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Quantum algorithms speeding up the classical counterparts are proposed for the following problems: recogni-
tion of eigenvalues with a fixed precision, recognition of molecular and electronic device structures, and finding
thermodynamic functions. We mainly consider structures generating sparse spectra. These algorithms require
the time from about the square root to the logarithm of the time of the classical analogues and give exponential
memory saving for the first three problems. For example, the time required for distinguishing two devices with
the same given spectrum is about the seventh root of the time of the direct classical method, and about the
sixth root for the recognition of an eigenvalue. Microscopic quantum devices can therefore recognize molecular
structures and physical properties of environment faster than big classical computers.

PACS: 03.67.Lx

1. ELECTRONIC DEVICES AND QUANTUM
COMPUTATIONS

1.1. Statement of the problem and outline of
the work

The aim of this paper is to build effective quantum
algorithms for problems of the following types:

1. given a quantum gate array generating a uni-
tary operator U and a complex number w, to determine
whether it is an eigenvalue of U with a fixed precision,

2. to recognize the structure of an unknown elec-
tronic or molecular device given only access to its func-
tion.

The first problem is an important intermediate step
in solving the second"). We consider them sequentially.

Recognition of eigenvalues. This problem is
closely related to finding the eigenvalue distribution
or density of states (DOS), i.e., the energy levels
FEo < Fy < ... and the dimensions of the correspond-
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1) A straightforward calculation shows that the simulation of
evolution generated by a given Hamiltonian up to a time instant
7 with a fixed accuracy requires the number of steps of the order
72 on a quantum computer. This means that all results of this

paper can be generalized to arbitrary quantum systems.
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ing subspaces dg,d;,... The DOS plays a key role in
calculating thermodynamic functions given by

F= Za(j)dj exp <— >

for some values a(j) such that the summands rapidly
converge to zero. For example, this expression gives
the partition function @ if all a(j) = 1, the average
energy if

E;
kT

(1)

a(j) = E;/Q
and the entropy if

o) =-"En (exp (— ) /Q) |

Having an efficient method of finding d;, we would
be able to obtain thermodynamic functions and to de-
termine important properties (e.g., heat capacity) of
environment consisting of such molecules. The best
known classical method of finding the DOS was pro-
posed by Hams and Raedt in [1]. Their method re-
quires the time of the order given by the dimension N
of the space of states and the memory of the same order
(whereas the direct method of calculating eigenvalues
requires the time of the order N3). The first quantum
algorithm for this problem proposed by Abrams and

E;
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Lloyd in [2] requires the same O(N) time and logarith-
mic memory. The method proposed in the present work
requires the time of the order given by the square root
of the classical one and memory of the order In® N.

The idea of our approach is as follows. We use a
combination of the Grover search algorithm (GSA), the
Abrams and Lloyd method [2] of revealing eigenvalues,
and the universal quantum function of application App.
The Abrams and Lloyd method of revealing eigenvalues
is based on the application of U controlled by ancillary
qubit « as

U z,a)

|z, a)

if a =1,
Ueonalr, ) = { if o = 0.
We note that it is a direct generalization of Shor’s trick,
which can be obtained if U is a multiplication by a given
integer modulo ¢ [3].

Recognition of device structures. We separate
two versions of this general problem: recognition of
molecular structures and recognition of electronic cir-
cuits.

If we want to determine a molecular structure, it is
natural to assume that its functionality is given as the
spectrum of its Hamiltonian, e.g., the set of its energy
levels. It is therefore required to find a quantum system
whose Hamiltonian has a given spectrum.

The problem of recognition of electronic circuits is
stated differently. An electronic device is considered as
a source of electromagnetic fields that can control some
quantum system Q. Let such a field induce evolution of
the system with the Hamiltonian H in the time frame
0t. We then have the correspondence

(electronic device) — (Hamiltonian, dt).

The evolution of the quantum system () induced by this
Hamiltonian can be represented as a unitary transfor-
mation )
U =exp <—£H5t> .

h
Given a device C' and a time instant ¢, we can then
associate some unitary transformation Uqx with it. We
assume that we have recognized a circuit C if we have
found some circuit C; such that Uc = Ug, with high
accuracy. We write U instead of Ug for the circuit C'
that we want to recognize. In fact, we solve a more
general problem where the tested device C' can be used
as a black box acting on n qubits as a function Ue
such that if 2 is an input, then Ug|2) is the result of
its action on this input. The tested device can contain
its own quantum memory and can be entangled with @
in the course of performing the transformation U, but
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this entanglement must then be eliminated. The ex-
istence of such an entanglement implies that this case
cannot be described by the Hamiltonian of the system
(). For simplicity, we assume that the unknown cir-
cuit is built from elementary functional elements taken
from some fixed set. The next natural assumption is
that the size of the circuit is limited by some constant
¢ such that the circuit is some unknown combination
of ¢ functional elements. We let £ denote all circuits of
the length ¢. We can encode such C € & by a string [C]
of ones and zeroes such that the decoding procedure is
easy and we can immediately recreate a circuit given
its code. We can therefore look through all circuits by
looking through their codes. The same coding can be
built for electronic devices.

A straightforward solution of the problems is clear.
For the problem of recognition of molecular structures
all that we need is to be able to recognize eigenvalues of
the transformation generated by a given circuit. Each
eigenvalue of a unitary operator has the form e>™,
where w is a real number from [0,1) called the fre-
quency. In what follows, the spectrum is meant to be
the set of all frequencies. Let all the frequencies be
grouped near points of the form /M, where M is not
very large and [ = 0,1,... ,M — 1. We assume that
the acceptable precision of the recognition of frequen-
cies is 1/M. Having an algorithm for the eigenvalue
recognition, we can apply it repeatedly, constructing
spectra generated by all possible circuits, and thus find
the sought circuit with the given spectrum. If we need
to recognize a circuit of an electronic device, we can
examine all possible circuits taken in some order. Ex-
amination of one circuit means that we run it on all
possible inputs one after another and compare the re-
sults with the corresponding result of the tested device
action.

For the problem of the recognition of molecular
structures, our method requires the time of the order
sixth root of the time of the direct classical method,
whereas memory saving is exponential. For the prob-
lem of the recognition of electronic circuits, our method
gives at least square-root time saving in the case where
the classical counterparts exist (this is the narrow for-
mulation where the tested device generates a classical
mapping). But the advantage can be greater in the
general case. For example, we can distinguish between
two devices with the same spectrum in the time about
the seventh root of the time of the brute force method.

To recognize devices at the quantum level, we must
be able to store and perform operations on codes of
different circuits. This possibility is based on the ex-
istence of a quantum analogue of the universal Klini
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function. This is a unitary operator App such that for
all quantum devices C and all inputs z,

Applz, [C]) = |Uc =,[C]).

We assume that for a wide range of quantum devices
C with ¢ particles, C' can be encoded as an integer [C]
in time O(c) such that the quantum complexity of App
is also O(e).

We here consider a particular case of the problem
where all eigenvalues of U are known a priori or can
be obtained in advance. This restriction is not very
constraining. To illustrate the tasks that can be solved
by the proposed method, we consider several examples
of the problem of recognition of an electronic device
whose spectrum is known.

