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WEIBEL INSTABILITY IN PLASMA PRODUCEDBY A SUPER-INTENSE FEMTOSECOND LASER PULSEV. P. Krainov *Mosow Institute of Physis and Tehnology141700, Dolgoprudny, Mosow Region, RussiaSubmitted 24 Otober 2002The Weibel instability inrement is analytially derived for plasma produed at the barrier-suppression ionizationof atoms and atomi ions by a super-intense femtoseond laser pulse. The ases of linear and irular polariza-tion are onsidered. Relativisti e�ets are disussed. It is found that the instability inrement is larger for theirular polarization than for the linear polarization. This inrement an attain the plasma frequeny. Barrier-suppression ionization diminishes the inrement ompared with the ase of tunneling ionization. Relativistie�ets also derease the value of the inrement. Estimates of the produed maximum quasistati magneti �eldare given.PACS: 36.40.Gk, 36.40.Vz1. INTRODUCTIONErih Weibel [1℄ (see also textbook [2℄) was �rst topredit spontaneously growing transverse eletromag-neti waves in plasma due to an anisotropi veloitydistribution of eletrons. The maximum inrement ofthis instability for the wave frequeny ! is (in the non-relativisti approximation)Im! = u !p;where !p is the plasma frequeny and u is the averageveloity of eletrons in the (longitudinal or transverse)diretion along whih this veloity has a maximum.This solution is valid under the ondition of a stronganisotropy of the veloity distribution in longitudinaland transverse diretions.This approah has been applied in Ref. [3℄ to ele-trons produed in the tunneling ionization of atomsby a strong low-frequeny linearly polarized laser �eld.The orresponding average veloities of eletrons alongthe �eld strength polarization uk and in the transverseplane u? strongly di�er from eah other. Their ratio isfound in Ref. [4℄, u?uk = p3 ;*E-mail: krainov�online.ru

where  = !0p2EiFis the Keldysh parameter (the atomi system of unitswith e = m = ~ = 1 is used in this paper). Here,F is the �eld strength amplitude and !0 is the laserfrequeny. The quantity Ei � !0 is the ionizationpotential of the atom (or atomi ion). In the ase oftunneling ionization, we have  � 1: It was found inRef. [3℄ that the maximum instability inrement isIm! = uk !p;where, aording to Ref. [4℄,uk = p3F 3=2!0 (2Ei)3=4 :In this paper, we onsider the barrier-suppressionionization that ours at irradiation of atoms andatomi ions by the �eld of a super-intense laser pulsewith the peak intensity larger than 1016 W/m2: Theorresponding anisotropi distribution of ejeted ele-trons was obtained in Ref. [5℄. We an neglet the ol-lisions of strongly heated ejeted eletrons with analo-gous eletrons and atomi ions (having in mind, e.g.,the luster plasma [6℄) beause the Weibel instabilityis developed during a very short time of the order of487



V. P. Krainov ÆÝÒÔ, òîì 123, âûï. 3, 2003!�1p : This proess ours at the peak of the super-intense femtoseond laser pulse. We solve the prob-lem in the linear regime only, when the perturbationof the veloity distribution funtion is smaller than theunperturbed distribution funtion. We �nd that thereal part of the frequeny of the Weibel eletromag-neti �eld is muh smaller than the laser frequeny.We an therefore onsider the Vlasov�Maxwell equa-tions for the Weibel �eld independent of the Maxwellequation for the external laser �eld.2. LINEARLY POLARIZED FIELDWe �rst assume that the external laser radiationpulse is linearly polarized. With only linear terms ofperturbation retained, the Boltzmann transport equa-tion for the Weibel eletromagneti �eld is of the stan-dard form�f�t + v�f�r = ��E+ 1v �B� �f0�v ;where f0(v) is a nonisotropi stationary distribution ofeletrons, f is a perturbation of the distribution fun-tion, and E and B represent a perturbation of the ele-tromagneti �eld (i.e., Weibel �eld).Assuming that the �rst-order quantities f(v; r; t);E(r; t); and B(r; t) depend on r and t only through thefator exp(i!t + ik � r); we obtain for the Weibel �eldwith the frequeny ! and the wave vetor k thati (! + k � v) f = �E�f0�v + 1v � �f0�v �B: (1)The Maxwell equationrotE = �1 �B�timplies the relation between the eletri and magneti�elds, B = � !k�E:Substituting this equation in Eq. (1), we �nd the equa-tion ontaining only the eletri �eld,i (!+k � v) f = �E�f0�v � 1! �v � �f0�v � � [k�E℄ : (2)We now assume that the wave vetor k is diretedalong the x axis and the eletri �eld strength E is di-reted along the z axis. We then �nd the funtion ffrom Eq. (2) asf = iE! + kvx ��f0�vz � k! �vz �f0�vx � vx �f0�vz�� : (3)

