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The internal energy of high density hydrogen plasmas in the temperature range 7' = 10000 ... 50000 K is calcu-
lated by two different analytic approximation schemes — the method of an effective ion—ion interaction potential
and the Padé approach within the chemical picture — and are compared with the direct path integral Monte
Carlo results. A reasonable agreement between the results obtained from the three independent calculations is
found and the reasons for still existing differences are investigated. Interesting high density phenomena such as

the onset of ion crystallization are discussed.
PACS: 52.25.Kn, 52.65.Pp

1. INTRODUCTION

Thermodynamics of strongly correlated Fermi sys-
tems at high pressure is of growing importance in
many fields, including shock and laser plasmas, astro-
physics, solids, and nuclear matter, see Refs. [1-6] for
an overview. In particular, thermodynamic properties
of hot dense plasmas are essential for the description of
plasmas generated by strong lasers [5]. Further, among
the phenomena of current interest are the high-pressure
compressibility of deuterium [7], metallization of hy-
drogen [8], plasma phase transition etc., which occur
in situations where both interaction and quantum ef-
fects are relevant. Among the early theoretical papers
on dense hydrogen we refer to Wigner and Hunting-
ton [9], Abrikosov [10], Ashcroft [11], and Brovman et
al. [12]; concerning the plasma phase transition, see
Norman and Starostin [13], Kremp et al. [14], Saumon
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and Chabrier [15], and Schlanges et al. [16], and also
some earlier investigations of one of us [17-20]. Among
the early simulation approaches, we refer to several
Monte Carlo calculations, e.g., [21-23].

There has been a significant progress in recent years
in studying these systems analytically and numerically,
see, e.g., [1,2,4,24-28] for an overview. But there re-
mains an urgent need to test analytic models by an
independent numerical approach. In addition to the
molecular dynamics approach, e.g. [24, 26], the path-in-
tegral Monte Carlo (PIMC) method is particularly well
suited to describe thermodynamic properties in the
high density region. This is because it starts from
the fundamental plasma particles, electrons and ions,
(physical picture) and treats all interactions, includ-
ing bound state formation, rigorously and selfconsis-
tently. We note a remarkable recent progress in ap-
plying these techniques to Fermi systems, see, e.g.,
Refs. [1, 2, 29, 30] for an overview.

Several methods have been developed to perform
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quantum Monte Carlo calculations. We first mention
the restricted PIMC method (RPIMC) [31-34], where
special assumptions on the density operator p are in-
troduced in order to reduce the sum over permutations
to even (positive) contributions only. It can be shown,
however, that this method does not reproduce the cor-
rect ideal Fermi gas limit [35]. An alternative is given
by direct fermionic PIMC simulations (DPIMC), which
have occasionally been attempted by various groups,
see, e.g., [36, 37] and references therein. But these
simulations have been very inefficient because of the
fermionic sign problem. Recently, three of us proposed
a new path-integral representation for the N-particle
density operator [38-41] that allows direct fermionic
path integral Monte Carlo simulations of dense plas-
mas in a wide range of densities and temperatures.
Using this concept, the pressure and energy of a de-
generate strongly coupled hydrogen plasma [39-42] and
the pair distribution functions in the partial ionization
and dissociation region [40, 41] have been computed.
This scheme is rather efficient when the number of time
slices (beads) in the path integral is less than or equal
to 50 and was found to work well for temperatures
kT > 0.1Ry.

One difficulty of PIMC simulations is that reliable
error estimates are often not available, in particular for
strongly coupled degenerate systems. Here, we make
a comparison with two independent analytic methods.
The first is the method of an effective ion—ion inter-
action potential (EIIP) that has previously been de-
veloped for application to simple solid and liquid met-
als [12, 24] and which is here adopted to dense hydrogen
for the first time. The second is the method of Padé ap-
proximations in combination with Saha equations, i.e.,
the chemical picture (PACH) [3]. The Padé formu-
las are constructed on the basis of the known analytic
low-density [3, 43] and high density [3] limits and are
exact up to quadratic terms in the density, interpolat-
ing between the virial expansions and the high density
asymptotic regime [19, 44, 45].

We show here that both methods, EITP and PACH,
provide results for the internal energy that agree well
with each other at high densities where the electrons
are strongly degenerate and no bound states exist, ap-
proximately for n > 10?* em™3. In this region, there
is also a good agreement with recent density functional
results [46]. The agreement of the PACH and DPIMC
results is good below 1022 em 3. For intermediate den-
sities, where the ionization degree changes strongly, we
observe deviations. Also, at high densities, the DPIMC
results tend to lower energies than the analytic ap-
proaches. Finally, they reveal several interesting ef-

fects, such as formation of clusters and the onset of ion
crystallization.

2. PHYSICAL PARAMETERS AND BASIC
EFFECTS

We study a hydrogen plasma consisting of N, elec-
trons and N, protons (N, = N, = N). The total pro-
ton (atom) density is n = N,/V. The average distance
between the electrons is the Wigner—Seitz radius

1/3
()"
4mn

and other characteristic lengths are the Bohr radius

h2
=
the Landau length
2
G
kT’
and the De Broglie wave length
h
Ae=—""—
T (2mmkT)/?

of the electrons. The degeneracy parameter is nA?.
We define the dimensionless temperature 7 = kT'/ Ry,
which varies between 0.06 < 7 < 0.4 in the tempera-
ture interval considered below. We also introduce the
Wigner—Seitz parameter

Ty = —
ap
and the dimensionless classical coupling strength

2

e
=——.
kETd
Hydrogen is antisymmetric with respect to the
charges (e = —e; ) and symmetric with respect to the
densities (ny = n_ = n). lons and electrons behave

quite differently because of the big mass difference,
m, = 1836 m.. At the temperatures considered, the
ions can be treated classically as long as n < 1027 cm 2.
For these temperatures and densities, the proton cou-
pling parameter is in the range 0 < I' < 150, and we
can therefore expect strong coupling effects. We study
internal energies of the fluid hydrogen system and start
with providing some simple estimates for guidance. In
that follows, we give all energies in Rydberg units.
First, at very low densities, the electrons and pro-
tons behave as an ideal Boltzmann gas. Therefore, the
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energy (of free electrons and protons) per proton is
given by

¢=FE/N = 3r. (1)

In other words, the low-density limit is, in our tem-
perature interval, a positive number in the region € &
~ 0.2-1.2. With increasing the density, we expect a
region where atoms and possibly also a few molecules
are formed [17, 41]. In the region of atoms, a lower
bound for the energy per proton is

3

e=—-1—1,

: )

where the last term represents the binding energy 1Ry
of H-atoms. If molecules are formed, the corresponding
estimate per proton is lower,

€= §T - 1.17.

