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We consider pseudogap effects for electrons interacting with gapless modes. We study generic 1D semiconduc-
tors with acoustic phonons and incommensurate charge density waves. We calculate the subgap absorption as
it can be observed by means of photoelectron or tunneling spectroscopy. Within the formalism of functional
integration and adiabatic approximation, the probabilities are described by nonlinear configurations of an in-
stanton type. Particularities of both cases are determined by the topological nature of stationary excited states
(acoustic polarons or amplitude solitons) and by the presence of gapless phonons that change the usual dynam-
ics to the quantum dissipation regime. Below the free-particle edge, the pseudogap starts with an exponential
(stretched exponential for gapful phonons) decrease of the transition rates. Deeply within the pseudogap, they
are dominated by a power law, in contrast to a nearly exponential law for gapful modes.

PACS: 72.15.Nj, 78.40.Me, 78.70.Dm, 71.45.Lr

1. INTRODUCTION: PSEUDOGAPS IN 1D
SYSTEMS

This paper is devoted to the theory of pseudogaps in
electronic spectra in application to photoelectron spec-
troscopy (PES). We study the influence of quantum lat-
tice fluctuations on electronic transitions in the subgap
region for one-dimensional (1D) systems with gapless
phonons. Low-symmetry systems with gapful spectra
were recently addressed by the authors [1], and we refer
to this paper for a more comprehensive review and ref-
erences. Here, we show that sound branches of phonon
spectra drastically change the transition rates making
them much more pronounced deeply within the pseu-
dogap. We consider two types of systems: generic 1D
semiconductors with acoustic electron-photon (e—ph)
coupling (conducting polymers, quantum wires, and
nanotubes) and incommensurate charge density waves
(CDWs) [2], which possess a gapless collective phase
mode.

The pseudogap concept [3] refers to various sys-
tems where the gap in their bare electronic spectra is
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partly filled and subgap tails occur. Even for pure sys-
tems and at temperature 7' = 0, there can be a rather
smeared edge Eg., while the spectrum extends deeply
inward the gap until some absolute edge F,, which
can be even zero (no true gap at all). A most gen-
eral reason is that stationary excitations (eigenstates
of the total e—ph system) are self-trapped states, po-
larons or solitons, whose energies W, and W, are hbelow
the free electron ones, thus forming the absolute edge
at B, < Eg. Nonstationary states filling the pseudo-
gap range Eg > E > FE, can be observed only via
instantaneous measurements like optics, PES, or tun-
neling. Particularly near E, the states resemble free
electrons in the field of uncorrelated quantum fluctua-
tions of the lattice [4]; here, the self-trapping does not
have enough time to develop. But approaching the ex-
act threshold E,, the excitations evolve towards eigen-
states, which are self-trapped e—ph complexes. The
pseudogaps must be common in 1D semiconductors
just because of favorable conditions for self-trapping [5].
The pseudogap is especially pronounced when the bare
gap is opened spontaneously as a symmetry breaking
effect. In quasi-1D conductors, this symmetry break-
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ing is known as the Peierls—Frohlich instability leading
to the CDW formation. Here, the picture of the pseu-
dogap was first suggested theoretically [3] (we also re-
call [6] and another model [7]) in relation to the absence
of a long-range order in 1D CDWs at a finite tempera-
ture. In this approach, the smearing of the mean-field
electronic gap 2Aq corresponds to the disappearance of
the true Peierls—Frohlich transition in favor of a smooth
crossover. The pseudogap shape was related to, and
derived from, the temperature-dependent finite corre-
lation length &. An alternative picture was suggested
in [4] and further developed in [8]. It concentrates on
effects that persist even at zero temperature and are
due to a strong interaction between bare electronic ex-
citations and perturbations (the amplitude and phase
phonons) of the CDW ground state. Here, the pseu-
dogap in instantaneous electronic spectra is related to
the transformation of electrons into solitons.

Experimentally, pseudogaps in incommensurate
CDWs were first addressed by optic [9-11] and more
recently by the PES and ARPES (momentum-resolved
PES) methods [12]. The earlier experiments were
theoretically interpreted in [13] by compilation of
the approaches in [3, 4, 7]. Detailed theories of the
subgap absorption in optics have been developed for
systems with low symmetries (nondegenerate, like
semiconductors with gapful phonons, or discretely
degenerate like the dimerized Peierls state). They
first addressed the general type of polaronic semicon-
ductors [14] with emphasis on long-range Coulomb
effects, and then the 1D Peierls system, emphasizing
solitonic processes (see [15] and references therein).
The authors recently [1] extended the theory of pseu-
dogaps to single electronic spectra in application to
PES, and particularly intriguing, to ARPES probes.
But properties of incommensurate CDWs are further
complicated by the appearance of a gapless collective
mode resulting in drastic changes. The case of acoustic
polarons in a 1D semiconductor belongs to the same
class, although this is not usually noticed.

