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QUANTUM RECOGNITION OF EIGENVALUES, STRUCTUREOF DEVICES, AND THERMODYNAMIC PROPERTIESYu. I. Ozhigov *Institute of Physi
s and Te
hnology, Russian A
ademy of S
ien
es117218, Mos
ow, RussiaSubmitted 1 April 2002Quantum algorithms speeding up the 
lassi
al 
ounterparts are proposed for the following problems: re
ogni-tion of eigenvalues with a �xed pre
ision, re
ognition of mole
ular and ele
troni
 devi
e stru
tures, and �ndingthermodynami
 fun
tions. We mainly 
onsider stru
tures generating sparse spe
tra. These algorithms requirethe time from about the square root to the logarithm of the time of the 
lassi
al analogues and give exponentialmemory saving for the �rst three problems. For example, the time required for distinguishing two devi
es withthe same given spe
trum is about the seventh root of the time of the dire
t 
lassi
al method, and about thesixth root for the re
ognition of an eigenvalue. Mi
ros
opi
 quantum devi
es 
an therefore re
ognize mole
ularstru
tures and physi
al properties of environment faster than big 
lassi
al 
omputers.PACS: 03.67.Lx1. ELECTRONIC DEVICES AND QUANTUMCOMPUTATIONS1.1. Statement of the problem and outline ofthe workThe aim of this paper is to build e�e
tive quantumalgorithms for problems of the following types:1. given a quantum gate array generating a uni-tary operator U and a 
omplex number !, to determinewhether it is an eigenvalue of U with a �xed pre
ision,2. to re
ognize the stru
ture of an unknown ele
-troni
 or mole
ular devi
e given only a

ess to its fun
-tion.The �rst problem is an important intermediate stepin solving the se
ond1). We 
onsider them sequentially.Re
ognition of eigenvalues. This problem is
losely related to �nding the eigenvalue distributionor density of states (DOS), i.e., the energy levelsE0 < E1 < : : : and the dimensions of the 
orrespond-*E-mail: ozhigov�ftian.oivta.ru1) A straightforward 
al
ulation shows that the simulation ofevolution generated by a given Hamiltonian up to a time instant� with a �xed a

ura
y requires the number of steps of the order�2 on a quantum 
omputer. This means that all results of thispaper 
an be generalized to arbitrary quantum systems.

ing subspa
es d0; d1; : : : The DOS plays a key role in
al
ulating thermodynami
 fun
tions given byF =Xj a(j)dj exp�� EjkBT � (1)for some values a(j) su
h that the summands rapidly
onverge to zero. For example, this expression givesthe partition fun
tion Q if all a(j) = 1, the averageenergy if a(j) = Ej=Qand the entropy ifa(j) = �kBQ ln�exp�� EjkBT � =Q� :Having an e�
ient method of �nding dj , we wouldbe able to obtain thermodynami
 fun
tions and to de-termine important properties (e.g., heat 
apa
ity) ofenvironment 
onsisting of su
h mole
ules. The bestknown 
lassi
al method of �nding the DOS was pro-posed by Hams and Raedt in [1℄. Their method re-quires the time of the order given by the dimension Nof the spa
e of states and the memory of the same order(whereas the dire
t method of 
al
ulating eigenvaluesrequires the time of the order N3). The �rst quantumalgorithm for this problem proposed by Abrams and384
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ognition of eigenvalues : : :Lloyd in [2℄ requires the same O(N) time and logarith-mi
 memory. The method proposed in the present workrequires the time of the order given by the square rootof the 
lassi
al one and memory of the order ln2N .The idea of our approa
h is as follows. We use a
ombination of the Grover sear
h algorithm (GSA), theAbrams and Lloyd method [2℄ of revealing eigenvalues,and the universal quantum fun
tion of appli
ation App.The Abrams and Lloyd method of revealing eigenvaluesis based on the appli
ation of U 
ontrolled by an
illaryqubit � asU
ondjx; �i �! ( jU x; �i if � = 1;jx; �i if � = 0:We note that it is a dire
t generalization of Shor's tri
k,whi
h 
an be obtained if U is a multipli
ation by a giveninteger modulo q [3℄.Re
ognition of devi
e stru
tures. We separatetwo versions of this general problem: re
ognition ofmole
ular stru
tures and re
ognition of ele
troni
 
ir-
uits.If we want to determine a mole
ular stru
ture, it isnatural to assume that its fun
tionality is given as thespe
trum of its Hamiltonian, e.g., the set of its energylevels. It is therefore required to �nd a quantum systemwhose Hamiltonian has a given spe
trum.The problem of re
ognition of ele
troni
 
ir
uits isstated di�erently. An ele
troni
 devi
e is 
onsidered asa sour
e of ele
tromagneti
 �elds that 
an 
ontrol somequantum system Q. Let su
h a �eld indu
e evolution ofthe system with the Hamiltonian H in the time frameÆt. We then have the 
orresponden
e(ele
troni
 devi
e) �! (Hamiltonian, Æt).The evolution of the quantum system Q indu
ed by thisHamiltonian 
an be represented as a unitary transfor-mation U = exp�� ihHÆt� :Given a devi
e C and a time instant t, we 
an thenasso
iate some unitary transformation UC with it. Weassume that we have re
ognized a 
ir
uit C if we havefound some 
ir
uit C1 su
h that UC = UC1 with higha

ura
y. We write U instead of UC for the 
ir
uit Cthat we want to re
ognize. In fa
t, we solve a moregeneral problem where the tested devi
e C 
an be usedas a bla
k box a
ting on n qubits as a fun
tion UCsu
h that if x is an input, then UC jxi is the result ofits a
tion on this input. The tested devi
e 
an 
ontainits own quantum memory and 
an be entangled with Qin the 
ourse of performing the transformation U , but

this entanglement must then be eliminated. The ex-isten
e of su
h an entanglement implies that this 
ase
annot be des
ribed by the Hamiltonian of the systemQ. For simpli
ity, we assume that the unknown 
ir-
uit is built from elementary fun
tional elements takenfrom some �xed set. The next natural assumption isthat the size of the 
ir
uit is limited by some 
onstant
 su
h that the 
ir
uit is some unknown 
ombinationof 
 fun
tional elements. We let E denote all 
ir
uits ofthe length 
. We 
an en
ode su
h C 2 E by a string [C℄of ones and zeroes su
h that the de
oding pro
edure iseasy and we 
an immediately re
reate a 
ir
uit givenits 
ode. We 
an therefore look through all 
ir
uits bylooking through their 
odes. The same 
oding 
an bebuilt for ele
troni
 devi
es.A straightforward solution of the problems is 
lear.For the problem of re
ognition of mole
ular stru
turesall that we need is to be able to re
ognize eigenvalues ofthe transformation generated by a given 
ir
uit. Ea
heigenvalue of a unitary operator has the form e2�i!,where ! is a real number from [0; 1) 
alled the fre-quen
y. In what follows, the spe
trum is meant to bethe set of all frequen
ies. Let all the frequen
ies begrouped near points of the form l=M , where M is notvery large and l = 0; 1; : : : ;M � 1. We assume thatthe a

eptable pre
ision of the re
ognition of frequen-
ies is 1=M . Having an algorithm for the eigenvaluere
ognition, we 
an apply it repeatedly, 
onstru
tingspe
tra generated by all possible 
ir
uits, and thus �ndthe sought 
ir
uit with the given spe
trum. If we needto re
ognize a 
ir
uit of an ele
troni
 devi
e, we 
anexamine all possible 
ir
uits taken in some order. Ex-amination of one 
ir
uit means that we run it on allpossible inputs one after another and 
ompare the re-sults with the 
orresponding result of the tested devi
ea
tion.For the problem of the re
ognition of mole
ularstru
tures, our method requires the time of the ordersixth root of the time of the dire
t 
lassi
al method,whereas memory saving is exponential. For the prob-lem of the re
ognition of ele
troni
 