3
: Q

Generally, the existence of a lower bound for the en-
ergy per proton was proven by Dyson and Lenard [47]
and Lieb and Thirring [48],

E/N > —C, (4)

where the best estimate known to us (which is certainly
much too large) is C ~ 23 [48]. We see that with in-
creasing the density, the energy per proton tends to
negative values and can reach a finite minimum. Fur-
ther density increase causes the energy to increase again
as a result of quantum degeneracy effects.

To understand this increase, we first consider the
limit of a very high density (but in the region where
the protons are classical). The first estimate of the
energy is then

2.21

— +
€ = T
2 787

(5)
which is positive. The last term, representing the Fermi
energy of the electrons, strongly increases with the den-
sity (as n?/?). In the next approximation, according to
Wigner's estimate [49]"), we must take the Hartree con-
tribution to the electron energy and the corresponding
estimate for the proton energy into account. The lat-
ter is estimated under the assumption that the protons
form a lattice. This way, we find the estimate

() ()

D) Wigner’s original estimate for the lattice energy was cor-
rected later on and we use an improved result. For a discussion
of various estimates, see, e.g., chapter V of G. D. Mahan, Ma-
ny-Particle Physics, Plenum Press (1990).

3
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The two corrections that were added to Eq. (5) are both
negative and scale as n'/3. In other words, these inter-
action terms might play a major role with decreasing
the density. At a critical density, the energy per proton
can become negative. This density can be estimated
from Eq. (6) by solving the quadratic equation

3
0= 577«3 — 1.7915rs + 2.21 (7)
perturbatively, starting with the zero temperature
limit, and adding the first correction (linear in 1),

)~ 1.234 +2.2837 + ... (8)
As 7 — 0, this result coincides with Wigner’s criterion
for the existence of molecules: for d < apg, molecules
cannot exist because there is no room for forming
bound state wave functions. According to Eq. (8),
molecules exist at a finite temperature only for larger d
as thermal fluctuations increase the wave function over-
lap. More generally, with increasing the temperature,
the energy becomes positive at lower density compared
to the case where 7' = 0.

Summarizing the qualitative results obtained in this
section, we can state that we expect the following gen-
eral behavior of the internal energy per proton in the
given temperature range: at zero density, the energy
starts with the ideal gas expression that depends only
on the temperature. With increasing the density, the
energy per proton becomes negative because of corre-
lation effects (bound states, electron correlations, and
proton correlations). A minimum is formed and at a
density where the proton density is close to the inverse
Bohr radius cubed, the energy per proton turns to pos-
itive values and is more and more determined by the
ideal electron energy increasing with n?/3, corrected by
correlation contributions of the order n'/? determined
by the Hartree term and by proton—proton coupling ef-
fects. In what follows, we show that this qualitative
picture is supported by the results of our calculations.

3. THE METHOD OF AN EFFECTIVE
ION-ION INTERACTION POTENTIAL

It is well known that in plasmas and plasma-like sys-
tems, in a broad parameter range, the interaction be-
tween the electron and ion subsystems is weak, whereas
the interacrtions within the electron and ion subsys-
tems can be strong. The corresponding small param-
eter is the ratio ue;/Er of the characteristic value of
the electron—ion interaction u.; to the electron Fermi
energy Fp. Therefore, the approximation of a small
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te; / Ep ratio is valid for systems with degenerate elec-
trons if Erp > T, > T;, where T, and T; are the electron
and ion temperatures respectively (below, we consider
the case where T, = T;). Typical systems where this
approximation is applicable are simple solid and lig-
uid metals and nontransitional metals in general; this
approximation serves as a basis for the computation
of thermodynamic and electron kinetic properties, see,
e.g., [24, 50].

For simple metals, the Fermi energy is not very large
compared with the characteristic electron—ion Coulomb
interaction taken at the average interparticle distance.
But because the wave functions for the conduction elec-
trons and the electrons bound in the ion shells are or-
thogonal, a partial compensation of the electron—ion
Coulomb attraction occurs at small distances, which
effectively weakens the electron—ion interaction. This
fact is described in the theory of simple metals in
the framework of the so-called pseudopotential theory.
The calculation of the pseudopotential is a complicated
problem in general, in particular due to its nonlocal
structure [50, 51]. For practical applications, it can be
represented approximately as a local interaction with
one or two fitting parameters for each metal. On the
basis of the pseudopotential theory, all thermodynamic
properties and electron kinetic coefficients can be calcu-
lated with a sufficiently high accuracy for a wide range
of temperatures and pressures. Naturally, these calcu-
lations require a reliable knowledge of the properties of
the two quasi-independent subsystems: the degenerate
electron liquid in the positive charge background and
the classical ion subsystem with some effective strong
inter-ion interaction.

It is apparent that there is also a wide range of
parameters for highly ionized strongly compressed hy-
drogen plasmas where the electron—ion interaction is
weak. For these parameters, the complicated problem
of calculating the properties of a strongly coupled quan-
tum electron—proton system can be essentially simpli-
fied. In so doing, the results obtained for high com-
pression (when no bound electron states — hydrogen
atoms or molecules — exist), do not require any fitting,
in contrast to the case of simple metals, because the
inter-ion potential for hydrogen is a purely Coulomb
one. The data obtained with this analytic approxima-
tion can therefore be considered as a reliable basis for
comparison with the results of alternative approaches,
including analytic and simulation methods for degener-
ate quantum systems of Fermi particles. The results of
this pseudopotential approach are especially important
for conditions of the extreme compression where the
plasma is characterized by a strong interaction within

530

the electron and especially the ion subsystem. For these
difficult situations, experimental data are still missing
and new accurate numerical methods for Fermi systems
are only emerging.

