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PERTURBATIVE APPROACH TO THE HYDROGEN ATOMIN A STRONG MAGNETIC FIELDV. A. Gani *, A. E. Kudryavtsev, V. A. Lensky, V. M. WeinbergState S
ienti�
 Center �Institute of Theoreti
al and Experimental Physi
s�119259, Mos
ow, RussiaSubmitted 15 August 2002We 
onsider states of the hydrogen atom with the prin
ipal quantum number n � 3 and zero magneti
 quan-tum number in a 
onstant homogeneous magneti
 �eld H. The perturbation theory series is summed usingthe Borel transformation and 
onformal mapping of the Borel variable. Convergen
e of the approximate energyeigenvalues and their agreement with the 
orresponding existing results are observed for external �elds up ton3H=H0 � 5, where H0 is the atomi
 magneti
 �eld. The possibility of restoring the asymptoti
 behavior ofenergy levels using perturbation theory 
oe�
ients is also dis
ussed.PACS: 31.15.Md, 32.60.+iThe own magneti
 �elds of some astrophysi
al ob-je
ts rea
h very high values [1, 2℄. If we are interested inthe atomi
 spe
tra in these external �elds, it is 
onve-nient to introdu
e the natural measure of �eld strength,the atomi
 magneti
 �eldH0 � e3m2
~3 = 2:55 � 109 G:The �elds H up to one half of H0 are dete
ted in thevi
inity of some white dwarves. Neutron stars possess�elds up to the order of 104H0. For the 
orre
t in-terpretation of the observation results, it is desirableto know the atomi
 hydrogen spe
trum in this rangeof external �elds. For this aim, 
omputations basedon the adiabati
 approa
h with a Landau level as theinitial approximation were performed [3℄. In what fol-lows, we show whi
h part of the desired external �eldrange 
an be 
overed using the standard expansion inpowers of H, starting from the Coulomb levels of thehydrogen atom. The 
omputation involves many or-ders of the perturbation theory (up to the 75th order).Summation of the series is performed using the Boreltransformation supplemented by a 
onformal mappingof the Borel variable.The Borel summation method was introdu
ed intoquantum �eld theory relatively long ago (see, e.g., [4℄).It has been tested on some quantum-me
hani
al prob-*E-mail: gani�heron.itep.ru

lems (one of the numerous examples is des
ribed in [5℄)and is still applied in modern works [6℄. Great hopes ofthe possibility to advan
e into the strong-
oupling re-gion were related with the Borel summation of the per-turbation series. Some rather simple problems wherethe details 
an be tra
ed and 
ompared with the 
or-responding exa
t results supported this optimism. Forexample, for the funnel potentialV (r) = �1r + gr;applying a 
onformal mapping of the Borel variable andPadé summation of the Borel transformant gives theground state energy as g !1 in the formE(g) = Cg�with the pre
ision about 0:2% for the index � andabout 5% for the 
oe�
ient C [5℄. It be
ame 
learlater that su
h a su

essful summation presents a spe-
ial but not the general 
ase. We 
an guess that thissu

ess is a 
onsequen
e of simpli
ity of this problem.In 
ontrast, the asymptoti
 behavior of energy levels inthe Stark and Zeeman e�e
ts establishes at very largevalues of the external �elds. For the Stark e�e
t, it isnow pra
ti
ally impossible to rea
h the region of thetruly asymptoti
 behavior by perturbation series sum-mation. An intermediate linear asymptoti
 behavior isobserved instead [7, 8℄.457
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e the notation and the s
ale, we writethe HamiltonianH = �12r2 � 1r + 18g(r2 � z2) � Ĥ0 + gĤ1; (1)where g � H2=
2 and we use the atomi
 units~ = m = e = 1 hereafter. In (1), we drop the ele-mentary 
ontribution of the ele
tron spin and 
onsideronly states with the magneti
 quantum number m � 0.We 
an expand E(g) as a formal power series in g,E(g) = 1Xk=0Ekgk: (2)We must then obtain hypersu

eptibilities Ek . We 
anuse the moment method for this aim. This method isespe
ially useful in the 
ases where variables 
annot beseparated in the S
hrödinger equation. Obviously, theZeeman e�e
t is pre
isely su
h a problem. In the pre-vious work [9℄, the moment method was applied to there
urrent evaluation of hypersu

