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 Fa
hberei
h Physik, Universität Rosto
kD-18051, Rosto
k, GermanySubmitted 30 September 2002The internal energy of high density hydrogen plasmas in the temperature range T = 10000 : : : 50000 K is 
al
u-lated by two di�erent analyti
 approximation s
hemes � the method of an e�e
tive ion�ion intera
tion potentialand the Padé approa
h within the 
hemi
al pi
ture � and are 
ompared with the dire
t path integral MonteCarlo results. A reasonable agreement between the results obtained from the three independent 
al
ulations isfound and the reasons for still existing di�eren
es are investigated. Interesting high density phenomena su
h asthe onset of ion 
rystallization are dis
ussed.PACS: 52.25.Kn, 52.65.Pp1. INTRODUCTIONThermodynami
s of strongly 
orrelated Fermi sys-tems at high pressure is of growing importan
e inmany �elds, in
luding sho
k and laser plasmas, astro-physi
s, solids, and nu
lear matter, see Refs. [1�6℄ foran overview. In parti
ular, thermodynami
 propertiesof hot dense plasmas are essential for the des
ription ofplasmas generated by strong lasers [5℄. Further, amongthe phenomena of 
urrent interest are the high-pressure
ompressibility of deuterium [7℄, metallization of hy-drogen [8℄, plasma phase transition et
., whi
h o

urin situations where both intera
tion and quantum ef-fe
ts are relevant. Among the early theoreti
al paperson dense hydrogen we refer to Wigner and Hunting-ton [9℄, Abrikosov [10℄, Ash
roft [11℄, and Brovman etal. [12℄; 
on
erning the plasma phase transition, seeNorman and Starostin [13℄, Kremp et al. [14℄, Saumon*E-mail: �linov�ok.ru**E-mail: bonitz�physik.uni-rosto
k.de

and Chabrier [15℄, and S
hlanges et al. [16℄, and alsosome earlier investigations of one of us [17�20℄. Amongthe early simulation approa
hes, we refer to severalMonte Carlo 
al
ulations, e.g., [21�23℄.There has been a signi�
ant progress in re
ent yearsin studying these systems analyti
ally and numeri
ally,see, e.g., [1; 2; 4; 24�28℄ for an overview. But there re-mains an urgent need to test analyti
 models by anindependent numeri
al approa
h. In addition to themole
ular dynami
s approa
h, e.g. [24, 26℄, the path-in-tegral Monte Carlo (PIMC) method is parti
ularly wellsuited to des
ribe thermodynami
 properties in thehigh density region. This is be
ause it starts fromthe fundamental plasma parti
les, ele
trons and ions,(physi
al pi
ture) and treats all intera
tions, in
lud-ing bound state formation, rigorously and self
onsis-tently. We note a remarkable re
ent progress in ap-plying these te
hniques to Fermi systems, see, e.g.,Refs. [1, 2, 29, 30℄ for an overview.Several methods have been developed to perform527
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al
ulations. We �rst mentionthe restri
ted PIMC method (RPIMC) [31�34℄, wherespe
ial assumptions on the density operator �̂ are in-trodu
ed in order to redu
e the sum over permutationsto even (positive) 
ontributions only. It 
an be shown,however, that this method does not reprodu
e the 
or-re
t ideal Fermi gas limit [35℄. An alternative is givenby dire
t fermioni
 PIMC simulations (DPIMC), whi
hhave o

asionally been attempted by various groups,see, e.g., [36, 37℄ and referen
es therein. But thesesimulations have been very ine�
ient be
ause of thefermioni
 sign problem. Re
ently, three of us proposeda new path-integral representation for the N -parti
ledensity operator [38�41℄ that allows dire
t fermioni
path integral Monte Carlo simulations of dense plas-mas in a wide range of densities and temperatures.Using this 
on
ept, the pressure and energy of a de-generate strongly 
oupled hydrogen plasma [39�42℄ andthe pair distribution fun
tions in the partial ionizationand disso
iation region [40, 41℄ have been 
omputed.This s
heme is rather e�
ient when the number of timesli
es (beads) in the path integral is less than or equalto 50 and was found to work well for temperatureskBT > 0:1Ry.One di�
ulty of PIMC simulations is that reliableerror estimates are often not available, in parti
ular forstrongly 
oupled degenerate systems. Here, we makea 
omparison with two independent analyti
 methods.The �rst is the method of an e�e
tive ion�ion inter-a
tion potential (EIIP) that has previously been de-veloped for appli
ation to simple solid and liquid met-als [12, 24℄ and whi
h is here adopted to dense hydrogenfor the �rst time. The se
ond is the method of Padé ap-proximations in 
ombination with Saha equations, i.e.,the 
hemi
al pi
ture (PACH) [3℄. The Padé formu-las are 
onstru
ted on the basis of the known analyti
low-density [3, 43℄ and high density [3℄ limits and areexa
t up to quadrati
 terms in the density, interpolat-ing between the virial expansions and the high densityasymptoti
 regime [19, 44, 45℄.We show here that both methods, EIIP and PACH,provide results for the internal energy that agree wellwith ea
h other at high densities where the ele
tronsare strongly degenerate and no bound states exist, ap-proximately for n > 1024 
m�3. In this region, thereis also a good agreement with re
ent density fun
tionalresults [46℄. The agreement of the PACH and DPIMCresults is good below 1022 
m�3. For intermediate den-sities, where the ionization degree 
hanges strongly, weobserve deviations. Also, at high densities, the DPIMCresults tend to lower energies than the analyti
 ap-proa
hes. Finally, they reveal several interesting ef-

fe
ts, su
h as formation of 
lusters and the onset of ion
rystallization.2. PHYSICAL PARAMETERS AND BASICEFFECTSWe study a hydrogen plasma 
onsisting of Ne ele
-trons and Np protons (Ne = Np = N). The total pro-ton (atom) density is n = Np=V . The average distan
ebetween the ele
trons is the Wigner�Seitz radiusd = � 34�n�1=3 ;and other 
hara
teristi
 lengths are the Bohr radiusaB = ~2me2 ;the Landau length l = e2kT ;and the De Broglie wave length�e = h(2�mekT )1=2of the ele
trons. The degenera
y parameter is n�3e.We de�ne the dimensionless temperature � = kT=Ry,whi
h varies between 0:06 < � < 0:4 in the tempera-ture interval 
onsidered below. We also introdu
e theWigner�Seitz parameterrs = daBand the dimensionless 
lassi
al 
oupling strength� = e2kTd:Hydrogen is antisymmetri
 with respe
t to the
harges (e� = �e+) and symmetri
 with respe
t to thedensities (n+ = n� = n). Ions and ele
trons behavequite di�erently be
ause of the big mass di�eren
e,mp = 1836 me. At the temperatures 
onsidered, theions 
an be treated 
lassi
ally as long as n . 1027 
m�3.For these temperatures and densities, the proton 
ou-pling parameter is in the range 0 < � < 150, and we
an therefore expe
t strong 
oupling e�e
ts. We studyinternal energies of the �uid hydrogen system and startwith providing some simple estimates for guidan
e. Inthat follows, we give all energies in Rydberg units.First, at very low densities, the ele
trons and pro-tons behave as an ideal Boltzmann gas. Therefore, the528
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trons and protons) per proton isgiven by � = E=N = 3�: (1)In other words, the low-density limit is, in our tem-perature interval, a positive number in the region � �� 0.2�1.2. With in
reasing the density, we expe
t aregion where atoms and possibly also a few mole
ulesare formed [17, 41℄. In the region of atoms, a lowerbound for the energy per proton is� = 32� � 1; (2)where the last term represents the binding energy 1Ryof H-atoms. If mole
ules are formed, the 
orrespondingestimate per proton is lower,� = 34� � 1:17: (3)Generally, the existen
e of a lower bound for the en-ergy per proton was proven by Dyson and Lenard [47℄and Lieb and Thirring [48℄,E=N > �C; (4)where the best estimate known to us (whi
h is 
ertainlymu
h too large) is C � 23 [48℄. We see that with in-
reasing the density, the energy per proton tends tonegative values and 
an rea
h a �nite minimum. Fur-ther density in
rease 
auses the energy to in
rease againas a result of quantum degenera
y e�e
ts.To understand this in
rease, we �rst 
onsider thelimit of a very high density (but in the region wherethe protons are 
lassi
al). The �rst estimate of theenergy is then � = 32� + 2:21r2s ; (5)whi
h is positive. The last term, representing the Fermienergy of the ele
trons, strongly in
reases with the den-sity (as n2=3). In the next approximation, a