A specific property of 1D systems with continuous
degeneracy (with respect to the phase for incommensu-
rate CDWs and to displacements for usual crystals) is
that even a single electronic process can create topolog-
ically nontrivial excitations, solitons. For incommensu-
rate CDWs, a single electron or hole with the energy
near the gap edges +Ay spontaneously evolves to a
nearly amplitude soliton while the original particle is
trapped at the local level near the gap center. The en-
ergy near 0.34 is released, at first sight, within the
time w;hl ~ 1072 5. We see in what follows that there
actually also exists a long-scale adaptation process that
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determines shapes of transition probabilities. Simi-
larly, the usual acoustic polaron in 1D semiconductors
is characterized by the electronic density p ~ 0p/0x
self-localized within the potential well, and hence, there
is a finite increment ¢(+00) — p(—o0) ~ [pdx of
the lattice displacements ¢ over the length x, which
is the signature of topologically nontrivial solitons.
These systems with continuous degeneracy form a spe-
cial class that shows particular properties and must be
studied differently than in [1]. They are addressed in
this paper.

2. FUNCTIONAL INTEGRALS AND
INSTANTONS FOR PES

As a function of the frequency @ and momentum
P, the absorption rate I({, P) for ARPES can be ex-
pressed in terms of the spectral density of the one-
electron retarded Green’s function G(¢,t';x,2') as

I(P,Q) ocIm/dXe’iPX/dTemTG(X.,T,O.,O). (1)
0

We here address the simple PES, not resolved in mo-
menta, which measures the integrated absorption in-

tensity
1

=5 /I(P,Q)dp.

(From now on, we omit all constant factors and set the
Planck constant i = 1; Q is then measured with respect
to a convenient level, the band edge for semiconductors
or the middle of the gap for CDWs.)

We use the adiabatic approximation, which is
valid when changes of electronic energies are much
larger than the relevant phonon frequencies. Elec-
trons move in a slowly varying phonon potential, e.g.,
Re[A(z,t) exp(2ikpx)] for an incommensurate CDW,
and at any instant ¢ their energies E(t) and wave func-
tions ¢ (x, t) are therefore defined as eigenstates for the
instantaneous lattice configuration and depend on time
only parametrically. In what follows, we work in the
Euclidean space it — t, which is adequate for studies
of classically forbidden processes [14, 16, 17]. The inte-
grated absorption intensity is then given by a functional
integral over lattice configurations,

1(9)

o0

1) [ ar [ DIaE OO0, T)e 0.0 5, (2)
0
where g is the wave function of the particle (which is

actually a hole for PES) added and extracted at mo-
ments 0 and 7. Only the lowest singly filled localized



MITD, Tom 123, BhIm. 3, 2003

Pseudogaps in incommensurate charge density waves ...

state is relevant for calculations of subgap processes.
The energy Fjy of this state is split inside the gap. The
action

0 e9)
S = S[A(z,t),T] = /+/ dt Lo +
—o0 T

T
+/dt(L1—Q), Li—-Lo=FE, (3)
0

is expressed through the Lagrangians L;[A], where the
subscripts j = 0, 1 correspond to ground states for 2M
(the bare number) and 2M =+ 1 electrons in the poten-
tial A(x,t). The main contribution comes from saddle
points of S, the instantons, which are extremums with
respect to both the function A(x,t) and the time 7.
There are also special cases [1], particularly important
for ARPES, where the extremum must be taken for
the entire integrand in (2), with the wave functions in
the prefactor taken into account. Otherwise, the sta-
tionary point is determined by dS/dT = 0, that is,
Ey(0) = Eo(T') = Q, which determines T'(2).

In what follows, we concentrate on most principal
features, leaving aside calculations of prefactors and
the problem of the momentum dependence necessary
for ARPES. For a simpler case of nondegenerate sys-
tems, they have been studied in [1].

3. CREATION OF AMPLITUDE SOLITONS IN
INCOMMENSURATE CDWs

We first consider the subgap electronic spectra for
the incommensurate CDW described by the Peierls—
Frohlich model. The incommensurate CDW order pa-
rameter is the complex field A = |A(z, )| expliv(z,t))
acting on electrons by mixing states near the Fermi mo-
menta points £kr. The Lagrangians L; consist of the
bare kinetic and potential lattice energies and of the
sum over the filled electron levels, in the jth state,

_ 2|0; A
L;= /dx Py + Vj[A(z, t)],

where vp is the Fermi velocity in the metallic state and
wo is the amplitude mode frequency (wy < Ay is the
condition for the adiabatic approximation).