ir
uits, our methodgives at least square-root time saving in the 
ase wherethe 
lassi
al 
ounterparts exist (this is the narrow for-mulation where the tested devi
e generates a 
lassi
almapping). But the advantage 
an be greater in thegeneral 
ase. For example, we 
an distinguish betweentwo devi
es with the same spe
trum in the time aboutthe seventh root of the time of the brute for
e method.To re
ognize devi
es at the quantum level, we mustbe able to store and perform operations on 
odes ofdi�erent 
ir
uits. This possibility is based on the ex-isten
e of a quantum analogue of the universal Klini13 ÆÝÒÔ, âûï. 2 385
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tion. This is a unitary operator App su
h that forall quantum devi
es C and all inputs x,Appjx; [C℄i = jUC x; [C℄i:We assume that for a wide range of quantum devi
esC with 
 parti
les, C 
an be en
oded as an integer [C℄in time O(
) su
h that the quantum 
omplexity of Appis also O(
).We here 
onsider a parti
ular 
ase of the problemwhere all eigenvalues of U are known a priori or 
anbe obtained in advan
e. This restri
tion is not very
onstraining. To illustrate the tasks that 
an be solvedby the proposed method, we 
onsider several examplesof the problem of re
ognition of an ele
troni
 devi
ewhose spe
trum is known.Re
ognition of quantum algorithms is designed assubroutines. Su
h an algorithm must restore the inputif we apply it twi
e. Computing a fun
tion f , it a
ts asjx; bi �! jx; b+ f(x) mod 2i:All known quantum algorithms 
an be represented inthis form. For su
h quantum algorithms, the uni-tary transformation U has only two eigenvalues, 1 and�1. Given a 
ontrolling devi
e for su
h an algorithm(whi
h 
an also in
lude 
lassi
al elements and an
illaryqubits), we 
an qui
kly re
ognize its 
onstru
tion. Al-ternatively, we 
an qui
kly �nd a quantum or 
lassi
alalgorithm for a given task.We 
onsider the �
lassi
al� parti
ular 
ase of there
ognition problem where U maps ea
h basi
 state toa basi
 state, whi
h means that the matrix of U 
on-sists of ones and zeroes and in addition U equals U�1.Here, the evident re
ognition strategy takes the numberof steps of the order 
ard(E). In this 
ase, the prob-lem 
an be reformulated as �nding su
h t that somegiven predi
ate A(t; s) is true for all s. This is theproblem of veri�
ation of logi
al formulas. Its quan-tum solution in a time about the square root of the
lassi
al time based plainly on Grover's tri
k was pro-posed in [4℄. This method is inappli
able in the general
ase where UC is an arbitrary involutive unitary trans-formation, e.g., su
h that U = U�1. This general 
aseis pre
isely the subje
t of this work. Here, we 
annotre
ognize a 
ir
uit so easily as in the �
lassi
al� 
asebe
ause it is di�
ult to 
ompare two quantum statesUC jxi and U jxi.The general idea of our approa
h to the re
ognitionof arbitrary ele
troni
 devi
es is as follows. We in
ludethe devi
e C whose stru
ture we want to re
ognize intothe 
lassi
al 
ontrolling part of a quantum 
omputer.We 
onsider the main system of n qubits. The tested

devi
e then generates a unitary transformation on thissystem. We then �nd the eigenve
tors of U using U
ondby the above method and 
ompare them with the eigen-ve
tors of 
ir
uits from E 
hoosing a 
ir
uit that givesthe best approximation. Here, GSA is used at the laststep and at the several intermediate steps.The sparse spe
trum assumption. In this pa-per, we mainly 
onsider 
ir
uits generating sparse spe
-tra. This means that the spe
tra of the operators UCare designed su
h that the frequen
ies are assembledin groups and the minimum distan
e between frequen-
ies from the di�erent groups is greater than 1=M andthe maximum distan
e between frequen
ies in the samegroup is less than 1=L. In the problems of eigenvalueand mole
ular stru
ture re
ognition, we require thatL = 16M , whi
h is not very restri
ting. In the prob-lem of re
ognition of ele
troni
 devi
es, we assume thatL� M , whi
h is a stronger limitation. A spe
trum is
alled sparse if M = 
onst as N �! 1. Our algo-rithms show the best performan
e for sparse spe
tra.Spe
tra that are not sparse are 
alled dense. Fordense spe
tra, our methods give less advantage overthe 
lassi
al algorithms (see Se
. 3.6). An exam-ple of a dense spe
trum is given by !k = k=N ,k = 0; 1; : : : ; N�1. Similar problems for dense spe
trarequire additional investigations.We write !0 � ! i� !0 and ! belong to the samegroup. For simpli
ity, we also assume that for ea
hgroup of frequen
ies, there exists a number of the forml=M positioned between some two frequen
ies of thisgroup, where l is an integer less than M .1.2. Abstra
t model of quantum 
omputer.�Plug and play� te
hnologyTo build algorithms re
ognizing 
ir
uits, we need anabstra
t model of the quantum 
omputer. A quantum
omputer 
onsists of two parts, quantum and 
lassi-
al. The 
lassi
al part exa
tly determines what uni-tary transformation must be performed on the quan-tum part at ea
h time instant and therefore plays therole of a 
ontroller for the quantum part. These unitarytransformations are of two types: working transforma-tions, whi
h our 
omputer performs itself, and querytransformations, whi
h are indu
ed by a tested devi
e,U or U
ond.We 
an suppose that the quantum part Q 
onsistsof nu
lear spins or intera
ting dipoles (or some otherquantum two-level systems) and the 
lassi
al part is asour
e of ele
tromagneti
 �elds determining the evolu-386
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ognition of eigenvalues : : :tion of the quantum part. The general form of a stateof the quantum part is� = 2��1Xi=0 �iei;where the basi
 states e0; : : : ; e2��1 are simply stringsof ones and zeroes of the length � > n; this length isthe size of the quantum part that 
an 
ontain someauxiliary qubits in addition to the input for U , N = 2nis the number of all 
lassi
al input words for U , and2��1Xi=0 j�ij2 = 1:The 
lassi
al part determines when the tested de-vi
e is to be �swit
hed on� (this usually o

urs manytimes) and when the result of the 
omputation is to beobserved. Observation of a state � gives every basi
state ei with the 
orresponding probability j�ij2.The problem of re
ognition of ele
troni
 devi
es pre-sumes the so-
alled �plug and play� te
hnology wherethe tested devi
e is applied only as a bla
k box. If querytransformations are only U , then our model evidentlysatis�es the requirements of the �plug and play� te
h-nology, where we 
lassi
ally 
ontrol swit
hing the testeddevi
e. An implementation of U
ond in the frameworkof this te
hnology is not so easy be
ause it requires aquantum 
ontrol on appli
ations of the devi
e2).It is nevertheless possible to implement U
ond in theframework of the �plug and play� te
hnology. Thisproblem requires additional investigations; here, wesimply presume that it is possible. This di�
ulty doesnot exist in the problems of the eigenvalue and mole
u-lar stru
ture re
ognition. Here, we 
an manage withoutora
les be
ause having an expli
it form of a quantumgate array realizing the universal fun
tion of appli
a-tion App, we 
an 
ontrol its a
tions in ea
h elementat the quantum level separately and simultaneously,thereby implementing U
ond.Let every basi
 state be partitioned asei = jpla
e for 
ode [C℄; R�1; R�2; : : : ; R�li;where ea
h registerR�i is in turn partitioned into a pla
efor the argument, pla
es for time instants, and pla
esfor the 
orresponding frequen
ies. A 
omplex index �i
ontains one or two integers, and the length of ei istherefore a polynomial in 
 and n of at most se
onddegree.2) This would evidently be possible provided we have a

ess tothe internal details of our devi
e and 
an simultaneously 
ontroltheir work at the quantum level. But this assumption 
ontradi
tsthe �plug and play� te
hnology.