eptibilities. A some-what di�erent version of the moment method was in-trodu
ed in [10℄.For the lower four �isolated� hydrogen levels, weimmediately use the results of Ref. [9℄. Unfortunately,the 
omputer 
ode employed in [9℄ for the relativelymore 
ompli
ated 
ase of degenerate 3s and 3d states
ontained a mistake1). We therefore performed a new
omputation of the 3s and 3d hypersu

eptibilities. Re-sults of the 
omputation for some orders are presentedin Table 1. These results are in agreement with resultsin [11℄, where high-order hypersu

eptibilities were ob-tained for the �rst time (but the method used in [11℄is mu
h more 
ompli
ated than the moment method).As the order k in
reases, hypersu

eptibilities growas a fa
torial [12℄,Ek ! ~Ek = (�1)k+1Cnlakn�(2k + �nl); (3)where an = �n2� �2 ; �nl = 2n� 1 + (�1)l2 ;and Cnl are not essential for us; their values 
an befound in [9℄ and referen
es therein. Equation (3) im-plies that series (2) is asymptoti
al, and the formal sumof su
h a series is therefore ambiguous. But the 
hoi
eof the summation method is in fa
t restri
ted: fromphysi
al 
onsiderations, the fun
tion E(g) must haveanalyti
al properties that are to be reprodu
ed by the1) We are thankful to Prof. V. D. Ovsyannikov for drawingour attention to this mistake.

Table 1. Hypersu

eptibilities of degeneratestatesk Ek for 3s state1 19.578514767111954772299244883942 �7992:5584886425669933491043816873 9951240.4662768423102640463078004 �20931559882:534443686349805799175 58826900682409.7934911529015712125 1:3793233851820609414463787913215 � 109450 �9:3227132696889616617788676903516 � 1021175 2:8053533970811704326574930831176 � 10340k Ek for 3d state1 5.1714852328880452277007551160502 �1017:4258863574330066508956183123 738127.82473878268973595369219954 �923576528:55441129411894420082315 1677908319019.72721777043827253025 1:0431217771758614011812311858395 � 109250 �6:0721978561446884300072726553011 � 1020975 1:7302552995055432680731087635037 � 10338true sum of series (2). In the unphysi
al region g < 0,the diamagneti
 perturbation gĤ1 
hanges its sign, thetotal Hamiltonian be
omes �open�, and the possibil-ity of a spontaneous ionization of the atom emerges.The energy eigenvalue must therefore have an imagi-nary part at g < 0 and the fun
tion E(g) must havea 
ut along the negative real semiaxis in the g plane.Summation using the Borel transformation results in afun
tion that has the left 
ut and is a smooth fun
tionof g ex
ept for the dis
ontinuity at this 
ut.The Borel transformant B(w) of E(g) is a seriesB(w) = 1Xk=0Bkwk (4)with the 
oe�
ientsBk = Ek=�(2k + b0);where b0 is an arbitrary 
onstant. The 
hoi
e of b0
an in prin
iple a�e
t the numeri
al results, but be-
ause 
hanging its value within the interval about0:5 � b0 � 5 has a weak e�e
t, we �xed b0 by 
on-venien
e. The numeri
al 
al
ulations in this work wereperformed at b0 = 3. Series (4) 
onverges, as usual,inside the 
ir
le jwj < 1=an. Substituting asymptoti
458
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oe�
ients ~Ek for Ek, it is easy to verify that the singu-larity of B(w) is lo
ated at w = �1=an. The energy ofthe level is related to the fun
tion B(w) by the integraltransformationE(g) = 1Z0 e�xB(gx2)xb0�1dx: (5)For the numeri
al integration in the right-hand sideto be su

essful, B(w) must be analyti
ally 
ontinuedfrom its 
onvergen
e disk to the domain 
ontainingthe image of the entire positive real w semiaxis. Forthis, we performed a 
onformal mapping of the Borelvariable w. Many su�
iently e�e
tive versions of thismapping are appropriate. The main point is that thenearest singularity of the Borel transformant must beremoved to in�nity. We used the mappingy = anw1 + anw (6)that was employed in [6℄. As explained in [6℄, this trans-formation is optimal in the sense that it diminishes thein�uen
e of all possible singularities of B(w) from theunphysi
al region. Transformation (6) is equivalent tothe following series rearrangement:B(w) = 1Xm=0Dmym; D0 = B0;Dm = mXk=1 (m� 1)!(k � 1)!(m� k)! Bkak ; m � 1: (7)To improve 
onvergen
e, we applied the Padé summa-tion to rearranged series (7),B(w) � [M=N ℄ (y) � PM (y)QN(y) ; (8)where PM and QN are polynomials of the respe
tivedegrees M and N .We performed 
omputations using various Padé ap-proximants and a straightforward summation of rear-ranged series (7). To illustrate the e�e
t of 
ompu-tational a