Recognition of quantum algorithms is designed as
subroutines. Such an algorithm must restore the input
if we apply it twice. Computing a function f, it acts as

|2, b) — |z, b+ f(x) mod 2).

All known quantum algorithms can be represented in
this form. For such quantum algorithms, the uni-
tary transformation U has only two eigenvalues, 1 and
—1. Given a controlling device for such an algorithm
(which can also include classical elements and ancillary
qubits), we can quickly recognize its construction. Al-
ternatively, we can quickly find a quantum or classical
algorithm for a given task.

We consider the «classical» particular case of the
recognition problem where U maps each basic state to
a basic state, which means that the matrix of U con-
sists of ones and zeroes and in addition U equals U ',
Here, the evident recognition strategy takes the number
of steps of the order card(£). In this case, the prob-
lem can be reformulated as finding such ¢ that some
given predicate A(t,s) is true for all s. This is the
problem of verification of logical formulas. Its quan-
tum solution in a time about the square root of the
classical time based plainly on Grover’s trick was pro-
posed in [4]. This method is inapplicable in the general
case where U¢ is an arbitrary involutive unitary trans-
formation, e.g., such that U = U~"'. This general case
is precisely the subject of this work. Here, we cannot
recognize a circuit so easily as in the «classical» case
because it is difficult to compare two quantum states
Uc|x) and Ulz).

The general idea of our approach to the recognition
of arbitrary electronic devices is as follows. We include
the device C' whose structure we want to recognize into
the classical controlling part of a quantum computer.
We consider the main system of n qubits. The tested
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device then generates a unitary transformation on this
system. We then find the eigenvectors of U using Ugong
by the above method and compare them with the eigen-
vectors of circuits from £ choosing a circuit that gives
the best approximation. Here, GSA is used at the last
step and at the several intermediate steps.

The sparse spectrum assumption. In this pa-
per, we mainly consider circuits generating sparse spec-
tra. This means that the spectra of the operators Ug
are designed such that the frequencies are assembled
in groups and the minimum distance between frequen-
cies from the different groups is greater than 1/M and
the maximum distance between frequencies in the same
group is less than 1/L. In the problems of eigenvalue
and molecular structure recognition, we require that
L = 16M, which is not very restricting. In the prob-
lem of recognition of electronic devices, we assume that
L > M, which is a stronger limitation. A spectrum is
called sparse if M = const as N — oo. Our algo-
rithms show the best performance for sparse spectra.

Spectra that are not sparse are called dense. For
dense spectra, our methods give less advantage over
the classical algorithms (see Sec. 3.6). An exam-
ple of a dense spectrum is given by wy kE/N,
k=0,1,...,N—1. Similar problems for dense spectra
require additional investigations.

We write w' ~ w iff w’ and w belong to the same
group. For simplicity, we also assume that for each
group of frequencies, there exists a number of the form
I/M positioned between some two frequencies of this
group, where [ is an integer less than M.

1.2. Abstract model of quantum computer.
«Plug and play» technology

To build algorithms recognizing circuits, we need an
abstract model of the quantum computer. A quantum
computer consists of two parts, quantum and classi-
cal. The classical part exactly determines what uni-
tary transformation must be performed on the quan-
tum part at each time instant and therefore plays the
role of a controller for the quantum part. These unitary
transformations are of two types: working transforma-
tions, which our computer performs itself, and query
transformations, which are induced by a tested device,
U or and.

We can suppose that the quantum part @) consists
of nuclear spins or interacting dipoles (or some other
quantum two-level systems) and the classical part is a
source of electromagnetic fields determining the evolu-
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tion of the quantum part. The general form of a state
of the quantum part is

2 —1

X = Z Ai€i
i=0

where the basic states eq, ... ,esv_1 are simply strings
of ones and zeroes of the length v > n; this length is
the size of the quantum part that can contain some
auxiliary qubits in addition to the input for U, N = 2"
is the number of all classical input words for U, and

2v 1
P =1
i=0

The classical part determines when the tested de-
vice is to be «switched on» (this usually occurs many
times) and when the result of the computation is to be
observed. Observation of a state Yy gives every basic
state e; with the corresponding probability |\;|?.

The problem of recognition of electronic devices pre-
sumes the so-called «plug and play» technology where
the tested device is applied only as a black box. If query
transformations are only U, then our model evidently
satisfies the requirements of the «plug and play» tech-
nology, where we classically control switching the tested
device. An implementation of Uyng in the framework
of this technology is not so easy because it requires a
quantum control on applications of the device?).

It is nevertheless possible to implement Ugynq in the
framework of the «plug and play» technology. This
problem requires additional investigations; here, we
simply presume that it is possible. This difficulty does
not exist in the problems of the eigenvalue and molecu-
lar structure recognition. Here, we can manage without
oracles because having an explicit form of a quantum
gate array realizing the universal function of applica-
tion App, we can control its actions in each element
at the quantum level separately and simultaneously,
thereby implementing Ugpng-

Let every basic state be partitioned as

e; = |place for code [C], R;, Rs, ... , Ry),

where each register R; is in turn partitioned into a place
for the argument, places for time instants, and places
for the corresponding frequencies. A complex index i
contains one or two integers, and the length of e; is
therefore a polynomial in ¢ and n of at most second
degree.

2) This would evidently be possible provided we have access to
the internal details of our device and can simultaneously control
their work at the quantum level. But this assumption contradicts
the «plug and play» technology.

2. OBTAINING NEW ALGORITHMS FROM
BASIC QUANTUM TRICKS

2.1. GSA and the amplitude amplification

The GSA proposed in [5] is one of the two basic
quantum tricks. It is used for quickly obtaining a quan-
tum state a given the inversion Iz along this state. The
inversion along some state a is defined by

. Z)
Iax =
. { -

We also assume that I; acts as the identity if @ does not
exist. A typical situation is where a state is unknown
but the inversion along it can be performed easily. For
example, let @ be a solution of the equation f(z) =1
with a simply computable Boolean function f. The
inversion I; can then be implemented by modulo-2 ad-
dition of f(z) to an ancillary qubit initialized by

if zla,

if x =a.

0) - 11)
V2
This transformation maps the state

to the same state with the sign «+» or «—» depend-
ing on whether the equality f(z) = 1 is satisfied. The
transformation is unitary and can easily be performed
given a device performing f. All sequential transfor-
mations in our formulas are applied from right to left.

The GSA is a sequential application of the trans-
formation G = I;I; to a randomly preset state 0. If
we apply this transformation O(v/N) times, where N
is the dimension of the main space, then an observation
of the quantum part yields @ with a visible probability,
whereas finding a without a quantum computer would
have required the number of steps of the order N.

A minor difficulty is here that we do not exactly
know the time instant ¢ at which the iterations must
be terminated in order to make the probability of er-
ror negligible, as required in applying the GSA as a
subroutine. The following simple trick helps here.