The important fact is that the stationary state of
the system with an odd number of particles, the min-
imum of V7, is an amplitude soliton, with the midgap
state Fg = 0 occupied by a singe electron. Evolution
of the free electron with the initial energy Ey = Ay
to the amplitude soliton with W, = 2Ag/m < Ay

 Im A, (2)

g Eo Re A, (x)

|

Fig.1. Trajectory of the chordus soliton with phase

tails in the complex plane A

can be described by the known exact solution for in-
termediate configurations characterized by the single
intragap Eg = Agcosf with 0 < 6 < m, whence
—Ay < Eg < Ap. Tt was found [8] (see also re-
views [18, 19]) to be the chordus soliton with 26 as
the total chiral angle, A(4+00)/A(—o00) = exp(2ih),
see Fig. 1 and the Appendix for details. The filling
numbers v = 0,1 of the intragap state correspond to
labels j = 0,1. The term V;(0) monotonically in-
creases from V(0) = 0 for the 2M ground state to
Vo(r) = 2A¢ for the 2M + 2 ground state with two
free holes. The term Vi (f) = Vi(m — 0) is symmetric
and describes both a particle on the 2M ground state
and a hole on the 2M + 2 ground state. Obviously,
V1(0) = Vi(w) = Ay, while the minimum is reached
at @ = 7/2, that is for a purely amplitude solution:
min V(0) = Vi(r/2) = W5 < Ay, where W, = 2A¢ /7
is the amplitude solution energy, see Fig. 2. Therefore,
to create a nearly amplitude soliton with 6 = 90°, the
light with Q ~ W, is absorbed by the quantum fluctu-
ation with Eg(8) = Wy, which is close to the chordus
soliton with the angle 6 & 50°.

We note that the amplitude soliton, being an un-
charged spin carrier with the topological charge one, is
a quasiclassical realization of a spinon in systems with
nonretarded attraction of electrons (that is, with high,
rather than low, phonon frequencies). Therefore, our
analysis is also qualitatively applied to arbitrary nona-
diabatic electronic systems provided they are found in
the spin-gap regime. (See also the next section.)

It is tempting to use the static solution, with some
free parameter, as an ansatz for the time-dependent
process; this proved to be successful in gapful cases
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Fig.2. Selftrapping terms V,, for chordus solitons as
functions of the chiral angle 26 for various fillings v

[1, 15]. But here, putting 8 — 6(t), we would arrive at
OtA # 0 for all x, and the action would therefore be in-
finite, S is proportional to the system length. The van-
ishing probability simply reflects the fact that a glob-
ally finite perturbation, characteristic of topologically
nontrivial solitons, cannot spread over the whole length
in a finite time. More generally, as a topologically non-
trivial object, the amplitude soliton cannot be created
in a pure form: adaptational deformations must appear
to compensate the topological charge. These deforma-
tions develop over long space-time scales and can be
described in terms of the gapless mode, the phase ¢,
alone. Allowing the time evolution of the chiral an-
gle # — 6(t) within the core, we must therefore also
unhinder the field ¢ — @(z,t) for all z and ¢. The
resulting trajectory is shown in Fig. 1 for an instant of
time. Starting from z — —oo and returning to & — oo,
the configuration closely follows the circle |A| = Ay
changing almost entirely by phase. Approaching the
soliton core, the phase approximately matches the an-
gles +£6 that delimit the chordus part of the trajectory.
The entire trajectory is closed, which leads to a finite
action.

Except for a short time scale T' < &y /u (see Sec. 4.2)
characterized by small § and large lengths £ = &/ sin 6,
the configuration A(x,t) can be divided into the inner
part, the core at |z| ~ £, and the outer part || > &,
where only perturbations of the phase p(z,t) are im-
portant. The inner part can be described by the chor-
dus soliton Acps(z,t). The chordus angle 26(t) evolves
in time from 6(£o0c) = 0 to 6, in the middle of the T
interval. As T — oo, that is, near the stationary state
of the amplitude soliton, #,, — 7/2. This value is ac-
tually preserved during most of the T interval, and the

changes between # = 0 and = 7/2 are therefore con-
centrated within finite ranges 7 ~ §o/u < T near the
termination points. At large scales, we can see only a
jump p(z,t) ~ 0(t) signz with 6(t) = 6,,0(t)0(T — t),
where O is the standard step function. Because the
configuration stays close to the amplitude soliton dur-
ing the time 7', the main core contribution to the ac-
tion is

