEletroni energies in a omplex �eld � are deter-mined by the Dira Hamiltonian����� �ivF�x ��� ivF�x ����� ; � = j�jei':In the ground state, j�(x; t)j = �0, we have ' = onst,and the eletroni spetrum is E2 = v2F k2 +�20, wherevF is the Fermi veloity. But these free states are notproper exitations. The evolution of added eletronsor holes with the initial energy E0 � �0 to the am-plitude soliton with Ws = 2�0=� < �0 an be de-sribed by an exat solution for intermediate on�gura-tions haraterized by the singly oupied arbitrary po-sitioned intragap state E0 = �0 os � with 0 � � � �,whene ��0 < E0 < �0. It was found [8℄ to be thehordus soliton with 2� being the total hiral angle,�(�1) = exp(�i�), see Fig. 1. Namely,�ChS(x; �) = �0[os �+i sin � th(k0x)℄ exp(i'0);k0 = �0 sin � (25)with an arbitrary '0 = onst. The potentials V� areknown [8℄ to be given by (see Fig. 2)V�(�) = �0 ��� � 2� �� os � + 2� sin �� ;where � is the �lling number of the intragap state, thatis, � = 0; 1 for j = 0; 1 while � = 2 is equivalent toj = 0 for the ground state extended by the two par-tiles, N = 2M + 2. The term V0(�) monotoniallyinreases from V0(0) = 0 for the 2M ground state toV0(�) = 2�0 for the 2M + 2 ground state with twofree holes. Obviously, there is an opposite dependenefor V2(�) = V0(� � �). Therefore, the total phases slip2� = 0 ! 2� = 2� realizes the spetral �ow aross thegap, also aompanied by the �ow of partiles for � = 2that makes it favorable. The term V1(�) = V1(� � �)is symmetri and desribes both the partile on the2M ground state and the hole on the 2M + 2 groundstate. Apparently, V1(0) = V1(�) = �0 (the degener-ate ground states are the 2M one with an additionalfree eletron for � = 0 and the 2M + 2 one with anadditional free hole for � = �), while the minimum isV1(�=2) = Ws < �0, where Ws = 2�0=� is the ampli-tude soliton energy. Therefore, the stationary state ofthe system with an odd number of partiles, the min-imum of V1, is the amplitude soliton with the midgapstate E0 = 0 oupied by a singe eletron.We note that being an unharged spin arrier withthe topologial harge equal to unity, the amplitude633
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