ЭФФЕКТ ЗЕЕМАНА ДЛЯ ДЫРОК В СИСТЕМЕ Ge/Si С КВАНТОВЫМИ ТОЧКАМИ

А. В. Ненашев, А. В. Двуреченский, А. Ф. Зиновьева*

Институт физики полупроводников Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

Поступила в редакцию 21 августа 2002 г.

В приближении сильной связи исследован эффект Зеемана для основного дырочного состояния в квантовой точке. Предложен метод расчета g-фактора для локализованных состояний в квантовой точке. Данный метод может быть применен как для дырочных, так и для электронных состояний. Проведены расчеты в системе Ge/Si с квантовыми точками, которые показали, что g-фактор дырки в основном состоянии является сильно анизотропной величиной. Проанализирована зависимость g-фактора от размера островка германия и показано, что с увеличением размеров островка анизотропия g-фактора возрастает. Показано, что значение g-фактора определяется главным образом вкладом состояния с проекцией момента $J_z = \pm 3/2$ на ось симметрии островка германия.

PACS: 75.75.+a, 76.30.-v, 73.21.La

1. ВВЕДЕНИЕ

Взаимодействие электронных состояний со спином ±1/2 с внешним магнитным полем описывается *g*-фактором спинового расщепления свободного электрона ($g \approx 2$). В твердых телах взаимодействие с потенциалом решетки приводит к существенному отличию *q*-фактора от *q*-фактора свободного электрона. При понижении размерности системы от трехмерного случая к двумерному и далее эффекты размерного квантования приводят к новым изменениям *g*-фактора носителей заряда. Например, для электронов в низкоразмерных системах квантование приводит к существенной перенормировке значения g-фактора [1] и его сильной анизотропии [2]. В *д*-факторе содержится численная информация об изменении зонной структуры полупроводника при понижении размерности. Поэтому его исследованию посвящено достаточно большое количество экспериментальных и теоретических работ. Для электронных состояний существуют работы, в которых развиты последовательные **kp**-теории, позволяющие pacсчитать g-фактор в квантовых ямах и сверхрешетках [3], а также в квантовых точках [4]. Для дырочных состояний эффект Зеемана исследовался теоретически и экспериментально для структур с квантовыми ямами [5–7].

Укажем принципиальные различия между случаями двумерных квантовых ям и квантовых точек, которые должны привести к изменению g-фактора. Случай достаточно широких квантовых ям в магнитных полях, малых по сравнению с энергией квантования (или с энергией расщепления зон, вызванного упругими напряжениями), можно рассматривать в приближении объемного полупроводника и получить значения g-факторов дырочных подзон прямо из точной формы 8 × 8-гамильтониана **kp**-теории: для тяжелой дырки $g_{\parallel}~=~6k,~g_{\perp}~=~0,$ для легкой дырки $g_{\parallel}~=~2k,~g_{\perp}~=~4k~(g_{\parallel}$ и g_{\perp} — составляющие д-фактора соответственно в направлениях, параллельном и перпендикулярном главной оси структуры (оси z), k, q — параметры Латтинжера, последний опущен из-за малости). В более узких квантовых ямах возрастает неопределенность по импульсу k_z , что приводит к модификации g-фактора легкой дырки за счет подмешивания состояний спин-отщепленной зоны и зоны проводимости (здесь принято, что z — направление роста эпитаксиальной пленки) [7]. Фактор Ланде тяжелой дырки на дне зоны практически не меняется, по-

^{*}E-mail: zinoviev@isp.nsc.ru

скольку зона тяжелых дырок с ближайшими зонами не взаимодействует. В достаточно узких ямах меняются *g*-факторы легкой и тяжелой дырок за счет влияния барьеров, формирующих квантовую яму [5].

В случае квантовых точек к существенной перенормировке g-фактора дырочных состояний должно привести появление квантующего потенциала не только в направлении роста, как в случае двумерных структур, но и столь же сильного квантования в латеральном направлении (в плоскости xy). Это приводит к неопределенности по k_x , k_y и в результате к сильному перемешиванию зон легких и тяжелых дырок и спин-отщепленной зоны [8]. При теоретическом исследовании эффекта Зеемана в двумерных системах, как правило, это перемешивание не учитывается, так как рассматриваются состояния на дне зоны, где k_x , $k_y = 0$.

В квантовых точках, созданных на основе напряженных гетероструктур, к значительному изменению g-фактора должна привести неоднородность деформаций внутри квантовых точек. Если сравнивать квантовую точку и квантовую яму, выращенные вдоль направления [100], то в последней будут отсутствовать деформации сдвига ε_{xy} , ε_{xz} , ε_{yz} , приводящие к перемешиванию зон легких и тяжелых дырок [8]. В квантовой точке такие деформации присутствуют.

Итак, в случае квантовых точек квантование во всех трех направлениях и неоднородность деформаций должны приводить к значительному изменению *g*-фактора дырочных состояний за счет перемешивания энергетических зон.

В настоящей работе в рамках подхода сильной связи предложен метод расчета *g*-фактора для дырочных состояний в квантовых точках. Этот метод позволяет учесть конкретный вид квантующего потенциала (описываемого не только аналитической функцией) и вычислить *g*-фактор для квантовой точки любой формы и сколь угодно малого размера. Предложенный метод также может быть применен к электронным состояниям в квантовых точках.

Работа построена следующим образом. В разд. 2 описан метод расчета *g*-фактора. В разд. 3 рассчитан *g*-фактор дырочных состояний в квантовых точках в германии, находящихся в кремниевой матрице. Выявлена сильная анизотропия *g*-фактора дырок. Установлена зависимость *g*-фактора дырки от размера квантовой точки. Исследованы вероятности зеемановских переходов в зависимости от направления магнитного поля. Раздел 4 посвящен обсуждению полученных результатов. Причины, определяющие величину *g*-фактора и ее зависимость от размера островка, раскрыты с помощью упрощенной модели невзаимодействующих зон.