Score = (Ws - Q)T + 55(:07”57 (4)

where the first correction 452, = const comes form re-
gions around the instants 0 and 7" independently. The
significant T-dependent contribution §.5(7") comes from
interference of regions 0 and 7. Their interaction via
gapful excitations like the amplitude mode decays ex-
ponentially as 6Sgq, o< exp(—woT"). There are no other
contributions for low-symmetry systems, but for an in-
commensurate CDW| there are sound modes providing
the main effect to be addressed below.

Matching the inner and outer regions is not well de-
fined unless we consider the full microscopic time-de-
pendent model, which is impossible. But fortunately,
the long-range effects can be treated easily if we gener-
alize the scheme suggested earlier for static problems of
solitons in the presence of interchain interactions [8, 20].
The outer region is described by the action for the
sound-like phase mode,

Ssnd[ 79(t)] =

¢(z,1)
- Z_fr//dxdt l(%D)Z) + (azso)Q] . (5)
p(t, o +0) = FO(1),

where u is the phase velocity. The conditions on ¢ at
zs £ 0 are due to the source provided by the chordus
soliton that is formed around xz; and enforces the dis-
continuity 26. Integrating exp[—Ssnd(p, 8)] over p(x,t)
with this condition, we arrive at the action for 6(t)

)

Ssnalf] & ;r—;”u // dty 50(t) In |(t, — t2)|6(ts) =

— o [f s (M)

The last form of this action is typical of the quantum
dissipation problem [21], where S ~ 3~ |w||6,|>. In our
case, this dissipation arises from the emission of phase
phonons forming a long-range tail in the course of the
chordus soliton development. Together with V}, this
action can be used to prove the above statements on
the time evolution of the chordus soliton core.
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We now recall that § = 8,6 is peaked within narrow
regions of the order of {/u around the time instants
t =0and T = 0 and is close to zero elsewhere. Then

Sind ~ Z—Z In l;—f (7)
There is an even more phenomenological standpoint
(see [22] for more details and examples of combined
topological defects). The amplitude soliton creates the
m-discontinuity along its world line (0 < ¢ < T,0). To
be topologically allowed, that is, to have a finite ac-
tion, the line must terminate with half integer vortices
located at (0,0) and (0,7), whose circulation must pro-
vide the compensating jump dp = 7 along the interval
(A — —A combined with ¢ — ¢ + 7 leaves the or-
der parameter A exp(ip) invariant). The standard en-
ergy of vortices for (5) then leads to action (7). Con-
trary to the usual 27-vortices, the line connecting the
half-integer ones is a physical singularity whose tension
gives (4).
Minimizing Siot = Score + Ssnqg With respect to T,
we obtain the power law near the amplitude soliton
edge O > Wy,

19) x (Q;VW)ﬁ g=lr, ®)

which is much more pronounced than the exponential
law for gapful cases (see (15) below).

Our derivation suggests a literal long-range order
at large (z,t) distances and neglects all fluctuations
of the phase except perturbations enforced by the in-
stanton. But the mean fluctuations of the phase di-
verge and the order parameter decays in accordance
with a power law. These long-range fluctuations are
not related to the instanton and can be taken into ac-
count a posteriori. This can be easily done by noticing
that the eigenfunctions in the prefactor in (2) trans-
form as ¥y — Pgexplip(x,t)/2], and being averaged,
contribute the action term

35, = <([p(0.0) = (0. TP) ~ f—Tn
Therefore, the effect of phase fluctuations, as well as the
major role of the formfactor, is simply a correction to
the value of the index in (8), f — 8* = vp/4u+u/4vp.
Within our adiabatic approximation u/vp < 1, the
correction is small but it builds a bridge to quan-
tum nonadiabatic models where exactly $* appears as
the index of the single-particle Green’s function with
v, = u/vr identified as the charge channel exponent.
The link is completed by noting that the amplitude
soliton is a realization of the spinon and that the phase

discontinuity in (5) is equivalent, together with fluctu-
ations, to applying the operator

)
it 2

2 Jyp

5 sign zO(t)0(T — t)} ,

1
exp {— oz, t) +

which is our limit for bosonization.