ording toWigner's estimate [49℄1), we must take the Hartree 
on-tribution to the ele
tron energy and the 
orrespondingestimate for the proton energy into a

ount. The lat-ter is estimated under the assumption that the protonsform a latti
e. This way, we �nd the estimate� = �32� � 0:8755rs �+�2:21r2s � 0:916rs � : (6)1) Wigner's original estimate for the latti
e energy was 
or-re
ted later on and we use an improved result. For a dis
ussionof various estimates, see, e.g., 
hapter V of G. D. Mahan, Ma-ny-Parti
le Physi
s, Plenum Press (1990).

The two 
orre
tions that were added to Eq. (5) are bothnegative and s
ale as n1=3. In other words, these inter-a
tion terms might play a major role with de
reasingthe density. At a 
riti
al density, the energy per proton
an be
ome negative. This density 
an be estimatedfrom Eq. (6) by solving the quadrati
 equation0 = 32� r2s � 1:7915 rs + 2:21 (7)perturbatively, starting with the zero temperaturelimit, and adding the �rst 
orre
tion (linear in �),r0s � 1:234+ 2:283� + : : : (8)As � ! 0, this result 
oin
ides with Wigner's 
riterionfor the existen
e of mole
ules: for d < aB , mole
ules
annot exist be
ause there is no room for formingbound state wave fun
tions. A

ording to Eq. (8),mole
ules exist at a �nite temperature only for larger das thermal �u
tuations in
rease the wave fun
tion over-lap. More generally, with in
reasing the temperature,the energy be
omes positive at lower density 
omparedto the 
ase where T = 0.Summarizing the qualitative results obtained in thisse
tion, we 
an state that we expe
t the following gen-eral behavior of the internal energy per proton in thegiven temperature range: at zero density, the energystarts with the ideal gas expression that depends onlyon the temperature. With in
reasing the density, theenergy per proton be
omes negative be
ause of 
orre-lation e�e
ts (bound states, ele
tron 
orrelations, andproton 
orrelations). A minimum is formed and at adensity where the proton density is 
lose to the inverseBohr radius 
ubed, the energy per proton turns to pos-itive values and is more and more determined by theideal ele
tron energy in
reasing with n2=3, 
orre
ted by
orrelation 
ontributions of the order n1=3 determinedby the Hartree term and by proton�proton 
oupling ef-fe
ts. In what follows, we show that this qualitativepi
ture is supported by the results of our 
al
ulations.3. THE METHOD OF AN EFFECTIVEION�ION INTERACTION POTENTIALIt is well known that in plasmas and plasma-like sys-tems, in a broad parameter range, the intera
tion be-tween the ele
tron and ion subsystems is weak, whereasthe intera
rtions within the ele
tron and ion subsys-tems 
an be strong. The 
orresponding small param-eter is the ratio uei=EF of the 
hara
teristi
 value ofthe ele
tron�ion intera
tion uei to the ele
tron Fermienergy EF . Therefore, the approximation of a small7 ÆÝÒÔ, âûï. 3 529
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-trons if EF � Te � Ti, where Te and Ti are the ele
tronand ion temperatures respe
tively (below, we 
onsiderthe 
ase where Te = Ti). Typi
al systems where thisapproximation is appli
able are simple solid and liq-uid metals and nontransitional metals in general; thisapproximation serves as a basis for the 
omputationof thermodynami
 and ele
tron kineti
 properties, see,e.g., [24, 50℄.For simple metals, the Fermi energy is not very large
ompared with the 
hara
teristi
 ele
tron�ion Coulombintera
tion taken at the average interparti
le distan
e.But be
ause the wave fun
tions for the 
ondu
tion ele
-trons and the ele
trons bound in the ion shells are or-thogonal, a partial 
ompensation of the ele
tron�ionCoulomb attra
tion o

urs at small distan
es, whi
he�e
tively weakens the ele
tron�ion intera
tion. Thisfa
t is des
ribed in the theory of simple metals inthe framework of the so-
alled pseudopotential theory.The 
al
ulation of the pseudopotential is a 
ompli
atedproblem in general, in parti
ular due to its nonlo
alstru
ture [50, 51℄. For pra
ti
al appli
ations, it 
an berepresented approximately as a lo
al intera
tion withone or two �tting parameters for ea
h metal. On thebasis of the pseudopotential theory, all thermodynami
properties and ele
tron kineti
 
oe�
ients 
an be 
al
u-lated with a su�
iently high a

ura
y for a wide rangeof temperatures and pressures. Naturally, these 
al
u-lations require a reliable knowledge of the properties ofthe two quasi-independent subsystems: the degenerateele
tron liquid in the positive 
harge ba
kground andthe 
lassi
al ion subsystem with some e�e
tive stronginter-ion intera
tion.It is apparent that there is also a wide range ofparameters for highly ionized strongly 
ompressed hy-drogen plasmas where the ele
tron�ion intera
tion isweak. For these parameters, the 
ompli
ated problemof 
al
ulating the properties of a strongly 
oupled quan-tum ele
tron�proton system 
an be essentially simpli-�ed. In so doing, the results obtained for high 
om-pression (when no bound ele
tron states � hydrogenatoms or mole
ules � exist), do not require any �tting,in 
ontrast to the 
ase of simple metals, be
ause theinter-ion potential for hydrogen is a purely Coulombone. The data obtained with this analyti
 approxima-tion 
an therefore be 
onsidered as a reliable basis for
omparison with the results of alternative approa
hes,in
luding analyti
 and simulation methods for degener-ate quantum systems of Fermi parti
les. The results ofthis pseudopotential approa
h are espe
ially importantfor 
onditions of the extreme 
ompression where theplasma is 
hara
terized by a strong intera
tion within

the ele
tron and espe
ially the ion subsystem. For thesedi�
ult situations, experimental data are still missingand new a