2. OBTAINING NEW ALGORITHMS FROMBASIC QUANTUM TRICKS2.1. GSA and the amplitude ampli�
ationThe GSA proposed in [5℄ is one of the two basi
quantum tri
ks. It is used for qui
kly obtaining a quan-tum state �a given the inversion I�a along this state. Theinversion along some state �a is de�ned byI�aj�xi = ( j�xi if x?a;�j�ai if x = a:We also assume that I�a a
ts as the identity if �a does notexist. A typi
al situation is where a state is unknownbut the inversion along it 
an be performed easily. Forexample, let �a be a solution of the equation f(x) = 1with a simply 
omputable Boolean fun
tion f . Theinversion I�a 
an then be implemented by modulo-2 ad-dition of f(x) to an an
illary qubit initialized byj0i � j1ip2 :This transformation maps the state����x; j0i � j1ip2 �to the same state with the sign �+� or ��� depend-ing on whether the equality f(x) = 1 is satis�ed. Thetransformation is unitary and 
an easily be performedgiven a devi
e performing f . All sequential transfor-mations in our formulas are applied from right to left.The GSA is a sequential appli
ation of the trans-formation G = I�aI~0 to a randomly preset state ~0. Ifwe apply this transformation O(pN) times, where Nis the dimension of the main spa
e, then an observationof the quantum part yields �a with a visible probability,whereas �nding �a without a quantum 
omputer wouldhave required the number of steps of the order N .A minor di�
ulty is here that we do not exa
tlyknow the time instant t at whi
h the iterations mustbe terminated in order to make the probability of er-ror negligible, as required in applying the GSA as asubroutine. The following simple tri
k helps here.We de�ne the number B = B(N) su
h that 1=Bis the average value of jha j ~0ij for ~0 uniformly dis-tributed on a sphere of radius 1 in the spa
e of inputs.A straightforward 
al
ulation shows that B = O(pN).Let GenArgj be operators generating arbitrary ve
-tors �aj from the spa
e of inputs belonging to inde-pendent uniform distributions, j 2 f1; 2; : : : ; kg, andlet GenTimeArgj be operators generating time instantstj from independent uniform distributions on integers387 13*
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opies of twoworking registers, for the input and for the storage ofa time instant, and apply the 
orresponding operator(I~0I�a)tjGenArgjGenTimejto ea
h register. If �a exists, the probability to obtain�a observing any single register is at least 1/4 (see [6℄)and the probability to obtain any other �xed state isnegligible be
ause our operators GenArgj generate in-dependent uniformly distributed samples. If �a does notexist, whi
h implies that I�a is the identity, then theprobability to obtain any �xed state is negligible. Welet �aj denote the 
ontents of the j-th register for theargument in the resulting state. We 
onsider the follow-ing 
riterion: if at least one �fth of �aj ; j = 1; 2; : : : ; k,
oin
ide, we de
ide that �a is this value, otherwise �adoes not exist. We now 
al
ulate the error probabil-ity of this 
riterion. Let K be the number of those jfor whi
h �aj = �a. By the 
entral limit theorem, theprobability that the fra
tion(k=4)�Kp(k=4) � (3=4)belongs to the segment [�1; �2℄ 
onverges to1p2� �2Z�1 e�x2=2dx:Straightforward 
al
ulations then show that the prob-ability that K � k=5 is of the order1Z�1 e�x2=2dxfor �1 of the order pk. To make the error probabilityof the order 1=pN , it therefore su�
es to 
hoose k ofthe order n = logN . This method 
an be used notonly for the GSA but also for other algorithms. If theprobability to obtain the 
orre
t result for ea
h of thek registers is some positive number p independent ofthe dimensionality, then to make the error probability1=N1, it su�
es to 
hoose k of the order logN1. Inwhat follows, we use this simple tri
k without spe
iallymentioning it and let Nj denote the simultaneous op-erations of the same type on all working registers. Weassume that all ensembles generated by the di�erentj-th 
opies of operators are taken from independentdistributions.We use the standard normkAk = supk�xk=1 kA�xk

on operators in a Hilbert spa
e. Given an operator A,we let A� denote an operator su
h that kA� A�k � �.In what follows, we use the above method requiring
opies of registers, thereby raising the a

ura
y of ouroperators to the required level. When we must repeatan operator T times, the required a

ura
y of one ap-pli
ation must be 1=T and as shown above, it 
an beensured by only linear pri
e in memory. Instead of A,we therefore always use A�, where � = O(1=T ), when-ever an operator A must be repeated T times; we donot expli
itly indi
ate this in the notation.2.2. Revealing the eigenvaluesThe se
ond basi
 quantum tri
k is used for revealingeigenvalues of a given unitary operator U . We de�ne anoperator revealing frequen
ies in a

ordan
e with [2℄.LetM = 2m and L = 2p. We determine frequen
iesof unitary operators within 1=L, where L is the num-ber of appli
ations of U required for revealing frequen-
ies with this a

ura
y, whi
h means that the a

ura
y1=M is su�
ient to distinguish the eigenvalues of U .For the re
ognition of eigenvalues, we put p = m + 4,and therefore, L = 16M .We let (0:l)p denote the number from [0; 1) of theform l=L. Let the operator U have the eigenvaluese2�i!k , where the frequen
ies !0; !1; : : : ; !N 0�1 are dif-ferent real numbers from [0; 1). Let Ek be the spa
espanned by all eigenve
tors 
orresponding to !k. Anarbitrary ve
tor with the length 1 from Ek is denotedby �k. Every state � therefore has the form� = N 0�1Xk=0 xk�k:Let N 0 be some integer and 
 = f~!k;ig be someset of integers from f0; 1; : : : ; L � 1g, 0 � i � M � 1,0 � k � N 0 � 1; "; Æ > 0: We setLk" (
) = fi : j(0:~!k;i)p � !kj � "or j(0:~!k;i)p � !k � 1j � "g.De�nition 1. A transformation W of the formW : j�; 0m+4i �! N 0�1Xk=0 L�1Xi=0 �i;kj�k; ~!k;iiis 
alled a transformation of type WÆ;" if for all k and�, Xi2Lk" (
) j�i;k j2 � jxkj2(1� 2Æ):388
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ognition of eigenvalues : : :Thus, Æ is the error probability of obtaining the 
or-re
t frequen
ies !k by observation of the se
ond registerand " is the pre
ision of the frequen
y approximations.De�nition 2. A unitary operator R is 
alled re-vealing frequen
ies of U if R belongs to the type W 1K ;KLfor any K 2 f1; 2; : : : ; Lg3).The key here is the quantum version of the Fouriertransform (QFT) de�ned byQFTL : jsi �! 1pL L�1Xl=0 exp (�2�isl=L) jli:We also need the following generalization Useq of theoperator U
ond: ULseq jx; ai = jUax; ai:This is the result of a sequential appli
ations of U to themain register. To implement this operator by means ofU
ond, we perform the following 
y
le. For an integer
ounter j ranging from 1 to the maximum value L� 1of a, we apply U i� j � a. One 
y
le then 
onsistsof U
ond with a properly prepared 
ontroller and theresulting operator is ULseq .We de�ne the operator revealing frequen
ies byRev = QFTLULseq QFTL;where quantum Fourier transformations are applied tothe se
ond register4). It was proved in [7℄ that Rev isa transformation revealing frequen
ies. We now needmore. For a redistribution of amplitudes xk, we alsoneed the transformation Rest 
leaning the se
ond reg-ister. The ideal 
andidate for this role would be Rev�1,but it requires the appli
ation of U�1, whi
h is physi-
ally unrealizable given only the devi
e ful�lling U , ex-
ept in evident 
ases where, e.g., U = U�1. We 
an usethis simplest de�nition of Rest only in the 
ase wherewe are given a 
ir
uit implementing U (e.g., gate array)be
ause U�1 is then a

essible for us as well as U . Butif C is given only as a bla
k box, the restoring operatormust be de�ned separately.We �nd the operator restoring an
illa in the formRest = RevD;where D is some operator of turning. Given some inte-gers ~!Lk of the form q=L, where q is an integer, ~!Lk � !k,we 
an de�ne the operator D of turning byDj�k; li = exp (�2�i(L� 1)Æk;l) j�k; li;3) In what follows, we use this notion only with K = 16.4) As in [2℄, the �rst QFT 
an be repla
ed by the Walsh�Hadamard transform be
ause it is equivalent to the QFT on zeroan
illa.