We consider the Hamiltonian of an electron—proton
plasma, where the ¢ = 0 infinite contributions to the
potentials cancel because of quasineutrality (and we re-
tain the charge number Z of the ions for generality),

471'62 t

i
5 Qg O g Ok’ Ok +

>

1
H = Zekalzak + W
k k,k',g#0

N,
1 - ,
+ v E Uei(Q)aLakJrq E exp(iq - Rj) +

k.q'#0 j=1
1 drZ%e? ‘ .
+ BYa Z Z — exp(iq- (R; — Ry)) + K;. (9)
i#j q#0

Here, €}, is the energy of the electron with the momen-
tum Ak and

An7Ze?
-

Uei(Q)

is the Fourier component of the electron—proton inter-
action potential. For the electron degrees of freedom in
the Hamiltonian H, the secondary quantization repre-
sentation is used, with a;f, and a, being the respective
creation and annihilation operators of an electron with
momentum p. For classical ions, the coordinate repre-
sentation is more convenient, and R; therefore denotes
the coordinate of the i-th ion in Eq. (9). As in the
theory of simple metals [12, 24], two main approxima-
tions have to be used to calculate the plasma energy.
The first is the adiabatic approximation for the ion mo-
tion, which is slow compared to the electron one. The
second is the smallness of the ratio of the characteris-
tic electron—proton Coulomb interaction to the Fermi
energy Er. The respective parameter is

o Ze?
et — dEF

kT
=/'— xn

—1/3
Er ’

r

Calculation of the electron energy in the external field
of immobile ions (protons) leads to the energy of the
plasma given as a function of the ion coordinates ;. In
general, the perturbation theory in terms of the param-
eter I'¢; gives rise not only to pair but also to higher-
order ion—ion interactions, which are quite complicated.
To the second order of perturbation theory in the pa-
rameter I'¢;, the energy per one electron of the plasma
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with a fixed proton configuration {R;} is easily written
as

E{R;}) _ (H)e _ 3
Ni = Nl = €, + §]€T —
_1/ d*q uz(@e(q) _
2) @) eelq)

S LSSy
2MM(g=0) ' 2VN; o

x exp(iq- (R; —Rj)), (10)

where €, is the energy (per ion) of the correlated elec-
tron liquid in the homogeneous positive charge back-
ground. The respective functions I, (¢) and e.(q) are
the static polarization function and the static dielec-
tric function of the correlated electron liquid. They are
related by the usual equality

42—52116((1). (1)

celg) =1+
The Fourier component of the effective pair interac-
tion potential between the ions, szff., involved in (10)
is given by
dn7Z2e?
2 - ugi(Q)

q

I.(q) 4nZ%e?
ee(q)  q%ee(q)’
In what follows, we concentrate on hydrogen and set

7 = 1, which leads to the effective proton—proton in-
teraction

vill(q) = (12)

4re?
0= "

It is clear that in contrast to liquid metals, where
the presence of the pseudopotential leads to a more
complicated structure of the effective potential, in a
dense hydrogen plasma, the effective potential is deter-
mined only by the electron screening. As shown in [12]
for liquid metals, the additional pair interaction aris-
ing from third- and fourth-order terms in the expansion
of the electron energy in the pseudopotential can play
an important role in the effective interaction. A de-
tailed analysis of the effective potential of a hydrogen
plasma [52] revealed that these terms are essential only
for sufficiently rarified plasma conditions (rs > 1.5) and
are practically negligible for higher densities, rs < 1.5,
which we consider in this paper. In fact, for ry > 1.6,
the structure of the effective ion—ion potential in hy-
drogen changes drastically and can be considered as a
precursor of the appearence of molecular states. In this
paper, we use the simplest version of the method of the
effective ion—ion potential that includes the electron—
proton interaction up to the second order, and we are

therefore restricted to sufficiently high densities corre-
sponding to rs; < 1.5.

Further progress can be made using the random
phase approximation (RPA) for II. together with the
long-wavelength and short-wavelength limits,

HRPA (q) —
1 2

HRPA(O) I_Eq_2:| , <L qF,

= ar (14)

4 2
HRPA(O)_q_ga q>qF,

w
(S

where hgr = /2mep is the Fermi momentum of the
electrons. The analysis of this expression shows that
the main contribution to energy (10) comes from small
wave numbers?. With sufficient accuracy, we can
therefore neglect the ¢ dependence of II. in Eq. (10)
and in particular, in effective potential (12), replacing

HRPA (q) N HRPA (0)

3

This implies that we also neglect the well-known small
oscillations of the effective potential for large distances,
which are the result of a logarithmic singularity of the

derivative
dHRPA

dgq

4=2qF

For the densities under consideration (which are much
higher than the usual metallic densities), these oscil-
lations are not essential for the thermodynamic func-
tions. On the other hand, it is crucial to calculate the
polarization function II.(0) fully selfconsistently,

on one,
(0) = <8ME>T,V T ( on >T,v’ 1)

where €, is determined by (10) and consequently takes
the electron—electron exchange and correlations into ac-
count. In the case of degenerate electrons, we can use
one of the analytic approximations for €, such as, for
example, that of Noziéres and Pines or Wigner, see,
e.g., [53] for an overview. Below, we use Wigner’s for-
mula for the correlation energy, although the approxi-
mation of Noziéres and Pines is better for small r4 (in
the region ry < 1, where the deviations between these
approximations for the correlation energy become es-
sential, we can completely neglect correlations in com-
parison to the kinetic and exchange terms). Because

RPA KT F
II 0) =
e (0) 4me?’

2) As shown by [52], for hydrogen at rs < 1.6 (to which we ap-
ply the EEIP method) the contribution of nonzero wavenumbers
is comparatively small. For rs > 1.65, however, the situation
starts to change drastically.