urate numeri
al methods for Fermi systemsare only emerging.We 
onsider the Hamiltonian of an ele
tron�protonplasma, where the q = 0 in�nite 
ontributions to thepotentials 
an
el be
ause of quasineutrality (and we re-tain the 
harge number Z of the ions for generality),H =Xk �kaykak+ 12V Xk;k0;q 6=0 4�e2q2 ayk�qayk0+qak0ak++ 1V Xk;q0 6=0uei(q)aykak+q NiXj=1 exp(iq �Rj) ++ 12V Xi6=j Xq 6=0 4�Z2e2q2 exp(iq � (Ri �Rj)) +Ki: (9)Here, �k is the energy of the ele
tron with the momen-tum ~k and uei(q) = �4�Ze2q2is the Fourier 
omponent of the ele
tron�proton inter-a
tion potential. For the ele
tron degrees of freedom inthe Hamiltonian H , the se
ondary quantization repre-sentation is used, with ayp and ap being the respe
tive
reation and annihilation operators of an ele
tron withmomentum p. For 
lassi
al ions, the 
oordinate repre-sentation is more 
onvenient, and Ri therefore denotesthe 
oordinate of the i-th ion in Eq. (9). As in thetheory of simple metals [12, 24℄, two main approxima-tions have to be used to 
al
ulate the plasma energy.The �rst is the adiabati
 approximation for the ion mo-tion, whi
h is slow 
ompared to the ele
tron one. These
ond is the smallness of the ratio of the 
hara
teris-ti
 ele
tron�proton Coulomb intera
tion to the Fermienergy EF . The respe
tive parameter is�ei = Ze2dEF = Z� kTEF / n�1=3:Cal
ulation of the ele
tron energy in the external �eldof immobile ions (protons) leads to the energy of theplasma given as a fun
tion of the ion 
oordinatesRj . Ingeneral, the perturbation theory in terms of the param-eter �ei gives rise not only to pair but also to higher-order ion�ion intera
tions, whi
h are quite 
ompli
ated.To the se
ond order of perturbation theory in the pa-rameter �ei, the energy per one ele
tron of the plasma530



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Internal energy of high density hydrogen : : :with a �xed proton 
on�guration fRjg is easily writtenasE (fRjg)Ni = hHieNi = �e + 32kT �� 12 Z d3q(2�)3 u2ei(q)�e(q)"e(q) �� Z2ni2�e(q = 0) + 12V Ni Xq Xi6=j Veff (q)�� exp(iq � (Ri �Rj)); (10)where �e is the energy (per ion) of the 
orrelated ele
-tron liquid in the homogeneous positive 
harge ba
k-ground. The respe
tive fun
tions �e(q) and "e(q) arethe stati
 polarization fun
tion and the stati
 diele
-tri
 fun
tion of the 
orrelated ele
tron liquid. They arerelated by the usual equality"e(q) = 1 + 4�e2q2 �e(q): (11)The Fourier 
omponent of the e�e
tive pair intera
-tion potential between the ions, Veffii , involved in (10)is given byVeffii (q) = 4�Z2e2q2 � u2ei(q)�e(q)"e(q) = 4�Z2e2q2"e(q) : (12)In what follows, we 
on
entrate on hydrogen and setZ = 1, whi
h leads to the e�e
tive proton�proton in-tera
tion Veffpp (q) = 4�e2q2"e(q) : (13)It is 
lear that in 
ontrast to liquid metals, wherethe presen
e of the pseudopotential leads to a more
ompli
ated stru
ture of the e�e
tive potential, in adense hydrogen plasma, the e�e
tive potential is deter-mined only by the ele
tron s
reening. As shown in [12℄for liquid metals, the additional pair intera
tion aris-ing from third- and fourth-order terms in the expansionof the ele
tron energy in the pseudopotential 
an playan important role in the e�e
tive intera
tion. A de-tailed analysis of the e�e
tive potential of a hydrogenplasma [52℄ revealed that these terms are essential onlyfor su�
iently rari�ed plasma 
onditions (rs > 1:5) andare pra
ti
ally negligible for higher densities, rs < 1:5,whi
h we 
onsider in this paper. In fa
t, for rs > 1:6,the stru
ture of the e�e
tive ion�ion potential in hy-drogen 
hanges drasti
ally and 
an be 
onsidered as apre
ursor of the appearen
e of mole
ular states. In thispaper, we use the simplest version of the method of thee�e
tive ion�ion potential that in
ludes the ele
tron�proton intera
tion up to the se
ond order, and we are

therefore restri
ted to su�
iently high densities 
orre-sponding to rs < 1:5.Further progress 
an be made using the randomphase approximation (RPA) for �e together with thelong-wavelength and short-wavelength limits,�RPA(q) == 8>><>>: �RPA(0) �1� 112 q2q2F � ; q � qF ;�RPA(0)43 q2Fq2 ; q � qF ; (14)where ~qF = p2m�F is the Fermi momentum of theele
trons. The analysis of this expression shows thatthe main 
ontribution to energy (10) 
omes from smallwave numbers2). With su�
ient a

ura
y, we 
antherefore negle
t the q dependen
e of �e in Eq. (10),and in parti
ular, in e�e
tive potential (12), repla
ing�RPA(q)! �RPA(0):This implies that we also negle
t the well-known smallos
illations of the e�e
tive potential for large distan
es,whi
h are the result of a logarithmi
 singularity of thederivative d�RPAdq ����q=2qF :For the densities under 
onsideration (whi
h are mu
hhigher than the usual metalli
 densities), these os
il-lations are not essential for the thermodynami
 fun
-tions. On the other hand, it is 
ru
ial to 
al
ulate thepolarization fun
tion �e(0) fully self
onsistently,�e(0) = � �n��e�T;V ; �e = ��n�e�n �T;V ; (15)where �e is determined by (10) and 
onsequently takesthe ele
tron�ele
tron ex
hange and 
orrelations into a
-
ount. In the 
ase of degenerate ele
trons, we 
an useone of the analyti
 approximations for �e su
h as, forexample, that of Nozières and Pines or Wigner, see,e.g., [53℄ for an overview. Below, we use Wigner's for-mula for the 
orrelation energy, although the approxi-mation of Nozières and Pines is better for small rs (inthe region rs < 1, where the deviations between theseapproximations for the 
orrelation energy be
ome es-sential, we 
an 
ompletely negle
t 
orrelations in 
om-parison to the kineti
 and ex
hange terms). Be
ause�RPAe (0) = �2TF4�e2 ;2) As shown by [52℄, for hydrogen at rs < 1:6 (to whi
h we ap-ply the EEIP method) the 
ontribution of nonzero wavenumbersis 
omparatively small. For rs > 1:65, however, the situationstarts to 
hange drasti
ally.531 7*