We define the number B = B(N) such that 1/B
is the average value of |(a | 0)| for 0 uniformly dis-
tributed on a sphere of radius 1 in the space of inputs.
A straightforward calculation shows that B = O(v/N).
Let GenArg; be operators generating arbitrary vec-
tors a@; from the space of inputs belonging to inde-
pendent uniform distributions, j € {1,2,...,k}, and
let GenTimeArg; be operators generating time instants
t; from independent uniform distributions on integers

13*
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from the segment [0, B]. We arrange k copies of two
working registers, for the input and for the storage of
a time instant, and apply the corresponding operator

(I5Iz)% GenArg;GenTime;

to each register. If @ exists, the probability to obtain
a observing any single register is at least 1/4 (see [6])
and the probability to obtain any other fixed state is
negligible because our operators GenArg; generate in-
dependent uniformly distributed samples. If @ does not
exist, which implies that I; is the identity, then the
probability to obtain any fixed state is negligible. We
let a; denote the contents of the j-th register for the
argument in the resulting state. We consider the follow-
ing criterion: if at least one fifth of a;, j =1,2,... ,k,
coincide, we decide that @ is this value, otherwise a
does not exist. We now calculate the error probabil-
ity of this criterion. Let K be the number of those j
for which @; = @. By the central limit theorem, the
probability that the fraction

(k/4) - K
(k/4)-(3/4)

belongs to the segment [a1, as] converges to

17

2
—— [ e7* /24y,
\/271'/

[e%)

Straightforward calculations then show that the prob-
ability that K < k/5 is of the order

oo

/e_“2/2dx

a1

for a; of the order vk. To make the error probability
of the order 1/\/N, it therefore suffices to choose k of
the order n = log N. This method can be used not
only for the GSA but also for other algorithms. If the
probability to obtain the correct result for each of the
k registers is some positive number p independent of
the dimensionality, then to make the error probability
1/Ny, it suffices to choose k of the order log N;. In
what follows, we use this simple trick without specially
mentioning it and let & denote the simultaneous op-

erations of the same tyf)e on all working registers. We
assume that all ensembles generated by the different
j-th copies of operators are taken from independent
distributions.

We use the standard norm

Al = sup [[Az]|

lzl=1

on operators in a Hilbert space. Given an operator A,
we let A. denote an operator such that [|A — A.]| < e.
In what follows, we use the above method requiring
copies of registers, thereby raising the accuracy of our
operators to the required level. When we must repeat
an operator T times, the required accuracy of one ap-
plication must be 1/T and as shown above, it can be
ensured by only linear price in memory. Instead of A,
we therefore always use A., where e = O(1/T'), when-
ever an operator A must be repeated T times; we do
not explicitly indicate this in the notation.

2.2. Revealing the eigenvalues

The second basic quantum trick is used for revealing
eigenvalues of a given unitary operator U. We define an
operator revealing frequencies in accordance with [2].

Let M = 2™ and L = 2P. We determine frequencies
of unitary operators within 1/L, where L is the num-
ber of applications of U required for revealing frequen-
cies with this accuracy, which means that the accuracy
1/M is sufficient to distinguish the eigenvalues of U.
For the recognition of eigenvalues, we put p = m + 4,
and therefore, L = 16 M.

We let (0.1), denote the number from [0, 1) of the
form I/L. Let the operator U have the eigenvalues
e?™wr where the frequencies wg, wi, . .. ,wxni—1 are dif-
ferent real numbers from [0,1). Let Ej be the space
spanned by all eigenvectors corresponding to wg. An
arbitrary vector with the length 1 from Ej is denoted
by ®. Every state ¢ therefore has the form

N'—1

§= Z xkq)k.
k=0

Let N’ be some integer and Q = {@y;} be some
set of integers from {0,1,... , L —1},0<i < M —1,
0<k<N —=1;¢>0. We set

LEQ) = {i: [(0.0,i)p —wi| <e

or |(0.0x,i)p —wr — 1] < e}
Definition 1. A transformation W of the form

N —-1L-1

W [€0m) — >N " Nk B @)

k=0 i=0

is called a transformation of type W5 if for all k and
&
Z Nikl? > |22 (1 = 20).
ieLk(Q)
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Thus, ¢ is the error probability of obtaining the cor-
rect frequencies wy, by observation of the second register
and ¢ is the precision of the frequency approximations.

Definition 2. A unitary operator R is called re-
vealing frequencies of U if R belongs to the type W%%
for any K € {1,2,...  L}".

The key here is the quantum version of the Fourier
transform (QFT) defined by

L—1
QFT, : |s) —> % ; exp (—2risl /L) [I).

We also need the following generalization Uge, of the
operator Ucond:

L _ a
Useql®,a) = Uz, a).

This is the result of a sequential applications of U to the
main register. To implement this operator by means of
Ucond, we perform the following cycle. For an integer
counter j ranging from 1 to the maximum value L — 1
of a, we apply U iff j < a. One cycle then consists
of Ueong with a properly prepared controller and the
resulting operator is U, .
We define the operator revealing frequencies by

L
seq

Rev = QFT, UL QFT,,

where quantum Fourier transformations are applied to
the second register?). It was proved in [7] that Rev is
a transformation revealing frequencies. We now need
more. For a redistribution of amplitudes x;, we also
need the transformation Rest cleaning the second reg-
ister. The ideal candidate for this role would be Rev ™!,
but it requires the application of U !, which is physi-
cally unrealizable given only the device fulfilling U, ex-
cept in evident cases where, e.g., U = U ~!. We can use
this simplest definition of Rest only in the case where
we are given a circuit implementing U (e.g., gate array)
because U ! is then accessible for us as well as U. But
if C' is given only as a black box, the restoring operator
must be defined separately.
We find the operator restoring ancilla in the form

Rest = RevD,

where D is some operator of turning. Given some inte-
gers wF of the form q/L, where ¢ is an integer, OF = wy,,
we can define the operator D of turning by

D|<I>k,l> = exp (—27ri(L — 1)5k7l) “I’k,l>,

3) In what follows, we use this notion only with K = 16.

Y As in [2], the first QFT can be replaced by the Walsh—
Hadamard transform because it is equivalent to the QFT on zero
ancilla.
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where
Skt = OF — (0.0) .

Tt was proved in [7] that
||(ReStR‘eV|X76> - ‘X76>|| < 7M/L,

which implies that the restoring operator thus defined
indeed restores zeroes in the second register after the
action of Rev if L is sufficiently large. To create these
good approximations, we apply a slightly more general
construction. We set

D = Enh D Enh,

where the operator Enh calculates an integer function
h(l) giving a good approximation (0.h(1)), of frequen-
cies within 1/L given their rough approximation (0.0),,
within 1/M and places them into ancilla, D rotates
each eigenvector by an appropriate angle

D|®y) = exp [=2mi(M — 1)((0.h(1), — (0.1)p)] |4,

and the last application of Enh cleans the ancilla. The
operator Enh is accessible given good approximations
of eigenvalues. Our operator Rest therefore restores
zeroes in the ancilla within 1/L.

