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The Weibel instability increment is analytically derived for plasma produced at the barrier-suppression ionization
of atoms and atomic ions by a super-intense femtosecond laser pulse. The cases of linear and circular polariza-
tion are considered. Relativistic effects are discussed. It is found that the instability increment is larger for the
circular polarization than for the linear polarization. This increment can attain the plasma frequency. Barrier-
suppression ionization diminishes the increment compared with the case of tunneling ionization. Relativistic
effects also decrease the value of the increment. Estimates of the produced maximum quasistatic magnetic field

are given.
PACS: 36.40.Gk, 36.40.Vz

1. INTRODUCTION

Erich Weibel [1] (see also textbook [2]) was first to
predict spontaneously growing transverse electromag-
netic waves in plasma due to an anisotropic velocity
distribution of electrons. The maximum increment of
this instability for the wave frequency w is (in the non-
relativistic approximation)

u
Imw = —w,,
c

where w,, is the plasma frequency and u is the average
velocity of electrons in the (longitudinal or transverse)
direction along which this velocity has a maximum.
This solution is valid under the condition of a strong
anisotropy of the velocity distribution in longitudinal
and transverse directions.

This approach has been applied in Ref. [3] to elec-
trons produced in the tunneling ionization of atoms
by a strong low-frequency linearly polarized laser field.
The corresponding average velocities of electrons along
the field strength polarization « and in the transverse
plane u, strongly differ from each other. Their ratio is
found in Ref. [4],
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where

wWovV QEZ'
’y = F

is the Keldysh parameter (the atomic system of units
with e = m = h = 1 is used in this paper). Here,
F is the field strength amplitude and wg is the laser
frequency. The quantity E; > wq is the ionization
potential of the atom (or atomic ion). In the case of
tunneling ionization, we have v < 1. It was found in
Ref. [3] that the maximum instability increment is

_u
Imw = —w,p,
c

where, according to Ref. [4],

V3F?)2

u = —~———.
Il o (2Ei)3/4

In this paper, we consider the barrier-suppression
ionization that occurs at irradiation of atoms and
atomic ions by the field of a super-intense laser pulse
with the peak intensity larger than 10 W/cm?. The
corresponding anisotropic distribution of ejected elec-
trons was obtained in Ref. [5]. We can neglect the col-
lisions of strongly heated ejected electrons with analo-
gous electrons and atomic ions (having in mind, e.g.,
the cluster plasma [6]) because the Weibel instability
is developed during a very short time of the order of
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w> . This process occurs at the peak of the super-

inptense femtosecond laser pulse. We solve the prob-
lem in the linear regime only, when the perturbation
of the velocity distribution function is smaller than the
unperturbed distribution function. We find that the
real part of the frequency of the Weibel electromag-
netic field is much smaller than the laser frequency.
We can therefore consider the Vlasov—Maxwell equa-
tions for the Weibel field independent of the Maxwell

equation for the external laser field.

2. LINEARLY POLARIZED FIELD

We first assume that the external laser radiation
pulse is linearly polarized. With only linear terms of
perturbation retained, the Boltzmann transport equa-
tion for the Weibel electromagnetic field is of the stan-
dard form

g+va—f——<E+%va>%

3

ot or v

where fo(v) is a nonisotropic stationary distribution of
electrons, f is a perturbation of the distribution func-
tion, and E and B represent a perturbation of the elec-
tromagnetic field (i.e., Weibel field).

Assuming that the first-order quantities f(v,r,t),
E(r,t), and B(r,t) depend on r and ¢ only through the
factor exp(iwt + ik - r), we obtain for the Weibel field
with the frequency w and the wave vector k that

dfo 1 dfo
k- =-E—/— 4+~ — B 1
iw+kev) f =B 4 2y x & 1)
The Maxwell equation
1 0B
tE=—-—
ro c Ot

implies the relation between the electric and magnetic
fields,

B=-‘kxE.
w

Substituting this equation in Eq. (1), we find the equa-
tion containing only the electric field,
. dfo 1 dfo
k- =-E——— — | -k xE]. (2
i(w+k-v)f v w[vxﬁv k x E]. (2)
We now assume that the wave vector k is directed
along the 2 axis and the electric field strength E is di-
rected along the z axis. We then find the function f
from Eq. (2) as

f:ﬂ{afo—ﬁ@ Oh _, afo)}. (3)

Wt kv, |00, w\ “Ov, "Ov,

The second Maxwell equation is given by

4r 1 0E
tB=—j+ - — 4
o PR TR )

where the electric current density is determined by the
distribution function,

j(rt) = /Vf (v,r,t)d*v.

Substituting this expression and Eq. (3) in Eq. (4), we
obtain the Vlasov equation in the form

ick? 47 )

kkxB=—E=— | v—— X
w c w + kvy

x{afo _E<u 0fo —v 8f0>}dv+%wE. (5)

4 x
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Projection of this equation to the z axis gives a dis-
persion relation between the frequency w and the wave
number k,

k2 —w? =4drn / v dvgdvydv, x
— 00

x{afo_ﬂaf‘]}. (6)

v,  w+ kv, Ov,

We simplify the first term in the right side of this
equation by taking the normalization condition for the
unperturbed distribution function into account,

/ﬁw=m

where n is the number density of free electrons; the
above equation then becomes

E2c?—w?+w? = —4rk / dv,dv,dv., v: Ol (7)
P R S
—00

where we define the plasma frequency
wp = V4mn.

