ZKQT®, 2003, rom 123, BoIm. 3, cTp. 457461

© 2003

PERTURBATIVE APPROACH TO THE HYDROGEN ATOM
IN A STRONG MAGNETIC FIELD

V. A. Gani, A. E. Kudryavtsev, V. A. Lensky, V. M. Weinberg

State Scientific Center «Institute of Theoretical and Ezxperimental Physicsy
119259, Moscow, Russia

Submitted 15 August 2002

We consider states of the hydrogen atom with the principal quantum number n < 3 and zero magnetic quan-
tum number in a constant homogeneous magnetic field H. The perturbation theory series is summed using
the Borel transformation and conformal mapping of the Borel variable. Convergence of the approximate energy
eigenvalues and their agreement with the corresponding existing results are observed for external fields up to
n*H /Mo ~ 5, where Ho is the atomic magnetic field. The possibility of restoring the asymptotic behavior of
energy levels using perturbation theory coefficients is also discussed.

PACS: 31.15.Md, 32.60.+i

The own magnetic fields of some astrophysical ob-
jects reach very high values [1, 2]. If we are interested in
the atomic spectra in these external fields, it is conve-
nient to introduce the natural measure of field strength,
the atomic magnetic field

e3m2c

B3
The fields H up to one half of Hy are detected in the
vicinity of some white dwarves. Neutron stars possess
fields up to the order of 10*Hy. For the correct in-
terpretation of the observation results, it is desirable
to know the atomic hydrogen spectrum in this range
of external fields. For this aim, computations based
on the adiabatic approach with a Landau level as the
initial approximation were performed [3]. In what fol-
lows, we show which part of the desired external field
range can be covered using the standard expansion in
powers of H, starting from the Coulomb levels of the
hydrogen atom. The computation involves many or-
ders of the perturbation theory (up to the 75th order).
Summation of the series is performed using the Borel
transformation supplemented by a conformal mapping
of the Borel variable.

The Borel summation method was introduced into
quantum field theory relatively long ago (see, e.g., [4]).
It has been tested on some quantum-mechanical prob-

Ho = =255-10° G.
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lems (one of the numerous examples is described in [5])
and is still applied in modern works [6]. Great hopes of
the possibility to advance into the strong-coupling re-
gion were related with the Borel summation of the per-
turbation series. Some rather simple problems where
the details can be traced and compared with the cor-
responding exact results supported this optimism. For
example, for the funnel potential

1

Vi(r)=—=+gr,

r

applying a conformal mapping of the Borel variable and

Padé summation of the Borel transformant gives the
ground state energy as g — oo in the form

with the precision about 0.2 % for the index v and
about 5% for the coefficient C [5]. It became clear
later that such a successful summation presents a spe-
cial but not the general case. We can guess that this
success is a consequence of simplicity of this problem.
In contrast, the asymptotic behavior of energy levels in
the Stark and Zeeman effects establishes at very large
values of the external fields. For the Stark effect, it is
now practically impossible to reach the region of the
truly asymptotic behavior by perturbation series sum-
mation. An intermediate linear asymptotic behavior is
observed instead [7, §].
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To introduce the notation and the scale, we write
the Hamiltonian

H=-iv-lileer ooy =maem,
2 r 8
where ¢ = H?/c®> and we use the atomic units
h = m = e = 1 hereafter. In (1), we drop the ele-
mentary contribution of the electron spin and consider
only states with the magnetic quantum number m = 0.
We can expand E(g) as a formal power series in g,

Eg) =Y Bug®. 2)
k=0

We must then obtain hypersucceptibilities Fj. We can
use the moment method for this aim. This method is
especially useful in the cases where variables cannot be
separated in the Schrodinger equation. Obviously, the
Zeeman effect is precisely such a problem. In the pre-
vious work [9], the moment method was applied to the
recurrent evaluation of hypersucceptibilities. A some-
what different version of the moment method was in-
troduced in [10].

For the lower four «isolated» hydrogen levels, we
immediately use the results of Ref. [9]. Unfortunately,
the computer code employed in [9] for the relatively
more complicated case of degenerate 3s and 3d states
contained a mistake!). We therefore performed a new
computation of the 3s and 3d hypersucceptibilities. Re-
sults of the computation for some orders are presented
in Table 1. These results are in agreement with results
in [11], where high-order hypersucceptibilities were ob-
tained for the first time (but the method used in [11]
is much more complicated than the moment method).

Ag the order k increases, hypersucceptibilities grow
as a factorial [12],

Ey — By, = (=1)**1Cryakf T (2k + ), (3)

where

2\ 2 l
-1

an=<—n> ; ﬂnz=2n—1+( ),
s 2

and C,; are not essential for us; their values can be
found in [9] and references therein. Equation (3) im-
plies that series (2) is asymptotical, and the formal sum
of such a series is therefore ambiguous. But the choice
of the summation method is in fact restricted: from
physical considerations, the function E(g) must have
analytical properties that are to be reproduced by the

1) We are thankful to Prof. V. D. Ovsyannikov for drawing
our attention to this mistake.