7*
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it is clear that Eq. (15) implies a renormalization
MMRPA 5 11, due to the electron—electron interaction,
and therefore, a renormalization of the momentum
KTF — KTF,

I (0) = TFP4(0) y(rs),

Rrr = ke (rs),

_(9m 23 6 5 0%€, €, -1 (16)
0= (%) m e

Because the effective proton—proton potential is de-
scribed by the screened potential of the Thomas—Fermi
type in the considered approximation, see Eqs. (12)-

(16),
(7).

we conclude that a renormalization of the screening ra-
dius due to electronic correlations occurs,

62

r
D, (1) = " exp

- (17)

rrTr

1

RETF

FTF . (18)
)

We now rewrite Eg. (10) for the considered approx-
imation as

Y(rs

€= € + €, (19)

3 1
€; = 5]{2T+ W Z(I)pp(Ri — R]) —

iZj
(G2)

where k = dipp. After averaging over the proton po-
sitions with the Gibbs distribution (denoted by (...)),
Eq. (19) can be represented as the sum of two terms:
the energy €, of a degenerate electron liquid in the pos-
itive homogeneous charge background and the energy
of screened classical charged protons interacting via
screened potential (18) and renormalized by the con-
stant terms obtained above,

62

d

3

2K2

K

2

€ = <U + g) kT, (21)
with
_ d Kk 3
w=T9 5y <;‘I’pp(32 Rj)>—§—ﬁ (22)

Here, u is the ionic interaction energy in kT units.
With the accuracy (kT/Er)?, energy (21) coincides
with the usual thermodynamic energy determined from
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the free energy of the system because the electrons are
degenerate in the considered parameter range (with
the same accuracy). Expression (21) implies that as
k — 0, the energy of a classical one-component system
of charged particles interacting via a screened (Debye
or Yukawa) potential tends to infinity as 3kgTT /2k>
(i.e., the screening radius diverges). As a function of
the two parameters, [' and the dimensionless screening
length &, the function u /T has been tabulated in [54, 55]
for the calculations of the phase diagram of a purely
classical one-component Debye plasma (OCP), based
on accurate MC calculations for the Debye system. In
what follows, we use these numerical results to calcu-
late the energy of a dense hydrogen plasma in the above
approximations. Within the Wigner approximation for
the electron energy,

2.21  0.916
€e = 5 + €corr RY7
72 Ts (23)
o 0.88
corr — e+ 78’
we obtain from Eq. (16) that
221
Nrs) = 57~
(r2) r3o(rs) (24)
() = 213064 176r, 17673
P = T T T T T 1782 (a4 T.8)8

where y(rs; — 0) — 1. The total internal energy in
Eq. (21) can now be expressed in terms of the tabu-
lated function u/T" as

Numerical results computed from this approximation
are included in Figs. 1-3 below.

Alternatively, we can use additional approxima-
tions for the computation of the internal energy of
the plasma. This can be done by averaging Eq. (10)
over the ion Gibbs distribution with the same effective
Hamiltonian. We then immediately find the average
energy per proton

2

Ts

L3
2T

Uu

221 0.916 u
T

- [, )}Ry. (25)

0 Sy
+3 [ v @ su( - 1] =
=t St 3 [ B o) Su0) - 1) -
L (373%@()‘”5@ (26)
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where we introduced the ion—ion structure factor S;; (k)
defined as

<Qk1 Qk2> = NSii(k1)5k1+k270 + N25k1705k2707

{

Equation (26) can be simplified by replacing, ap-
proximately, the full structure factor by the OCP struc-
ture factor S7¢F computed with the effective ion—ion
interaction. The total energy can then be written as
the sum of three contributions: the first from the elec-
tron subsystem, the second from the classical ion OCP
subsystem (each imbedded into a positive and nega-
tive charge background respectively), and a third term
efOL that describes a perturbation-theory approxima-
tion for the polarization of the electron liquid by the
ions. The resulting formulas coincide with the pertur-
bation approximations derived by Hansen, De Witt,
and others [22, 23],

1, (27)

0,

k=0,

ok = ZGXP(—ik ‘Rj), ko= k0

J

(EA{Ri})

Ah i VA ocP
N, €e + € + de, (28)
Se = ¢ 7dq < L _ 1) SQCP(g) (29)
™) ge(q) " '

As is clear from the above derivations, Eqs. (28)
and (29) are less accurate than the full EITP model
presented above.

4. PADE APPROXIMATIONS AND CHEMICAL
PICTURE: THE PACH METHOD

In this section, we briefly explain the method of
Padé approximations in combination with the chemi-
cal picture, i.e., Saha equations [3, 19, 44, 45] (PACH).
On the basis of the PACH approximation, we calculate
the internal energy for the three isotherms 7' = 10000,

(r3 +50) [am + aw(rs)] + 2V/6dor3 12 + 24dgric?

30000, and 50000 K. This method works with only an-
alytical formulas, which are rather complicated, how-
ever; nevertheless, the calculation of one energy data
point takes no more than a few seconds on a PC.

The Padé approximations were constructed in ear-
lier works from the known analytic results in the limi-
ting cases of low density [3, 43] and high density [3].
The structure of the Padé approximations was devised
such that they are analytically exact up to quadratic
terms in the density (up to the second virial coefficient)
and interpolate between the virial expansions and the
high density asymptotic expressions [19, 44, 45]. The
formation of bound states was taken into account using
the chemical picture.

We here follow these cited works in large part, only
the contribution of the OCP-ion—ion interaction, which
is the largest one in most cases, was substantially im-
proved following [56]. With respect to the chemical
picture, we restricted ourselves to the strong ionization
region, where the number of atoms is still relatively low
and no molecules are present. We here discuss only the
general structure of the Padé formulas. The internal
energy density of the plasma is given by

E = Eiq + Eint, (30)
where Ej;4 is the internal energy of an ideal plasma con-
sisting of Fermi electrons, classical protons, and classi-
cal atoms, and

Eip = Np (fe + € + fa) (31)
is the interaction energy. The splitting of the inter-
action contribution to the internal energy corresponds
largely to the previous section. The individual pieces
are as follows.

1) The electron—electron interaction €,. This term
corresponds to the OCP energy of the electron subsys-
tem. Instead of the simple expressions used in earlier
work [19, 42, 44], we here used a more refined formula
for the energy [57]. This formula is an interpolation be-
tween the Hartree limit with the Gell-Mann—Briieckner
correction (already used in the previous section), the
Wigner limit, and the Debye law including quantum
corrections,

e

(r3 + 50)rs + 2.3r472 4 24/6d, 73572 4 773

(32)
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Here, a Wigner function has been introduced as
aw (z) = 2bpx X

tn (11 7o () + 227] ),

and the constants take the values

b
2bo

2601‘
aw

do =05, di =0.6631, dy=0.125,
ag =0.91633, aw = 0.87553,
by = 0.06218, b, = 0.0933.