2. МЕТОД РАСЧЕТА

Данный метод является развитием идеи, выдвинутой нами ранее в работе [9], в которой был предложен атомистический подход к вычислению g-фактора дырочного состояния в квантовой точке. В его основе лежит нахождение углового момента дырки на атомной орбитали. Однако при переходе к предельному случаю объемного кристалла этот подход не дает значений, согласующихся с объемным значением g-фактора. Поэтому здесь мы расширили рамки прежнего подхода, введя в рассмотрение угловой момент блоховских функций.

Зеемановское взаимодействие с магнитным полем **H** для частицы с магнитным моментом **M** записывается в следующей форме:

$$\hat{H} = -\hat{\mathbf{M}} \cdot \mathbf{H}$$

Магнитный момент M связан с угловым моментом J соотношением

$$\mathbf{M} = -g_0 \mu_B \mathbf{J},$$

где μ_B — магнетон Бора, g_0 — g-фактор, равный двойке для частиц с чисто спиновым и единице для частиц с чисто орбитальным электронным магнетизмом.

Введем \mathbf{M}_{QD} — магнитный момент дырки (электрона) в квантовой точке, измеряемый в единицах магнетона Бора:

$$\mathbf{M}_{QD} = -(\mathbf{L} + 2\mathbf{S}),$$

где L – орбитальная, а S — спиновая часть момента. Запишем гамильтониан взаимодействия с магнитным полем в следующей форме:

$$\hat{H}_{QD}(\mathbf{H}) = -\mu_B \hat{\mathbf{M}}_{QD} \cdot \mathbf{H} = \mu_B (\hat{\mathbf{L}} + 2\hat{\mathbf{S}}) \cdot \mathbf{H}$$

Из соображений симметрии основное состояние в квантовой точке двукратно вырождено и образует крамерсовский дублет. Для состояний крамерсовского дублета энергия зеемановского взаимодействия равна

$$\frac{1}{2}\mu_B \hat{\sigma}_{\alpha} g_{\alpha\beta} H_{\beta},$$

где $\hat{\sigma}_{\alpha}$ ($\alpha = x, y, z$) — матрицы Паули, $g_{\alpha\beta}$ — тензор, имеющий в общем случае девять независимых компонент [10]. В большинстве случаев (за исключением структур с довольно низкой симметрией) величины $g_{xy} = g_{yx}$ и т. д., а также перекрестные члены могут быть исключены подходящим выбором осей x, y, z (известных как главные оси). В этих осях *g*-тензор характеризуется тремя главными значениями g_{xx} , g_{yy}, g_{zz} .

В первом порядке теории возмущений *g*-фактор можно определить из решения секулярного уравнения, которое дает

$$|g| = 2\sqrt{\langle \psi | \mathbf{n} \cdot \hat{\mathbf{M}}_{QD} | \psi \rangle^2 + |\langle \psi | \mathbf{n} \cdot \hat{\mathbf{M}}_{QD} | \psi^* \rangle|^2}, \quad (1)$$

где ψ , ψ^* — волновые функции, составляющие крамерсовский дублет для данного уровня, **n** — единичный вектор в направлении магнитного поля. Следовательно, для вычисления *g*-фактора необходимо найти матричные элементы оператора $\hat{\mathbf{M}}_{QD}$. Для определения матричных элементов необходимо решить задачу нахождения собственных волновых функций ψ , ψ^* для состояний дырки или электрона в квантовой точке. Полагаем, что магнитное поле достаточно мало и не приводит к существенным изменениям волновых функций дырки (электрона), что позволяет использовать для вычисления матричных элементов собственные волновые функции невозмущенного гамильтониана.

Для дырочных состояний задача нахождения собственных волновых функций ψ , ψ^* решена нами в работе [9] при расчете энергетического спектра дырок в квантовых точках. Для этого использована модель сильной связи с базисом sp^3 [11]. В данной модели для каждого из атомов задается набор орбиталей s, p_x, p_y, p_z , размерность вектора состояния системы равняется числу атомов, умноженному на число орбиталей на один атом. Учитываются взаимодействие между ближайшими соседями в рамках двухцентрового приближения [12] и спин-орбитальное взаимодействие [13]. Для учета деформационных эффектов [14] введена зависимость межатомных матричных элементов гамильтониана от ориентации соответствующих связей [12] и от их длины [15]. Для нахождения вектора $|\psi\rangle$ использован метод свободной релаксации [16]. Каждая компонента вектора ψ_{nN} представляет собой амплитуду вероятности нахождения частицы на *n*-й орбитали атома с номером N.

Поскольку вектор состояния, отвечающий некоторому уровню размерного квантования, задан как комбинация атомных орбиталей, необходимо определить матричные элементы оператора $\hat{\mathbf{M}}_{QD}$ в представлении атомных орбиталей. Сначала определим орбитальный момент **L**. Каждому из диагональных матричных элементов $\langle \psi_{nN} | \hat{\mathbf{L}} | \psi_{nN} \rangle$ можно приписать физический смысл углового момента частицы, находящейся на соответствующей орбитали *n* выбранного атома *N* в квантовой точке.

Для дырки (электрона) с координатами (x, y, z), находящейся с вероятностью $|\psi_{nN}|^2$ на *n*-й орбитали около выбранного атома N с координатами (X, Y, Z), запишем оператор углового момента

$$\hat{L}_{\alpha} = \frac{1}{\hbar} e_{\alpha\beta\gamma} \hat{p}_{\beta} \hat{r}_{\gamma},$$

где $e_{\alpha\beta\gamma}$ — единичный антисимметричный тензор.

