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PERTURBATIVE APPROACH TO THE HYDROGEN ATOMIN A STRONG MAGNETIC FIELDV. A. Gani *, A. E. Kudryavtsev, V. A. Lensky, V. M. WeinbergState Sienti� Center �Institute of Theoretial and Experimental Physis�119259, Mosow, RussiaSubmitted 15 August 2002We onsider states of the hydrogen atom with the prinipal quantum number n � 3 and zero magneti quan-tum number in a onstant homogeneous magneti �eld H. The perturbation theory series is summed usingthe Borel transformation and onformal mapping of the Borel variable. Convergene of the approximate energyeigenvalues and their agreement with the orresponding existing results are observed for external �elds up ton3H=H0 � 5, where H0 is the atomi magneti �eld. The possibility of restoring the asymptoti behavior ofenergy levels using perturbation theory oe�ients is also disussed.PACS: 31.15.Md, 32.60.+iThe own magneti �elds of some astrophysial ob-jets reah very high values [1, 2℄. If we are interested inthe atomi spetra in these external �elds, it is onve-nient to introdue the natural measure of �eld strength,the atomi magneti �eldH0 � e3m2~3 = 2:55 � 109 G:The �elds H up to one half of H0 are deteted in theviinity of some white dwarves. Neutron stars possess�elds up to the order of 104H0. For the orret in-terpretation of the observation results, it is desirableto know the atomi hydrogen spetrum in this rangeof external �elds. For this aim, omputations basedon the adiabati approah with a Landau level as theinitial approximation were performed [3℄. In what fol-lows, we show whih part of the desired external �eldrange an be overed using the standard expansion inpowers of H, starting from the Coulomb levels of thehydrogen atom. The omputation involves many or-ders of the perturbation theory (up to the 75th order).Summation of the series is performed using the Boreltransformation supplemented by a onformal mappingof the Borel variable.The Borel summation method was introdued intoquantum �eld theory relatively long ago (see, e.g., [4℄).It has been tested on some quantum-mehanial prob-*E-mail: gani�heron.itep.ru

lems (one of the numerous examples is desribed in [5℄)and is still applied in modern works [6℄. Great hopes ofthe possibility to advane into the strong-oupling re-gion were related with the Borel summation of the per-turbation series. Some rather simple problems wherethe details an be traed and ompared with the or-responding exat results supported this optimism. Forexample, for the funnel potentialV (r) = �1r + gr;applying a onformal mapping of the Borel variable andPadé summation of the Borel transformant gives theground state energy as g !1 in the formE(g) = Cg�with the preision about 0:2% for the index � andabout 5% for the oe�ient C [5℄. It beame learlater that suh a suessful summation presents a spe-ial but not the general ase. We an guess that thissuess is a onsequene of simpliity of this problem.In ontrast, the asymptoti behavior of energy levels inthe Stark and Zeeman e�ets establishes at very largevalues of the external �elds. For the Stark e�et, it isnow pratially impossible to reah the region of thetruly asymptoti behavior by perturbation series sum-mation. An intermediate linear asymptoti behavior isobserved instead [7, 8℄.457



V. A. Gani, A. E. Kudryavtsev, V. A. Lensky, V. M. Weinberg ÆÝÒÔ, òîì 123, âûï. 3, 2003To introdue the notation and the sale, we writethe HamiltonianH = �12r2 � 1r + 18g(r2 � z2) � Ĥ0 + gĤ1; (1)where g � H2=2 and we use the atomi units~ = m = e = 1 hereafter. In (1), we drop the ele-mentary ontribution of the eletron spin and onsideronly states with the magneti quantum number m � 0.We an expand E(g) as a formal power series in g,E(g) = 1Xk=0Ekgk: (2)We must then obtain hypersueptibilities Ek . We anuse the moment method for this aim. This method isespeially useful in the ases where