We mention that similar formulas are also valid for
other thermodynamic functions with the constants ad-
justed [57]. The formula for the OCP used here con-
tains all the terms taken into account in the previous
section and in addition, also temperature-dependent,
corrections.

2) The ion contribution to the internal energy ;.
This term was calculated in the previous section. We
here use a procedure based on approximation (28),
(29). This enables us to use the results of the MC
calculations of Hansen, De Witt, and others [23, 58].
In accordance with Eqs. (28) and (29), the ion contri-
bution is split into two terms,

ei = OCP 4 (POL,

(34)
where the first is the OCP contribution of the protons
and the second represents the polarization of the pro-
ton OCP by the electron gas. For the region of high
densities, i.e., large I' and small r,, we use the Monte
Carlo data that were parameterized by De Witt as [23]

9P — _0.8946T + 0.8165T%2° — 0.5012, (35)

¢POL —

—74(0.0543T + 0.1853T7%% — 0.0659).  (36)
We note that the polarization term describes the cor-
rection due to screening of the proton—proton inter-
action by the electron fluid. In order to obtain
these expressions, semiclassical Monte Carlo calcula-
tions were performed based on effective ion interac-
tions that model the electrons as a responding back-
ground [22, 23]. We do not need to go into the details
of this method because the procedure corresponds to
Eq. (29) derived in the previous section.

In the low density limit, we used the Debye law with
quantum corrections [3, 45],

9P = _0.866037dI'5[1 — ByT'5],  (37)
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ePOL = _0.7174471°[1 — O, T 2). (38)
Here, the temperature functions B; and C; describe
rather complex quantum corrections, which are, how-
ever, explicitly known and are easily programmed [3].
The Padé approximations that connect the high- and
the low-density limits are constructed by standard
methods [19, 44, 45] and are not given here explicitly.
For the OCP energy of the ions, we use the very accu-
rate formulas proposed by Kahlbaum [56].

3) The atomic contribution €,. In the region of
densities and temperatures studied in this work, this
contribution gives only a small correction (except for
T = 10000 K). We calculate the number of atoms on
the basis of a nonideal Saha equation described below.
The formation of molecules is not taken into account.
We restrict calculations to the region where the number
density of atoms is smaller than that of the electrons.
The contributions to the chemical potential that appear
in the Saha equation are calculated in part from scaling
relations and in part by numerical differentiation of the
free energy given earlier [19, 44]. For the partition func-
tion in the Saha equation, we use the Brillouin—Planck—
Larkin expression [3, 45]. The nonideal Saha equation
that determines the ionization degree (the density of
atoms) is solved by iterations, starting from the ideal
Saha equation. Because of a high degree of ionization,
the atomic interaction contributions can be approxi-
mated in the simplest way by the second virial contri-
bution and by treating the atoms as small hard spheres
and by neglecting the charged particle-neutral interac-
tion.

The results of our Padé calculations for a broad
density interval for three isotherms are included in
Figs. 1-3.

5. SUMMARY OF THE PATH INTEGRAL
MONTE CARLO SIMULATIONS

The analytic approximations discussed in the pre-
vious sections work very well at high densities if bound
states are of minor importance. These conditions are
not fulfilled for densities below the Mott point corre-
sponding to rs > 1. Here, recently developed DPIMC
simulations can be used. Starting from the basic
plasma particles, electrons and ions, they «automati-
cally» account for bound state formation and ioniza-
tion and dissociation. Furthermore, in contrast to the
chemical picture, no restrictions on the type of chem-
ical species are made and the appearance of complex
aggregates such as molecular ions or clusters of several
atoms are fully included. On the other hand, simula-
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tions are expected to become increasingly difficult at
high densities where the electron degeneracy is large
due to the fermion sign problem. It is therefore very
interesting to compare results of the DPIMC approach
with alternative theories that are expected to comple-
ment each other. This is done in the next section.

But first, we briefly outline the idea of our DPIMC
scheme. All thermodynamic properties of a two-
component plasma are defined by the partition function
Z; for N, electrons and N, protons, it is given by

Q(Ne, Np, B)
NN,

QNN 5) = Y [ dadrpla.r.o:).

Z(NmNpaVaﬂ) =

(39)

where 3 = 1/kgT. For a quantum system, the ex-
act density matrix is not known in general, but can
be constructed using a path-integral representation
[21,59-61],

[ arO S re
v a

= / AR
\4

X >N (#1)5F S(a, Pa') Ppt" T (40)
o P
where
o) = (Ru 1>,R<i>,A5) =
= (R" V] exp(—ABH)|RY)
with
2rh?A
Ap = p , A/\zzM a=np,e.
n+1 Mg

Here, H = K + U, is the Hamilton operator containing
the kinetic and potential energy contributions, K and
U,, respectively, with

U.=0r+0Us+ 0P

being the sum of the Coulomb potentials between pro-
tons (p), electrons (e), and electrons and protons (ep).
Further, o comprises all particle spins and the particle
coordinates are denoted by

RO = (¢ r@0)y = (RO, RY), i=1,..n+1,
RO = (q,r) = (R, R{"), R"V =R,
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where ¢ and r denote the electron and proton coordi-
nates respectively and

= 0.

The particles are then represented by fermionic loops
with the coordinates (beads)

[R] = [R©; RM);. ;R R(+1)],

The spin gives rise to the spin part of the density ma-
trix S, and the exchange effects are taken into account
by the permutation operator P that acts on the elec-
tron coordinates and spin projections and by the sum
over permutations with the parity kp. In the fermionic
case (minus sign), the sum contains N.!/2 positive and
negative terms, which leads to the notorious sign prob-
lem. Because of the large mass difference of electrons
and ions, the exchange of the latter is not included.