We can reach the accuracy 1/L for all operators of
type Rest that are less than 1/t, where ¢ is the num-
ber of all steps in the computation; this accuracy can
be guaranteed with log L = p registers. We emphasize
that this difficulty with the eigenvalue precision arises
only when U~! is inaccessible, as in the problem of
recognition of electronic circuits in Sec. 3.4, where we
must choose L > M.

The operators Rev and Rest can be built in the form
of a quantum gate array using the universal quantum
Klini function App, where the code [C] of a circuit gen-
erating U is a part of the input. We write the operator
U corresponding to these two operators as the super-
script.

3. RECOGNITION PROBLEMS

3.1. Obtaining eigenvectors and recognition of
eigenvalues

Our assumption about a sparse spectrum is now
stated as L = 16M = const. Because Rev reveals fre-
quencies, it belongs to the type Wy ,16,1/1- By defini-
tion of W5, this implies that Rev gives a state

N —-1M—1

Z Z Xik|®Pr, Ok ),
k=0 i=0
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where the seven eighth of the probability is concen-
trated on the pairs 4, k such that (0.w; ;)m is close to wg.
This implies that we can obtain eigenvalues with a high
probability by observing the second register; the first
register then contains the corresponding eigenvector.
This procedure to obtain eigenvectors was proposed in
[2, 8]. Its first disadvantage is irreversibility. Observ-
ing a state, we lose the complete information about it;
we cannot use this state again, which is very important
for building nontrivial quantum algorithms. The sec-
ond disadvantage is that this procedure gives a random
eigenvector when it is typically required to obtain the
eigenvector corresponding to a given frequency.

We consider a good approximation &’ of some fre-
quency w written as a string of p of its sequential bi-
nary digits and let &, = {®{,...,®} be a basis of
the subspace E, of eigenvectors corresponding to all
frequencies w’ ~ w. We now build the operator State,
that concentrates the bulk of the amplitude on some
superposition of the corresponding eigenvectors

l
Z /\](I);J € FE,.
j=1

For this, we apply the GSA. Let

l
ja) =3 u®% + 3 v,
j=1 s

be some randomly chosen vector from the main space
with all eigenvectors in the second sum corresponding
to frequencies w’ % w. Our target state is the vector

I
j=1

where
Hj

——
\/ > w2
j=1

The vector is therefore of length 1 and is directed along
the projection of @ to the subspace E,,.

Let A be some set of vectors. We let I4 denote the
operator that changes the sign of all vectors in A and
leaves all vectors orthogonal to A unchanged. Our aim
is to obtain the operator I, constrained to the two-di-
mensional subspace S(a,w) spanned by the vectors |a)
and E,(a).

Let Rev; and Rest; be j-th copies of the respective
operators Rev and Rest acting on the corresponding
places of the j-th register. We let /; denote the string

A\ =

390

contained in the place for the frequency of the j-th reg-
ister and set

v v
Ig, = ®Restj Sign,, ® Rev;.
J J

It follows that Sign,, changes the sign if and only if
|(0'lj)p - (0~°3L)p| < 1/L

for at least a half of all ;5. Applying the argument at
the end of Sec. 2.1, we conclude that the actions of Ix
and I, restricted to S(a,w) differ by less than 1/2°(*);
this difference can therefore be made very small with
only a linear growth of memory. We thus omit the tilde
from our notation.

We define

St = GenArg™'GenTimeArg™' o
o (Iz1g,) GenTimeArg GenArg,

where the respective operators GenArg and
GenTimeArg generate the pair a, [C] and the
time instant ¢, with C being a gate array implementing
Iz. Here, the actions of I; are implemented by the
universal function of application App. The result

¢ = St|0) of its action on 0 is then close to E,(a).
Indeed,

[(Ew(a)|€)] = | sin(2t arcsin(a| E, (@)))]

(see [6]). The average value of |[(a|E,(a))| with the
uniformly distributed probability of choosing @ and ¢
over all space and the time frame [0, B] correspond-
ingly is of the order 1/\/N Therefore, if ¢ is randomly
chosen from the uniform distribution over 1,2,..., B,
then the average value of |(E,(a)|£)]? is not less than
1/4. Of course, it would be much more convenient
to obtain E,(a) with the error probability converging
to zero, which is possible by the method described in
Sec. 2.1. Namely, we arrange h equal registers for
the states yx, &K = 1,2,...,h, in the main space, the
corresponding h registers for the frequencies, and as-
sociate the variable t; with each k-th register. Let
Sty be a pattern of the operator St acting on the k-th
register. We recall that the operators GenArg, and
GenTimeArg, generate independent distributions for
different k = 1,2,..., h. We now define

State® = St1 (X)St2 X) ... (X) Stn. (2)

5) We could choose any fixed p: 1/8 < p < 7/8 instead of 1/2.
Indeed, wa thus defined would change the sign of all a € E,.
If al E,, the probability to obtain w in observing the frequency
from Rev is less than 1/8.
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Applied to zero initial state, this operator gives a
state Y1 @ x2 Q... QR xn, and the average value of
(B, (xk)|xk)|? is close to some number not less than
1/4 with the vanishing probability of error. This also
implies that if we then apply the corresponding oper-
ators Revi @ Reva &) ... Q) Revy, revealing frequencies
to this state, the main part of the amplitude of the re-
sulting state y is concentrated on the basic states for
which at least 5/32 of all registers for the frequencies
contain numbers [ such that®

1(0.0) — (0.07),] < 1/L.

On the other hand, if w is not a frequency, the proba-
bility to obtain such a basic state vanishes because the
distributions generated by GenTimeArg, and GenArg,
are independent for different k.

The time complexity of this algorithm is of the or-
der M+/Nn?. The last factor arises because of copying
the registers. We therefore have a solution of the first
problem of the recognition of eigenvalues.

3.2. Finding thermodynamic functions

Given the structure of the molecule of a gas, we con-
sider the problem of finding its thermodynamic func-
tion (1). Because the common term in this sum rapidly
converges to zero, it is sufficient to find the first se-
veral summands. It is therefore sufficient to find the
degree of degeneracy of the subspace corresponding
to the frequencies w' w for any w = /M. Let
Ey < E; < ... < Es be energy levels of the molecule
(the eigenvalues of its Hamiltonian H).

The evolution operator in time frame ¢ is then given

by
_iH,
).

Adding the diagonal matrix 7/ with a constant r to
the Hamiltonian does not change the physical picture.
Choosing

~

U:exp<

_h
T 27E,’

r=—-Fs, t
we then obtain a unitary operator U whose frequen-
cies belong to the segment [0, 1). Thus, the problem is
reduced to the case considered above.

We assume that M is fixed and we must examine
only several frequencies close to 0. We can first recog-
nize all numbers of the form [/M that are frequencies
within 1/L. Let w be such a number. We now show

6) We note that in this criterion, 5/32 could be replaced by
any p such that 0 < p <1/4-7/8 =7/32.
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how to find the degeneracy degree d of the correspond-
ing subspace. This is the dimension of the subspace E,,
spanned by the eigenvectors corresponding to frequen-
cies w' &~ w. Our strategy is as follows. We build the
operator I, of reflection along this subspace. Using
a counting procedure built in [6], we then evaluate the
time required for turning an arbitrary initial vector to
this subspace. This time is about y/N/d and we thus
find d. We fix some ¢ > 0 and show how to obtain the
value of d within ed.