where Æk;l = ~!Lk � (0:l)m:It was proved in [7℄ thatk(RestRevj�; �0i � j�; �0ik < 7M=L;whi
h implies that the restoring operator thus de�nedindeed restores zeroes in the se
ond register after thea
tion of Rev if L is su�
iently large. To 
reate thesegood approximations, we apply a slightly more general
onstru
tion. We setD = Enh ~D Enh;where the operator Enh 
al
ulates an integer fun
tionh(l) giving a good approximation (0:h(l))p of frequen-
ies within 1=L given their rough approximation (0:l)mwithin 1=M and pla
es them into an
illa, ~D rotatesea
h eigenve
tor by an appropriate angle~Dj�ki = exp [�2�i(M � 1)((0:h(l))p � (0:l)p)℄ j�k;and the last appli
ation of Enh 
leans the an
illa. Theoperator Enh is a

essible given good approximationsof eigenvalues. Our operator Rest therefore restoreszeroes in the an
illa within 1=L.We 
an rea
h the a

ura
y 1=L for all operators oftype Rest that are less than 1=t, where t is the num-ber of all steps in the 
omputation; this a

ura
y 
anbe guaranteed with logL = p registers. We emphasizethat this di�
ulty with the eigenvalue pre
ision arisesonly when U�1 is ina

essible, as in the problem ofre
ognition of ele
troni
 
ir
uits in Se
. 3.4, where wemust 
hoose L�M .The operatorsRev and Rest 
an be built in the formof a quantum gate array using the universal quantumKlini fun
tion App, where the 
ode [C℄ of a 
ir
uit gen-erating U is a part of the input. We write the operatorU 
orresponding to these two operators as the super-s
ript. 3. RECOGNITION PROBLEMS3.1. Obtaining eigenve
tors and re
ognition ofeigenvaluesOur assumption about a sparse spe
trum is nowstated as L = 16M = 
onst. Be
ause Rev reveals fre-quen
ies, it belongs to the type W1=16;1=M . By de�ni-tion of WÆ;", this implies that Rev gives a stateN 0�1Xk=0 M�1Xi=0 �i;kj�k; ~!k;ii;389



Yu. I. Ozhigov ÆÝÒÔ, òîì 123, âûï. 2, 2003where the seven eighth of the probability is 
on
en-trated on the pairs i; k su
h that (0:!i;k)m is 
lose to !k.This implies that we 
an obtain eigenvalues with a highprobability by observing the se
ond register; the �rstregister then 
ontains the 
orresponding eigenve
tor.This pro
edure to obtain eigenve
tors was proposed in[2, 8℄. Its �rst disadvantage is irreversibility. Observ-ing a state, we lose the 
omplete information about it;we 
annot use this state again, whi
h is very importantfor building nontrivial quantum algorithms. The se
-ond disadvantage is that this pro
edure gives a randomeigenve
tor when it is typi
ally required to obtain theeigenve
tor 
orresponding to a given frequen
y.We 
onsider a good approximation ~!L of some fre-quen
y ! written as a string of p of its sequential bi-nary digits and let E! = f�!1 ; : : : ;�!l g be a basis ofthe subspa
e E! of eigenve
tors 
orresponding to allfrequen
ies !0 � !. We now build the operator State!that 
on
entrates the bulk of the amplitude on somesuperposition of the 
orresponding eigenve
torslXj=1 �j�!j 2 E!:For this, we apply the GSA. Letj�ai = lXj=1 �j�!j +Xs �s�sbe some randomly 
hosen ve
tor from the main spa
ewith all eigenve
tors in the se
ond sum 
orrespondingto frequen
ies !0 6� !. Our target state is the ve
torE!(�a) = lXj=1 �j�!j ;where �j = �js lPj=1 j�j j2 :The ve
tor is therefore of length 1 and is dire
ted alongthe proje
tion of �a to the subspa
e E!.Let A be some set of ve
tors. We let IA denote theoperator that 
hanges the sign of all ve
tors in A andleaves all ve
tors orthogonal to A un
hanged. Our aimis to obtain the operator IE! 
onstrained to the two-di-mensional subspa
e S(�a; !) spanned by the ve
tors j�aiand E!(�a).Let Revj and Restj be j-th 
opies of the respe
tiveoperators Rev and Rest a
ting on the 
orrespondingpla
es of the j-th register. We let lj denote the string


ontained in the pla
e for the frequen
y of the j-th reg-ister and set~IE! = vOj Restj Sign! vOj Revj :It follows that Sign! 
hanges the sign if and only ifj(0:lj)p � (0:~!L)pj � 1=Lfor at least a half of all j5). Applying the argument atthe end of Se
. 2.1, we 
on
lude that the a
tions of IE!and ~IE! restri
ted to S(a; !) di�er by less than 1=2O(v);this di�eren
e 
an therefore be made very small withonly a linear growth of memory. We thus omit the tildefrom our notation.We de�neSt = GenArg�1GenTimeArg�1 ÆÆ (I�aIE!)tGenTimeArg GenArg;where the respe
tive operators GenArg andGenTimeArg generate the pair �a; [C℄ and thetime instant t, with C being a gate array implementingI�a. Here, the a
tions of I�a are implemented by theuniversal fun
tion of appli
ation App. The result� = Stj�0i of its a
tion on �0 is then 
lose to E!(�a).Indeed, jhE!(�a)j�ij = j sin(2t ar
sinh�ajE!(�a)i)j(see [6℄). The average value of jh�ajE!(�a)ij with theuniformly distributed probability of 
hoosing �a and tover all spa
e and the time frame [0; B℄ 
orrespond-ingly is of the order 1=pN . Therefore, if t is randomly
hosen from the uniform distribution over 1; 2; : : : ; B,then the average value of jhE!(�a)j�ij2 is not less than1=4. Of 
ourse, it would be mu
h more 
onvenientto obtain E!(�a) with the error probability 
onvergingto zero, whi
h is possible by the method des
ribed inSe
. 2.1. Namely, we arrange h equal registers forthe states �k; k = 1; 2; : : : ; h, in the main spa
e, the
orresponding h registers for the frequen
ies, and as-so
iate the variable tk with ea
h k-th register. LetStk be a pattern of the operator St a
ting on the k-thregister. We re
all that the operators GenArgk andGenTimeArgk generate independent distributions fordi�erent k = 1; 2; : : : ; h. We now de�neState! = St1O St2O : : :O Sth: (2)5) We 
ould 
hoose any �xed �: 1=8 < � < 7=8 instead of 1=2.Indeed, ~IE! thus de�ned would 
hange the sign of all �a 2 E!.If �a?E!, the probability to obtain ! in observing the frequen
yfrom Rev is less than 1=8.390



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Quantum re
ognition of eigenvalues : : :Applied to zero initial state, this operator gives astate �1N�2N : : :N�h, and the average value ofjhE!(�k)j�kij2 is 
lose to some number not less than1=4 with the vanishing probability of error. This alsoimplies that if we then apply the 
orresponding oper-ators Rev1NRev2N : : :NRevh revealing frequen
iesto this state, the main part of the amplitude of the re-sulting state � is 
on
entrated on the basi
 states forwhi
h at least 5=32 of all registers for the frequen
ies
ontain numbers l su
h that6)j(0:l)m � (0:~!L)pj < 1=L:On the other hand, if ! is not a frequen
y, the proba-bility to obtain su
h a basi
 state vanishes be
ause thedistributions generated by GenTimeArgk and GenArgkare independent for di�erent k.The time 
omplexity of this algorithm is of the or-der MpNn2. The last fa
tor arises be
ause of 
opyingthe registers. We therefore have a solution of the �rstproblem of the re
ognition of eigenvalues.3.2. Finding thermodynami
 fun
tionsGiven the stru
ture of the mole
ule of a gas, we 
on-sider the problem of �nding its thermodynami
 fun
-tion (1). Be
ause the 
ommon term in this sum rapidly
onverges to zero, it is su�
ient to �nd the �rst se-veral summands. It is therefore su�
ient to �nd thedegree of degenera
y of the subspa
e 
orrespondingto the frequen
ies !0 � ! for any ! = l=M . LetE0 < E1 < : : : < Es be energy levels of the mole
ule(the eigenvalues of its Hamiltonian H).The evolution operator in time frame t is then givenby U = exp�� iHh t� :Adding the diagonal matrix rI with a 
onstant r tothe Hamiltonian does not 
hange the physi
al pi
ture.Choosing r = �Es; t = h2�Es ;we then obtain a unitary operator U whose frequen-
ies belong to the segment [0; 1). Thus, the problem isredu
ed to the 
ase 
onsidered above.We assume that M is �xed and we must examineonly several frequen
ies 
lose to 0. We 
an �rst re
og-nize all numbers of the form l=M that are frequen
ieswithin 1=L. Let ! be su
h a number. We now show6) We note that in this 
riterion, 5=32 
ould be repla
ed byany � su
h that 0 < � < 1=4 � 7=8 = 7=32.