Thermodynamic functions are given by derivatives
of the logarithm of the partition function with respect
to thermodynamic variables. In particular, the internal
energy F follows from @ by

dlnQ
E = — 41
58 = 5751, (41)
which gives (cf. [42] for details)
3 1 1
E=2(N,4+N)+ = ——
B 2( + 17) + Q )\f,NPA)\ENe x
Ne.
x Z/dqdrdﬁps(q, 7], B) x
A P e
(S [S A s S
pet vt p<t p=1 t=1 (42)
< OABDeP
+Z Z ‘2+ ZDét a\xl ‘ ]
=1 p<t Tpt p=1t=1
3 1 0 det|[p0'| s
det|[v0; |5 ap ’
Olt — <T;lnt|y;£)t> lt _ <xfnt|y;£)>
b 2‘7‘pt‘ b 2|x§at|
where
¢ OB @ (|xhyl, )]
\I,l:D = Aﬂ 86,1775
B'=ApB

contains the electron—proton Kelbg potential &P (cf.
Eq. (45) below), (...|...) denotes the scalar product,
and qpt, 7pe, and xzp; are differences of the two coordi-
nate vectors,

ot =Gqp —qt, Tpt =Tp =Tty
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Tpt = Tp — Gt rﬁ;t =Tp + yéta
T =T Yy Yt = Up — Ut
with
n
yr=AN D €W,
k=1

We introduced dimensionless distances between neigh-
boring vertices on the loop, £, ... & and thus, ex-
plicitly, [r] = [r;yél);yéz); ...]- The density matrix p
in Eq. (42) is given by

ps(¢,[r], B) = C};, exp(=pU (g, [r], 8)) x

n N
X H H ¢l det |yl

I=1p=1

(43)

|sa

where

{Ue([r], AB) + UP(q, [r]. AB)}
n+1 '

Ulg, [r], ) = UZ(q) +

by = exp[=m|&) ).

Density matrix (43) does not involve an explicit sum
over the permutations, and hence, does not involve the
sum of terms with alternating signs. Instead, the en-
tire exchange problem is contained in a single exchange

matrix given by

1
Yo

= llexp { = 555 1 =) 402 f e (4)
As a result of the spin summation, the matrix carries
a subscript s indicating the number of electrons having
the same spin projection.

The potential ®?° in Eq. (42) is an effective quan-
tum pair interaction between two charged particles im-
mersed into a weakly degenerate plasma. It has been
derived by Kelbg et al. [62, 63], who showed that it con-
tains quantum effects exactly in the first order in the
coupling parameter T,

€q€
B (|rg|, AB) = —2

AabTab

x {1 —exp(—22,) + VT xap [1 — erf(zqp)]} . (45)

where 2., = |rap|/Nap; we emphazise that the Kelbg
potential is finite at zero distance.

The structure of Eq. (42) is obvious: we have sepa-
rated the classical ideal gas part (the first term). The
ideal quantum part in excess of the classical one and
the correlation contributions are contained in the inte-
gral term, where the second line results from the ionic
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correlations (the first term) and the ee and ei interac-
tions at the first vertex (the second and the third term
respectively). Equation (42) therefore contains an im-
portant limit of the ideal quantum plasma in a natural
way. The third and fourth lines are due to further elec-
tronic vertices and the explicit temperature dependence
(Eq. (42)) and volume dependence (the corresponding
equation of state) of the exchange matrix, respectively.
The main advantage of Eq. (42) is that the explicit sum
over permutations has been converted into the spin de-
terminant that can be very efficiently computed using
standard linear algebra methods. Furthermore, each of
the sums in curly brackets in Eq. (42) is bounded as the
number of vertices increases, n — co. The error of the
total expression is of the order 1/n. Expression (42)
and the analogous result for the equation of state are
therefore well suited for numerical evaluation using the
standard Monte Carlo techniques, see, e.g., [21, 29].

In our Monte Carlo scheme, we used three types of
steps, where either electron or proton coordinates, r; or
i, or inidividual electronic beads fgk) were moved until
convergence of the calculated values was reached. Our
procedure has been extensively tested. In particular,
we found from comparison with the known analytic ex-
pressions for the pressure and energy of the ideal Fermi
gas that the Fermi statistics is very well reproduced
with a limited number of particles (N < 100) and beads
for degeneracy up to nA* < 10 [40]. We also performed
extensive tests for few-electron systems in a harmonic
trap, where the analytically known limiting behavior
(e.g., energies) is again well reproduced [64,65]. For
the present simulations of dense hydrogen, we varied
both the particle number and the number of time slices
(beads). As a result of these tests, we found that to
obtain convergent results for the thermodynamic prop-
erties of hydrogen in the density—temperature region
of interest here, particle numbers N, = N, = 50 and
beads numbers in the range n = 6...20 are an accept-
able compromise between accuracy and computational
effort [39-41].

6. NUMERICAL RESULTS. COMPARISON OF
THE ANALYTIC AND SIMULATION DATA

We now discuss the numerical results. We have
computed the internal energy of dense hydrogen using
two analytic (EITP and PACH) approaches and DPIMC
simulations. The data are shown in Figs. 1-3 for three
temperatures, 10000, 30000, and 50000 K, respectively.

We first consider the general behavior that is most
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clearly seen for the highest temperature, cf. Fig. 3a.
The overall trend is an increase of the energy with den-
sity, which is particularly rapid at high densities be-
cause of electron degeneracy effects; this is clearly seen
from the ideal plasma curve (dashed and dotted lines in
the lower parts of Figs. 1-3). The nonideal plasma re-
sults show a prominent deviation from this trend, which
is in full agreement with the discussion in Sec. 2, the
formation of an energy minimum (where the energy can
become negative) at intermediate densities. Our calcu-
lations for a nonideal hydrogen plasma asymptotically
approach the ideal curve both at low density (the ideal
classical plasma) and at high density (the ideal mix-
ture of classical protons and quantum electrons). For
intermediate densities, between 10%' and 10%° cm™3,
the nonideal plasma energy is significantly lower than
the ideal energy because of strong correlations and for-
mation of bound states. As the temperature decreases,
this region broadens. In particular, we clearly see that
the total energy indeed reaches negative values for the
temperatures considered.

We now compare the results of the different meth-
ods. We consider three density regions separately,
A) the high density limit, B) the region around the
minimum, and C) the region below the minimum.