S. A. Trigger, W. Ebeling, V. S. Filinov et al. ÆÝÒÔ, òîì 123, âûï. 3, 2003it is 
lear that Eq. (15) implies a renormalization�RPAe ! �e due to the ele
tron�ele
tron intera
tion,and therefore, a renormalization of the momentum�TF ! ~�TF ,�e(0) = �RPAe (0) 
(rs); ~�TF � �TFp
(rs);
(rs) = �9�4 �2=3 6r2s �r2s �2�e�r2s � 2rs ��e�rs ��1 : (16)Be
ause the e�e
tive proton�proton potential is de-s
ribed by the s
reened potential of the Thomas�Fermitype in the 
onsidered approximation, see Eqs. (12)�(16), �pp(r) = e2r exp�� r~rTF � ; (17)we 
on
lude that a renormalization of the s
reening ra-dius due to ele
troni
 
orrelations o

urs,~rTF = 1~�TF � rTFp
(rs) : (18)We now rewrite Eg. (10) for the 
onsidered approx-imation as � = �e + �i; (19)�i = 32kT + 12N Xi6=j �pp(Ri �Rj)�� e2d ��2 + 32�2� ; (20)where � � d~�TF . After averaging over the proton po-sitions with the Gibbs distribution (denoted by h: : : i),Eq. (19) 
an be represented as the sum of two terms:the energy �e of a degenerate ele
tron liquid in the pos-itive homogeneous 
harge ba
kground and the energyof s
reened 
lassi
al 
harged protons intera
ting vias
reened potential (18) and renormalized by the 
on-stant terms obtained above,�i = �u+ 32� kT; (21)withu � �8<: d2Ne2 *Xi6=j �pp(Ri�Rj)+��2� 32�29=; : (22)Here, u is the ioni
 intera
tion energy in kT units.With the a

ura
y (kT=EF )2, energy (21) 
oin
ideswith the usual thermodynami
 energy determined from

the free energy of the system be
ause the ele
trons aredegenerate in the 
onsidered parameter range (withthe same a

ura
y). Expression (21) implies that as�! 0, the energy of a 
lassi
al one-
omponent systemof 
harged parti
les intera
ting via a s
reened (Debyeor Yukawa) potential tends to in�nity as 3kBT�=2�2(i.e., the s
reening radius diverges). As a fun
tion ofthe two parameters, � and the dimensionless s
reeninglength �, the fun
tion u=� has been tabulated in [54; 55℄for the 
al
ulations of the phase diagram of a purely
lassi
al one-
omponent Debye plasma (OCP), basedon a

urate MC 
al
ulations for the Debye system. Inwhat follows, we use these numeri
al results to 
al
u-late the energy of a dense hydrogen plasma in the aboveapproximations. Within the Wigner approximation forthe ele
tron energy,�e = �2:21r2s � 0:916rs + �
orr�Ry;�
orr = � 0:88rs + 7:8 ; (23)we obtain from Eq. (16) that
(rs) = 22:1r2s'(rs) ;'(rs) = 22:1r2s �3:664rs � 1:76rs(rs+7:8)2� 1:76r2s(rs+7:8)3 ; (24)where 
(rs ! 0) ! 1. The total internal energy inEq. (21) 
an now be expressed in terms of the tabu-lated fun
tion u=� as� = �2:21r2s �0:916rs +�
orr+ 2rs �u�+ 32���Ry : (25)Numeri
al results 
omputed from this approximationare in
luded in Figs. 1�3 below.Alternatively, we 
an use additional approxima-tions for the 
omputation of the internal energy ofthe plasma. This 
an be done by averaging Eq. (10)over the ion Gibbs distribution with the same e�e
tiveHamiltonian. We then immediately �nd the averageenergy per protonhEfRigiNp = �e + 32kBT � 12 Z d3q(2�)3 u2ei(q)�e(q)"e(q) ++ 12 Z d3q(2�)3Veffii (q) [Sii(q)� 1℄ == �e + 32kBT + 12 Z d3q(2�)3 uii(q) [Sii(q)� 1℄�� 12 Z d3q(2�)3 u2ei�e(q)"e(q) Sii(q); (26)532



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Internal energy of high density hydrogen : : :where we introdu
ed the ion�ion stru
ture fa
tor Sii(k)de�ned ash%k1%k2i = NSii(k1)Æk1+k2;0 +N2Æk1;0Æk2;0;%k �Xj exp(�ik �Rj) ; Æk;0 = ( 1; k = 0;0; k 6= 0: (27)Equation (26) 
an be simpli�ed by repla
ing, ap-proximately, the full stru
ture fa
tor by the OCP stru
-ture fa
tor SOCPii 
omputed with the e�e
tive ion�ionintera
tion. The total energy 
an then be written asthe sum of three 
ontributions: the �rst from the ele
-tron subsystem, the se
ond from the 
lassi
al ion OCPsubsystem (ea
h imbedded into a positive and nega-tive 
harge ba
kground respe
tively), and a third term�POLi that des
ribes a perturbation-theory approxima-tion for the polarization of the ele
tron liquid by theions. The resulting formulas 
oin
ide with the pertur-bation approximations derived by Hansen, De Witt,and others [22, 23℄,hEfRigiNp = �e + �OCPi + Æ� ; (28)
Æ� = e2� 1Z0 dq� 1"e(q) � 1�SOCPii (q): (29)As is 
lear from the above derivations, Eqs. (28)and (29) are less a

urate than the full EIIP modelpresented above.4. PADÉ APPROXIMATIONS AND CHEMICALPICTURE: THE PACH METHODIn this se
tion, we brie�y explain the method ofPadé approximations in 
ombination with the 
hemi-
al pi
ture, i.e., Saha equations [3, 19, 44, 45℄ (PACH).On the basis of the PACH approximation, we 
al
ulatethe internal energy for the three isotherms T = 10000,

30000, and 50000 K. This method works with only an-alyti
al formulas, whi
h are rather 
ompli
ated, how-ever; nevertheless, the 
al
ulation of one energy datapoint takes no more than a few se
onds on a PC.The Padé approximations were 
onstru
ted in ear-lier works from the known analyti
 results in the limi-ting 
ases of low density [3, 43℄ and high density [3℄.The stru
ture of the Padé approximations was devisedsu
h that they are analyti
ally exa
t up to quadrati
terms in the density (up to the se
ond virial 
oe�
ient)and interpolate between the virial expansions and thehigh density asymptoti
 expressions [19, 44, 45℄. Theformation of bound states was taken into a

ount usingthe 
hemi
al pi
ture.We here follow these 
ited works in large part, onlythe 
ontribution of the OCP-ion�ion intera
tion, whi
his the largest one in most 
ases, was substantially im-proved following [56℄. With respe
t to the 
hemi
alpi
ture, we restri
ted ourselves to the strong ionizationregion, where the number of atoms is still relatively lowand no mole
ules are present. We here dis
uss only thegeneral stru
ture of the Padé formulas. The internalenergy density of the plasma is given byE = Eid +Eint; (30)where Eid is the internal energy of an ideal plasma 
on-sisting of Fermi ele
trons, 
lassi
al protons, and 
lassi-
al atoms, and Eint = Np (�e + �i + �a) (31)is the intera
tion energy. The splitting of the inter-a
tion 
ontribution to the internal energy 
orrespondslargely to the previous se
tion. The individual pie
esare as follows.1) The ele
tron�ele
tron intera
tion �e. This term
orresponds to the OCP energy of the ele
tron subsys-tem. Instead of the simple expressions used in earlierwork [19; 42; 44℄, we here used a more re�ned formulafor the energy [57℄. This formula is an interpolation be-tween the Hartree limit with the Gell-Mann�Brüe
kner
orre
tion (already used in the previous se
tion), theWigner limit, and the Debye law in
luding quantum
orre
tions,�e = � (r3s + 50) [aH + aW (rs)℄ + 2p6d0r5:5s �2:5 + 24dHr4s�2(r3s + 50)rs + 2:3r4s�2 + 2p6d1r5:5s �2 + r7s�3 : (32)
533
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tion has been introdu
ed asaW (x) = 2b0x�� ln 1 + �x0:5 exp�� b12b0�+ 2b0xaW ��1! ; (33)and the 
onstants take the valuesd0 = 0:5; d1 = 0:6631; dH = 0:125;aH = 0:91633; aW = 0:87553;b0 = 0:06218; b1 = 0:0933:We mention that similar formulas are also valid forother thermodynami
 fun
tions with the 
onstants ad-justed [57℄. The formula for the OCP used here 
on-tains all the terms taken into a