4. ACOUSTIC POLARON AND THE FREE
EDGE

4.1. 1D semiconductors with acoustic and
optical polarons

Behavior near the free edge Q & Ay is dominated by
small fluctuations 7 in the gap amplitude, |[A| = Ag+,
and at the Fermi level, §Ep = ¢'vp/2, via the phase
gradient ¢’ = 9, . We consider it in the framework of
the general problem of a combined (gapful and acous-
tic) polaron. The more simple, compared to the CDW,
single-particle formulation bears similar qualitative fea-
tures but allows a more detailed analysis. We consider
electron (hole) states in a 1D dielectric near the edge of
a conducting (valence) band. We account for the gap-
ful mode n with the coupling go and the sound mode
(for which we keep the «phase» notation ¢) with the
velocity u and the coupling gs. In generic semiconduc-
tors, the sound mode is always present as the usual
acoustic phonon, while the gapful mode can be present
as an additional degree of freedom. In all CDWs, the
gapful mode is always present as the amplitude fluctu-
ation |A] = Ag + 7, while the sound mode appears in
incommensurate CDWs as the phase A = |A|exp(ip).

Within the adiabatic approximation for the electron
wave function ¥, the action S (at imaginary time) is
given by

T
S = /dx/dt{(iam\p? —Q\I/2> +
2m
0

+ (gsOzp + gon) ‘I’T‘I’} +
o0 . 2
+/dx/dt{& <at—9°> +(0a9)| +
2 u
+ Kot (Om 2+ ’ (9)
2 wWo " '

For the incommensurate CDW case, we therefore have
m = AO/U%‘", go = 1, g5 = UF/27 K, = UF/27T',
Ko = 4vp/n, 282ujvp = wo/Ao, and Q is counted

with respect to the edge Ag rather than to the middle
of the gap as in the previous section.
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It is well known [5] that the stationary state, i.e.,
the time-independent extremum of (9), corresponds to
the selftrapped complex, the polaron. Here, it is com-
posed equally by n and ¢', which contribute additively
to the static coupling (while the dynamics is completely
different):

g2

K,

9%
Ky

A=A+ =

The polaronic length scale [ for n ~ ¢’ ~ [¥[? = p,(z)
is [ = 2\/m and the total energy is W), = —mA\?/24.
The conditions |W,| > wo and A > wu define the
adiabatic, Born—-Oppenheimer, approximation. For
the CDW case, A\; = vpm/2 and Ao = vpm/4, and
therefore, A\ ~ vp and we arrive at |W,| ~ A and
Il ~ & = vp/Ap, which are the microscopic scales
where the single electronic model can be used only
qualitatively. The full-scale approach for nearly sta-
tionary states was considered in Sec. 3, but the upper
pseudogap region near the free edge Ay is described by
model (9) even quantitatively and most efficiently.

We can integrate over the fields ¢ and n at all (z, ¢)
to obtain the action in terms of ) alone, which is now
defined only on the interval (0,T") for ¢,

. 1 o)
S{‘I!,T}_/dxdt<2m 19,0 — Q|7 >

1
— 5// dt172/ dx172 X

x {Ug(x1 — @2, t1 — t2)p(x1,t1)p(z2,t2)+

+ Us(xl —332,751 —t2)8xp(x1,t1)8xp(x2,t2)}. (10)
Here, the retarded self-attraction potentials are
As
Us = “In Va2 + t2u?,
2 (1)
Uo = 5)\0&)0 exp[—wolt|]0(z).

An equivalent form, suitable at large T', is obtained via
integrating by parts,

T
1
S{v; T} = /dx/dt [%|8x\1'|2 - Qp— %pQ +
0

1
+ 5// dty » // dxy 20ep(x1,11) 0 p(2, 1) X

X U(l‘l — l‘2./t1 — t2), (12)

where U(x,t) = u 22U, + wO_QUO.

The absorption near the absolute edge Q ~ W,
is determined by long-time processes when the lattice
configuration is almost statically self-consistent. The
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first term in (12) is nothing but the action Sy of the
static polaron whose extremum at a given 7' is

Set & =T6Q, 60 =Q—-W,.

The second term in (12), Sy, collects contributions
only from short transient processes near the impact mo-
ments ¢t = 0,7, which are seen by the long-length part
as Op(x,t) = pp(x)[0(t) — 6(t — T)], where p, is the
density for the static polaron solution. We obtain

S [ [ drsapp(e)p a2l - 22, 7) =

T
= As In 4 Co/\o—/lexp
27u l wo

(—woT') + const

with Cy ~ 1. We see the dominant contribution of the
sound mode that grows logarithmically in 7', while the
part of the gapful mode decays exponentially. If the
sound mode is present, the extremum over T is

oA 1 Cs|Wy|
~ 2ru 6Q° o0

We find that near the absolute edge Q0 ~ W), the ab-
sorption is given by a power law with the index « that
must be large within our adiabatic assumption, a > 1,

NN

For incommensurate CDW parameters, we obtain
«a vp/4u, in full accordance with the exact treat-
ment (8).