how to �nd the degenera
y degree d of the 
orrespond-ing subspa
e. This is the dimension of the subspa
e E!spanned by the eigenve
tors 
orresponding to frequen-
ies !0 � !. Our strategy is as follows. We build theoperator IE! of re�e
tion along this subspa
e. Usinga 
ounting pro
edure built in [6℄, we then evaluate thetime required for turning an arbitrary initial ve
tor tothis subspa
e. This time is about pN=d and we thus�nd d. We �x some � > 0 and show how to obtain thevalue of d within �d.Let the operators GenTimeArgaj generate time in-stants tj from independent uniform distributions on thesegment [0; [a℄℄, where a is a nonnegative number. Fora from 1 to pN , we perform the following three-steploop:1) apply the operatorOj "Ok Revj;k# (I�aIE!)tjGenTimeArgajGenArgj ;2) �nd the �delity of the result, i.e., the number ofall j for whi
h at least 7=8 � � of all k are su
h that!j;k � !; if the �delity of this step is larger than at theprevious step, we pro
eed the loop, otherwise we stop;3) repla
e a with 4a=3.If we �nish the 
omputation at step 2, the 
urrentvalue of a is taken as a rough approximation of d fromabove. We have 3a=4 � d � a. To �nd d more ex-a
tly, we divide the segment [3a=4; a℄ into [1=�℄ equalparts by points a0 < a1 < : : : < al and repeat theabove pro
edure sequentially for all ai. We thus de-termine d within g(�)d, where g is a fun
tion rapidly
onverging to zero with �. Thus, our algorithm �ndsd and thermodynami
 fun
tions with an arbitrary rel-ative error in the time O(pN)M , where the 
onstantdepends on the admissible error. A more re�ned algo-rithm 
an be obtained if we apply the method of 
ount-ing in [9℄. In that work, the quantum Fourier transformis used analogously to the Abrams and Lloyd operatorRev only in order to �nd the time period of the fun
tionGj�; ti = jGt�; ti, whi
h is aboutpN=d. Their methodgives the a

ura
y of the order pd, whi
h implies thatthe relative error 
onverges to zero as d �!1.3.3. Re
ognition of mole
ular stru
turesWe now 
onsider the problem of re
ognition ofmole
ular stru
tures. Given the spe
trum of amole
ule, we must re
ognize its 
onstru
tion. We haveno a

ess to the devi
e, but it is su�
ient to �nd anarbitrary devi
e generating this spe
trum. To 
larifythe formulation, we assume the following form of deter-mining the spe
trum. Given a set �w = fw1; : : : ; wQg391



Yu. I. Ozhigov ÆÝÒÔ, òîì 123, âûï. 2, 2003of numbers from [0; 1) of the form wi = li=M withli 2 f0; 1; : : : ;M � 1g, we let F denote the subspa
espanned by ve
tors of the form jlii; i = 1; : : : ; Q. Aspe
trum S is determined by this set �w ifa) for ea
h ! 2 S, there exists its good approxima-tion wi 2 �w, jwi � !j � 1=L, andb) ea
h wi 2 �w is a good approximation of some! 2 S.We would obtain a slightly di�erent formulation ofthe problem if we wished to �nd a 
ir
uit whose spe
-trum only 
ontains one given set of frequen
ies and/ordoes not 
ontain other sets, or if we permit some moregeneral form of a sparse set for �w instead of li=M .These versions of the problem have similar solutions.As above, we �nd the re
ognizing algorithm in theGSA form (I~0I
ir; �w)t; (3)where ~0 is an arbitrarily 
hosen ve
tor from the spa
espanned by 
odes of the 
ir
uits, t = O(pT ), where Tis the number of all possible 
ir
uits, and I
ir; �w is there�e
tion along all 
odes [C℄ su
h that Spe
tr(UC) isdetermined by �w. It now su�
es to build I
ir; �w.We 
hoose Bf = O(pQ) su
h that a randomly 
ho-sen ve
tor w 2 F satis�esjhwjw1ij > 1=Bfwith probability 0:99. Let GenFreqj andGenTimeFreqj be the respe
tive operators gener-ating a linear 
ombination of frequen
ies ~!j 2 F anda time instant tfreq; j � Bf ; all these obje
ts aretaken from the 
orresponding uniform distributionsover all possible values and the 
ode of the gatearray generating the inversion along the 
orrespondingstate ~!j . These operators generate obje
ts in the
orresponding an
illary registers. We let !j be thefrequen
y 
ontained in the j-th register (initially, ~!j).We assume that the 
ode of the 
ir
uit generatingU is �xed and de�ne the operator I
ir; �w byI
ir; �w =Oj �GenFreq�1j GenTimeFreq�1j ÆÆ (IBadFreq; �w;jI~!j )tfreq; j �SignGoodFreqOj �(I~!j IBadFreq; �w;j)tfreq; jGenFreqjGenTimeFreqj� ;where IBadFreq; �w;j inverts the sign of states with �badfrequen
ies� in the j-th register; these are the valuesof !j of the form l=M , l 2 f0; 1; : : : ;M � 1g that ei-ther belong to �w and are not a good approximation of

frequen
ies ! 2 Spe
tr(V ) or do not belong to �w buthave a 
lose frequen
y! 2 Spe
tr(V ) : j!j � !j � 1L ;on all other frequen
ies, this operator a
ts as identity.Appli
ation of the sequen
e pre
eding SignGoodFreq
on
entrates the amplitude on bad frequen
ies. Wenote that I~!j 
an be implemented by a given 
ode bymeans of the quantum Klini operator App. The sub-sequent appli
ation of SignGoodFreq inverts the signof a state depending on whether bad frequen
ies arepresent. Namely, SignGoodFreq 
hanges the sign for
odes [C℄ without bad frequen
ies and does nothing for
odes [C℄ with bad frequen
ies. The subsequent oper-ators 
lean all an
illa. Therefore, I
ir; �w de�ned thisway inverts the sign of exa
tly those 
odes C for whi
hSpe
tr(UC) is determined by �w. We need to de�ne twotypes of operators: SignGoodFreq and IBadFreq; �w;j .With ea
h !j 
ontained in the j-th register, we as-so
iate a family of registers enumerated by two indi
esj; k and 
ontaining the frequen
ies !j;k.De�nition 3. A family of all !j;k is 
alled good ifthe following property is satis�ed for at least 1=5 fromall j: for at least 1=10 of all k, !j;k � !j 2 �w.The registers enumerated by di�erent k for a �xed jare designed for the appli
ation of the j-th 
opy of theoperator State! de�ned in the previous se
tion. Here,it is given by State!j . Ea
h k 
orresponds to the op-erator Stk in de�nition (2) su
h that ea
h !j;k is thefrequen
y obtained from the result of the a
tion of Stk.We �rst build the operator IBadFreq; �w;j . We setIBadFreq; �w;j =Oj;k h(State!j )�1Restj;ki ÆÆ Sign0Oj;k [Revj;kState!j ℄ ;where the operator Sign0 
hanges the sign of only stateswith bad families of frequen
ies.It was shown in the previous se
tion that if a fre-quen
y !j is bad, we 
an only have !j;k � !j 2 �w forthe vanishing part of all k, and before Sign0, almost allprobability is 
on
entrated on bad families !j;k; there-fore, IBadFreq; �w;j 
hanges the sign.If !j is good, then it belongs to �w and has a 
lose!0 2 S. It follows from the previous se
tion that about7=8 � 1=4 = 7=32 > 1=5 of all k satisfy !j;k � ! 2 �wand almost all probability before Sign0 is 
on
entratedon good families, and the sign is therefore un
hanged.Hen
e, IBadFreq; �w;j is de�ned 
orre
tly.392