С помощью правила дифференцирования операторов по времени [17] оператор импульса $\hat{\mathbf{p}} = m\hat{\mathbf{r}}$ выражается через гамильтониан \hat{H}_0 и оператор координаты $\hat{\mathbf{r}} = (\hat{x}, \hat{y}, \hat{z})$:

$$\hat{\mathbf{p}} = \frac{im}{\hbar} (\hat{H}_0 \hat{\mathbf{r}} - \hat{\mathbf{r}} \hat{H}_0),$$

где *т* — масса свободного электрона. Тогда оператор углового момента равен

$$\hat{L}_{\alpha} = \frac{im}{\hbar^2} e_{\alpha\beta\gamma} \hat{r}_{\beta} \hat{H}_0 \hat{r}_{\gamma}.$$

Полученное выражение не может быть непосредственно использовано для определения матричных элементов $\langle \psi | \hat{\mathbf{M}}_{QD} | \psi \rangle$, $\langle \psi | \hat{\mathbf{M}}_{QD} | \psi^* \rangle$, поскольку волновые функции ψ, ψ^* вычислены в приближении сильной связи, а оператор $\hat{\mathbf{r}} = (\hat{x}, \hat{y}, \hat{z})$ координат дырки (электрона) в этом приближении не имеет смысла. Поэтому заменяем его на оператор $\hat{\mathbf{R}} = (\hat{X}, \hat{Y}, \hat{Z})$ координат атома, которому принадлежит орбиталь:

$$\hat{L}_{\alpha} = \frac{im}{\hbar^2} e_{\alpha\beta\gamma} \hat{R}_{\beta} \hat{H}_0 \hat{R}_{\gamma}.$$
(2)

Делая замену $\hat{\mathbf{r}} \to \hat{\mathbf{R}}$, мы теряем некоторую часть углового момента, связанную с блоховской сильноосциллирующей волновой функцией (ее можно назвать эффективной спиновой частью момента), остается лишь часть момента, связанная с плавной огибающей волновой функцией дырки (электрона) орбитальная часть.

Если не учитывать взаимодействия между ближайшими зонами, то, чтобы получить полный момент \mathbf{M}_{QD} , нужно просто добавить к выражению (2) эффективную спиновую часть момента, которой обладает носитель заряда в соответствующей энергетической зоне: для электронов — это зона проводимости, для дырок — валентная зона. Но состояние дырки (электрона) в квантовой точке формируется не только из состояний валентной зоны (зоны проводимости), в формирование состояния также вносят вклад и близлежащие зоны. Для дырочных состояний ближайшими являются спин-отщепленная (split off, SO) зона и зона проводимости (conduction band, CB), для электронных состояний — зоны тяжелых дырок (heavy holes, HH), легких дырок (light holes, LH) и спин-отщепленная зона. Вклад других зон пренебрежимо мал.

Волновая функция дырки (электрона) может быть представлена в виде

$$\begin{aligned} |\psi\rangle &= A_1(\mathbf{R})|CB\rangle + A_2(\mathbf{R})|HH\rangle + \\ &+ A_3(\mathbf{R})|LH\rangle + A_4(\mathbf{R})|SO\rangle, \end{aligned}$$

где коэффициенты A_1 , A_2 , A_3 , A_4 зависят от положения атома в квантовой точке и отражают вклады соответствующих зон в состояние частицы в квантовой точке. Каждая компонента волновой функции обладает своим эффективным спином и взаимодействует с магнитным полем согласно следующим выражениям.

Для дырки в зоне тяжелых дырок часто вводят эффективный спин \mathbf{S}_{HH} для описания зеемановских подуровней [6]: одному из подуровней с $J_z = -3/2$ приписывают спин $(S_{HH})_z = -1/2$, другому из подуровней с $J_z = 3/2$ приписывают спин $(S_{HH})_z = 1/2$. Тогда зеемановское взаимодействие записывается в виде

$$\hat{H}(\mathbf{H}) = \mu_B g_{HH} (\hat{\mathbf{S}}_{HH} \cdot \mathbf{H}), \qquad (3)$$

где $g_{HH} - g$ -фактор дырки в зоне тяжелых дырок. То же самое можно проделать и для дырки в зоне легких дырок: одному из подуровней с $J_z = -1/2$ приписать спин $(S_{LH})_z = -1/2$, другому из подуровней с $J_z = 1/2$ приписать спин $(S_{LH})_z = 1/2$. Тогда зеемановское взаимодействие в зоне LH имеет вид

$$\hat{H}(\mathbf{H}) = \mu_B g_{LH} (\hat{\mathbf{S}}_{LH} \cdot \mathbf{H}), \qquad (4)$$

где $g_{LH} - g$ -фактор дырки в зоне легких дырок.

Для вырожденной валентной зоны в точке Г взаимодействие с магнитным полем можно записать в следующем виде [8]:

$$\hat{H}(\mathbf{H}) = 2\mu_B \left[k(\hat{\mathbf{J}} \cdot \mathbf{H}) + q(\hat{J}_x^3 H_x + \hat{J}_y^3 H_y + \hat{J}_z^3 H_z) \right],$$

где **J** — эффективный угловой момент дырки (J = 3/2). Это выражение мы и будем использовать в дальнейшем, хотя в принципе можно использовать выражения (3), (4).

Гамильтониан зеемановского взаимодействия в спин-отщепленной зоне и зоне проводимости также можно выразить через соответствующие эффективные спины \mathbf{S}_{SO} и \mathbf{S}_{CB} . Для дырки в спин-отщепленной зоне имеем

$$\hat{H}(\mathbf{H}) = \mu_B g_{SO}(\hat{\mathbf{S}}_{SO} \cdot \mathbf{H}), \tag{5}$$

а для электрона в зоне проводимости —

$$\hat{H}(\mathbf{H}) = \mu_B g_{CB} (\hat{\mathbf{S}}_{CB} \cdot \mathbf{H}), \tag{6}$$

где $g_{SO} - g$ -фактор свободной дырки в спин-отщепленной зоне, $g_{CB} - g$ -фактор в зоне проводимости, а операторы эффективных спинов $\hat{\mathbf{S}}_{SO}$, $\hat{\mathbf{S}}_{CB}$ определяются через матрицы Паули $\hat{\sigma}_x$, $\hat{\sigma}_y$, $\hat{\sigma}_z$, действующие на соответствующие спиновые переменные, $\hat{S}_{\alpha} = \hat{\sigma}_{\alpha}/2$.