Only in the absence of sound modes, Ay = 0, the
gapful contribution can determine the absolute edge.
Minimization of S = Score + 0Sgap over T then leads
qualitatively to the result in [1],

o AS

~ |
21u t

Cy ~0.9. (13)

00
(Wl

As
o (14)

_ w.
TNUJOlln Wp_an (15)
I < exp | —const - |Wp|+Q_Wp In |12
Wo wWo Q—Wp

for O ~ W,

4.2. Free-electron edge vicinity

We now consider the opposite regime near the free
edge 2 ~ 0 (Q — Q — Ag for the incommensurate
CDW). Here, entering the pseudogap at Q < 0, the
absorption is determined by fast processes of quan-
tum fluctuations: their characteristic time 7' = T'(Q)
is short compared to the relevant phonon frequency,
T < wo,u/L, where L = L(Q) is the characteristic
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localization length for the fluctuational electron level
at By = Q. Because T is small, we can neglect all
variations in time within (0, 7). We then estimate ac-
tion (10), term by term, as

01T T 2 T2
S ~ W - QT — CQAsU <Z> - 03)\0(«0077 (16)

where C; ~ 1. The condition for its extremum with

respect to both L and T yields

\Q|3/2/m1/2

max {|mQ|1/2uls; woro }’

which provides a reasonable interpolation for the ab-
sorption in the closest and the more distant vicinities
of the free-electron edge. For the purely acoustic case
Ao = 0, a variational estimation of the numerical coef-
ficient as Cy ~ 1/6,Cs &~ 0.06 gives

I < exp(—const - |Q|/mul), const~2.8. (17)

The validity condition uT/L ~ /—Q/W, < 1 is sat-
isfied by definition of the edge region. This condition
is compatible with the low boundary for the frequency,
S > 1, and hence, —Q/W,, > u/\s, which is small as
our basic adiabatic parameter.

For gapful phonons alone, A; = 0 and we arrive at
the known result

I o exp[—const - |Q*/2/wg], Q<0

(see [1] and references therein). But it was not quite
predictable that among the laws S o |Q[*/? and
S o |9, it is the smallest contribution to S that wins,
proportional to |Q2[%/2 at lowest || and to || for larger
||. For the incommensurate CDW, in particular, we
have Ag/As ~ 1 and u/wg ~ &, and there is no space
for the intermediate asymptotic regime In/ o« Q at
Q| < Ag: beyond the region with S o [Q[3/2, the am-
plitude fluctuations dominate, the phase-only descrip-
tion is invalid, and the particular nature of amplitude
solitons must be taken into account. This regime was
considered in Sec. 3.

The difference between the laws In I o< —|Q|/u and
InT o< —|Q*/?/wo can be interpreted easily. Indeed,
for gapful phonons, we expect the frequency scale to
be wy = wi = uk ~ u/L ~ u|Q*?, where k ~ 1/L is
a characteristic wave number and L is the localization
length of the fluctuation providing the bound state at
—Q. Then |Q*/?/wy — |Q*/2 Jwy, ~ Q] /u.

While law (17) appears to be the simplest one, it is
actually quite uncommon and its derivation is problem-
atic in all systems, cf. [14]. In our case, we note that

only at Ag # 0, action (16) has the usual saddle point,
a minimum over L and a maximum over 7. But for
the purely acoustic case A\g = 0, the minimum over L
appears only along the extremal line over T'. Contrar-
ily, at a given T, the action collapses to either L — 0
or L — oo depending on the value of T" with respect
to the threshold T* ~ (muls) !, which is just the in-
verse width in (17). The paradox can be resolved by
inspecting the generic real time formulation (2). But
the necessary insight is obtained more easily by another
treatment presented in the next section.