variables annot beseparated in the Shrödinger equation. Obviously, theZeeman e�et is preisely suh a problem. In the pre-vious work [9℄, the moment method was applied to thereurrent evaluation of hypersueptibilities. A some-what di�erent version of the moment method was in-trodued in [10℄.For the lower four �isolated� hydrogen levels, weimmediately use the results of Ref. [9℄. Unfortunately,the omputer ode employed in [9℄ for the relativelymore ompliated ase of degenerate 3s and 3d statesontained a mistake1). We therefore performed a newomputation of the 3s and 3d hypersueptibilities. Re-sults of the omputation for some orders are presentedin Table 1. These results are in agreement with resultsin [11℄, where high-order hypersueptibilities were ob-tained for the �rst time (but the method used in [11℄is muh more ompliated than the moment method).As the order k inreases, hypersueptibilities growas a fatorial [12℄,Ek ! ~Ek = (�1)k+1Cnlakn�(2k + �nl); (3)where an = �n2� �2 ; �nl = 2n� 1 + (�1)l2 ;and Cnl are not essential for us; their values an befound in [9℄ and referenes therein. Equation (3) im-plies that series (2) is asymptotial, and the formal sumof suh a series is therefore ambiguous. But the hoieof the summation method is in fat restrited: fromphysial onsiderations, the funtion E(g) must haveanalytial properties that are to be reprodued by the1) We are thankful to Prof. V. D. Ovsyannikov for drawingour attention to this mistake.

Table 1. Hypersueptibilities of degeneratestatesk Ek for 3s state1 19.578514767111954772299244883942 �7992:5584886425669933491043816873 9951240.4662768423102640463078004 �20931559882:534443686349805799175 58826900682409.7934911529015712125 1:3793233851820609414463787913215 � 109450 �9:3227132696889616617788676903516 � 1021175 2:8053533970811704326574930831176 � 10340k Ek for 3d state1 5.1714852328880452277007551160502 �1017:4258863574330066508956183123 738127.82473878268973595369219954 �923576528:55441129411894420082315 1677908319019.72721777043827253025 1:0431217771758614011812311858395 � 109250 �6:0721978561446884300072726553011 � 1020975 1:7302552995055432680731087635037 � 10338true sum of series (2). In the unphysial region g < 0,the diamagneti perturbation gĤ1 hanges its sign, thetotal Hamiltonian beomes �open�, and the possibil-ity of a spontaneous ionization of the atom emerges.The energy eigenvalue must therefore have an imagi-nary part at g < 0 and the funtion E(g) must havea ut along the negative real semiaxis in the g plane.Summation using the Borel transformation results in afuntion that has the left ut and is a smooth funtionof g exept for the disontinuity at this ut.The Borel transformant B(w) of E(g) is a seriesB(w) = 1Xk=0Bkwk (4)with the oe�ientsBk = Ek=�(2k + b0);where b0 is an arbitrary onstant. The hoie of b0an in priniple a�et the numerial results, but be-ause hanging its value within the interval about0:5 � b0 � 5 has a weak e�et, we �xed b0 by on-veniene. The numerial alulations in this work wereperformed at b0 = 3. Series (4) onverges, as usual,inside the irle jwj < 1=an. Substituting asymptoti458



ÆÝÒÔ, òîì 123, âûï. 3, 2003 Perturbative approah to the hydrogen atom : : :oe�ients ~Ek for Ek, it is easy to verify that the singu-larity of B(w) is loated at w = �1=an. The energy ofthe level is related to the funtion B(w) by the integraltransformationE(g) = 1Z0 e�xB(gx2)xb0�1dx: (5)For the numerial integration in the right-hand sideto be suessful, B(w) must be analytially ontinuedfrom its onvergene disk to the domain ontainingthe image of the entire positive real w semiaxis. Forthis, we performed a onformal mapping of the Borelvariable w. Many su�iently e�etive versions of thismapping are appropriate. The main point is that thenearest singularity of the Borel transformant must beremoved to in�nity. We used the mappingy = anw1 + anw (6)that was employed in [6℄. As explained in [6℄, this trans-formation is optimal in the sense that it diminishes thein�uene of all possible singularities of B(w) from theunphysial region. Transformation (6) is equivalent tothe following series rearrangement:B(w) = 1Xm=0Dmym; D0 = B0;Dm = mXk=1 (m� 1)!