Полная энергия взаимодействия с магнитным полем с учетом орбитального момента L задается следующей суммой:

$$\hat{H}(\mathbf{H}) = 2\mu_B \left[k(\hat{\mathbf{J}} \cdot \mathbf{H}) + q(\hat{J}_x^3 H_x + \hat{J}_y^3 H_y + \hat{J}_z^3 H_z) \right] + \mu_B g_{SO}(\hat{\mathbf{S}}_{SO} \cdot \mathbf{H}) + \mu_B g_{CB}(\hat{\mathbf{S}}_{CB} \cdot \mathbf{H}) + \mu_B (\hat{\mathbf{L}} \cdot \mathbf{H}), \quad (7)$$

где $\hat{\mathbf{L}}$ определяется формулой (2). Отсюда видно, что

$$(\hat{M}_{QD})_{\alpha} = -\left[2k\hat{J}_{\alpha} + 2q\hat{J}_{\alpha}^{3} + g_{SO}(\hat{S}_{SO})_{\alpha} + g_{CB}(\hat{S}_{CB})_{\alpha} + \hat{L}_{\alpha}\right].$$
 (8)

Окончательная формула для вычисления полного магнитного момента имеет вид

$$(\hat{M}_{QD})_{\alpha} = -\left[2k\hat{J}_{\alpha} + 2q\hat{J}_{\alpha}^{3} + g_{SO}(\hat{S}_{SO})_{\alpha} + g_{CB}(\hat{S}_{CB})_{\alpha} + \frac{im}{\hbar^{2}}e_{\alpha\beta\gamma}\hat{R}_{\beta}\hat{H}_{0}\hat{R}_{\gamma}\right].$$
 (9)

Теперь, используя полученное выражение (9), можно найти матричные элементы $\langle \psi | \hat{\mathbf{M}}_{QD} | \psi \rangle$, $\langle \psi | \hat{\mathbf{M}}_{QD} | \psi^* \rangle$ и вычислить *g*-фактор по формуле (1).

3. РАСЧЕТ *g*-ФАКТОРА В СИСТЕМЕ Ge/Si С КВАНТОВЫМИ ТОЧКАМИ

Квантовые точки в системе Ge/Si формируются в процессе гетероэпитаксии германия на подложке Si(100) в определенных условиях перехода от двумерно-слоевого механизма роста пленки германия к

Рис.1. Схематичное изображение типичной квантовой точки (островок германия) в кремнии: 1 островок германия (квантовая точка); 2 — пленка германия (смачивающий слой); ML — монослой

трехмерному росту. Характерные размеры островков составляют в известных экспериментальных работах 10-20 нм, высота 1-2 нм, таким образом, поведение носителей заряда в этих островках определяется квантово-размерными эффектами [18]. Существующий разрыв энергетических зон в гетеросистеме Ge/Si и деформационные эффекты приводят к формированию потенциальной ямы в германии лишь для дырок. Состояния в квантовой точке в основном формируются из состояний валентной зоны, т. е. представляют собой суперпозицию состояний $|3/2,\pm 3/2\rangle, |3/2,\pm 1/2\rangle, |1/2,\pm 1/2\rangle$ (состояние $|J, J_z\rangle$ характеризуется моментом J и его проекцией J_z на ось z — направление роста, см. рис. 1). На основании экспериментальных данных островок германия можно рассматривать как квадратную пирамиду с высотой h на порядок меньшей размера основания $l (h/l \sim 1/10)$ [19]. Островок, по сути, представляет собой квазидвумерный квантовый объект с выделенной осью симметрии z. Распределение деформаций в квантовой точке [14] приводит к снятию существующего вырождения в валентной зоне в точке Г. Поскольку внутри островка кристалл подвергнут одноосному растяжению вдоль оси z, на дне валентной зоны оказываются состояния $|3/2, \pm 3/2\rangle$ тяжелых дырок [20]. Поэтому можно ожидать, что вклад тяжелых дырок в основное состояние в квантовой точке будет преобладающим. Такой же вывод можно сделать, если учесть, что тяжелые дырки имеют бо́льшую эффективную массу, чем легкие.

Рассмотрим случай магнитного поля параллельного направлению роста, **H** || *z*. Энергия взаимодействия с полем определяется проекцией магнитного момента на направление магнитного поля, т. е. на направление z. Для вычисления g-фактора необходимы матричные элементы операторов \hat{J}_z , \hat{J}_z^3 , $(\hat{S}_{SO})_z$, $(\hat{S}_{CB})_z$, \hat{L}_z .

Сначала продемонстрируем, что можно провести оценки *g*-фактора только на основе разложения волновой функции в базисе $|J, J_z\rangle$, т.е. в базисе $|3/2, \pm 3/2\rangle$, $|3/2, \pm 1/2\rangle$, $|1/2, \pm 1/2\rangle$. Влияние зоны проводимости на дырочные состояния в системе Ge/Si с квантовой точкой в оценках учитывать не будем, поскольку вклад состояний этой зоны в волновую функцию составляет около 0.5 %.

Результаты разложения волновой функции основного состояния в квантовой точке размерами l = 15 нм, h = 1.5 нм представлены в таблице. Компонента с $J_z = \pm 3/2$ составляет примерно 84 % от всей волновой функции. Остальную часть составляет компонента с $J_z = \pm 1/2$. Из таблицы видно, что состояние со спином «вверх», $|\uparrow\rangle$ (состояние со средним направлением момента по полю), в основном формируется из компонент с $J_z = 3/2$ и $J_z = -1/2$, а состояние $|\downarrow\rangle$ (состояние со средним направлением момента против поля) — из компонент с $J_z = -3/2$ и $J_z = 1/2$. Компонента с $J_z = \pm 1/2$ является отражением вкладов состояний $|3/2,\pm1/2\rangle, |1/2,\pm1/2\rangle$, причем вклады эти практически равны и составляют около 8% каждый, т. е. на формирование основного состояния в квантовой точке одинаковое влияние оказывают подзона легких дырок и спин-отщепленная подзона.