The seond Maxwell equation is given byrotB = 4� j+ 1 �E�t ; (4)where the eletri urrent density is determined by thedistribution funtion,j(r; t) = Z vf (v; r; t) d3v:Substituting this expression and Eq. (3) in Eq. (4), weobtain the Vlasov equation in the formik�B = ik2! E = 4� Z v iE! + kvx ����f0�vz � k! �vz �f0�vx � vx �f0�vz�� dv + i! E: (5)Projetion of this equation to the z axis gives a dis-persion relation between the frequeny ! and the wavenumber k,k22 � !2 = 4� 1Z�1 vzdvxdvydvz ����f0�vz � kvz! + kvx �f0�vx� : (6)We simplify the �rst term in the right side of thisequation by taking the normalization ondition for theunperturbed distribution funtion into aount,Z f0dv = n;where n is the number density of free eletrons; theabove equation then beomesk22�!2+!2p = �4�k 1Z�1 dvxdvydvz v2z!+kvx �f0�vx ; (7)where we de�ne the plasma frequeny!p = p4�n:The inequality ! � kvx is valid in the tunnelingand barrier-suppression ionization regimes. It orre-sponds to the ondition that the longitudinal eletronveloity vz is muh larger than the transverse eletronveloity vx. We an then expand the denominator inEq. (7) as 1! + kvx = 1! � kvx!2 + : : :488



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Weibel instability in plasma produed : : :Substituting this expansion in Eq. (7), we integrate byparts ask22 � !2 + !2p = 4�k!2 1Z�1 dvy 1Z�1 v2zdvz �� 1Z�1 vx �f0�vx dvx = �4�k2!2 1Z�1 dvy 1Z�1 v2zdvz 1Z�1 f0dvx;and �nally obtaink22 � !2 + !2p = �!2p k2!2 
v2z� ; (8)where 
v2z� is the average square of the longitudinaleletron veloity.Beause the most interesting ase in dispersion re-lation (8) is ! � k (see below), we an neglet theterm �!2 in the left-hand side of (8). It then followsfrom Eq. (8) that!2 = � k2 
v2z�!2p + k22!2p; (9)and therefore, the frequeny is a purely imaginaryquantity that produes the Weibel plasma instability.The maximum value of this instability inrement isahieved at k� !p (the short wavelength limit),!2 = �
v2z�2 !2p: (10)In the ase of tunneling ionization, the distribu-tion funtion f0 is of a Gaussian form [4, 7℄. Hene,
v2z� = u2k; where u2k = 3!023(see the Introdution). Here, !0 is the laser frequenyand  is the Keldysh parameter. It therefore followsfrom Eq. (10) that [3℄!2 = �u2k2 !2p = � 3!0232!2p = � 3F 32!20(2Ei)3=22!2p:We now onsider the ase of barrier-suppression ion-ization. Aording to Ref. [5℄, the anisotropi distribu-tion is given byf0(vz ; v?) � nAi2 �2Ei + v2z2=3 + v2?(2F )2=3 � ; (11)where Ai(x) is the Airy funtion. This distribution re-dues to the tunneling limit [4℄ under the ondition ofa weak �eld (ompared with the atomi �eld),F � (2Ei)3=2:
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Therefore, the deviation for the square of the insta-bility inrement from the tunneling limit, Eq. (10), isdetermined by the ratio
v2z�u2k = G(s);and hene !2 = �G(s) 3F 32!20(2Ei)3=22!2p; (12)where s = 2Ei(2F )2=3 :The universal funtion G(s) is given byG(s) = 4ps 1Z0 dt 1Z0 z2dzAi2 �s+ t+ z2�1Z0 dt 1Z0 dzAi2 �s+ t+ z2� : (13)We have G(s)! 1 at s� 1 (the tunneling limit). Thisfuntion is shown in the Figure.It an be seen that in the ase of barrier-suppressionionization, the inrement inreases more slowly withthe inrease of the laser �eld F than in the ase ofthe tunneling ionization. We an therefore onludethat the eletromagneti �eld is generated in plasmawith the same linear polarization as the initial laserradiation that produed these anisotropi plasma ele-trons. The frequeny of this �eld (see Eq. (10)) does489