ÆÝÒÔ, òîì 123, âûï. 2, 2003 Quantum re
ognition of eigenvalues : : :We setSignGoodFreq =Oj;k h(State!j )�1Restj;ki ÆÆ SignOj;k [Revj;kState!j ℄ ;where the operator Sign 
hanges the sign of only stateswith good families of frequen
ies. If a frequen
y !j isnot bad, then about 7=8 � 1=4 = 7=32 of all k satisfy!j;k � !j 2 �w. If a frequen
y !j is bad, we 
an onlyobtain !j;k � !j 2 �w for the vanishing part of k, asshown in the previous se
tion. Thus, SignGoodFreqa
ts as required7).We now 
al
ulate the 
omplexity of our algorithm ofre
ognizing a mole
ular 
ir
uit. The �rst fa
torpT im-mediately follows from (3). The next fa
tor pQ followsfrom the de�nition of I
ir; �w. Finally, the de�nition ofIBadFreq; �w gives the fa
tor MpN . The resulting 
om-plexity is of the order MpTNQn2.3.4. Distinguishing eigenve
tors of twooperators with the same eigenvalueWe now 
onsider the most di�
ult of our problems,the problem of re
ognition of ele
troni
 devi
es. Thedi�
ulty is that we are not to �nd a 
ir
uit with a givenspe
trum, but must simulate the a
tion of a given 
ir-
uit. We re
all that we now assume that frequen
ies
an be determined within 1=L given their approxima-tion within 1=M , where L�M .As a �rst step, we 
onsider the following problem:given two operators U and V having the same eigen-value !, to �nd the di�eren
e between the 
orrespond-ing eigenve
tors. We let LU! and LV! be the subspa
esspanned by the eigenve
tors of U and V 
orrespondingto all frequen
ies !0 � !. (A parti
ular 
ase is where! is a frequen
y of U but not of V . Here, LV! = ; andour algorithm is appli
able in this situation.) We omitthe index ! from the notation. For u 2 LU , kuk = 1,we set�u = minfp1� jhujvij2 j v 2 LV ; kvk = 1g;whi
h is the sine of the angle between u and the sub-spa
e LV , or the distan
e between u and this subspa
e;we de�ne �v for v 2 LV , kvk = 1, similarly. We set�U = maxu2U �u; �V = maxv2V �v :7) Again, we 
ould take arbitrary �1: 0 < �1 < 1 instead of1=10 and �2: 0 < �2 < 7=32 instead of 1=5 in the de�nition of agood family.

Then �U = 0 implies that U � V . If the dimensions ofthe spa
es LU and LV are equal, then �U = �V ; if theyare not equal, e.g., dimLU > dimLV , then �U = 1. Letd = d(N) be some fun
tion taking values in (0; 1℄. We
all these subspa
es d-distinguishable if one of �U ; �Vis not less than d, or one of the subspa
es is empty andthe other is nonempty.We build a pro
edure that determines whether thesesubspa
es are the same provided they 
an be either d-distinguishable or 
oin
ident. The smaller values thefun
tion d(N) takes, the more a

urate our re
ognitionis. Let LU \ LV = L0. Then LU = L0LL0U andLV = L0LL0V . We note that if L0U 6= ;, then for allve
tors from L0U of length 1, their distan
es from LVare exa
tly �U , and the same is true for LV if L0V isnot empty. Let L0 be the linear subspa
e spanned byve
tors from L0V [ L0U , and ProjAB be the proje
tionof a subspa
e B to a subspa
e A. If dimLU > dimLV ,we have the de
omposition into a sum of orthogonalsubspa
es, LU = L00UMProjLULV ;where L00U is the subspa
e in LU 
onsisting of ve
torsorthogonal to LV . Let L00V be de�ned symmetri
ally.Then either1. LU = LV or2. dim LU = dim LV and L0 6= ;, or3. dim LU > dim LV and L00U 6= ;, or4. dim LU < dim LV and L00V 6= ;.We de�ne the main operator determining the equal-ity of LU and LV byDi�eren
e = Di�er�1 SignDif Di�er;Di�er = Difsame dimDifLU>LV DifLU<LV ÆÆDifortLU>LV DifortLU<LV ; (4)where SignDif 
hanges the sign of the main an
illa �difi� at least one an
illa in the list�� = f�same dim; �LU>LV ; �LU<LV ; �ortLU>LV ; �ortLU<LV g
ontains 1, and ea
h operator of the type Dif 
hangesthe 
orresponding an
illa from �� in the following 
ases:1. dim LU = dimLV and LU 6= LV ,2. dimLU > dimLV and �V <p2=3,3. dimLU < dimLV and �U <p2=3,4. dimLU > dimLV and �V > p1=3, or LV = ;,dimLU < dimLV and �U >p1=3, or LU = ;;these operators do nothing if LU = LV . In view of thesymmetry, it is su�
ient to de�ne the Dif operators inthe �rst, se
ond, and fourth 
ases. We note that the�rst 
ase, dimLU = dimLV , is the only nondegenerate393
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ase and the 
orresponding de�nition of Dif is moredi�
ult.De�nition of Dif same dim. We suppose thatdimLU = dimLV . Our �rst aim is to build an op-erator Inv that a
ts as the identity if LU and LV are
oin
ident and a
ts as IL0 if they are d-distinguishable.We arrange the �rst two an
illary qubits �U and �Vthat signal whether a given state has the proje
tion toLU or 
orrespondingly to LV of the length at least 1=3.We 
onsider the operatorChe
k =Os RestVs An
V Os RevVsOs RestUs An
UOs RevUs ;where An
 inverts the 
orresponding an
illa if and onlyif at least 9/10 of 
opies for the respe
tive frequen
iesare equal to ! within 1=M . It 
oin
ides with the inverseoperator Che
k�1.Let t be some random integer from the segment[0; [2=d℄℄. We de�ne the operatorTurnt = (ILU ILV )t (5)of Grover's type. Two subspa
es LU and LV are saidto be almost orthogonal i� p1� �2 � 1=30 for some� 2 f�U ; �V g. If LU and LV are not almost orthog-onal, then given some a 2 L0U (a 2 L0V ), the averagedistan
e between Turntjai and LU (LV ) is at least 1/2if LU and LV are d-distinguishable and zero if thesesubspa
es are 
oin
ident. To distinguish the 
lose lo-
ation and almost orthogonality 
ases, we build twooperators, Distort and Dist
losed.We �rst suppose that LU and LV are almost orthog-onal. Then �U = 1 implies that �V = 0. We introdu
ethe notationL(�U ; �V ) = ( LV if �U = 1;LU if �V = 1:Let �a be a ve
tor from the spa
e of inputs. We notethat LU 6= LV implies �U = �V for ea
h �a?L0 be
ause�a then belongs to the subspa
e spanned by L0 and theorthogonal subspa
e to LU [ LV . The �rst operatorDistort does nothing if �U = �V and 
hanges the signand the spe
ial an
illa �ort if the proje
tion of �a toL(�U ; �V ) is less than 1=30.The se
ond operator Dist
losed a
ts as the identityif �U = �V and 
hanges the sign if the following 
ondi-tions are satis�ed simultaneously: �a 2 L0, LU and LVare distinguishable, and �ort = 0.We set Distort =Oj ResjSi6=!Oj Rej ;

where Re (Res) denotesRevV (RestV ) if �U = 1; �V = 0;RevU (RestU ) if �V = 1; �U = 0;and the identity if �U = �V ; Si 6=! 
hanges the sign andsimultaneously inverts �ort i� at least half the frequen-
ies !j are su
h that j!j � !j > 1=M and �U 6= �V .If we want to 
lean the se
ond an
illa after the a
tionof Distort and keep the sign 
hange, we 
an use theoperator Dist�ort =Oj ResjS6=!Oj Rej ;where S a
ts as Si but without 
hanging the sign.The se
ond operator is de�ned byDist
losed = D�11 : : : D�1n S0DnDn�1 : : :D1;Dj = (GenTimeArgj)�1(Turnjtj )�1 ÆÆ"Ok RestUj;k# Sigj6=! "Ok RevUj;k#TurnjtjGenTimeArgj ;j = 1; 2; : : : ; n;where the operator Sigj6=! 
hanges the 
orrespondingan
illa �j only in one of the two 
ases:1. �U = 1 and at least a half of !j;k are su
h thatj!j;k � !j � 1=M , or2. �U = 0; �V = 1 and at least a half of !j;k aresu
h that j!j;k � !j < 1=M .The operator S0 
hanges the sign i� one of �U ; �V isnonzero and at least 1=20 of all �j 
ontain 1.We 
onsider the a
tion of Dist
losed following Che
kon an input ve
tor �a. We �rst 
onsider the 
ase whereLU 6= LV , whi
h implies that these subspa
es are dis-tinguishable.If �a? LU ; LV , then �U = �V = 0 and Dist
loseddoes nothing.If �a 2 L0, then �U = �V = 1 and all Sigj6=! doesnothing be
ause for almost all j, about 3=4 of !j;kare 
lose to !, j!j;k � !j � 1=M , and hen
e, S0 andDist
losed do nothing.Let �a 2 L0. We prove that Dist
losed 
hanges thesign. We de
ompose L0 into the sum of orthogonal sub-spa
es, L0 = L0ULL0Uort, and let �aj denote the resultof the a
tion of Turnjtj on �a.If � 2 L0U , then �U = 1 and for more than 1=10of all �aj , the revealed frequen
ies are not 
lose to !with the probability about 3=4 � 9=10, and the sign istherefore 
hanged in a