4.3. Quantum fluctuations as an instantaneous
disorder with long-range space correlations

It has already been noticed that in a 1D system,
the optical absorption near the band edge can be
viewed as for a quenched disorder emulated by instan-
taneous quantum fluctuations. This asymptotically ex-
act reduction to the time-independent model can be
done as follows. After neglecting the retardation at
T < wo,u/L, the self-interaction term in (10) can be
decoupled by the Hubbard-Stratonovich transforma-
tion via a time-independent field ¢ with the correlator
D(z) = Up(x,0) + 02Us(x,0),

S.GT) =T [do (5 007 + Codpto)) +
+%/ dr12¢(21)D (21 — 22)((22).  (18)

After integration over ¥ and rotation to the real time,
it finally becomes the density of states

| Ple@sERE) - 2) «
X exp [—% // dxldmC(xl)D*l(xl —z9)((z2) |,

where E[((x)] is the eigenfunction in the random
field ¢,

9;
———U 4+ (¥ =FET.
2m

For the dispersionless phonon alone, e.g., the amplitude
mode in the CDW, D(z) = Ug(z,0) ~ d(x), and the
known exact results for the uncorrelated disorder [23]
provide us with the asymptotic pseudogap formula

s [Wl | Q|

I(Q) o exp l—w =

2
WP

(19)
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w/2 1

L —n/2

Fig.3. The acoustic polaron field ¢(z,t) as a function
of = at some moment ¢

For the CDW parameters, it becomes

)]

Below, we concentrate only on a more problem-
atic case of the sound mode. The correlator D(x)
of the «disordered potential» (¢ is just the mean
square of quantum fluctuations of the phonon poten-
tial ( = vp/2¢'(x,t) at coinciding times: in the Fourier
representation, we have

N

The probability distribution for the Fourier compo-

nents (j i8
P[Cx] o< exp (-/ >7

which implies that the component with & = 0 is ex-
cluded, P({p) = 0. The constraint

16
3

Ay —Q

(Boud) 1/ (20)

I(Q) o exp [—

dw Ask?

1
L ST
2 (w/u)2+ k%2 2 ulk]

dk |Gl?
27 Asulk|

(21)

6= [ ¢dr=0 (22)

agrees with the properties of the potential proportional
to ¢’ in the time-dependent picture of the previous
section, which satisfies condition (22) at any finite ¢,
see Fig. 3. Contrary to the usual expectations of the
method of optimal fluctuations, the potential well cre-
ating the level E must here be accompanied by compen-
sating barriers. Condition (22) is linked to the paradox
in the pervious section, i.e., the absence of a finite min-
imum over the length scale at a given 7. Indeed, we
can no longer rely on the existence of a bound state at
an arbitrarily shallow potential, Eg ~ —m (f dx((ac))2.,
which is zero under condition (22).

While the divergency at small k& (large z) is phys-
ical, the one at large &k in (21) must be regularized to
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apply in the real space. We proceed by introducing an
auxiliary field p(z) such that ( = du/dx = p'. We
finally arrive at the model of the «nonlocal acoustic
disorder»,

1) x [ Dlu()lb(Elo.n(w)] - 2) x

X exp [—;\—Z // dxidxs (1

Here, the integral in the exponent is already regular
at small . The divergence at large  maintains con-
straint (22), otherwise

1) = pu(z2))’
|71 — 22|

] ayen

o

| ¢tz #0

— o

p(+00) — p(=00)

and the integral in (23) would diverge logarithmically,
leading to zero probability.

Unfortunately, we are unaware of exact studies for
disordered systems with such long-range correlations.
Usual scaling estimations [24] for characteristic u and
I give |Q] ~ 1/ml? ~ |u|/l, then |u| ~ |Q/m|"/?, and
therefore, InI ~ —pu?\;/u ~ —|Q|\s/u, in accordance
with direct estimations and result (17) for the general
time-dependent model.

5. DISCUSSION AND CONCLUSIONS

We summarize the obtained results as follows.
The pseudogap starts below the free edge by
(stretched) exponential dependences

I o exp [—const - (—=|Q])7] (24)

with different powers v = 3/2 for gapful phonons and
v = 1 for sound photons. If both modes are present,
then the smallest one, with v = 3/2, dominates at small
Q. This regime corresponds to free electronic states
smeared by instantaneous uncorrelated quantum fluc-
tuations of the lattice.

Deeply within the pseudogap, approaching the ab-
solute threshold Wy or W,,, the exponential law changes
for the power law I() x (2 — W,)” with a large expo-
nent 3. This contribution dominates over the smooth
one from gapful modes I  exp(const - 6Q1ndQ). The
power-law regime corresponds to creation of nearly am-
plitude solitons surmounted be compensating phase
tails. Its description provides a semiclassical interpre-
tation for processes in fully quantum systems of corre-
lated electrons in the spin-gap regime, with the ampli-
tude soliton being a version of the spinon.
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Pseudogaps in incommensurate charge density waves ...

These results are different from anything used ear-
lier in either theoretical discussions or interpretation of
experimental data [13]. They can vaguely explain un-
usually wide pseudogaps observed in experiments even
at low temperatures for well-formed incommensurate
CDWs.