Если бы основное состояние дырки в квантовой точке было сформировано только из состояний с $J_z = \pm 3/2$, т.е. состояние $|\uparrow\rangle$ соответствовало бы $J_z = 3/2$, а состояние $|\downarrow\rangle - J_z = -3/2$, то зеемановское расщепление в магнитном поле **H** || *z* определялось бы следующим выражением:

$$E(H_z) = 2\mu_B \langle (M_{QD})_z \rangle H_z =$$

= $2\mu_B H_z \left(2k \cdot \frac{3}{2} + 2q \cdot \frac{27}{8} + \langle L_z \rangle \right), \quad (10)$

где $\langle (M_{QD})_z \rangle$, $\langle L_z \rangle$ — средние значения *z*-компонент магнитного и орбитального моментов в состоянии $|\uparrow\rangle$.

Для оценки слагаемое с q можно опустить из-за малости (|q| = 0.06) [21]. При учете подмешивания состояния с $J_z = \pm 1/2$ выражение (10) переходит в следующее:

$$\begin{split} E(H_z) &= 2\mu_B H_z \left\{ 2k(a^2 - d^2) \cdot \frac{3}{2} + \right. \\ &+ \left[2k(b^2 - c^2) + g_{SO}(e^2 - f^2) \right] \cdot \frac{1}{2} + \left. \langle L_z \right\rangle \right\}, \end{split}$$

$ J,J_z angle$	$\left \frac{3}{2},\frac{3}{2}\right\rangle$	$\left \frac{3}{2},\frac{1}{2}\right\rangle$	$\left \frac{3}{2},-\frac{1}{2}\right\rangle$	$\left \frac{3}{2},-\frac{3}{2}\right\rangle$	$\left \frac{1}{2},\frac{1}{2}\right\rangle$	$\left \frac{1}{2},-\frac{1}{2}\right\rangle$
$ \uparrow\rangle$	83.67~% 0.08~%	$2.26~\% \ 4.7~\%$	$4.7~\%\ 2.26~\%$	0.08~% 83.67~%	$1.17\ \%\ 8.12\ \%$	$8.11\ \%$ $1.17\ \%$

Результаты разложения волновых функций в базисе $|J, J_z\rangle$ для двух спиновых подуровней, $|\uparrow\rangle$ и $|\downarrow\rangle$, основного состояния в островке германия высотой h = 1.5 нм и стороной основания l = 15 нм

где a^2, b^2, c^2, d^2 — вероятности значений соответственно $J_z = 3/2, J_z = 1/2, J_z = -1/2, J_z = -3/2$ (при J = 3/2) в состоянии $|\uparrow\rangle, e^2, f^2$ — вероятности значений соответственно $J_z = 1/2, J_z = -1/2$ (при J = 1/2) в состоянии $|\uparrow\rangle$. Для размеров квантовой точки l = 15 нм, h = 1.5 нм, согласно таблице, $a^2 \approx 0.84, b^2 \approx 0.02, c^2 \approx 0.05, d^2 \approx 0, e^2 \approx 0.01,$ $f^2 \approx 0.08.$

Оценка без учета слагаемого $\langle L_z \rangle$ дает для g-фактора следующую величину:

$$g_{zz} \approx 6k \cdot 0.82 - 2k \cdot 0.03 + g_{SO} \cdot 0.07,$$

где $k=-3.41\pm 0.03$ [21], $g_{SO}=-10\pm 3$ [22], отсюда $|g_{zz}|\approx 15.86.$

Расчет *g*-фактора по формуле (1) для тех же размеров островка с учетом орбитального момента $\langle L_z \rangle$ и с использованием волновых функций, полученных в приближении сильной связи, дает результат $|g_{zz}| = 15.71$.

При сравнении с объемным значением продольного *g*-фактора тяжелой дырки, $|g_{HH}| \approx 6k = 20.46$, видим, что размерное квантование привело к уменьшению *g*-фактора, что говорит об ослаблении спин-орбитального взаимодействия за счет подмешивания состояния с меньшим J (J = 1/2) и уменьшения эффективного углового момента частицы.

Чтобы оценить вклад орбитального момента, мы провели расчеты *g*-фактора по формулам (1), (8), опустив в формуле (8) все слагаемые, кроме \hat{L}_{α} . В результате получили значение *g*-фактора на порядок меньше: $|g_{zz}| = 0.59$. Таким образом, *g*-фактор определяется в основном эффективным угловым моментом **J**, а не орбитальным моментом **L**.

Приведем здесь полученные по формуле (1) главные значения *g*-фактора для основного состояния в квантовой точке размерами l = 15 нм, h = 1.5 нм: $|g_{zz}| = 15.71$ (в направлении роста [001]), $|g_{xx}| = 1.14$ (в направлении [110]), $|g_{yy}| = 1.76$ (в направлении [110]).

Рис.2. Зависимость g-фактора основного дырочного состояния от латерального размера l островка германия высотой h = 1.5 нм: $1 - g_{xx}$, $2 - g_{yy}$, $3 - g_{zz}$

3.1. Зависимость *g*-фактора от размеров островка германия

Из полученных результатов видна ярко выраженная анизотропия значений *g*-фактора: g_{zz} на порядок больше значений g_{xx} и g_{yy} . При увеличении размера основания островка и неизменной высоте анизотропия возрастает (рис. 2). Эту тенденцию можно объяснить тем, что волновая функция основного состояния по своему составу близка к волновой функции $|3/2, \pm 3/2\rangle$ (тяжелой дырки), у которой поперечные компоненты *g*-фактора близки к нулю [6].

Можно предположить, что волновая функция основного состояния при увеличении размеров островка все больше приобретает характер волновой функции тяжелой дырки, что приводит к усилению анизотропии *g*-фактора.