A) The first observation from Figs. 1-3 is that for
all temperatures (including temperatures above those
shown), the PACH and EIIP approaches practically co-
incide in the limit of high densities. It is also inter-
esting to compare these approaches with another the-
oretic approach based on the density functional the-
ory (DFT). Recently, Xu and Hansen [46] published
data for T = 10000 K and rs < 1.5, which are also
included in Fig. 1. Evidently, in the high density limit,
PACH and EIIP coincide with these DFT data, cf.
Fig. 1. This good agreement of the three completely
independent approaches — EITIP, PACH and DFT —
is a strong indication that they can yield reliable re-
sults for a fully ionized macroscopic hydrogen plasma
at high densities. This asymptotic agreement is not
surprising, because the ideal Fermi gas limit is «built
into» each of these three approaches. But this gives no
information about the lowest densities for which these
results remain quantitatively correct. The presented
comparison is therefore greatly important as giving a
hint (although not a proof) that the value of that min-
imum density is above n ~ 3-10%4 cm 3, cf. Figs. 1-3.

We next observe that at higher densities, the
DPIMC simulations yield lower energies and a shift
of the energy increase to higher density values com-
pared with the analytic models. This tendency be-
comes stronger with increasing the temperature, as can
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Fig. 1. Internal energy of hydrogen for T = 10000 K:
a — normalized to the energy of a noninteracting
electron—proton system; b — in the units of 2N Ry.
The curves show the following results: ideal plasma
(1), the PACH calculations (2), the EIIP model (O),
our Monte Carlo simulations, DPIMC (e), density
functional theory [46] (*), and restricted PIMC data,
RPIMC of Militzer et al. [34] (2)

be seen in Figs. 1-3. In view of the asymptotic accuracy
of the analytic results (see above), the total energy of
macroscopic high density hydrogen is certainly above
the DPIMC results for densities exceeding 102> ecm™3.
There are two main factors tending to reduce our
DPIMC results for the energies at high densities. The
first factor is given by degeneracy effects. Practical
limitations that must be imposed on the number of
beads and particles (see Sec. 5) necessarily make our
results less reliable for densities exceeding 10%° cm™3.
The second factor is given by finite-size effects related
to proton ordering. To understand the high density
results better, we analyze the electron—electron (ee),
proton—proton (pp) and electron—proton (ep) pair dis-
tribution functions in Fig. 4. These functions exhibit
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Fig.2. Internal energy of hydrogen for T = 30000 K.
The notation is the same as in Fig. 1

features typical for strongly correlated systems. The
most prominent effect is seen in the pp function that
exhibits a periodic structure at 7' = 50000 K, which is
even more pronounced at 7' = 10000 K. This proton or-
dering is typical of a strongly correlated ion fluid near
the crystallization temperature®). Our simulations for
even higher densities reveal the formation of an ionic
lattice immersed into a delocalized sea of electrons, i.e.,
an ionic Wigner crystal [40], known to exist in high
density objects such as white or brown dwarf stars.
Thus, qualitatively, the simulations show the correct
behavior at high densities. But because of the small
size of the simulations (only 50 electrons and protons
are presently feasible), the results are much closer to
those for small strongly correlated ionic clusters that
are known to exhibit quite peculiar behavior, including
a strong size dependence of the energy, negative spe-
cific heat, etc. In order to obtain more accurate data

3) In fact, the first minimum of the proton—proton function
(around r = 0.45ap) for T = 10000 K is far lower than the
standard value of 0.35 typical for a liquid.

Normalized energy

Energy, 2N - Ry

N T T T

Density, cm ™2

Fig.3. [Internal energy of hydrogen for T = 50000 K.

The notation is the same as in Fig. 1

for the internal energy of a macroscopic two-component
plasma at ultrahigh compression, a significant increase
of the simulation size is therefore desirable (it should
become feasible in the near future).

B) The energy minimum at intermediate densities is
reproduced by all methods, but there are quantitative
differences regarding its depth and width. The general
observation made for all temperatures, cf. Figs. 1-3, is
that the simulations yield a deeper minimum and shift
of the energy increase towards higher densities. We
also observe that the EIIP method yields lower ener-
gies than the PACH and is closer to the DPIMC results.
Further, the PACH results practically coincide with the
DFT data [46] where they are available (" = 10000 K
and n > 5-10%% cm—?). But atom and molecule forma-
tion is becoming important at these densities, and the
EITP and DFT methods (in their present form) are be-
coming increasingly unreliable. The presented PACH
results include bound states approximately, whereas
the DPIMC calculations have no restrictions with re-
spect to atom and molecule formation.
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Fig.4. Electron—electron (1), proton—proton (2) and

electron—proton (3) pair distribution functions of hy-

drogen from the DPIMC simulations at n = 10%¢ cm™*

for the temperatures 10000 K (a) and 50000 K (b).
Note the different vertical scales

We now analyze the DPIMC simulations around the
energy minimum. Our data for 77 = 10000 K are also
significantly lower than RPIMC results of Militzer et
al. [34], cf. Fig. 1b, but we found excellent quantita-
tive agreement between the two independent quantum
Monte Carlo methods above T' = 50000 K, see the point
for T = 62500 K in Fig. 3a (a more extensive compar-
ison is also given in Ref. [42]). A detailed analysis of
the DPIMC simulation results at T = 10000 K and
10 em ™3 < n < 10%* cm~3 revealed that the homoge-
neous plasma state is unstable there: the plasma gains
energy by forming higher-density clusters or droplets
that are embedded into a lower-density plasma. The
droplets are clearly visible in the electron—proton con-
figurations in the simulation box [68] and are inter-
preted as a direct indication for a first-order phase tran-
sition, as discussed in the Introduction [13-20]. These
effects emerge in the weakly ionized plasma (low den-
sity) and vanish above the Mott point, rs ~ 1. We men-

tion that the same effects are observed in our DPIMC
simulations of electron—hole plasmas under similar con-
ditions [69], for which droplet formation is well estab-
lished and was observed experimentally three decades
ago [70]. Our conclusion is also indirectly supported
by analytic methods. In the present variants of the
PACH and EIIP methods, homogeneous density dis-
tributions are assumed?®), but it is interesting that at
T = 10000 K and 10?* em~— < n < 10%* em ™2, both
methods yield unstable results for the thermodynamic
functions, which is a clear indication of the existence
of a first-order phase transition. Xu and Hansen [46]
also observed strong fluctuations in their density func-
tional calculations below rg = 1.5, which they found to
strongly resemble precursors of a phase transition.