V. P. Krainov ÆÝÒÔ, òîì 123, âûï. 3, 2003not ontain the real omponent, and this �eld is there-fore quasistationary, but with an exponentially growingamplitude of the eletri and magneti strengths.We now brie�y disuss the relativisti generaliza-tion of the tunneling results. Aording to Ref. [8℄, theenergy distribution of ejeted eletrons along the �eldpolarization is given byf0 / exp��v2z33!0 �1 + 3v2z422�� :The seond term in the exponent is responsible for therelativisti e�et. It diminishes the average longitudi-nal veloity, u2k(rel) = u2k1 + 3u2k=(2)2 ;where u2k = 3!0=23 (see the Introdution). This de-rease of the instability inrement is in agreement withthe relativisti results in Ref. [9℄,!2 = �u2k(rel)2 !2p:3. CIRCULARLY POLARIZED FIELDIn this setion, we onsider the Weibel instabilityprodued in plasma during the tunneling and barrier-suppression ionization of atoms (or atomi ions) by airularly polarized laser femtoseond pulse. We againdiret the wave vetor k of the laser �eld and of theprodued eletromagneti perturbation �eld along thex axis. The perturbation eletri �eld strength E isalso irularly polarized and rotates in the yz plane.Hene, E = E (iz + iiy) exp (i!t+ ik � r) ;where iz and iy are unit basis vetors. Equation (2)then beomesi (! + kvx) f = �Evk (vz + ivy) �f0�vk �� kE! (vz + ivy)�vxvk �f0�vk � �f0�vx� ;where vk is the veloity in the polarization plane. Wethus obtain the perturbation distribution funtionf = iE (vz + ivy) (! + kvx)�1 ��� 1vk �1 + kvx! � �f0�vk � k! �f0�vx� :

Instead of Eq. (6), we �nd the dispersion relationin the form(k22�!2) (iz+iiy) = 4� 1Z�1 vdvxdvydvz (vz+ivy)��� 1vk �f0�vk � k! + kvx �f0�vx� ;or(k22 � !2) = 4�2 1Z0 v3kdvk 1Z�1 dvx ��� 1vk �f0�vk � k! + kvx �f0�vx� : (14)The unperturbed eletron energy distribution fun-tion for tunneling ionization is given by (see, e.g., [10℄)f0 = n4�2u2v0 exp��v2x + (vk � v0)22u2 � ; (15)where v0 = F=!0 is the ponderomotive eletron velo-ity and u2 = F2p2Ei(F is again the laser �eld strength amplitude and Ei isthe ionization potential of an atom or an atomi ion).Unlike for the linear polarization, dispersions of theaverage longitudinal and transverse veloities are nowequal to eah other.We note that u � v0; i.e., the width of the distri-bution is small ompared with its shift in the longitu-dinal diretion. The �rst term in the right-hand sideof Eq. (14) vanishes beause the integrand is an oddfuntion of the argument (vk � v0): Dispersion relation(14) then beomes(k22 � !2) = �4�2 1Z0 v3kdvk 1Z�1 dvx k! + kvx �f0�vx :We again assume that ! � kvx; i.e., ! � ku, andexpand the denominator in a Taylor series,1! + kvx = 1! � kvx!2 + : : :Integrating by parts, we simplify the dispersion relationas (k22 � !2) = �4�2k2!2 1Z0 v3kdvk 1Z�1 f0dvx: (16)490