Let the operators GenTimeArg] generate time in-
stants ¢; from independent uniform distributions on the
segment [0, [a]], where a is a nonnegative number. For
a from 1 to /N, we perform the following three-step
loop:

1) apply the operator

® ®R6Vj,k

j k

2) find the fidelity of the result, i.e., the number of
all j for which at least 7/8 — € of all k are such that
wj,k &~ w; if the fidelity of this step is larger than at the
previous step, we proceed the loop, otherwise we stop;

3) replace a with 4a/3.

If we finish the computation at step 2, the current
value of a is taken as a rough approximation of d from
above. We have 3a/4 < d < a. To find d more ex-
actly, we divide the segment [3a/4,a] into [1/€] equal
parts by points ap < a1 < ... < a; and repeat the
above procedure sequentially for all a;. We thus de-
termine d within g(e)d, where ¢ is a function rapidly
converging to zero with e. Thus, our algorithm finds
d and thermodynamic functions with an arbitrary rel-
ative error in the time O(v/N)M, where the constant
depends on the admissible error. A more refined algo-
rithm can be obtained if we apply the method of count-
ing in [9]. In that work, the quantum Fourier transform
is used analogously to the Abrams and Lloyd operator
Rev only in order to find the time period of the function
G|¢, t) = |GEE, t), which is about \/N/d. Their method
gives the accuracy of the order V/d, which implies that
the relative error converges to zero as d — oo.

a

(IIg,)" GenTimeArg]

GenArg;;

3.3. Recognition of molecular structures

We now consider the problem of recognition of
molecular structures. Given the spectrum of a
molecule, we must recognize its construction. We have
no access to the device, but it is sufficient to find an
arbitrary device generating this spectrum. To clarify
the formulation, we assume the following form of deter-

mining the spectrum. Given a set @ = {wy,...,wg}
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of numbers from [0,1) of the form w; = I;/M with
l; € {0,1,...,M — 1}, we let F' denote the subspace
spanned by vectors of the form |l;), i = 1,...,Q. A
spectrum S is determined by this set @ if

a) for each w € S, there exists its good approxima-
tion w; € W, |w; —w| < 1/L, and

b) each w; € w is a good approximation of some
weS.

We would obtain a slightly different formulation of
the problem if we wished to find a circuit whose spec-
trum only contains one given set of frequencies and/or
does not contain other sets, or if we permit some more
general form of a sparse set for @ instead of [;/M.
These versions of the problem have similar solutions.

As above, we find the recognizing algorithm in the
GSA form

(IgLeir, )", (3)
where 0 is an arbitrarily chosen vector from the space
spanned by codes of the circuits, t = O(v/T), where T
is the number of all possible circuits, and I, 5 is the
reflection along all codes [C] such that Spectr(Ug) is
determined by @. It now suffices to build I, .

We choose By = O(1/Q) such that a randomly cho-
sen vector w € F satisfies

[(wlw:)| > 1/By

with  probability 0.99. Let GenFreq; and
GenTimeFreq; be the respective operators gener-
ating a linear combination of frequencies ©; € F' and
a time instant {f..q, ; < By; all these objects are
taken from the corresponding uniform distributions
over all possible values and the code of the gate
array generating the inversion along the corresponding
state @;. These operators generate objects in the
corresponding ancillary registers. We let w; be the
frequency contained in the j-th register (initially, @;).

We assume that the code of the circuit generating
U is fixed and define the operator I.;», 4 by

Leir, » = (X) [GenFreq; ' GenTimeFreq; " o
J
o (IadFreq, w,j1z,)"7e® 7] SignGoodFreq
® [(I@j IBadFreq, w,j)tf”"qv fGenFreq]-GenTimeFreqj] ,
J

where IpadFreq, w,j inverts the sign of states with «bad
frequencies» in the j-th register; these are the values
of w; of the form /M, 1 € {0,1,...,M — 1} that ei-
ther belong to @ and are not a good approximation of
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frequencies w € Spectr(V) or do not belong to @ but
have a close frequency

w € Spectr(V) : |wj —w| <

A

on all other frequencies, this operator acts as identity.
Application of the sequence preceding SignGoodFreq
concentrates the amplitude on bad frequencies. We
note that Iz, can be implemented by a given code by
means of the quantum Klini operator App. The sub-
sequent application of SignGoodFreq inverts the sign
of a state depending on whether bad frequencies are
present. Namely, SignGoodFreq changes the sign for
codes [C] without bad frequencies and does nothing for
codes [C] with bad frequencies. The subsequent oper-
ators clean all ancilla. Therefore, I, 5 defined this
way inverts the sign of exactly those codes C' for which
Spectr(U¢) is determined by w. We need to define two
types of operators: SignGoodFreq and Isadfreq, w,;-

With each w; contained in the j-th register, we as-
sociate a family of registers enumerated by two indices
J, k and containing the frequencies wj .

Definition 3. A family of all wj . is called good if
the following property is satisfied for at least 1/5 from
all j: for at least 1/10 of all k, wji ~ w; € ©.

The registers enumerated by different & for a fixed j
are designed for the application of the j-th copy of the
operator State” defined in the previous section. Here,
it is given by State“’. Each k corresponds to the op-
erator Sty in definition (2) such that each wj is the
frequency obtained from the result of the action of Sty.

We first build the operator IpadFreq,m,j- We set

IBadFreqﬂI),j = ® I:(Statewj)_lReStj,k] o
J:k
o Sign' ® [Rev; ,State“i],
Jik

where the operator Sign’ changes the sign of only states
with bad families of frequencies.

It was shown in the previous section that if a fre-
quency w; is bad, we can only have wj; ~ w; € w for
the vanishing part of all &, and before Sign’, almost all
probability is concentrated on bad families w; x; there-
fore, IsadFreq,w,; changes the sign.

If w; is good, then it belongs to w and has a close
w' € S. It follows from the previous section that about
7/8-1/4 =7/32 > 1/5 of all k satisfy w;, = w € W
and almost all probability before Sign’ is concentrated
on good families, and the sign is therefore unchanged.

~
~

Hence, IgadFreq,w,; is defined correctly.
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We set

SignGoodFreq = ® [(Statewj)_lReStM] °
ok
o Sign ® [Rev; ;State“’],
ik

where the operator Sign changes the sign of only states
with good families of frequencies. If a frequency wj is
not bad, then about 7/8-1/4 = 7/32 of all k satisfy
wjr & w; € w. If a frequency w; is bad, we can only
obtain wj; ~ w; € W for the vanishing part of &, as
shown in the previous section. Thus, SignGoodFreq
acts as required”.

We now calculate the complexity of our algorithm of
recognizing a molecular circuit. The first factor v/7 im-
mediately follows from (3). The next factor /@ follows
from the definition of I.;, . Finally, the definition of
IBadFreq, @ gives the factor M+/N. The resulting com-
plexity is of the order M+/TNQn?.