The inequality w > kv, is valid in the tunneling
and barrier-suppression ionization regimes. It corre-
sponds to the condition that the longitudinal electron
velocity v, is much larger than the transverse electron
velocity v,. We can then expand the denominator in
Eq. (7) as

1 1 kv,
T2
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Substituting this expansion in Eq. (7), we integrate by

parts as
4 k oo o0
k*c? — w? +w12, = LQ / dvy / v2dv, x
—00 —00
w
x/vxa—devxz—F/dvy/vgdvz/fgdvx,
and finally obtain
2 2 2 2 2k
kic® —w —|—wp=—wp—2<vz>, (])

where <v§> is the average square of the longitudinal

electron velocity.

Because the most interesting case in dispersion re-
lation (8) is w < ke (see below), we can neglect the
term —w? in the left-hand side of (8). It then follows
from Eq. (8) that

k? <U§> 2

2
=—— 2
w2 + k2c? P’

w (9)
and therefore, the frequency is a purely imaginary
quantity that produces the Weibel plasma instability.
The maximum value of this instability increment is
achieved at kc > w, (the short wavelength limit),

2

(10)

In the case of tunneling ionization, the distribu-
tion function fy is of a Gaussian form [4, 7]. Hence,
(v2) = uff, where

30.)0
23

2 _

U=

(see the Introduction). Here, wy is the laser frequency

and v is the Keldysh parameter. It therefore follows

from Eq. (10) that [3]
2

u
Y
02 p

w? _ S w2 = —Loﬂ.
2932 7P 2w2(2E;)3/2¢> P

We now consider the case of barrier-suppression ion-
ization. According to Ref. [5], the anisotropic distribu-

tion is given by
by

where Ai(z) is the Airy function. This distribution re-
duces to the tunneling limit [4] under the condition of
a weak field (compared with the atomic field),

2E; +v2y? /3 + 0%
(2F)2/3

fo(v.,v1) ~ nAi? {

F < (2E;)%2.
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Therefore, the deviation for the square of the insta-
bility increment from the tunneling limit, Eq. (10), is
determined by the ratio

2
v2
<u;|> =G(s)
and hence
3F3
2 _ L
w = G(s)ng(QEi)W?c?wp" (12)
where
_ 2E
5= QR
The universal function G(s) is given by
o0 o0
/dt / 22dz Ai? (s+t+ 22)
G(s) = 4/s 22 (13)

/dt/d;:Ai2 (5+t+22)
0 0

We have G(s) — 1 at s > 1 (the tunneling limit). This
function is shown in the Figure.

It can be seen that in the case of barrier-suppression
ionization, the increment increases more slowly with
the increase of the laser field F' than in the case of
the tunneling ionization. We can therefore conclude
that the electromagnetic field is generated in plasma
with the same linear polarization as the initial laser
radiation that produced these anisotropic plasma elec-
trons. The frequency of this field (see Eq. (10)) does
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not contain the real component, and this field is there-
fore quasistationary, but with an exponentially growing
amplitude of the electric and magnetic strengths.

We now briefly discuss the relativistic generaliza-
tion of the tunneling results. According to Ref. [8], the
energy distribution of ejected electrons along the field

polarization is given by
(1 ¥ )) |

The second term in the exponent is responsible for the
relativistic effect. It diminishes the average longitudi-
nal velocity,

2
vz

4’}/262

2.3
v

fo oxexp <—

30.)0

4

2
)= ——F—7—,
uj(ret) 1+ 3uﬁ (2y¢)?’

i = 3wo/27* (see the Introduction). This de-

crease of the instability increment is in agreement with
the relativistic results in Ref. [9],

where u

3. CIRCULARLY POLARIZED FIELD

In this section, we consider the Weibel instability
produced in plasma during the tunneling and barrier-
suppression ionization of atoms (or atomic ions) by a
circularly polarized laser femtosecond pulse. We again
direct the wave vector k of the laser field and of the
produced electromagnetic perturbation field along the
x axis. The perturbation electric field strength E is
also circularly polarized and rotates in the yz plane.
Hence,

E = E (i, + ii,) exp (iwt + ik - 1),

where i, and i, are unit basis vectors. Equation (2)
then becomes

. - 0f,
i(w+kv,) f= o (vs + tvy) 30,
kE . v, Ofo  9fo
" (Uz + Zvy) <1)| a’l}” a’l)x> 5

where v is the velocity in the polarization plane. We
thus obtain the perturbation distribution function

) i

f=iE (v, +ivy) (w+ kv,) ! x

x{l <1+kvm

dfo  k Ofo

du|  w Ov,

’U” w
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Instead of Eq. (6), we find the dispersion relation
in the form

(K*c?—w?) (i,+ii,) = 47 | vdvydvydv, (vs+ivy) X

b

é\g

or

w + kv, Ovu,

} . (14)

The unperturbed electron energy distribution func-
tion for tunneling ionization is given by (see, e.g., [10])
24 (’UH — ’UO)2

f L exp {2
Y i —
07 422, P 2u? ’

where vy = F'/wq is the ponderomotive electron veloc-
ity and

(15)

F
- 22E;

(F is again the laser field strength amplitude and Ej; is
the ionization potential of an atom or an atomic ion).
Unlike for the linear polarization, dispersions of the
average longitudinal and transverse velocities are now
equal to each other.