Table 1. Hypersucceptibilities of degenerate
states
k Ey, for 3s state

1 19.57851476711195477229924488394

2 —7992.558488642566993349104381687

3 9951240.466276842310264046307800

4 —20931559882.53444368634980579917

5 58826900682409.79349115290157121

25 1.3793233851820609414463787913215 - 1094

50 | —9.3227132696889616617788676903516 - 10211
75 | 2.8053533970811704326574930831176 - 10340

k Ey, for 3d state

1 5.171485232888045227700755116050

2 —1017.425886357433006650895618312

3 738127.8247387826897359536921995

4 —923576528.5544112941189442008231

5 1677908319019.727217770438272530

25 1.0431217771758614011812311858395 - 1092
50 | —6.0721978561446884300072726553011 - 102%?
75 | 1.7302552995055432680731087635037 - 1038

true sum of series (2). In the unphysical region g < 0,
the diamagnetic perturbation gﬁl changes its sign, the
total Hamiltonian becomes «openy», and the possibil-
ity of a spontaneous ionization of the atom emerges.
The energy eigenvalue must therefore have an imagi-
nary part at g < 0 and the function E(g) must have
a cut along the negative real semiaxis in the g plane.
Summation using the Borel transformation results in a
function that has the left cut and is a smooth function
of g except for the discontinuity at this cut.
The Borel transformant B(w) of E(g) is a series

B(w) = i Bjuw* (4)
k=0

with the coefficients
By, = Ei/T(2k + bo),

where by is an arbitrary constant. The choice of by
can in principle affect the numerical results, but be-
cause changing its value within the interval about
0.5 < by < 5 has a weak effect, we fixed by by con-
venience. The numerical calculations in this work were
performed at by = 3. Series (4) converges, as usual,
inside the circle |w| < 1/a,. Substituting asymptotic
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coefficients Ej, for By, it is easy to verify that the singu-
larity of B(w) is located at w = —1/a,. The energy of
the level is related to the function B(w) by the integral
transformation

oo

/

For the numerical integration in the right-hand side
to be successful, B(w) must be analytically continued
from its convergence disk to the domain containing
the image of the entire positive real w semiaxis. For
this, we performed a conformal mapping of the Borel
variable w. Many sufficiently effective versions of this
mapping are appropriate. The main point is that the
nearest singularity of the Borel transformant must be
removed to infinity. We used the mapping

E(g9) = [ e *B(ga®)xbldz. (5)

Apw
1+ a,w

y (6)
that was employed in [6]. As explained in [6], this trans-
formation is optimal in the sense that it diminishes the
influence of all possible singularities of B(w) from the
unphysical region. Transformation (6) is equivalent to
the following series rearrangement:

B(w) =Y Dmy™. Do= By,
n (m—-1)! B ™
Dn =2 Gty e ™21

k=1

To improve convergence, we applied the Padé summa-
tion to rearranged series (7),

_ Puly
—Qn(

where Py and (Qn are polynomials of the respective
degrees M and N.

We performed computations using various Padé ap-
proximants and a straightforward summation of rear-
ranged series (7). To illustrate the effect of compu-
tational accuracy on summation results, we compared
those done with double precision (16 decimal digits)
and quadruple precision (32 decimal digits).

Some graphs of the obtained binding energy

£ = 37~ B(?)

)

B(w) ~ [M/N](y) m

: (8)

as a function of the parameter ¥ = n3H /c are given in
Figs. 1-3. Compared with the previous work [9], the
region of external field values for which these eigenval-
ues are successfully recovered is extended by a factor
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Fig. 1. Binding energy for the 1s state in atomic units.

The data is evaluated with the double precision (us-

ing the Padé approximant [30/30], solid curve, and

by straightforward summation, dotted curve) and with

the quadruple precision (using the Padé approximant

[30/30], dashed curve). Crosses denote the data in
Ref. [13]
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Fig. 2.

Binding energy for the 2s and 2p states in
atomic units. Notation is the same as in Fig. 1

of about 5. As usual, the precision of the sum consid-
erably increases at lower H values. The accuracy of
the summation method described above is illustrated
in Table 2.

We note that in [9], Padé approximants were imme-
diately applied to summation of divergent series (2).
These approximants imitate the discontinuity on the
cut g < 0 by a set of delta functions, which is a very
rough approximation. On the other hand, the same dis-
continuity is represented by a smooth function of g as
a result of the Borel summation. Our calculations con-
firmed that mapping (6) is indeed very efficient: after
this mapping, Padé summation of the Borel transfor-
mant improves the convergence only slightly, and its
straightforward summation appears to be sufficient in
some cases, see Figs. 1-3.
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Table 2. Values of the binding energy for 2p state
[M/N] Eaty=1.12 [M/N] Eaty=3.20 Eaty=4.80 Eaty=28.00
[28/28] 0.172618226340 [30/30] 0.214270 0.23396 0.2655
[29/29] 0.172618226340 [37/36] 0.214257 0.23371 0.2612
[30/30] 0.172618226339 [37/37] 0.214265 0.23370 0.2610
[31/31] 0.172618226343
[32/32] 0.172618226340
Ref. [13] 0.17261822 Ref.[13] 0.2142655 0.233675 0.260006
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Fig.3. Binding energy for the 3s, 3p, and 3d states in
atomic units. Notation is the same as in Fig. 1

One technical detail is of principal importance for
the perturbation series summation by any method. The
precision of the entire chain of computations must in-
crease as the number of the involved successive terms
increases. This is simply a consequence of the fact that
the sum, being of the order of unity, is the result of
a compensation of very large terms with alternating
signs.