Действительно, по нашим расчетам при увеличении размера островка в латеральном направлении вклад состояния с $J_z = \pm 3/2$ в волновую функцию дырки возрастает, и волновая функция стремится к «чистому» состоянию $|3/2, \pm 3/2\rangle$ (рис. 3). Например, для высоты островка h = 1.5 нм при увеличении латерального размера l от 15 нм до 30 нм вклад

Рис.3. Зависимость вклада компоненты с $J_z=\pm 3/2$ в волновую функцию основного дырочного состояния от латерального размера l островка германия высотой h=1.5 нм

компоненты с $J_z = \pm 3/2$ в волновую функцию основного состояния возрастает с 83 до 86%. Анизотропия *g*-фактора усиливается: значение $|g_{zz}|$ возрастает до 17.0, а поперечные компоненты уменьшаются до $|g_{xx}| = 0.91, |g_{yy}| = 1.71$. Если увеличивать размеры островка, сохраняя пропорции пирамиды (h/l = 1/10), то анизотропия *g*-фактора становится еще больше. Например, для l = 30 нм, h = 3 нм главные значения *g*-фактора следующие: $|g_{zz}| = 20.99$, $|g_{xx}| = 0.06, |g_{yy}| = 1.1$. Оказывается, что в этом случае вклад компоненты с $J_z = \pm 3/2$ в волновую функцию основного состояния возрастает до 90%, что и приводит к такой высокой анизотропии.

Полученная нами зависимость g-фактора от размера островка свидетельствует об адекватности нашего подхода. Действительно, при увеличении латерального размера островка мы переходим к предельному случаю псевдоморфной напряженной пленки германия. Неоднородность деформаций, присущая квантовым точкам, исчезает. Неопределенность по k_x, k_y для состояний на дне зоны становится равной нулю. Все это ведет к ослаблению взаимодействия зоны тяжелых дырок с другими энергетическими зонами, и в результате g-фактор основного состояния стремится к g-фактору тяжелой дырки, что согласуется с нашими результатами.

3.2. Резкость границ островка германия

Приведенные выше значения *g*-фактора были получены для островка с резкими границами. Если учесть диффузионное размытие границ островка, которое присутствует в реальных островках германия, то эти значения несколько изменятся.

Размытие границ учитывалось следующим образом: каждый атом кристаллической решетки с вероятностью 2/3 заменялся на одного из его ближайших четырех соседей. В результате получалась граница с плавным изменением состава вещества в пределах трех монослоев.

С учетом размытия границ островка получены следующие результаты: сильное изменение претерпевают поперечные компоненты *g*-фактора, например, для островка с латеральным размером l = 15 нм величина $|g_{xx}|$ уменьшается от 1.14 до 0.52, а $|g_{yy}| -$ от 1.76 до 0.18. Продольная компонента *g*-фактора практически не меняется и составляет $|g_{zz}| = 15.81$. Следовательно, анизотропия *g*-фактора возрастает при размытии гетерограницы. Возможно, это связано с эффективным увеличением размеров островка.

3.3. Вероятность зеемановских переходов

Вероятность зеемановских переходов напрямую связана с характером волновой функции. Для состояния с $J_z = \pm 3/2$ в магнитном поле **H** || *z* индуцированные переходы между зеемановскими подуровнями с $J_z = 3/2$ и $J_z = -3/2$ запрещены правилами отбора: для разрешенных переходов должно выполняться условие $\Delta J_z = \pm 1$. Подмешивание состояния с $J_z = \pm 1/2$ облегчает переходы между зеемановскими подуровнями основного состояния в островке германия. Поэтому с уменьшением размера островков запрет на зеемановские переходы ослабевает.

Для произвольного направления **h** магнитного поля энергия взаимодействия с полем определяется проекцией момента на направление **h**. Состояния $|J, J_z\rangle$ преобразуются в состояния $|J, J_h\rangle$ следующим образом:

$$|J, J_z\rangle \rightarrow |J, J_h\rangle = \sum_{J_z} R^J_{J_z J_h}(\theta, \varphi) |J, J_z\rangle,$$

здесь θ, φ — полярные углы вектора **h** в системе координат x, y, z, а матрица R связана со стандартной матрицей поворотов соотношением [23]

$$R_{J_z J_h}^J(\theta,\varphi) = D_{J_z J_h}^J(0,-\theta,-\varphi).$$

Для частного случая $\theta = \pi/2$, $\varphi = 0$ направление магнитного поля будет лежать в плоскости островка и совпадать с осью *x*. Рассмотрим чистое состояние с $J_z = 3/2$. В представлении $|J, J_z\rangle$ волновую функцию данного состояния можно записать в следующем виде:

$$\begin{aligned} |\psi\rangle &= a \left| \frac{3}{2}, \frac{3}{2} \right\rangle + b \left| \frac{3}{2}, \frac{1}{2} \right\rangle + c \left| \frac{3}{2}, -\frac{1}{2} \right\rangle + \\ &+ d \left| \frac{3}{2}, -\frac{3}{2} \right\rangle = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \end{aligned}$$

где квадраты коэффициентов (a^2, b^2, c^2, d^2) отражают вклады состояний с соответствующими J_z $(a^2 + b^2 + c^2 + d^2 = 1)$. При преобразовании $R_{J_z J_h}^J(\pi/2, 0)$ состояние $\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$ переходит в

 $\left(\begin{array}{c}\sqrt{1/8}\\\sqrt{3/8}\\\sqrt{3/8}\\\sqrt{1/8}\end{array}\right)$

. Отсюда видно, что доля каждой ком-

поненты с $J_h = \pm 1/2$ составляет 3/8 от всей волновой функции. В целом они составляют 75 %, т.е. для направления магнитного поля **H**, лежащего в плоскости основания островка, вклады компонент с $J_h = \pm 1/2$ возрастают по сравнению со случаем **H** || z, поэтому вероятность зеемановских переходов увеличивается. Это справедливо и для случая, когда в волновой функции изначально присутствует добавка с $J_z = \pm 1/2$, как, например, для основного состояния в рассматриваемой квантовой точке, где она составляет 16 %.