(k � 1)!(m� k)! Bkak ; m � 1: (7)To improve onvergene, we applied the Padé summa-tion to rearranged series (7),B(w) � [M=N ℄ (y) � PM (y)QN(y) ; (8)where PM and QN are polynomials of the respetivedegrees M and N .We performed omputations using various Padé ap-proximants and a straightforward summation of rear-ranged series (7). To illustrate the e�et of ompu-tational auray on summation results, we omparedthose done with double preision (16 deimal digits)and quadruple preision (32 deimal digits).Some graphs of the obtained binding energyE() = 12 �E(2)as a funtion of the parameter  � n3H= are given inFigs. 1�3. Compared with the previous work [9℄, theregion of external �eld values for whih these eigenval-ues are suessfully reovered is extended by a fator
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Fig. 1. Binding energy for the 1s state in atomi units.The data is evaluated with the double preision (us-ing the Padé approximant [30=30℄, solid urve, andby straightforward summation, dotted urve) and withthe quadruple preision (using the Padé approximant[30=30℄, dashed urve). Crosses denote the data inRef. [13℄
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Fig. 2. Binding energy for the 2s and 2p states inatomi units. Notation is the same as in Fig. 1of about 5. As usual, the preision of the sum onsid-erably inreases at lower H values. The auray ofthe summation method desribed above is illustratedin Table 2.We note that in [9℄, Padé approximants were imme-diately applied to summation of divergent series (2).These approximants imitate the disontinuity on theut g < 0 by a set of delta funtions, whih is a veryrough approximation. On the other hand, the same dis-ontinuity is represented by a smooth funtion of g asa result of the Borel summation. Our alulations on-�rmed that mapping (6) is indeed very e�ient: afterthis mapping, Padé summation of the Borel transfor-mant improves the onvergene only slightly, and itsstraightforward summation appears to be su�ient insome ases, see Figs. 1�3.459



V. A. Gani, A. E. Kudryavtsev, V. A. Lensky, V. M. Weinberg ÆÝÒÔ, òîì 123, âûï. 3, 2003Table 2. Values of the binding energy for 2p state[M=N ℄ E at  = 1:12 [M/N℄ E at  = 3:20 E at  = 4:80 E at  = 8:00[28=28℄ 0.172618226340 [30=30℄ 0.214270 0.23396 0.2655[29=29℄ 0.172618226340 [37=36℄ 0.214257 0.23371 0.2612[30=30℄ 0.172618226339 [37=37℄ 0.214265 0.23370 0.2610[31=31℄ 0.172618226343[32=32℄ 0.172618226340Ref. [13℄ 0.17261822 Ref.[13℄ 0.2142655 0.233675 0.260006
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0:045Fig. 3. Binding energy for the 3s, 3p, and 3d states inatomi units. Notation is the same as in Fig. 1One tehnial detail is of prinipal importane forthe perturbation series summation by any method. Thepreision of the entire hain of omputations must in-rease as the number of the involved suessive termsinreases. This is simply a onsequene of the fat thatthe sum, being of the order of unity, is the result ofa ompensation of very large terms with alternatingsigns.At a �rst glane, it seems that the high-preision re-quirement is not neessary for the Borel transformantbeause all the essential alternating sign oe�ients Bkhave approximately the same order. But any numeri-al proedure of analyti ontinuation usually requiresa high preision. Turning to series rearrangement (7),we see that binomial oe�ients entering the sum forDk hange by 20 orders of magnitude (in the presentase). Obviously, an enormous loss of preision oursin performing the sum for Dk in (7). Therefore, if wewant to use all Bk up to the 75th order, the preision ofthe Bk oe�ients must be better than about 10�20. Inour alulations, the preision of Ek, and onsequently,the preision of Bk was about 10�30, and the prei-