Even if we accept the existence of a phase transition,
the energy obtained in the DPIMC simulations appears
to be unexpectedly low. In this region, we observe large
fluctuations of pressure and energy related to the for-
mation and decay of droplets. Furthermore, there are
significant surface energy effects. Our simulations yield
only a very small number of droplets (typically one to
three), each containing 15 to 50 electron—proton pairs.
Of these, almost all are on the surface®. We cannot
therefore be certain that our simulations adequately
represent the macroscopic system in the two-phase re-
gion and its energy per particle in particular. Finally,
in such small systems, there exist additional specific
factors that tend to lower the energy [12] and can there-
fore be responsible for our result. This can also be the
reason for the low-energy minimum observed at higher
temperatures, Figs. 2 and 3, where our analytic models
do not show unstable behavior. Clarifying this interest-
ing issue in more detail requires performing extensive
simulations with substantially larger particle numbers;
such calculations are presently under way.

C) In the region to the left of the energy minimum,
n < 10?2 em 3, simulations are of special importance.
In this region, the plasma is strongly correlated and
largely dominated by bound states. Analytic meth-
ods based on perturbation expansions in the coupling
strength (T or r5) do not work in this parameter range.
While there exist many chemical models of various de-

4) Using a modified PACH approach, Beule et al. [20] predicted
a first-order phase transition in hydrogen for 7" = 10000 K with
the pressure and density p ~ 110GPa and p ~ 0.8 g-cm™ . Sim-
ilar results were obtained by Schlanges et al. [16], where other
references are also given.

5) Imagine 27 (64) particles arranged, for simplicity, in a small
cube. Evidently, 26 (56) of them are situated at the surface of
the «droplet», which is in a striking contrast to the situation of
a macroscopic system, where droplets are expected to contain
many orders of magnitude more particles.
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grees of sophistication, rigorous theoretic results are
very rare. In particular, as mentioned above, the EITP
model breaks down here (we recall that its present ver-
sion is limited to ry < 1.5, cf. Sec. 3). Also, the present
version of the PACH approach uses a chemical picture
with a nonideal Saha equation, but treats bound states
in a very simple approximation (see above) and there-
fore yields only approximate results in situations with a
low ionization degree. In contrast, the DPIMC results
have no such limitations and provide reliable results in
this region in principle. On the other hand, there ex-
ist specific technical difficulties at low densities, where
the extension of bound electron wave functions is many
orders of magnitude smaller than the interparticle dis-
tance, which leads to very slow convergence of DPIMC
simulations (and other quantum Monte Carlo meth-
ods as well). This explains the different energies of
the DPIMC and Padé results at the lowest densities at
T = 10000 K, where the plasma consists of atoms, see,
e.g., [16, 20], while good agreement is found at higher
temperatures.

7. DISCUSSION

This work is devoted to the investigation of the to-
tal energy of warm dense plasmas in the temperature
range between 100000 and 50000 K. We presented a
new theoretic approach to high density plasmas based
on the theory of an effective ion—ion potential. This
method was shown to be quite efficient for fully ionized
strongly correlated plasmas above the Mott density.
Furthermore, a detailed comparison of several theoretic
approaches and simulations was performed over a wide
density range. The first included the EEIP and PACH
analytic models on the one hand and recent DFT data
of Xu and Hansen [46] on the other hand. The sec-
ond group of data consisted of several new data points
based on DPIMC simulations of a correlated proton—
electron system with degenerate electrons. From these
comparisons, we conclude that the three theoretic ap-
proaches — PACH, EEIP, and DFT — are in a very
good agreement with each other for a fully ionized hy-
drogen plasma in the high density region where ry; < 1.
We therefore expect these results to be reliable for
densities above 3 - 10** em~®. This agreement of the
three independent analytic methods is highly interest-
ing because the physical approximations involved are
very different. On the other hand, our DPIMC simu-
lations agree with the available RPIMC data for tem-
peratures above 50000 K, cf. Figs. 1-3 and Ref. [42].
This agreement over a broad range of parameters is cer-
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tainly remarkable because the plasma is far outside the
perturbative regime: it is strongly correlated and the
electrons are degenerate, and the two simulations are
essentially independent.

The comparison of our DPIMC simulation results
with the analytic data reveals an overall good agree-
ment. In addition, existing deviations are a useful
guide for future improvement and extension of the var-
ious approaches. Most importantly, the good quality of
the quantum Monte Carlo data in the region of strong
changes of the ionization degree fills a gap in the present
variants of analytic methods. These data can be used to
improve the treatment of a dense plasma via analytic
methods in the theoretically very complicated region
of strong correlations and strongly varying ionization
and dissociation degrees. Moreover, the high density
asymptotic results of the analytic methods may be use-
ful for further improvement of the simulations.

Further, our DPIMC simulations revealed an insta-
bility of the homogeneous plasma state around the min-
imum of the energy isotherm 7" = 10000 K for densities
between 10%* and 10** cm 3. We have given arguments
that this is related to the droplet formation, which is
a strong indication of a first-order phase transition [68]
that has previously been predicted by many authors
on the basis of simple chemical models. The existence
of a plasma phase transition would have drastic con-
sequences for transport properties of many astrophys-
ical objects, such as giant planets, and its verification
therefore remains an important theoretical issue. It
would therefore be very interesting if independent first-
principle simulations, in particular RPIMC, could re-
produce this result. This, however, may require a par-
ticular choice of nodes of the density matrix that allow
an inhomogeneous equilibrium plasma state. Finally,
at very high densities, our DPIMC simulations revealed
ordering of protons into a strongly correlated fluid and
the onset of the formation of a proton Wigner crystal.
These interesting physical effects in high-pressure hy-
drogen are of relevance for many astrophysical systems
and many laboratory experiments, including ultracold
degenerate trapped ions and laser plasmas.

In conclusion, we may state that the analytic
methods and the DPIMC approach are already in a
reasonable overall agreement. Both methods should be
developed to further explore the equilibrium properties
of dense hydrogen.
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