ura
y on summation results, we 
omparedthose done with double pre
ision (16 de
imal digits)and quadruple pre
ision (32 de
imal digits).Some graphs of the obtained binding energyE(
) = 12
 �E(
2)as a fun
tion of the parameter 
 � n3H=
 are given inFigs. 1�3. Compared with the previous work [9℄, theregion of external �eld values for whi
h these eigenval-ues are su

essfully re
overed is extended by a fa
tor

1s0:751:251:501:000:50
1:75

0 1 2 3 4 5 6 7

E

Fig. 1. Binding energy for the 1s state in atomi
 units.The data is evaluated with the double pre
ision (us-ing the Padé approximant [30=30℄, solid 
urve, andby straightforward summation, dotted 
urve) and withthe quadruple pre
ision (using the Padé approximant[30=30℄, dashed 
urve). Crosses denote the data inRef. [13℄
2s2p0 1 2 4 
3 5 6

E
0:1250:1500:1750:2000:2250:250
Fig. 2. Binding energy for the 2s and 2p states inatomi
 units. Notation is the same as in Fig. 1of about 5. As usual, the pre
ision of the sum 
onsid-erably in
reases at lower H values. The a

ura
y ofthe summation method des
ribed above is illustratedin Table 2.We note that in [9℄, Padé approximants were imme-diately applied to summation of divergent series (2).These approximants imitate the dis
ontinuity on the
ut g < 0 by a set of delta fun
tions, whi
h is a veryrough approximation. On the other hand, the same dis-
ontinuity is represented by a smooth fun
tion of g asa result of the Borel summation. Our 
al
ulations 
on-�rmed that mapping (6) is indeed very e�
ient: afterthis mapping, Padé summation of the Borel transfor-mant improves the 
onvergen
e only slightly, and itsstraightforward summation appears to be su�
ient insome 
ases, see Figs. 1�3.459
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 = 1:12 [M/N℄ E at 
 = 3:20 E at 
 = 4:80 E at 
 = 8:00[28=28℄ 0.172618226340 [30=30℄ 0.214270 0.23396 0.2655[29=29℄ 0.172618226340 [37=36℄ 0.214257 0.23371 0.2612[30=30℄ 0.172618226339 [37=37℄ 0.214265 0.23370 0.2610[31=31℄ 0.172618226343[32=32℄ 0.172618226340Ref. [13℄ 0.17261822 Ref.[13℄ 0.2142655 0.233675 0.260006
3s

3p3d
0 1 2 4 
3 5 60:0500:0550:0600:0650:0700:075 E

0:045Fig. 3. Binding energy for the 3s, 3p, and 3d states inatomi
 units. Notation is the same as in Fig. 1One te
hni
al detail is of prin
ipal importan
e forthe perturbation series summation by any method. Thepre
ision of the entire 
hain of 
omputations must in-
rease as the number of the involved su

essive termsin
reases. This is simply a 
onsequen
e of the fa
t thatthe sum, being of the order of unity, is the result ofa 
ompensation of very large terms with alternatingsigns.At a �rst glan
e, it seems that the high-pre
ision re-quirement is not ne
essary for the Borel transformantbe
ause all the essential alternating sign 
oe�
ients Bkhave approximately the same order. But any numeri-
al pro
edure of analyti
 
ontinuation usually requiresa high pre
ision. Turning to series rearrangement (7),we see that binomial 
oe�
ients entering the sum forDk 
hange by 20 orders of magnitude (in the present
ase). Obviously, an enormous loss of pre
ision o

ursin performing the sum for Dk in (7). Therefore, if wewant to use all Bk up to the 75th order, the pre
ision ofthe Bk 
oe�
ients must be better than about 10�20. Inour 
al
ulations, the pre
ision of Ek, and 
onsequently,the pre
ision of Bk was about 10�30, and the pre
i-