3.4. Distinguishing eigenvectors of two
operators with the same eigenvalue

We now consider the most difficult of our problems,
the problem of recognition of electronic devices. The
difficulty is that we are not to find a circuit with a given
spectrum, but must simulate the action of a given cir-
cuit. We recall that we now assume that frequencies
can be determined within 1/L given their approxima-
tion within 1/M, where L > M.

Ag a first step, we consider the following problem:
given two operators U and V having the same eigen-
value w, to find the difference between the correspond-
ing eigenvectors. We let LU and LY be the subspaces
spanned by the eigenvectors of U and V' corresponding
to all frequencies w’ & w. (A particular case is where
w is a frequency of U but not of V. Here, LY = ) and
our algorithm is applicable in this situation.) We omit
the index w from the notation. For u € LY, ||u|| = 1,
we set

po = min{y/1 — [{ulv) > | v € LV, |jv]| = 1},
which is the sine of the angle between w and the sub-
space LV, or the distance between u and this subspace;
we define yu,, for v € LY, ||v|| = 1, similarly. We set

WU = MaX [ly, by = MAX [iy.
uclU veV

7 Again, we could take arbitrary p;: 0 < p1 < 1 instead of
1/10 and pa: 0 < p2 < 7/32 instead of 1/5 in the definition of a
good family.
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Then py = 0 implies that U C V. If the dimensions of
the spaces LV and LY are equal, then puy = py; if they
are not equal, e.g., dim LY > dim LY, then py = 1. Let
d = d(N) be some function taking values in (0, 1]. We
call these subspaces d-distinguishable if one of ugr, uy
is not less than d, or one of the subspaces is empty and
the other is nonempty.

We build a procedure that determines whether these
subspaces are the same provided they can be either d-
distinguishable or coincident. The smaller values the
function d(N) takes, the more accurate our recognition
is. Let LY " LY = Ly. Then LY Ly L;, and
LY = Lo@ L. We note that if L}, # ), then for all
vectors from Lj; of length 1, their distances from LY
are exactly up, and the same is true for LY if L}, is
not empty. Let L' be the linear subspace spanned by
vectors from L, U Ly;, and ProjaB be the projection
of a subspace B to a subspace A. If dim LY > dim LV,
we have the decomposition into a sum of orthogonal
subspaces,

LY = Lj, P Proj v LY,

where LY, is the subspace in LY consisting of vectors
orthogonal to LY. Let LY, be defined symmetrically.
Then either

1. LY =LY or

2. dim LY =dim LY and L' # 0. or

3. dim LY > dim LY and L}, # 0, or

4. dim LY < dim LY and L}, # 0.

We define the main operator determining the equal-
ity of LU and LV by

Difference = Differ * SignDif Differ,
Differ = Difsame dimDifLU>LvDifLU<Lv o

(4)

oDif 9% v DIfYd /v,

where SignDif changes the sign of the main ancilla ag;¢
iff at least one ancilla in the list

— ort ort
a = {asame dimy OLUS LV, QLU [V, aLU>LV l aLU<LV}

contains 1, and each operator of the type Dif changes
the corresponding ancilla from & in the following cases:

1. dim LY =dim LY and LYV # LV,

2. dim LY > dim LY and py < /2/3,

3. dim LY < dim LY and py < /2/3,

4. dim LY > dim LY and py > /1/3, or LV =0,
dim LY < dim LY and py > \/1/_3, or LV = {;
these operators do nothing if LV = LY. In view of the
symmetry, it is sufficient to define the Dif operators in
the first, second, and fourth cases. We note that the
first case, dim LY = dim LV, is the only nondegenerate
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case and the corresponding definition of Dif is more
difficult.

Definition of Difgame aim- We suppose that
dim LY = dim LY. Our first aim is to build an op-
erator Inv that acts as the identity if LY and LY are
coincident and acts as I if they are d-distinguishable.
We arrange the first two ancillary qubits apy and ay
that signal whether a given state has the projection to
LY or correspondingly to LY of the length at least 1/3.
We consider the operator

Check = ® Rest) Ancy ® Rev!

s
® RestY Ancys ® RevY,
s S

where Anc inverts the corresponding ancilla if and only
if at least 9/10 of copies for the respective frequencies
are equal to w within 1/M. Tt coincides with the inverse
operator Check™!.

Let ¢ be some random integer from the segment
[0,[2/d]]. We define the operator

Turny = (IoI;v)! (5)

of Grover’s type. Two subspaces LY and LV are said
to be almost orthogonal iff \/1 — 2 < 1/30 for some
p € {puy,py}. If LY and LV are not almost orthog-
onal, then given some a € Ly; (a € LY,), the average
distance between Turn|a) and Ly (Ly) is at least 1/2
if LV and LV are d-distinguishable and zero if these
subspaces are coincident. To distinguish the close lo-
cation and almost orthogonality cases, we build two
operators, Dist,,; and Distejpsed-

We first suppose that LY and LY are almost orthog-
onal. Then ay = 1 implies that ay = 0. We introduce
the notation

L(O{U, av) = {

LV ifap =1,
LV ifay = 1.

Let a be a vector from the space of inputs. We note
that LU # LY implies ayy = ay for each aL L' because
a then belongs to the subspace spanned by Ly and the
orthogonal subspace to LYV U LY. The first operator
Distyy¢ does nothing if ay = ay and changes the sign
and the special ancilla a,,; if the projection of @ to
L(ay,ay) is less than 1/30.

The second operator Dist jyseq acts as the identity
if ay = ay and changes the sign if the following condi-
tions are satisfied simultaneously: a € L', LV and LY
are distinguishable, and a,r; = 0.

We set

Disty,t = ® Res;Siz, ® Re;,
J J

where Re (Res) denotes

RevV(Rest') if ap =1, ay =0,

Rev/(Rest”) if ay =1, apy =0,

and the identity if ay = ay; Siz, changes the sign and
simultaneously inverts ay,; iff at least half the frequen-
cies w; are such that |w; —w| > 1/M and ay # ay.
If we want to clean the second ancilla after the action
of Dist,,; and keep the sign change, we can use the
operator

Dist_,; = ® Res; S+, ® Rej,
J J

where S acts as Si but without changing the sign.
The second operator is defined by

Disteiosea = D7' ... D, S' DDy, ... Dy,

Dj = (GenTimeArgj)_l(Turngj)_1 o
® Res‘cg,c ® Revg{k
k k

i=1,2,...,n,

° Sig;w Turn{j GenTimeArg;,

where the operator Sig;w changes the corresponding
ancilla 3; only in one of the two cases:

1. ay =1 and at least a half of w;; are such that
1/M, or

2. ay =0, ay =1 and at least a half of w; are
such that |wj, —w| < 1/M.

The operator S’ changes the sign iff one of a7, ay is
nonzero and at least 1/20 of all §; contain 1.

We consider the action of Disteseq following Check
on an input vector a. We first consider the case where
LY # LV, which implies that these subspaces are dis-
tinguishable.