ount in the previousse
tion and in addition, also temperature-dependent
orre
tions.2) The ion 
ontribution to the internal energy �i.This term was 
al
ulated in the previous se
tion. Wehere use a pro
edure based on approximation (28),(29). This enables us to use the results of the MC
al
ulations of Hansen, De Witt, and others [23, 58℄.In a

ordan
e with Eqs. (28) and (29), the ion 
ontri-bution is split into two terms,�i = �OCPi + �POLi ; (34)where the �rst is the OCP 
ontribution of the protonsand the se
ond represents the polarization of the pro-ton OCP by the ele
tron gas. For the region of highdensities, i.e., large � and small rs, we use the MonteCarlo data that were parameterized by De Witt as [23℄�OCPi = �0:8946�+ 0:8165�0:25 � 0:5012; (35)�POLi = �rs(0:0543� + 0:1853�0:25 � 0:0659): (36)We note that the polarization term des
ribes the 
or-re
tion due to s
reening of the proton�proton inter-a
tion by the ele
tron �uid. In order to obtainthese expressions, semi
lassi
al Monte Carlo 
al
ula-tions were performed based on e�e
tive ion intera
-tions that model the ele
trons as a responding ba
k-ground [22, 23℄. We do not need to go into the detailsof this method be
ause the pro
edure 
orresponds toEq. (29) derived in the previous se
tion.In the low density limit, we used the Debye law withquantum 
orre
tions [3, 45℄,�OCPi = �0:86603�d0�1:5[1�B1�1:5℄; (37)

�POLi = �0:71744�1:5[1� C1�1:5℄: (38)Here, the temperature fun
tions B1 and C1 des
riberather 
omplex quantum 
orre
tions, whi
h are, how-ever, expli
itly known and are easily programmed [3℄.The Padé approximations that 
onne
t the high- andthe low-density limits are 
onstru
ted by standardmethods [19, 44, 45℄ and are not given here expli
itly.For the OCP energy of the ions, we use the very a

u-rate formulas proposed by Kahlbaum [56℄.3) The atomi
 
ontribution �a. In the region ofdensities and temperatures studied in this work, this
ontribution gives only a small 
orre
tion (ex
ept forT = 10000 K). We 
al
ulate the number of atoms onthe basis of a nonideal Saha equation des
ribed below.The formation of mole
ules is not taken into a

ount.We restri
t 
al
ulations to the region where the numberdensity of atoms is smaller than that of the ele
trons.The 
ontributions to the 
hemi
al potential that appearin the Saha equation are 
al
ulated in part from s
alingrelations and in part by numeri
al di�erentiation of thefree energy given earlier [19, 44℄. For the partition fun
-tion in the Saha equation, we use the Brillouin�Plan
k�Larkin expression [3, 45℄. The nonideal Saha equationthat determines the ionization degree (the density ofatoms) is solved by iterations, starting from the idealSaha equation. Be
ause of a high degree of ionization,the atomi
 intera
tion 
ontributions 
an be approxi-mated in the simplest way by the se
ond virial 
ontri-bution and by treating the atoms as small hard spheresand by negle
ting the 
harged parti
le-neutral intera
-tion.The results of our Padé 
al
ulations for a broaddensity interval for three isotherms are in
luded inFigs. 1�3.5. SUMMARY OF THE PATH INTEGRALMONTE CARLO SIMULATIONSThe analyti
 approximations dis
ussed in the pre-vious se
tions work very well at high densities if boundstates are of minor importan
e. These 
onditions arenot ful�lled for densities below the Mott point 
orre-sponding to rs > 1. Here, re
ently developed DPIMCsimulations 
an be used. Starting from the basi
plasma parti
les, ele
trons and ions, they �automati-
ally� a

ount for bound state formation and ioniza-tion and disso
iation. Furthermore, in 
ontrast to the
hemi
al pi
ture, no restri
tions on the type of 
hem-i
al spe
ies are made and the appearan
e of 
omplexaggregates su
h as mole
ular ions or 
lusters of severalatoms are fully in
luded. On the other hand, simula-534
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ted to be
ome in
reasingly di�
ult athigh densities where the ele
tron degenera
y is largedue to the fermion sign problem. It is therefore veryinteresting to 
ompare results of the DPIMC approa
hwith alternative theories that are expe
ted to 
omple-ment ea
h other. This is done in the next se
tion.But �rst, we brie�y outline the idea of our DPIMCs
heme. All thermodynami
 properties of a two-
omponent plasma are de�ned by the partition fun
tionZ; for Ne ele
trons and Np protons, it is given byZ(Ne; Np; V; �) = Q(Ne; Np; �)Ne!Np! ;Q(Ne; Np; �) =X� ZV dq dr �(q; r; �;�); (39)where � = 1=kBT . For a quantum system, the ex-a
t density matrix is not known in general, but 
anbe 
onstru
ted using a path-integral representation[21; 59�61℄,ZV dR(0)X� �(R(0); �;�) == ZV dR(0) : : : dR(n) �(1)�(2) : : : �(n) ��X� XP (�1)�P S(�; P̂ �0) P̂ �(n+1); (40)where�(i) � ��R(i�1); R(i); ��� �� hR(i�1)j exp(���Ĥ)jR(i)i;with �� � �n+ 1 ; ��2a = 2�~2��ma a = p; e:Here, Ĥ = K̂+ Û
 is the Hamilton operator 
ontainingthe kineti
 and potential energy 
ontributions, K̂ andÛ
, respe
tively, withÛ
 = Ûp
 + Ûe
 + Ûep
being the sum of the Coulomb potentials between pro-tons (p), ele
trons (e), and ele
trons and protons (ep).Further, � 
omprises all parti
le spins and the parti
le
oordinates are denoted byR(i) = (q(i); r(i)) � (R(i)p ; R(i)e ); i = 1; : : : n+ 1;R(0) � (q; r) � (R(0)p ; R(0)e ); R(n+1) � R(0);

where q and r denote the ele
tron and proton 
oordi-nates respe
tively and �0 = �:The parti
les are then represented by fermioni
 loopswith the 
oordinates (beads)[R℄ � [R(0);R(1); : : : ;R(n);R(n+1)℄:The spin gives rise to the spin part of the density ma-trix S, and the ex
hange e�e
ts are taken into a

ountby the permutation operator P̂ that a
ts on the ele
-tron 
oordinates and spin proje
tions and by the sumover permutations with the parity �P . In the fermioni