We note that u < vy, i.e., the width of the distri-
bution is small compared with its shift in the longitu-
dinal direction. The first term in the right-hand side
of Eq. (14) vanishes because the integrand is an odd
function of the argument (v —vg). Dispersion relation

(14) then becomes
d'UH / dvx

We again assume that w > kv,, i.e., w > ku, and
expand the denominator in a Taylor series,

U2

k_9fo

w+ kv, Ov,

3
I

(K*c? — w?) = —4r? /v
0

1 I
wtkvy, wo ow?
Integrating by parts, we simplify the dispersion relation
as
4m?k? T T
(kQCQ _ w2) S o /Uﬁdvu / fodv,. (16)
0 —oc
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Substituting Eq. (15) in Eq. (16), we obtain

(wpkv0)2
2

w4—

(kew)® — = 0.

The solution of this equation is

{ 142 )2—1}<0.

The frequency w is therefore a purely imaginary
quantity that produces a circularly polarized exponen-
tially increasing electromagnetic wave. Its real part is
zero, and the wave is therefore quasistationary. In the
short wave limit

(ke)®

WpUo

2
w- =
kc?

L > wWpUo

(17)

2’

we simplify this solution by taking into account that

Vo = F/UJO,
2
< ) W2

The condition w > ku bounds the wave number £ from
above,

1

2

F

woC

(18)

Fu2\/2E,

2.2
wge

k< (19)
Inequalities (17) and (18) do not contradict each other
under the condition

F <« 32\/2E;

which is satisfied up to very high values of the laser
field intensities (¢ = 137 a.u.).

In the case of barrier-suppression ionization by a
circularly polarized field, the unperturbed distribution

} |

Substituting this expression in Eq. (16), we obtain the
same dispersion relation as in the case of tunneling
ionization. Therefore, the maximum increment of the
Weibel instability is again determined by Eq. (18) also
for barrier-suppression ionization.

In the nonrelativistic limit, we have

function is given by [5]

2E; + (v — v0)2 + 02
(2F)2/3

fo(va,v)) ~ nAi {

F
v = — <K cC
Wo
Hence, the Weibel increment is small compared with
the plasma frequency. The anisotropic relativistic dis-
tribution of ejected electrons was obtained in Ref. [10].
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Most, electrons are ejected not in the polarization plane
of circularly polarized laser radiation, but at the angle
# with respect to this polarization plane determined
from the relation [11]

tgfh = .
& 2wpc

The normalized unperturbed relativistic distribution

function is given by [10]
X exp {— } , (20)

where p, and p| are the respective momentum compo-
nents of the ejected electron along the wave vector and
in the polarization plane. The relativistic width wu, of
the distribution is given by [10]

n
fo(pz,p)) = m X
(pr — votgh)” + (p) — vo)?

2
2u?

o _ (Lt (Flwoe) )"
" 14 (F/uwpc)? ’

where (see above)

_F
- 22E;
is the nonrelativistic width.
Substituting Eq. (20) in Eq. (16), we find instead of
Eq. (18) that
2
()

W
2 p’

u2

2

where <vﬁ> is the average relativistic velocity in the

polarization plane, to be compared with Eq. (10) for the
linearly polarized field. This quantity can be expressed
through the corresponding relativistic momentum

P =vo = F/wo

and the relativistic energy

Ere = ¢4 /pﬁ +p2 + 2

due to narrow peaks in unperturbed distribution (20)

3

pic _
Erel

Vo
v2/2c+c

c
Thus, we finally obtain
i Vo

Y= \/Evg/Qc-l-cwp.

(21)
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It follows that relativistic effects diminish the
Weibel increment for a circularly polarized field sim-
ilarly to the case of linear polarization (see above).
The maximum value of the increment is achieved at

vo = Flwg = V2,

4. CONCLUSIONS

We have found that the plasma instability produces
a quasistatic magnetic field B (the frequency does not
contain the real part). The corresponding quasistatic
electric field E is much smaller in the short-wave limit
ke > w,

w

FE =
ke

B < B.

We estimate the maximum value of this field for the
circularly polarized field. Our derivation is valid in
the linear approximation where f < fo. In accordance
with the results in the previous Section, we rewrite this
inequality for a circularly polarized field as

3 kZUO < 1,

or

]{JB’UO

1.
w?e <

Substituting w ~ w,(ve/c), we find the maximum mag-
netic field

Braz ~ wpe.
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It follows that the magnetic field is determined only
by the number density of plasma electrons and can be
very large.
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