Приведем некоторые численные оценки соотношений вероятностей зеемановских переходов для разных направлений магнитного поля.

Вероятность индуцированного перехода между зеемановскими подуровнями определяется взаимодействием магнитного момента с осциллирующим магнитным СВЧ-полем $H_{\perp} \cos(2\pi\nu t)$ (поле H_{\perp} перпендикулярно постоянному магнитному полю) и пропорциональна квадрату матричного элемента компоненты магнитного момента частицы в направлении этого поля, μ_{\perp} [24]:

$$P_{\uparrow\downarrow} \propto \left| \langle \downarrow | \hat{\mu}_{\perp} H_{\perp} | \uparrow
angle
ight|^2$$
 .

При направлении постоянного магнитного поля **H** || z компонента магнитного момента μ_{\perp} лежит в плоскости основания островка и пропорциональна главным значениям g-тензора: g_{xx} (направление [110]) и g_{yy} (направление [110]). В частном случае при направлении СВЧ-поля H_{\perp} вдоль [110] вероятность перехода $P_{\uparrow\downarrow}$ пропорциональна g_{xx}^2 . При направлении постоянного магнитного поля $\mathbf{H} \perp z$ компонента магнитного момента μ_{\perp} лежит в плоскости, перпендикулярной плоскости основания, и, в частном случае, при направлении СВЧ-поля H_{\perp} вдоль [100] пропорциональна главному значению *g*-тензора: $\mu_{\perp} \propto g_{zz}$. В этом случае вероятность перехода $P_{\uparrow\downarrow} \propto g_{zz}^2$.

Для значений $g_{zz} = 15.71, g_{xx} = 1.14, g_{yy} = 1.76$ видим, что вероятности индуцированных переходов для двух направлений магнитного поля, **H** || *z* и **H** $\perp z$, различаются приблизительно в 100 раз. А если учесть уменьшение поперечных компонент *g*-фактора за счет размытия границ ($g_{xx} = 0.52, g_{yy} = 0.18$), то получим различие вероятностей для направлений **H** || *z* и **H** $\perp z$ более чем на три порядка.

4. ОБСУЖДЕНИЕ

Полученные результаты показывают, что основной причиной, определяющей зависимость g-фактора от размера островка, является изменение вклада компоненты с $J_z = \pm 3/2$ в волновую функцию дырки при вариации размеров островка.

Причины, определяющие соотношение между вкладами компонент с $J_z = \pm 3/2, \pm 1/2,$ можно понять из следующей упрощенной модели, в которой не учитывается взаимодействие между энергетическими зонами. Рассмотрим по отдельности квантование энергетического спектра дырок с $J_z\,=\,\pm 3/2$ и квантование спектра дырок с $J_z = \pm 1/2$. В такой модели наиболее глубокие энергетические уровни будут принадлежать дыркам с $J_z = \pm 3/2$, а в области возбужденных состояний наряду с ними будут расположены уровни дырок с $J_z = \pm 1/2$. В более реалистичной модели, учитывающей взаимодействие между зонами (такими моделями, в частности, являются шести- и восьмизонная **kp**-модели и модель сильной связи) в диапазоне энергий, где находились уровни дырок с $J_z = \pm 1/2, \pm 3/2,$ будут находиться некоторые «перемешанные» состояния со сравнимыми вкладами дырок обоих типов, а в области наиболее глубоких уровней будут находиться состояния, образованные в основном дырками с $J_z = \pm 3/2$. Такая качественная модель согласуется с нашими расчетами.

На рис. 4 показан вклад компоненты с проекцией момента $J_z = \pm 3/2$ в волновые функции состояний в квантовой точке с размерами l = 15 нм, h = 1.5 нм. Из результатов разложения видно, что компонента с $J_z = \pm 3/2$ составляет около 84 % волновой функции

12 ЖЭТФ, вып. 2

Рис. 4. Вклады компоненты с $J_z = \pm 3/2$ в состояния дискретного спектра островка германия. По оси абсцисс отложена энергия состояния, отсчитанная от края валентной зоны кремния. Размеры островка: высота h = 1.5 нм, основание l = 15 нм

основного состояния ($E_0 = 420$ мэВ). Для первого возбужденного состояния ($E_1 = 377$ мэВ) вклад компоненты с $J_z = \pm 3/2$ уменьшается приблизительно до 79%. Далее с ростом номера возбужденного состояния отслеживается тенденция к уменьшению вклада компоненты с $J_z = \pm 3/2$. Для девятого возбужденного состояния ($E_9 = 303$ мэВ) вклад компоненты с $J_z = \pm 3/2$ составил около 60%.

Характер волновой функции основного состояния определяется тем, насколько удален основной энергетический уровень от состояний дырок с $J_z = \pm 1/2$, которые расположены в области возбужденных состояний в квантовой точке.

Из данных на рис. 4 видно, что зависимость вклада компоненты с $J_z = \pm 3/2$ от энергии дырки не описывается плавной функцией. Для объяснения скачкообразного характера этой зависимости мы исследовали вид волновых функций отдельно для компонент с $J_z = \pm 3/2, \pm 1/2$. На рис. 5 приведены волновые функции для компонент с $J_z = \pm 3/2$, $\pm 1/2$, составляющих первые четыре состояния в квантовой точке. В основном состоянии компонента с $J_z = \pm 3/2$, составляющая около 84%, имеет *s*-образный вид. А вот компонента с $J_z = \pm 1/2$, которая подмешивается из-за взаимодействия между зонами и составляет примерно 16 %, имеет *d*-образный вид. Если вернуться к упрощенной модели и рассмотреть отдельно квантование спектров дырки с $J_z = \pm 3/2$ и $J_z = \pm 1/2$, то в каждом из этих двух спектров будут присутствовать s-, p-, d-образные состояния и т.д. (рис. 6), причем, естественно, в обоих спектрах нижним будет s-образное состояние, затем *p*-, *d*-образные и т. д. Степень подмешивания