If al LU,LV, then ay = ay = 0 and Disteoseq
does nothing.

If a € Lo, then ay = ay = 1 and all Sig;w does
nothing because for almost all j, about 3/4 of wj
are close to w, |wjr —w| < 1/M, and hence, S’ and
Dist,jpseq do nothing.

Let a € L'. We prove that Distgseq changes the
sign. We decompose L' into the sum of orthogonal sub-
spaces, L' = L, @ L1,°"", and let a; denote the result
of the action of Turn{j on a.

If « € L}, then ay = 1 and for more than 1/10
of all a;, the revealed frequencies are not close to w
with the probability about 3/4 - 9/10, and the sign is
therefore changed in accordance with case 1).

|wj ke — wl

IV
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If a € L,"", then by the same reason we obtain
the change of sign in accordance with case 2). Hence,
Disteoseq changes the sign for all a € L'.

We can now define Inv as

Inv = Check Dist_,

ort

DisteoseqDistort Check.

Foral LY, LY we have Inv|a) = |a) because Check
gives zero in the ancilla agr, ay, thereby depriving the
subsequent operators of the ability to change the state
vector. If a € Lo, then Inv|a) = |a) because Distp
does nothing and Dist,;yseq does nothing as well. Thus,

Inv|a) = |a) for all',
and

Inv|a) = —|a) for ae L'

We are now ready to build the operator Dif s me qgim
inverting the ancilla agqme qgim iff LY and LV are distin-
guishable. Let Gen generate the list y, [I,],[C7], where
[Cz] is the code of a circuit generating some unitary op-
erator Z = Z ! whose only eigenvalues are 1 and —1
(that is, its frequencies are 0 and 1/2) and the space
corresponding to frequency 0 is one-dimensional, and
y is a basic vector of this space. As usual, the index
J means that the corresponding vectors y; are taken
from the uniform distribution on all possible vectors.
We assume that operators of the form Gen™' are also
accessible, and set

Difsame dim —

= ® [GenTimeArg;lGenJTl(Invj I,)% Rest].Zj} o
J
oChange® {Revjzj (I, Inv;)" GeanenTimeArgj] ,

(6)

where each copy of Inv acts on the register where y; is
placed initially and Change makes the desired change
in the resulting qubit agsgme daim if at least 5/32 of all
frequencies differ from 0 by more than 1/M.

The group (I, Inv;)" of the GSA type turns the
vector y; generated by Gen; essentially iff LU and LV
are d-distinguishable.

If LV = LV, then y; remains unchanged and at
least 7/8 of all frequencies are close to 0.

If LY # LV, then at least 7/8-1/4 = 7/32 of fre-
quencies for the result of the turn of y; are far from 0
because they must be close®) to 1/2.

8) Thus, we could take any number p: 1/8 < p < 7/32 instead
of 5/32 in the definition of Change.
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Definition of Dif v v. We suppose that
dim LY > dim LY and py < /2/3, and recall the
decomposition

LY = Lj, @ Proj, v LY

into the sum of orthogonal subspaces with L}, # 0.
We define the operator Dif in much similarity with the
previous case,

DifLU>LV ==

= ® [GenTimeArg;lGen;1(Inv;’,U I,)% Rest].zj} o
J

oChange® [Revjzj(fyj Invy ;)% GeanenTimeArgj] ,
J

where the definition of Inv{; (which inverts L{;) is simi-
lar to the definition of Dist,,; with L7, playing the role
of L',

Check.

Inv{; = Check Siz,

@ |5 (@
k k

~V —~V v v .
Here, Re and Res act as Rev’ and Rest” only if
ay = 1; if ay = 0, they do nothing, the operator S~i¢w
changes the sign in only one case, if ay = 1 and at least
3/4 of all frequencies wy, are far from w: |wi—w| > 1/M.
In the operator Dif, we therefore use a set of ancillary
registers enumerated by the pairs of indices j, k.

For a; € Proj;v LV, in view of the inequality
ny < \/2/_3, the operator §i¢w does not change the
sign because the fraction of all frequencies close to w is
then 7/8-1/3=7/24 > 1/4.

For a; LProj v LY, the operator Invy; does nothing.

Definition of Dif{%_,v. We suppose that
dim LY > dim LY and py > /1/3. The definition of
Dif is similar to the previous case but with the entire
subspace Ly playing the role of L',

ort _
LUSLY —

= ® [GenTimeArgj_lGenj_l(Invj,U I, RestJ.Zj] o
J

Dif

oChange® [Revj.zj(lyj Inv; ;)% GeanenTimeArgj] ,
J

where

~ ort

Si,

Invy = Check Check.

@ |5 [@m!
k k

~ort
Here, Si::w changes the sign if more than half the fre-
quencies are far from w; |w; —w| > 1/M. The condi-
tions required for the operator Dif are satisfied because
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7/8-2/3 ="7/12 > 1/2 and can be checked straightfor-
wardly.

We finally estimate the complexity of the proce-
dure constructed. The operator Turn in (5) requires
the number of elementary steps of the order

Turncompiezity = M~/1/d.

The operator Difference in (4) then requires the num-
ber of elementary steps of the order Turncomplemy\/ﬁ,
that is, O(M+/N/d). We note that there exists a simi-
lar form of the operator Difference that does not act on
the resulting qubit ag;y but changes the sign instead;
such an operator can be constructed similarly. We let
it be denoted by Difference,;y,, and assume that its
input contains the frequency w.

3.5. Recognition of electronic device circuits

We are now ready to consider the recognition of cir-
cuits. We assume that for every pair of circuits with
the transformations U; and Us, the subspaces spanned
by the corresponding eigenvalues are either coincident
or d-distinguishable. We also assume that our coding
procedure gives a one-to-one correspondence between
circuits and the T basic states eg,e1,... ,er_1 in the
space H.;,.. The recognition procedure is denoted by
Rec and has the GSA form,

Rec = (IzIy)!, t=O0(T). (7)
This operator acts on states of the form |y), where the
basic states for x are codes of circuits. Here, 0 € Hy;,
is chosen arbitrarily and Iy inverts the sign of every
code whose circuit induces a given operator U. The
implementation of [ is straightforward and all that we
need is to build Iy.

We define Iy as

Iy = ® [Concﬁeq’ jDifferencej] Sign
J
® [Difference;Conc req, ;] .
J
where for every basic state C' of the argument, Concreq
generates some arbitrary distribution of the amplitude
on ancillary registers with () basic states and then con-
centrates a substantial part of the amplitude on a fre-
quency w for which LY and LY are distinguishable (if
such a frequency exists). The operator Difference; then
changes the resulting qubit for the jth copy iff these
subspaces are distinguishable on this frequency. The
next operator Sign changes the sign iff at least one fifth
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of the resulting qubits ayg;s contain 1, e.g., iff U and Ue
are the same operator. The subsequent applications of
Difference; to each copy of the register then clean the
corresponding resulting qubits and the inverse opera-
tors to Conc; restore the initial state of the ancillary
register. Difference was constructed in the previous
section and it only remains to build Concyyeq, j. This
transformation can be defined as

Concyreq, j = GenTimeFreqj_l GenFreqj_1 o
o (Differencesignl,; )" GenFreq; GenTimeFreq;. (8)

If U and Ug are different, then their subspaces LY
and LV are d-distinguishable for some w by our assump-
tion, and Conc; concentrates a substantially large part
of the amplitude over all j on some combination of such
values w. Thus, we have constructed the required pro-
cedure Rec that gives the target code with a substantial
probability as the result of an observation of the reg-
ister for the code C. After the observation, we can
verify the fitness of the code C found by a straightfor-
ward procedure. This procedure is similar to I;; with
a single change: Sign is to be replaced by a change in a
special ancilla that can be observed after the procedure;
we thus determine whether the code C' fits.