sion of Dk therefore dereased from 10�30 at k = 0 toapproximately 10�10 at k = 75.We now turn to the problem of restoring the E(g)dependene at large values of g and fous on the groundstate. We �rst note that an interpolation expression forthe ground (tightly bound) state energy was obtainedin [3℄. In spite of multiple antirossings at  � 300and of the related omputational ompliations, the �tin [3℄ provides preision within 10�3�10�2 in the range0:1 �  � 104.The asymptoti form of the ground level energy atlarge g (equivalently, at large ) is given byE()! 12 � 12 ln2 (�) + : : : ; (9)where � is a dimensionless onstant (see, e.g., [14℄).We �rst onsider the possibility of restoring the lead-ing term parameters in (9) � the power index andthe onstant multiplier � using the perturbation the-ory. Methods appliable to this problem are onsideredin [5, 6℄. We note that for the asymptoti regime to es-tablish, the leading term in (9) must be large omparedwith the orretion term. We refer to the results in [13℄(where the values of E() were obtained by a variationalproedure), whih show that the binding energy is lessthan 20% of (1=2) only if  > 102. We an thereforespeulate about restoring the asymptoti parametersonly if we sueed in summing E(g) in this region ofexternal �elds. But we failed to do this using only75 oe�ients Ek, and the linear asymptoti behaviorould not therefore be restored. This was on�rmed inour attempts to apply the methods proposed in [5, 6℄:no plausible result was obtained. In the method in [6℄,parameters of the asymptoti form of E(g) are relatedto the large-k behavior of the oe�ients Dk. Namely,if E(g) ! Cg� as g ! 1, we obtain similarly to [6℄that Dk ! Ck��1akn�(�)�(2� + b0) :460
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Fig. 4. Binding energy and its asymptoti form. Thesolid urve is plotted using Eq. (6) in Ref. [3℄. Crossesdenote the data in Ref. [13℄. The dotted urve is thelogarithmi asymptoti behavior with � = 0:010It was then suggested to perform the �t of C and � us-ing the known Dk oe�ient and their errors by meansof the �2 method. But in our ase, the value of �2 atits minimum is extremely large (about 108 even if wetry to �t only 5 oe�ients Dk at the statistial error� = 10�10, and we have no reason to inrease this valueof �). This result indiates that the asymptoti regimeof Dk establishes at values of k muh larger than 75.The power index in the asymptoti form of E(g)ould also be traed using the method in [5℄. Thismethod onsists in taking the limit of the expressionwB0(w)=B(w) as w ! 1 (or equivalently, the limit ofy(1� y)B0(y)=B(y) as y ! 1), whih gives the exatvalue of �. But numerial alulation showed that wedid not obtain a reasonable preision for the limit valuein the region where B(y) was reovered (for y lose to1, the error must obviously inrease beause of a �nitenumber of Dk used).It thus appears to be impossible to obtain asymp-toti parameters orresponding to a Landau level onthe base of all the known perturbation theory oef-�ients. Nevertheless, taking all possible informationinto aount (inluding that ontained in the interpo-lation formula [3℄ and the variational alulation re-sults [13℄), it is natural to raise the question whether itis possible to subtrat the Landau level energy from the�exat� funtion E(g) and trae the seond term of theasymptoti expression. In other words, at whih exter-nal �eld values does the logarithmi term in Eq. (9)beome notieable? An illustration to the answer isgiven in Fig. 4, where we plotted the binding energyand its logarithmi asymptoti form. The onstant �is hosen suh that the value of the logarithmi term(1=2) ln2(�) in the asymptoti expression oinides
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