ordan
e with 
ase 1).394
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ognition of eigenvalues : : :If �a 2 L0Uort, then by the same reason we obtainthe 
hange of sign in a

ordan
e with 
ase 2). Hen
e,Dist
losed 
hanges the sign for all �a 2 L0.We 
an now de�ne Inv asInv = Che
k Dist�ortDist
losedDistortChe
k:For a? LU ; LV , we have Invjai = jai be
ause Che
kgives zero in the an
illa �U ; �V , thereby depriving thesubsequent operators of the ability to 
hange the stateve
tor. If a 2 L0, then Invjai = jai be
ause Distortdoes nothing and Dist
losed does nothing as well. Thus,Invjai = jai for �a?L0;and Invjai = �jai for a 2 L0:We are now ready to build the operator Difsame diminverting the an
illa �same dim i� LU and LV are distin-guishable. Let Gen generate the list y; [Iy℄; [CZ ℄, where[CZ ℄ is the 
ode of a 
ir
uit generating some unitary op-erator Z = Z�1 whose only eigenvalues are 1 and �1(that is, its frequen
ies are 0 and 1=2) and the spa
e
orresponding to frequen
y 0 is one-dimensional, andy is a basi
 ve
tor of this spa
e. As usual, the indexj means that the 
orresponding ve
tors yj are takenfrom the uniform distribution on all possible ve
tors.We assume that operators of the form Gen�1 are alsoa

essible, and setDifsame dim ==Oj hGenTimeArg�1j Gen�1j (Invj Iyj )tjRestZjj i ÆÆChangeOj hRevZjj (Iyj Invj)tjGenjGenTimeArgji ;(6)where ea
h 
opy of Inv a
ts on the register where yj ispla
ed initially and Change makes the desired 
hangein the resulting qubit �same dim if at least 5=32 of allfrequen
ies di�er from 0 by more than 1=M .The group (Iyj Invj)tj of the GSA type turns theve
tor yj generated by Genj essentially i� LU and LVare d-distinguishable.If LU = LV , then yj remains un
hanged and atleast 7=8 of all frequen
ies are 
lose to 0.If LU 6= LV , then at least 7=8 � 1=4 = 7=32 of fre-quen
ies for the result of the turn of yj are far from 0be
ause they must be 
lose8) to 1=2.8) Thus, we 
ould take any number �: 1=8 < � < 7=32 insteadof 5=32 in the de�nition of Change.

De�nition of DifLU>LV . We suppose thatdimLU > dimLV and �V < p2=3, and re
all thede
omposition LU = L00UMProjLULVinto the sum of orthogonal subspa
es with L00U 6= ;.We de�ne the operator Dif in mu
h similarity with theprevious 
ase,DifLU>LV ==Oj hGenTimeArg�1j Gen�1j (Inv00j;U Iyj )tjRestZjj i ÆÆChangeOj hRevZjj (Iyj Inv00j;U )tjGenjGenTimeArgji ;where the de�nition of Inv00U (whi
h inverts L00U ) is simi-lar to the de�nition of Distort with L00U playing the roleof L0,Inv00U = Che
k"Ok gResVk # ~Si6=! "Ok fReVk #Che
k:Here, fReV and gResV a
t as RevV and RestV only if�U = 1; if �U = 0, they do nothing, the operator eSi 6=!
hanges the sign in only one 
ase, if �U = 1 and at least3=4 of all frequen
ies !k are far from !: j!k�!j � 1=M .In the operator Dif , we therefore use a set of an
illaryregisters enumerated by the pairs of indi
es j; k.For �aj 2 ProjLULV , in view of the inequality�V < p2=3, the operator eSi 6=! does not 
hange thesign be
ause the fra
tion of all frequen
ies 
lose to ! isthen 7=8 � 1=3 = 7=24 > 1=4.For �aj?ProjLULV , the operator Inv00U does nothing.De�nition of DifortLU>LV . We suppose thatdimLU > dimLV and �V > p1=3. The de�nition ofDif is similar to the previous 
ase but with the entiresubspa
e LU playing the role of L0,DifortLU>LV ==Oj hGenTimeArg�1j Gen�1j (Invj;U Iyj )tjRestZjj i ÆÆChangeOj hRevZjj (Iyj Invj;U )tjGenjGenTimeArgji ;whereInvU = Che
k"Ok gResVk # eSiort6=! "Ok fReVk #Che
k:Here, eSiort6=! 
hanges the sign if more than half the fre-quen
ies are far from !; j!j � !j > 1=M . The 
ondi-tions required for the operator Dif are satis�ed be
ause395
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an be 
he
ked straightfor-wardly.We �nally estimate the 
omplexity of the pro
e-dure 
onstru
ted. The operator Turn in (5) requiresthe number of elementary steps of the orderTurn
omplexity =Mp1=d:The operator Di�eren
e in (4) then requires the num-ber of elementary steps of the order Turn
omplexitypN ,that is, O(MpN=d ). We note that there exists a simi-lar form of the operator Di�eren
e that does not a
t onthe resulting qubit �dif but 
hanges the sign instead;su
h an operator 
an be 
onstru
ted similarly. We letit be denoted by Di�eren
esign, and assume that itsinput 
ontains the frequen
y !.3.5. Re
ognition of ele
troni
 devi
e 
ir
uitsWe are now ready to 
onsider the re
ognition of 
ir-
uits. We assume that for every pair of 
ir
uits withthe transformations U1 and U2, the subspa
es spannedby the 
orresponding eigenvalues are either 
oin
identor d-distinguishable. We also assume that our 
odingpro
edure gives a one-to-one 
orresponden
e between
ir
uits and the T basi
 states e0; e1; : : : ; eT�1 in thespa
e H
ir. The re
ognition pro
edure is denoted byRe
 and has the GSA form,Re
 = (I~0IU )t; t = O(pT ): (7)This operator a
ts on states of the form j�i, where thebasi
 states for � are 
odes of 
ir
uits. Here, ~0 2 H
iris 
hosen arbitrarily and IU inverts the sign of every
ode whose 
ir
uit indu
es a given operator U . Theimplementation of I~0 is straightforward and all that weneed is to build IU .We de�ne IU asIU =Oj hCon
�1freq; jDi�eren
eji SignOj [Di�eren
ejCon
freq; j ℄ ;where for every basi
 state C of the argument, Con
freqgenerates some arbitrary distribution of the amplitudeon an
illary registers with Q basi
 states and then 
on-
entrates a substantial part of the amplitude on a fre-quen
y ! for whi
h LU and LV are distinguishable (ifsu
h a frequen
y exists). The operator Di�eren
ej then
hanges the resulting qubit for the jth 
opy i� thesesubspa
es are distinguishable on this frequen
y. Thenext operator Sign 
hanges the sign i� at least one �fth