sion of Dk therefore de
reased from 10�30 at k = 0 toapproximately 10�10 at k = 75.We now turn to the problem of restoring the E(g)dependen
e at large values of g and fo
us on the groundstate. We �rst note that an interpolation expression forthe ground (tightly bound) state energy was obtainedin [3℄. In spite of multiple anti
rossings at 
 � 300and of the related 
omputational 
ompli
ations, the �tin [3℄ provides pre
ision within 10�3�10�2 in the range0:1 � 
 � 104.The asymptoti
 form of the ground level energy atlarge g (equivalently, at large 
) is given byE(
)! 12
 � 12 ln2 (�
) + : : : ; (9)where � is a dimensionless 
onstant (see, e.g., [14℄).We �rst 
onsider the possibility of restoring the lead-ing term parameters in (9) � the power index andthe 
onstant multiplier � using the perturbation the-ory. Methods appli
able to this problem are 
onsideredin [5, 6℄. We note that for the asymptoti
 regime to es-tablish, the leading term in (9) must be large 
omparedwith the 
orre
tion term. We refer to the results in [13℄(where the values of E(
) were obtained by a variationalpro
edure), whi
h show that the binding energy is lessthan 20% of (1=2)
 only if 
 > 102. We 
an thereforespe
ulate about restoring the asymptoti
 parametersonly if we su

eed in summing E(g) in this region ofexternal �elds. But we failed to do this using only75 
oe�
ients Ek, and the linear asymptoti
 behavior
ould not therefore be restored. This was 
on�rmed inour attempts to apply the methods proposed in [5, 6℄:no plausible result was obtained. In the method in [6℄,parameters of the asymptoti
 form of E(g) are relatedto the large-k behavior of the 
oe�
ients Dk. Namely,if E(g) ! Cg� as g ! 1, we obtain similarly to [6℄that Dk ! Ck��1akn�(�)�(2� + b0) :460
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Fig. 4. Binding energy and its asymptoti
 form. Thesolid 
urve is plotted using Eq. (6) in Ref. [3℄. Crossesdenote the data in Ref. [13℄. The dotted 
urve is thelogarithmi
 asymptoti
 behavior with � = 0:010It was then suggested to perform the �t of C and � us-ing the known Dk 
oe�
ient and their errors by meansof the �2 method. But in our 
ase, the value of �2 atits minimum is extremely large (about 108 even if wetry to �t only 5 
oe�
ients Dk at the statisti
al error� = 10�10, and we have no reason to in
rease this valueof �). This result indi
ates that the asymptoti
 regimeof Dk establishes at values of k mu
h larger than 75.The power index in the asymptoti
 form of E(g)
ould also be tra
ed using the method in [5℄. Thismethod 
onsists in taking the limit of the expressionwB0(w)=B(w) as w ! 1 (or equivalently, the limit ofy(1� y)B0(y)=B(y) as y ! 1), whi
h gives the exa
tvalue of �. But numeri
al 
al
ulation showed that wedid not obtain a reasonable pre
ision for the limit valuein the region where B(y) was re
overed (for y 
lose to1, the error must obviously in
rease be
ause of a �nitenumber of Dk used).It thus appears to be impossible to obtain asymp-toti
 parameters 
orresponding to a Landau level onthe base of all the known perturbation theory 
oef-�
ients. Nevertheless, taking all possible informationinto a

ount (in
luding that 
ontained in the interpo-lation formula [3℄ and the variational 
al
ulation re-sults [13℄), it is natural to raise the question whether itis possible to subtra
t the Landau level energy from the�exa
t� fun
tion E(g) and tra
e the se
ond term of theasymptoti
 expression. In other words, at whi
h exter-nal �eld values does the logarithmi
 term in Eq. (9)be
ome noti
eable? An illustration to the answer isgiven in Fig. 4, where we plotted the binding energyand its logarithmi
 asymptoti
 form. The 
onstant �is 
hosen su
h that the value of the logarithmi
 term(1=2) ln2(�
) in the asymptoti
 expression 
oin
ides

with the data in [13℄ at 
 = 105. This o

urs at� = 0:01 and the smallness of this 
onstant indi
atesthat the value of 
 is too small for speaking about theasymptoti
 regime. We 
an see that the asymptoti

urve and the 
urve of exa
t data have 
onsiderablydi�erent slopes.Thus, for the Zeeman e�e
t, perturbation theorydoes not allow re
overing even the linear part of theground state energy asymptoti
 behavior in a strong�eld and the logarithmi
 term be
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