ase (minus sign), the sum 
ontains Ne!=2 positive andnegative terms, whi
h leads to the notorious sign prob-lem. Be
ause of the large mass di�eren
e of ele
tronsand ions, the ex
hange of the latter is not in
luded.Thermodynami
 fun
tions are given by derivativesof the logarithm of the partition fun
tion with respe
tto thermodynami
 variables. In parti
ular, the internalenergy E follows from Q by�E = ��� lnQ�� ; (41)whi
h gives (
f. [42℄ for details)�E = 32(Ne +Np) + 1Q 1�3Npp ��3Nee �� NeXs=0 Z dq dr d� �s(q; [r℄; �) ��( NpXp<t �e2jqptj+ nXl=0 " NeXp<t ��e2jrlptj + NpXp=1 NeXt=1 	epl #++ nXl=1 "� NeXp<t Clpt��e2jrlptj2 + NpXp=1 NeXt=1Dlpt ����ep�jxlptj #�� 1detjj n;1ab jjs � detjj n;1ab jjs�� );Clpt = hrlptjylpti2jrlptj ; Dlpt = hxlptjylpi2jxlptj ;
(42)

where 	epl � �� �[�0�ep(jxlptj; �0)℄��0 ������0=��
ontains the ele
tron�proton Kelbg potential �ep (
f.Eq. (45) below), h: : : j : : : i denotes the s
alar produ
t,and qpt, rpt, and xpt are di�eren
es of the two 
oordi-nate ve
tors,qpt � qp � qt; rpt � rp � rt;535



S. A. Trigger, W. Ebeling, V. S. Filinov et al. ÆÝÒÔ, òîì 123, âûï. 3, 2003xpt � rp � qt; rlpt = rpt + ylpt;xlpt � xpt + ylp; ylpt � ylp � ylt;with yna = ��e nXk=1 �(k)a :We introdu
ed dimensionless distan
es between neigh-boring verti
es on the loop, �(1); : : : �(n), and thus, ex-pli
itly, [r℄ � [r; y(1)e ; y(2)e ; : : : ℄: The density matrix �sin Eq. (42) is given by�s(q; [r℄; �) = CsNe exp(��U(q; [r℄; �))�� nYl=1 NeYp=1�lppdet jj n;1ab jjs; (43)whereU(q; [r℄; �) = Up
 (q) + fUe([r℄;��) + Uep(q; [r℄;��)gn+ 1 ;�lpp � exp[��j�(l)p j2℄:Density matrix (43) does not involve an expli
it sumover the permutations, and hen
e, does not involve thesum of terms with alternating signs. Instead, the en-tire ex
hange problem is 
ontained in a single ex
hangematrix given byjj n;1ab jjs � jj exp�� ���2e j(ra � rb) + yna j2� jjs: (44)As a result of the spin summation, the matrix 
arriesa subs
ript s indi
ating the number of ele
trons havingthe same spin proje
tion.The potential �ab in Eq. (42) is an e�e
tive quan-tum pair intera
tion between two 
harged parti
les im-mersed into a weakly degenerate plasma. It has beenderived by Kelbg et al. [62; 63℄, who showed that it 
on-tains quantum e�e
ts exa
tly in the �rst order in the
oupling parameter �,�ab(jrabj;��) = eaeb�abxab �� �1� exp(�x2ab) +p� xab [1� erf(xab)℄	 ; (45)where xab = jrabj=�ab; we emphazise that the Kelbgpotential is �nite at zero distan
e.The stru
ture of Eq. (42) is obvious: we have sepa-rated the 
lassi
al ideal gas part (the �rst term). Theideal quantum part in ex
ess of the 
lassi
al one andthe 
orrelation 
ontributions are 
ontained in the inte-gral term, where the se
ond line results from the ioni



orrelations (the �rst term) and the ee and ei intera
-tions at the �rst vertex (the se
ond and the third termrespe
tively). Equation (42) therefore 
ontains an im-portant limit of the ideal quantum plasma in a naturalway. The third and fourth lines are due to further ele
-troni
 verti
es and the expli
it temperature dependen
e(Eq. (42)) and volume dependen
e (the 
orrespondingequation of state) of the ex
hange matrix, respe
tively.The main advantage of Eq. (42) is that the expli
it sumover permutations has been 
onverted into the spin de-terminant that 
an be very e�
iently 
omputed usingstandard linear algebra methods. Furthermore, ea
h ofthe sums in 
urly bra
kets in Eq. (42) is bounded as thenumber of verti
es in
reases, n!1. The error of thetotal expression is of the order 1=n. Expression (42)and the analogous result for the equation of state aretherefore well suited for numeri
al evaluation using thestandard Monte Carlo te
hniques, see, e.g., [21, 29℄.In our Monte Carlo s
heme, we used three types ofsteps, where either ele
tron or proton 
oordinates, ri orqi, or inidividual ele
troni
 beads �(k)i were moved until
onvergen
e of the 
al
ulated values was rea
hed. Ourpro
edure has been extensively tested. In parti
ular,we found from 
omparison with the known analyti
 ex-pressions for the pressure and energy of the ideal Fermigas that the Fermi statisti
s is very well reprodu
edwith a limited number of parti
les (N . 100) and beadsfor degenera
y up to n�3 . 10 [40℄. We also performedextensive tests for few-ele
tron systems in a harmoni
trap, where the analyti
ally known limiting behavior(e.g., energies) is again well reprodu
ed [64; 65℄. Forthe present simulations of dense hydrogen, we variedboth the parti
le number and the number of time sli
es(beads). As a result of these tests, we found that toobtain 
onvergent results for the thermodynami
 prop-erties of hydrogen in the density�temperature regionof interest here, parti
le numbers Ne = Np = 50 andbeads numbers in the range n = 6 : : : 20 are an a