To find the complexity of our procedure Rec, we
note that the complexity Mn?,/N/d of Difference must
be multiplied by /@ following from (8) and by /T fol-
lowing from definition (7). The resulting complexity is

Mn2\/TQN/.

3.6. Advantages of the recognition algorithms

Advantages of the proposed algorithms are their
high speed and small memory. In particular, the al-
gorithm for the molecular structure recognition allows
recognizing molecular circuits using microscopic mem-
ory, whereas classically this task requires exponentially
large memory. We now compare the proposed algo-
rithms with their classical counterparts; we omit loga-
rithmic multipliers.

1. Recognition of eigenvalues and finding
thermodynamic functions. We fix some value of
M determining the precision of the eigenvalue approx-
imation. We first consider the case where the number
of ancillary qubits in a quantum gate array is small.
By the direct classical method, we must then build the
matrix of the unitary transform induced by the gate
array. This requires the order N? steps and at least or-
der N? bits. The known quantum algorithm given by
Travaglione and Milburn in [8], based on the Abrams
and Lloyd operator Rev, contains repeated measure-
ments of frequencies and therefore requires time of the
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order N M ; for sparse spectra, it is of the same order as
for the Hams—Raedt algorithm and its only advantage
over the latter is exponential memory saving.

Our algorithm recognizes an eigenvalue in vV NMn
steps. This time for the sparse area of the spectrum is
about the square root of the time of the best known al-
gorithms. Here, the memory is of the order g qubits (g
is the size of the gate array), that is, about the squared
memory used in [2], but still exponentially smaller than
in classical methods. The proposed algorithm therefore
gives an essential speedup over the known methods in
the case where the number of ancillary qubits in a given
gate array is small (as in the case of a molecular struc-
ture simulated by the gate array) and an area of the
spectrum is sparse. The same advantage is possessed by
the proposed method of finding thermodynamic func-
tions.

If the spectra are dense, we assume that M = N,
which means that eigenvalues differ by 1/N at least.
The time of our algorithm is then O(N).

We next consider the case where the number a of an-
cillary qubits involved in the gate array simultaneously
is greater than the length n of the input. The direct
classical method then requires more than 22¢ steps and
at least 2" bits, whereas our algorithm requires only
about ¢2" steps and gn? memory and the quantum
speed-up can be more than the square root.

2. Recognition of molecular structures. We
first assume that the spectra are sparse. To be able
to compare our method with the evident classical algo-
rithm, we assume that the code of a molecular circuit
of the length n is a string of ones and zeroes of this
length. Therefore, M = N. The next natural assump-
tion that can also be presumed for electronic circuits
is that the sampling of the code of a circuit from the
uniform distribution induces a sampling of all possible
spectra from the uniform distribution. Then the num-
ber of all possible choices of spectrum approximations
(or parts of the spectrum subject to the statement of
the recognition problem) within 1/L consisting of fre-
quencies of the form I/M is about 2™ = N. This
implies that M and @ must be logarithmic in N in
our assumption. Our method therefore has the time
complexity O(N). With these assumptions, the time
complexity of the classical direct algorithm examining
all codes and calculating the corresponding spectra is
about N - N = N*, whereas our algorithm requires
the time about N and the logarithmic memory. The
quantum time for this problem is therefore about the
fourth root of the time of the classical direct method
and the quantum space is logarithmic.

If the spectra are dense, then () and M are of the
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order N and our method requires the time O(N?), to
be compared with O(N?) of the direct classical way.

3. Recognition of electronic devices. There
are no classical analogues of this problem in the gen-
eral case. We compare the two algorithms constructed
above with their classical and known quantum counter-
parts. We first consider a single quantum recognition
algorithm that can easily be deduced from the previ-
ously known technique. This is the algorithm of recog-
nizing a circuit realizing a classical involutive function
of the form f:

Q—Q f=f17"

This task can be reduced to the search of y such
that the following logic formula is true: Vz A(z,y),
where A(x,y) is some predicate. Indeed, if we take
Y(x) = U(x) instead of A(x,y), where YV is a function
whose code is y, we obtain the problem of recognition
of the circuit generating U. The algorithm for such for-
mulas given in [4] has the time complexity of the order
VTN. This task is a particular case of our algorithm
for involutive devices and it has the same complexity.
In this particular case, quantum time is of the order
given by the square root of the classical time. But if
we consider a slightly more general but still restricted
problem of the recognition of involutive devices produc-
ing linear combinations of basic states (like quantum
subroutines), the advantage over the classical method
of recognition increases. For example, we consider the
restricted problem where we must choose between two
alternative constructions of a tested device inducing a
nonclassical unitary transformation. The naive method
of observing the results of the action of the tested de-
vice on the different inputs requires the order (1/e)N?3
of steps to restore the matrix of the operator Ug within
e. This € must then be less than 1/v/N to give a vanish-
ing difference between operators in the Hilbert space.
Therefore, the time complexity of the naive method of
recognition is roughly N7/2. On the other hand, the
method proposed in Sec. 3.4 requires choosing d that
only converges to zero as N tends to infinity. The time
required by our method is therefore slightly more than
V/N. We thus have almost the seventh degree speed-up
for the problem of distinguishing electronic circuits gen-
erating transformations with nonclassical matrices.

4. CONCLUSIONS

The main conclusion is that the molecular struc-
ture and physical properties of environment can be
quickly recognized on the microscopic level whereas
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the classical methods require huge time and especially
memory. The new algorithms of recognizing eigenval-
ues with a fixed precision, recognizing the molecular
structure, and finding thermodynamic functions give
a quadratic speed-up and an exponential memory
saving compared with the best classical algorithms.
The new method based on quantum computing was
proposed for fast recognition of electronic devices.
By this method, two devices with the same given
spectrum can be distinguished in the time about the
seventh root of the time of direct measurements. All
these algorithms show essential potential advantages
of microscopic size quantum devices compared to their
classical counterparts with much bigger memory. The
advantages pertain to intellectual tasks like recogni-
tion of the structure of other devices and important
properties of environment. The proposed algorithms
are constructed from the standard known subroutines;
they have a simple structure and are entirely within
the framework of the conventional quantum computing
paradigm.

I am sincerely grateful to Kamil Valiev for creating
the conditions for investigations in quantum computing
at the Institute of Physics and Technology and for his
attention and valuable advices concerning my work.
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