Our results have been derived for single electronic
transitions, PES and tunneling. They can also be ap-
plied to intergap (particle-hole) optical transitions as
long as semiconductors are concerned. For incommen-
surate CDWs, the results are applied to a vicinity of
the free edge. But the edge at 2F, disappears in favor
of the optically active gapless phase mode.

We empliasize in this respect that there cannot be a
common pseudogap for processes characterized by dif-
ferent time scales. We must distinguish [8] between
short-living states observed in optical, PES (and maybe
tunneling) experiments and long-living states (ampli-
tude solitons and phase solitons) contributing to the
spin susceptibility, NMR relaxation, heat capacitance,
conductivity, etc. States forming the optical pseudo-
gap are created instantaneously; particularly near the
free edge, they are tested over times that are shorter
than the inverse phonon frequencies 7,,; ~ i/ E; < w;hl
and many orders of magnitude beyond the lifetimes
required for current carriers, and even much longer
times for thermodynamic contributions. It then fol-
lows that the analysis of different groups of experimen-
tal data [13] within the same picture must be reconsid-
ered. The lack of discriminating different time scales
also concerns typical discussions of pseudogaps in high-
T. superconductors.

We conclude that the subgap absorption in systems
with gapless phonons is dominated by formation of
long space—time tails of relaxation. It applies to both
acoustic polarons in 1D semiconductors and solitons
in CDWs. Near the free edge, a simple exponential,
Urbach-type law appears competing with stretched
exponential laws of tails from optimal fluctuations.
A deeper part of the pseudogap is dominated by a
power-law singularity near the absolute edge.

One of the authors (S. M.) acknowledges hospitality
of the Laboratoire de Physique Théorique et des Mod-
eles Statistiques, Orsay and support of the CNRS and
the ENS-Landau foundation. This work was partly
performed within the INTAS grant Ne2212.

APPENDIX

Electronic energies in a complex field A are deter-
mined by the Dirac Hamiltonian

A = |Alei®.

b

—ivpﬁz A
A* ivpé‘z

In the ground state, |A(z,t)] = Ay, we have ¢ = const,
and the electronic spectrum is E? = v%k? + A3, where
v is the Fermi velocity. But these free states are not
proper excitations. The evolution of added electrons
or holes with the initial energy Ey > Ag to the am-
plitude soliton with Wy, = 2Aq/7 < Aq can be de-
scribed by an exact solution for intermediate configura-
tions characterized by the singly occupied arbitrary po-
sitioned intragap state Ey = Agcosf with 0 < 6 <,
whence —Ag < Ep < Ag. It was found [8] to be the
chordus soliton with 26 being the total chiral angle,
A(+oc) = exp(+if), see Fig. 1. Namely,

Acns(z,0) = Ag[cos0+isin 6 th(kox)] exp(ipo)

T (25)
ko = Ao sin 6

with an arbitrary ¢o = const. The potentials V,, are
known [8] to be given by (see Fig. 2)

2 2
V,(0) = Ag Ku— —9) cosf + —sine] ,
m m

where v is the filling number of the intragap state, that
is, v = 0,1 for j = 0,1 while v = 2 is equivalent to
j = 0 for the ground state extended by the two par-
ticles, N = 2M + 2. The term V{(f) monotonically
increases from V(0) = 0 for the 2M ground state to
Vo(r) = 2A¢ for the 2M + 2 ground state with two
free holes. Obviously, there is an opposite dependence
for V5(0) = Vo(m — 6). Therefore, the total phases slip
20 = 0 — 26 = 27 realizes the spectral flow across the
gap, also accompanied by the flow of particles for v = 2
that makes it favorable. The term V;i(0) = Vi(m — 0)
is symmetric and describes both the particle on the
2M ground state and the hole on the 2M + 2 ground
state. Apparently, V1(0) = Vi(7r) = Ag (the degener-
ate ground states are the 2M one with an additional
free electron for # = 0 and the 2M + 2 one with an
additional free hole for § = 7), while the minimum is
Vi(w/2) = W < Ag, where Wy = 2Ay /7 is the ampli-
tude soliton energy. Therefore, the stationary state of
the system with an odd number of particles, the min-
imum of Vi, is the amplitude soliton with the midgap
state Ey = 0 occupied by a singe electron.

We note that being an uncharged spin carrier with
the topological charge equal to unity, the amplitude
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sol

iton is a semiclassical realization of a spinon in sys-

tems with nonretarded attraction of electrons (that is,
with high, rather than low, phonon frequencies).
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