ept-able 
ompromise between a

ura
y and 
omputationale�ort [39�41℄.6. NUMERICAL RESULTS. COMPARISON OFTHE ANALYTIC AND SIMULATION DATAWe now dis
uss the numeri
al results. We have
omputed the internal energy of dense hydrogen usingtwo analyti
 (EIIP and PACH) approa
hes and DPIMCsimulations. The data are shown in Figs. 1�3 for threetemperatures, 10000, 30000, and 50000 K, respe
tively.We �rst 
onsider the general behavior that is most536
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learly seen for the highest temperature, 
f. Fig. 3a.The overall trend is an in
rease of the energy with den-sity, whi
h is parti
ularly rapid at high densities be-
ause of ele
tron degenera
y e�e
ts; this is 
learly seenfrom the ideal plasma 
urve (dashed and dotted lines inthe lower parts of Figs. 1�3). The nonideal plasma re-sults show a prominent deviation from this trend, whi
his in full agreement with the dis
ussion in Se
. 2, theformation of an energy minimum (where the energy 
anbe
ome negative) at intermediate densities. Our 
al
u-lations for a nonideal hydrogen plasma asymptoti
allyapproa
h the ideal 
urve both at low density (the ideal
lassi
al plasma) and at high density (the ideal mix-ture of 
lassi
al protons and quantum ele
trons). Forintermediate densities, between 1021 and 1025 
m�3,the nonideal plasma energy is signi�
antly lower thanthe ideal energy be
ause of strong 
orrelations and for-mation of bound states. As the temperature de
reases,this region broadens. In parti
ular, we 
learly see thatthe total energy indeed rea
hes negative values for thetemperatures 
onsidered.We now 
ompare the results of the di�erent meth-ods. We 
onsider three density regions separately,A) the high density limit, B) the region around theminimum, and C) the region below the minimum.A) The �rst observation from Figs. 1�3 is that forall temperatures (in
luding temperatures above thoseshown), the PACH and EIIP approa
hes pra
ti
ally 
o-in
ide in the limit of high densities. It is also inter-esting to 
ompare these approa
hes with another the-oreti
 approa
h based on the density fun
tional the-ory (DFT). Re
ently, Xu and Hansen [46℄ publisheddata for T = 10000 K and rs � 1:5, whi
h are alsoin
luded in Fig. 1. Evidently, in the high density limit,PACH and EIIP 
oin
ide with these DFT data, 
f.Fig. 1. This good agreement of the three 
ompletelyindependent approa
hes � EIIP, PACH and DFT �is a strong indi
ation that they 
an yield reliable re-sults for a fully ionized ma
ros
opi
 hydrogen plasmaat high densities. This asymptoti
 agreement is notsurprising, be
ause the ideal Fermi gas limit is �builtinto� ea
h of these three approa
hes. But this gives noinformation about the lowest densities for whi
h theseresults remain quantitatively 
orre
t. The presented
omparison is therefore greatly important as giving ahint (although not a proof) that the value of that min-imum density is above n � 3 � 1024 
m�3, 
f. Figs. 1�3.We next observe that at higher densities, theDPIMC simulations yield lower energies and a shiftof the energy in
rease to higher density values 
om-pared with the analyti
 models. This tenden
y be-
omes stronger with in
reasing the temperature, as 
an
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Fig. 1. Internal energy of hydrogen for T = 10000 K:a � normalized to the energy of a nonintera
tingele
tron�proton system; b � in the units of 2N Ry.The 
urves show the following results: ideal plasma(1 ), the PACH 
al
ulations (2 ), the EIIP model (�),our Monte Carlo simulations, DPIMC (�), densityfun
tional theory [46℄ (�), and restri
ted PIMC data,RPIMC of Militzer et al. [34℄ (4)be seen in Figs. 1�3. In view of the asymptoti
 a

ura
yof the analyti
 results (see above), the total energy ofma
ros
opi
 high density hydrogen is 
ertainly abovethe DPIMC results for densities ex
eeding 1025 
m�3.There are two main fa
tors tending to redu
e ourDPIMC results for the energies at high densities. The�rst fa
tor is given by degenera
y e�e
ts. Pra
ti
allimitations that must be imposed on the number ofbeads and parti
les (see Se
. 5) ne
essarily make ourresults less reliable for densities ex
eeding 1025 
m�3.The se
ond fa
tor is given by �nite-size e�e
ts relatedto proton ordering. To understand the high densityresults better, we analyze the ele
tron�ele
tron (ee),proton�proton (pp) and ele
tron�proton (ep) pair dis-tribution fun
tions in Fig. 4. These fun
tions exhibit537
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al for strongly 
orrelated systems. Themost prominent e�e
t is seen in the pp fun
tion thatexhibits a periodi
 stru
ture at T = 50000 K, whi
h iseven more pronoun
ed at T = 10000K. This proton or-dering is typi
al of a strongly 
orrelated ion �uid nearthe 
rystallization temperature3). Our simulations foreven higher densities reveal the formation of an ioni
latti
e immersed into a delo
alized sea of ele
trons, i.e.,an ioni
 Wigner 
rystal [40℄, known to exist in highdensity obje
ts su
h as white or brown dwarf stars.Thus, qualitatively, the simulations show the 
orre
tbehavior at high densities. But be
ause of the smallsize of the simulations (only 50 ele
trons and protonsare presently feasible), the results are mu
h 
loser tothose for small strongly 
orrelated ioni
 
lusters thatare known to exhibit quite pe
uliar behavior, in
ludinga strong size dependen
e of the energy, negative spe-
i�
 heat, et
. In order to obtain more a

urate data3) In fa
t, the �rst minimum of the proton�proton fun
tion(around r = 0:45aB) for T = 10000 K is far lower than thestandard value of 0.35 typi
al for a liquid.

a

1 2

2

b

1

1021 1022 1023 1024 1026 10271020

Density, cm−3
1025

0

6

12

18

24

30

−1.0

−0.5

0

0.5

1.0

E
n
e
rg

y
,
2
N

·
R

y
N

o
rm

a
li
z
e
d

e
n
e
rg

y

Fig. 3. Internal energy of hydrogen for T = 50000 K.The notation is the same as in Fig. 1for the internal energy of a ma
ros
opi
 two-
omponentplasma at ultrahigh 
ompression, a signi�
ant in
reaseof the simulation size is therefore desirable (it shouldbe
ome feasible in the near future).B) The energy minimum at intermediate densities isreprodu
ed by all methods, but there are quantitativedi�eren
es regarding its depth and width. The generalobservation made for all temperatures, 
f. Figs. 1�3, isthat the simulations yield a deeper minimum and shiftof the energy in
rease towards higher densities. Wealso observe that the EIIP method yields lower ener-gies than the PACH and is 
loser to the DPIMC results.Further, the PACH results pra
ti
ally 
oin
ide with theDFT data [46℄ where they are available (T = 10000 Kand n � 5 �1023 
m�3). But atom and mole
ule forma-tion is be
oming important at these densities, and theEIIP and DFT methods (in their present form) are be-
oming in
reasingly unreliable. The presented PACHresults in
lude bound states approximately, whereasthe DPIMC 
al
ulations have no restri
tions with re-spe
t to atom and mole
ule formation.538
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r=aBFig. 4. Ele
tron�ele
tron (1 ), proton�proton (2 ) andele
tron�proton (3 ) pair distribution fun
tions of hy-drogen from the DPIMC simulations at n = 1026 
m�3for the temperatures 10000 K (a) and 50000 K (b).Note the di�erent verti
al s
alesWe now analyze the DPIMC simulations around theenergy minimum. Our data for T = 10000 K are alsosigni�
antly lower than RPIMC results of Militzer etal. [34℄, 
f. Fig. 1b, but we found ex
ellent quantita-tive agreement between the two independent quantumMonte Carlo methods above T = 50000K, see the pointfor T = 62500 K in Fig. 3a (a more extensive 
ompar-ison is also given in Ref. [42℄). A detailed analysis ofthe DPIMC simulation results at T = 10000 K and1023 
m�3 . n . 1024 
m�3 revealed that the homoge-neous plasma state is unstable there: the plasma gainsenergy by forming higher-density 
lusters or dropletsthat are embedded into a lower-density plasma. Thedroplets are 
learly visible in the ele
tron�proton 
on-�gurations in the simulation box [68℄ and are inter-preted as a dire
t indi
ation for a �rst-order phase tran-sition, as dis
ussed in the Introdu
tion [13�20℄. Thesee�e
ts emerge in the weakly ionized plasma (low den-sity) and vanish above the Mott point, rs � 1. We men-