of the resulting qubits �dif 
ontain 1, e.g., i� U and UCare the same operator. The subsequent appli
ations ofDi�eren
ej to ea
h 
opy of the register then 
lean the
orresponding resulting qubits and the inverse opera-tors to Con
j restore the initial state of the an
illaryregister. Di�eren
e was 
onstru
ted in the previousse
tion and it only remains to build Con
freq; j . Thistransformation 
an be de�ned asCon
freq; j = GenTimeFreq�1j GenFreq�1j ÆÆ (Di�eren
esignI!j )tj GenFreqj GenTimeFreqj : (8)If U and UC are di�erent, then their subspa
es LUand LV are d-distinguishable for some ! by our assump-tion, and Con
j 
on
entrates a substantially large partof the amplitude over all j on some 
ombination of su
hvalues !. Thus, we have 
onstru
ted the required pro-
edure Re
 that gives the target 
ode with a substantialprobability as the result of an observation of the reg-ister for the 
ode C. After the observation, we 
anverify the �tness of the 
ode C found by a straightfor-ward pro
edure. This pro
edure is similar to IU witha single 
hange: Sign is to be repla
ed by a 
hange in aspe
ial an
illa that 
an be observed after the pro
edure;we thus determine whether the 
ode C �ts.To �nd the 
omplexity of our pro
edure Re
, wenote that the 
omplexityMn2pN=d of Di�eren
emustbe multiplied by pQ following from (8) and by pT fol-lowing from de�nition (7). The resulting 
omplexity isMn2pTQN=d.3.6. Advantages of the re
ognition algorithmsAdvantages of the proposed algorithms are theirhigh speed and small memory. In parti
ular, the al-gorithm for the mole
ular stru
ture re
ognition allowsre
ognizing mole
ular 
ir
uits using mi
ros
opi
 mem-ory, whereas 
lassi
ally this task requires exponentiallylarge memory. We now 
ompare the proposed algo-rithms with their 
lassi
al 
ounterparts; we omit loga-rithmi
 multipliers.1. Re
ognition of eigenvalues and �ndingthermodynami
 fun
tions. We �x some value ofM determining the pre
ision of the eigenvalue approx-imation. We �rst 
onsider the 
ase where the numberof an
illary qubits in a quantum gate array is small.By the dire
t 
lassi
al method, we must then build thematrix of the unitary transform indu
ed by the gatearray. This requires the order N3 steps and at least or-der N2 bits. The known quantum algorithm given byTravaglione and Milburn in [8℄, based on the Abramsand Lloyd operator Rev, 
ontains repeated measure-ments of frequen
ies and therefore requires time of the396
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ognition of eigenvalues : : :order NM ; for sparse spe
tra, it is of the same order asfor the Hams�Raedt algorithm and its only advantageover the latter is exponential memory saving.Our algorithm re
ognizes an eigenvalue in pNMnsteps. This time for the sparse area of the spe
trum isabout the square root of the time of the best known al-gorithms. Here, the memory is of the order g2 qubits (gis the size of the gate array), that is, about the squaredmemory used in [2℄, but still exponentially smaller thanin 
lassi
al methods. The proposed algorithm thereforegives an essential speedup over the known methods inthe 
ase where the number of an
illary qubits in a givengate array is small (as in the 
ase of a mole
ular stru
-ture simulated by the gate array) and an area of thespe
trum is sparse. The same advantage is possessed bythe proposed method of �nding thermodynami
 fun
-tions.If the spe
tra are dense, we assume that M = N ,whi
h means that eigenvalues di�er by 1=N at least.The time of our algorithm is then O(N).We next 
onsider the 
ase where the number a of an-
illary qubits involved in the gate array simultaneouslyis greater than the length n of the input. The dire
t
lassi
al method then requires more than 22a steps andat least 2m bits, whereas our algorithm requires onlyabout g2n steps and gn2 memory and the quantumspeed-up 
an be more than the square root.2. Re
ognition of mole
ular stru
tures. We�rst assume that the spe
tra are sparse. To be ableto 
ompare our method with the evident 
lassi
al algo-rithm, we assume that the 
ode of a mole
ular 
ir
uitof the length n is a string of ones and zeroes of thislength. Therefore, M = N . The next natural assump-tion that 
an also be presumed for ele
troni
 
ir
uitsis that the sampling of the 
ode of a 
ir
uit from theuniform distribution indu
es a sampling of all possiblespe
tra from the uniform distribution. Then the num-ber of all possible 
hoi
es of spe
trum approximations(or parts of the spe
trum subje
t to the statement ofthe re
ognition problem) within 1=L 
onsisting of fre-quen
ies of the form l=M is about 2M = N . Thisimplies that M and Q must be logarithmi
 in N inour assumption. Our method therefore has the time
omplexity O(N). With these assumptions, the time
omplexity of the 
lassi
al dire
t algorithm examiningall 
odes and 
al
ulating the 
orresponding spe
tra isabout N3 � N = N4, whereas our algorithm requiresthe time about N and the logarithmi
 memory. Thequantum time for this problem is therefore about thefourth root of the time of the 
lassi
al dire
t methodand the quantum spa
e is logarithmi
.If the spe
tra are dense, then Q and M are of the

order N and our method requires the time O(N2:5), tobe 
ompared with O(N4) of the dire
t 
lassi
al way.3. Re
ognition of ele
troni
 devi
es. Thereare no 
lassi
al analogues of this problem in the gen-eral 
ase. We 
ompare the two algorithms 
onstru
tedabove with their 
lassi
al and known quantum 
ounter-parts. We �rst 
onsider a single quantum re
ognitionalgorithm that 
an easily be dedu
ed from the previ-ously known te
hnique. This is the algorithm of re
og-nizing a 
ir
uit realizing a 
lassi
al involutive fun
tionof the form f : Q �! Q; f = f�1:This task 
an be redu
ed to the sear
h of y su
hthat the following logi
 formula is true: 8x A(x; y),where A(x; y) is some predi
ate. Indeed, if we takeY (x) = U(x) instead of A(x; y), where Y is a fun
tionwhose 
ode is y, we obtain the problem of re
ognitionof the 
ir
uit generating U . The algorithm for su
h for-mulas given in [4℄ has the time 
omplexity of the orderpTN . This task is a parti
ular 
ase of our algorithmfor involutive devi
es and it has the same 
omplexity.In this parti
ular 
ase, quantum time is of the ordergiven by the square root of the 
lassi
al time. But ifwe 
onsider a slightly more general but still restri
tedproblem of the re
ognition of involutive devi
es produ
-ing linear 
ombinations of basi
 states (like quantumsubroutines), the advantage over the 
lassi
al methodof re
ognition in
reases. For example, we 
onsider therestri
ted problem where we must 
hoose between twoalternative 
onstru
tions of a tested devi
e indu
ing anon
lassi
al unitary transformation. The naive methodof observing the results of the a
tion of the tested de-vi
e on the di�erent inputs requires the order (1=�)N3of steps to restore the matrix of the operator UC within�. This � must then be less than 1=pN to give a vanish-ing di�eren
e between operators in the Hilbert spa
e.Therefore, the time 
omplexity of the naive method ofre
ognition is roughly N7=2. On the other hand, themethod proposed in Se
. 3.4 requires 
hoosing d thatonly 
onverges to zero as N tends to in�nity. The timerequired by our method is therefore slightly more thanpN . We thus have almost the seventh degree speed-upfor the problem of distinguishing ele
troni
 
ir
uits gen-erating transformations with non
lassi
al matri
es.4. CONCLUSIONSThe main 
on
lusion is that the mole
ular stru
-ture and physi
al properties of environment 
an bequi
kly re
ognized on the mi
ros
opi
 level whereas397
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lassi
al methods require huge time and espe
iallymemory. The new algorithms of re
ognizing eigenval-ues with a �xed pre
ision, re
ognizing the mole
ularstru
ture, and �nding thermodynami
 fun
tions givea quadrati
 speed-up and an exponential memorysaving 
ompared with the best 
lassi
al algorithms.The new method based on quantum 
omputing wasproposed for fast re
ognition of ele
troni
 devi
es.By this method, two devi
es with the same givenspe
trum 
an be distinguished in the time about theseventh root of the time of dire
t measurements. Allthese algorithms show essential potential advantagesof mi
ros
opi
 size quantum devi
es 
ompared to their
lassi
al 
ounterparts with mu
h bigger memory. Theadvantages pertain to intelle
tual tasks like re
ogni-tion of the stru
ture of other devi
es and importantproperties of environment. The proposed algorithmsare 
onstru
ted from the standard known subroutines;they have a simple stru
ture and are entirely withinthe framework of the 
onventional quantum 
omputingparadigm.I am sin
erely grateful to Kamil Valiev for 
reatingthe 
onditions for investigations in quantum 
omputingat the Institute of Physi
s and Te
hnology and for hisattention and valuable advi
es 
on
erning my work.
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