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Weibel instability in plasma produed : : :Substituting Eq. (15) in Eq. (16), we obtain!4 � (k!)2 � (!pkv0)22 = 0:The solution of this equation is!2 = � (k)22 (r1 + 2�!pv0k2 �2 � 1) < 0:The frequeny ! is therefore a purely imaginaryquantity that produes a irularly polarized exponen-tially inreasing eletromagneti wave. Its real part iszero, and the wave is therefore quasistationary. In theshort wave limit k � !pv02 ; (17)we simplify this solution by taking into aount thatv0 = F=!0,!2 = �12 �v0 �2 !2p = �12 � F!0�2 !2p: (18)The ondition ! � ku bounds the wave number k fromabove, k2 � F!2pp2Ei!202 : (19)Inequalities (17) and (18) do not ontradit eah otherunder the ondition F � 2p2Eiwhih is satis�ed up to very high values of the laser�eld intensities ( = 137 a.u.).In the ase of barrier-suppression ionization by airularly polarized �eld, the unperturbed distributionfuntion is given by [5℄f0(vx; vk) � nAi2(2Ei + �vk � v0�2 + v2x(2F )2=3 ) :Substituting this expression in Eq. (16), we obtain thesame dispersion relation as in the ase of tunnelingionization. Therefore, the maximum inrement of theWeibel instability is again determined by Eq. (18) alsofor barrier-suppression ionization.In the nonrelativisti limit, we havev0 = F!0 � :Hene, the Weibel inrement is small ompared withthe plasma frequeny. The anisotropi relativisti dis-tribution of ejeted eletrons was obtained in Ref. [10℄.

Most eletrons are ejeted not in the polarization planeof irularly polarized laser radiation, but at the angle� with respet to this polarization plane determinedfrom the relation [11℄tg � = F2!0 :The normalized unperturbed relativisti distributionfuntion is given by [10℄f0(px; pk) = n4�2u2rv0 �� exp(� (px � v0 tg �)2 + (pk � v0)22u2r ) ; (20)where px and pk are the respetive momentum ompo-nents of the ejeted eletron along the wave vetor andin the polarization plane. The relativisti width ur ofthe distribution is given by [10℄u2r = �1 + (F=!0)1=2�21 + (F=!0)2 u2;where (see above) u2 = F2p2Eiis the nonrelativisti width.Substituting Eq. (20) in Eq. (16), we �nd instead ofEq. (18) that !2 = �12 Dv2kE2 !2p;where rDv2kE is the average relativisti veloity in thepolarization plane, to be ompared with Eq. (10) for thelinearly polarized �eld. This quantity an be expressedthrough the orresponding relativisti momentumpk = v0 = F=!0and the relativisti energyErel = qp2k + p2x + 2due to narrow peaks in unperturbed distribution (20),rDv2kE = pkErel = v0v20=2+  :Thus, we �nally obtain! = � ip2 v0v20=2+ !p: (21)491



V. P. Krainov ÆÝÒÔ, òîì 123, âûï. 3, 2003It follows that relativisti e�ets diminish theWeibel inrement for a irularly polarized �eld sim-ilarly to the ase of linear polarization (see above).The maximum value of the inrement is ahieved atv0 = F=!0 = p2, !max = � i2!p:4. CONCLUSIONSWe have found that the plasma instability produesa quasistati magneti �eld B (the frequeny does notontain the real part). The orresponding quasistatieletri �eld E is muh smaller in the short-wave limitk� !, E = !kB � B:We estimate the maximum value of this �eld for theirularly polarized �eld. Our derivation is valid inthe linear approximation where f � f0: In aordanewith the results in the previous Setion, we rewrite thisinequality for a irularly polarized �eld asE!3 k2v0 � 1;or kBv0!2 � 1:Substituting ! � !p(v0=); we �nd the maximum mag-neti �eld Bmax � !p:
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