tion that the same e�e
ts are observed in our DPIMCsimulations of ele
tron�hole plasmas under similar 
on-ditions [69℄, for whi
h droplet formation is well estab-lished and was observed experimentally three de
adesago [70℄. Our 
on
lusion is also indire
tly supportedby analyti
 methods. In the present variants of thePACH and EIIP methods, homogeneous density dis-tributions are assumed4), but it is interesting that atT = 10000 K and 1023 
m�3 . n . 1024 
m�3, bothmethods yield unstable results for the thermodynami
fun
tions, whi
h is a 
lear indi
ation of the existen
eof a �rst-order phase transition. Xu and Hansen [46℄also observed strong �u
tuations in their density fun
-tional 
al
ulations below rs = 1:5, whi
h they found tostrongly resemble pre
ursors of a phase transition.Even if we a

ept the existen
e of a phase transition,the energy obtained in the DPIMC simulations appearsto be unexpe
tedly low. In this region, we observe large�u
tuations of pressure and energy related to the for-mation and de
ay of droplets. Furthermore, there aresigni�
ant surfa
e energy e�e
ts. Our simulations yieldonly a very small number of droplets (typi
ally one tothree), ea
h 
ontaining 15 to 50 ele
tron�proton pairs.Of these, almost all are on the surfa
e5). We 
annottherefore be 
ertain that our simulations adequatelyrepresent the ma
ros
opi
 system in the two-phase re-gion and its energy per parti
le in parti
ular. Finally,in su
h small systems, there exist additional spe
i�
fa
tors that tend to lower the energy [12℄ and 
an there-fore be responsible for our result. This 
an also be thereason for the low-energy minimum observed at highertemperatures, Figs. 2 and 3, where our analyti
 modelsdo not show unstable behavior. Clarifying this interest-ing issue in more detail requires performing extensivesimulations with substantially larger parti
le numbers;su
h 
al
ulations are presently under way.C) In the region to the left of the energy minimum,n . 1022 
m�3, simulations are of spe
ial importan
e.In this region, the plasma is strongly 
orrelated andlargely dominated by bound states. Analyti
 meth-ods based on perturbation expansions in the 
ouplingstrength (� or rs) do not work in this parameter range.While there exist many 
hemi
al models of various de-4) Using a modi�ed PACH approa
h, Beule et al. [20℄ predi
teda �rst-order phase transition in hydrogen for T = 10000 K withthe pressure and density p � 110GPa and � � 0:8 g � 
m�3. Sim-ilar results were obtained by S
hlanges et al. [16℄, where otherreferen
es are also given.5) Imagine 27 (64) parti
les arranged, for simpli
ity, in a small
ube. Evidently, 26 (56) of them are situated at the surfa
e ofthe �droplet�, whi
h is in a striking 
ontrast to the situation ofa ma
ros
opi
 system, where droplets are expe
ted to 
ontainmany orders of magnitude more parti
les.539
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ation, rigorous theoreti
 results arevery rare. In parti
ular, as mentioned above, the EIIPmodel breaks down here (we re
all that its present ver-sion is limited to rs � 1:5, 
f. Se
. 3). Also, the presentversion of the PACH approa
h uses a 
hemi
al pi
turewith a nonideal Saha equation, but treats bound statesin a very simple approximation (see above) and there-fore yields only approximate results in situations with alow ionization degree. In 
ontrast, the DPIMC resultshave no su
h limitations and provide reliable results inthis region in prin
iple. On the other hand, there ex-ist spe
i�
 te
hni
al di�
ulties at low densities, wherethe extension of bound ele
tron wave fun
tions is manyorders of magnitude smaller than the interparti
le dis-tan
e, whi
h leads to very slow 
onvergen
e of DPIMCsimulations (and other quantum Monte Carlo meth-ods as well). This explains the di�erent energies ofthe DPIMC and Padé results at the lowest densities atT = 10000 K, where the plasma 
onsists of atoms, see,e.g., [16, 20℄, while good agreement is found at highertemperatures. 7. DISCUSSIONThis work is devoted to the investigation of the to-tal energy of warm dense plasmas in the temperaturerange between 100000 and 50000 K. We presented anew theoreti
 approa
h to high density plasmas basedon the theory of an e�e
tive ion�ion potential. Thismethod was shown to be quite e�
ient for fully ionizedstrongly 
orrelated plasmas above the Mott density.Furthermore, a detailed 
omparison of several theoreti
approa
hes and simulations was performed over a widedensity range. The �rst in
luded the EEIP and PACHanalyti
 models on the one hand and re
ent DFT dataof Xu and Hansen [46℄ on the other hand. The se
-ond group of data 
onsisted of several new data pointsbased on DPIMC simulations of a 
orrelated proton�ele
tron system with degenerate ele
trons. From these
omparisons, we 
on
lude that the three theoreti
 ap-proa
hes � PACH, EEIP, and DFT � are in a verygood agreement with ea
h other for a fully ionized hy-drogen plasma in the high density region where rs < 1.We therefore expe
t these results to be reliable fordensities above 3 � 1024 
m�3. This agreement of thethree independent analyti
 methods is highly interest-ing be
ause the physi
al approximations involved arevery di�erent. On the other hand, our DPIMC simu-lations agree with the available RPIMC data for tem-peratures above 50000 K, 
f. Figs. 1�3 and Ref. [42℄.This agreement over a broad range of parameters is 
er-

tainly remarkable be
ause the plasma is far outside theperturbative regime: it is strongly 
orrelated and theele
trons are degenerate, and the two simulations areessentially independent.The 
omparison of our DPIMC simulation resultswith the analyti
 data reveals an overall good agree-ment. In addition, existing deviations are a usefulguide for future improvement and extension of the var-ious approa
hes. Most importantly, the good quality ofthe quantum Monte Carlo data in the region of strong
hanges of the ionization degree �lls a gap in the presentvariants of analyti
 methods. These data 
an be used toimprove the treatment of a dense plasma via analyti
methods in the theoreti
ally very 
ompli
ated regionof strong 
orrelations and strongly varying ionizationand disso
iation degrees. Moreover, the high densityasymptoti
 results of the analyti
 methods may be use-ful for further improvement of the simulations.Further, our DPIMC simulations revealed an insta-bility of the homogeneous plasma state around the min-imum of the energy isotherm T = 10000 K for densitiesbetween 1023 and 1024 
m�3. We have given argumentsthat this is related to the droplet formation, whi
h isa strong indi
ation of a �rst-order phase transition [68℄that has previously been predi
ted by many authorson the basis of simple 
hemi
al models. The existen
eof a plasma phase transition would have drasti
 
on-sequen
es for transport properties of many astrophys-i
al obje
ts, su
h as giant planets, and its veri�
ationtherefore remains an important theoreti
al issue. Itwould therefore be very interesting if independent �rst-prin
iple simulations, in parti
ular RPIMC, 
ould re-produ
e this result. This, however, may require a par-ti
ular 
hoi
e of nodes of the density matrix that allowan inhomogeneous equilibrium plasma state. Finally,at very high densities, our DPIMC simulations revealedordering of protons into a strongly 
orrelated �uid andthe onset of the formation of a proton Wigner 
rystal.These interesting physi
al e�e
ts in high-pressure hy-drogen are of relevan
e for many astrophysi
al systemsand many laboratory experiments, in
luding ultra
olddegenerate trapped ions and laser plasmas.In 
on
lusion, we may state that the analyti
methods and the DPIMC approa
h are already in areasonable overall agreement. Both methods should bedeveloped to further explore the equilibrium propertiesof dense hydrogen.We a
knowledge stimulating dis
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