At a first glance, it seems that the high-precision re-
quirement is not necessary for the Borel transformant
because all the essential alternating sign coefficients By,
have approximately the same order. But any numeri-
cal procedure of analytic continuation usually requires
a high precision. Turning to series rearrangement (7),
we see that binomial coefficients entering the sum for
D, change by 20 orders of magnitude (in the present
case). Obviously, an enormous loss of precision occurs
in performing the sum for Dy, in (7). Therefore, if we
want to use all By, up to the 75th order, the precision of
the By, coefficients must be better than about 1072°. In
our calculations, the precision of Ej,, and consequently,
the precision of B was about 1073°, and the preci-

sion of D}, therefore decreased from 1073° at £ = 0 to
approximately 10719 at k& = 75.

We now turn to the problem of restoring the E(g)
dependence at large values of g and focus on the ground
state. We first note that an interpolation expression for
the ground (tightly bound) state energy was obtained
in [3]. In spite of multiple anticrossings at v < 300
and of the related computational complications, the fit
in [3] provides precision within 10731072 in the range
0.1 <5< 10%

The asymptotic form of the ground level energy at
large g (equivalently, at large v) is given by

B(y) 57— g () 4. (9)
where A is a dimensionless constant (see, e.g., [14]).
We first consider the possibility of restoring the lead-
ing term parameters in (9) — the power index and
the constant multiplier — using the perturbation the-
ory. Methods applicable to this problem are considered
in [5, 6]. We note that for the asymptotic regime to es-
tablish, the leading term in (9) must be large compared
with the correction term. We refer to the results in [13]
(where the values of £() were obtained by a variational
procedure), which show that the binding energy is less
than 20 % of (1/2)y only if v > 102. We can therefore
speculate about restoring the asymptotic parameters
only if we succeed in summing E(g) in this region of
external fields. But we failed to do this using only
75 coefficients Ej, and the linear asymptotic behavior
could not therefore be restored. This was confirmed in
our attempts to apply the methods proposed in [5, 6]:
no plausible result was obtained. In the method in [6],
parameters of the asymptotic form of E(g) are related
to the large-k behavior of the coefficients Dj. Namely,
if E(g) — Cg¢” as ¢ — o0, we obtain similarly to [6]
that
Okufl
akT ()T (2v + by)

Dy, —
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g with the data in [13] at v = 105. This occurs at
25 A = 0.01 and the smallness of this constant indicates
20 that the value of v is too small for speaking about the
asymptotic regime. We can see that the asymptotic
15 curve and the curve of exact data have considerably
different slopes.
10 Thus, for the Zeeman effect, perturbation theory
5 does not allow recovering even the linear part of the
ground state energy asymptotic behavior in a strong
0 L L field and the logarithmic term becomes essential at
10° 10° 10° %YOE huge fields beyond the neutron star range.

Fig.4. Binding energy and its asymptotic form. The

solid curve is plotted using Eq. (6) in Ref. [3]. Crosses

denote the data in Ref. [13]. The dotted curve is the
logarithmic asymptotic behavior with A = 0.010

It was then suggested to perform the fit of C' and v us-
ing the known Dy, coefficient and their errors by means
of the xy? method. But in our case, the value of y? at
its minimum is extremely large (about 10® even if we
try to fit only 5 coefficients Dy, at the statistical error
o = 107'°, and we have no reason to increase this value
of o). This result indicates that the asymptotic regime
of Dy establishes at values of £ much larger than 75.

The power index in the asymptotic form of E(g)
could also be traced using the method in [5]. This
method consists in taking the limit of the expression
wB'(w)/B(w) as w — oo (or equivalently, the limit of
y(1—y)B'(y)/B(y) as y — 1), which gives the exact
value of v. But numerical calculation showed that we
did not obtain a reasonable precision for the limit value
in the region where B(y) was recovered (for y close to
1, the error must obviously increase because of a finite
number of Dy, used).

It thus appears to be impossible to obtain asymp-
totic parameters corresponding to a Landau level on
the base of all the known perturbation theory coef-
ficients. Nevertheless, taking all possible information
into account (including that contained in the interpo-
lation formula [3] and the variational calculation re-
sults [13]), it is natural to raise the question whether it
is possible to subtract the Landau level energy from the
«exacty» function E(g) and trace the second term of the
asymptotic expression. In other words, at which exter-
nal field values does the logarithmic term in Eq. (9)
become noticeable? An illustration to the answer is
given in Fig. 4, where we plotted the binding energy
and its logarithmic asymptotic form. The constant A
is chosen such that the value of the logarithmic term
(1/2)1n*(\y) in the asymptotic expression coincides
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