Рис.5. Распределение плотности волновой функции компоненты с $J_z = \pm 3/2$ ($a, 6, \partial, ic$) и $J_z = \pm 1/2$ (δ, z, e, i) (в проекции на плоскость основания пирамиды) в основном (a, δ), первом возбужденном (b, z), втором возбужденном (∂, e) и третьем возбужденном (ic, i), состояниях дырки в квантовой точке

состояния с $J_z = \pm 1/2$ к состоянию с $J_z = \pm 3/2$ обратно пропорциональна разности энергий этих состояний, т.е. пропорциональна $(E_{\pm 3/2} - E_{\pm 1/2})^{-1}$. Как следует из данных на рис. 5, при формировании основного уровня взаимодействуют *s*-состояние из спектра дырки с $J_z = \pm 3/2$ и *d*-состояние из спектра дырки с $J_z = \pm 1/2$. В этом случае вклад компоненты с $J_z = \pm 1/2$ определяется величиной энергетического зазора $\Delta E_0 = E_{\pm 3/2}^s - E_{\pm 1/2}^d$. При формировании первого и второго возбужденных состояний взаимодействуют *p*-состояние из спектра дыр-

Рис. 6. Схематичное изображение энергетических спектров дырок с $J_z = \pm 3/2, \pm 1/2$ в упрощенной модели невзаимодействующих зон. Спектры разнесены в пространстве. Буквами s, p, d отмечены энергетические уровни, соответствующие s-, p-, d-образным состояниям

ки с $J_z = \pm 3/2$ и *p*-состояние из спектра дырки с $J_z = \pm 1/2$. В этих случаях энергетические зазоры $\Delta E_1 = \Delta E_2 = E_{\pm 3/2}^p - E_{\pm 1/2}^p$ совпадают, поэтому вклады компоненты с $J_z = \pm 1/2$ практически одинаковы. При формировании третьего возбужденного состояния взаимодействуют d-состояние из спектра дырки с $J_z = \pm 3/2$ и *s*-состояние из спектра дырки с $J_z = \pm 1/2$. В этом случае вклад компоненты с $J_z=\pm 1/2$ определяется величиной энергетического зазора $\Delta E_3 \,=\, E^d_{\pm 3/2} \,-\, E^s_{\pm 1/2},$ т.е. расстояние между взаимодействующими энергетическими уровнями резко сокращается и вклад компоненты с $J_z = \pm 1/2$ сильно увеличивается. Таким образом, можно установить соотношение между энергетическими зазорами во всех четырех случаях $(\Delta E_0 > \Delta E_1, \Delta E_1 = \Delta E_2, \Delta E_2 > \Delta E_3)$ и объяснить зависимость величины вклада компоненты с $J_z = \pm 1/2$ от номера состояния дискретного спектра в квантовой точке.

Для последующих уровней интерпретация затруднена, поскольку волновые функции этих состояний имеют сложный вид и не могут быть классифицированы как *s*-, *p*-, ...-образные.

Теперь выявим причины, определяющие изменение соотношения между вкладами компонент с $J_z = \pm 1/2, \pm 3/2$ при вариации размеров островка.

При увеличении размеров островка с сохранением пропорций (h/l = 1/10) распределение и величина деформаций внутри островка существенно не меняется, поэтому величина расщепления между зонами тяжелых и легких дырок остается прежней. Энергия размерного квантования становится меньше и, например, для размеров l = 100 нм,

h = 10 нм составляет несколько миллиэлектронвольт. За счет этого основное состояние в спектре дырки с $J_z = \pm 3/2$ сдвинется ближе к дну потенциальной ямы. Возбужденные состояния менее чувствительны к изменению размера островка, поскольку их радиус локализации больше и волновые функции сильнее проникают под барьер (в кремний, окружающий островок германия). Следовательно, положение уровней дырок с $J_z = \pm 1/2$ изменится слабее по сравнению с $J_z = \pm 3/2$ при увеличении размеров островка. Поэтому энергетический зазор ΔE_0 между основным s-состоянием дырки с $J_z = \pm 3/2$ и *d*-состоянием дырки с $J_z = \pm 1/2$ увеличится. Соответственно вклад компоненты с $J_z = \pm 1/2$ в основное состояние дырки уменьшится, и волновая функция станет более близкой к состоянию дырки с $J_z = \pm 3/2$. В данном случае основной причиной, определяющей изменение соотношения между вкладами компонент с $J_z = \pm 3/2, \pm 1/2,$ является квантово-размерный фактор (уменьшение энергии размерного квантования).

При увеличении лишь латерального размера островка энергия размерного квантования практически не меняется, так как в основном определяется высотой островка. Однако при увеличении отношения l/h внутри островка растет биаксиальная деформация $\varepsilon_{zz} - (\varepsilon_{xx} + \varepsilon_{yy})/2$ [25], что приводит к увеличению расщепления между подзонами тяжелых и легких дырок. В данном случае причиной увеличения энергетического зазора ΔE_0 является деформационный фактор (изменение деформаций внутри островка).

Обычно экспериментальное значение *q*-фактора дырки в квантовых точках является результатом косвенных измерений. Как правило, исследуется спектр фотолюминесценции в магнитном поле [26-28] и из экспериментально найденного значения g-фактора экситона (g_{ex}) и g-фактора электрона (g_e) с использованием соотношения $g_{ex} = g_{HH} \pm g_e$ («минус» для оптически активных экситонов, «плюс» для оптически неактивных экситонов) вычисляется д-фактор дырки. Чтобы исключить дополнительную систематическую погрешность, связанную с существованием обменного взаимодействия между электроном и дыркой в экситоне, необходимо исследовать одиночную дырку в квантовой точке, а не связанную в экситонный комплекс с электроном. Для этого можно провести эксперимент по туннелированию дырки через квантовую точку в магнитном поле, аналогичный предложенному в работе [29] для электрона. В данном случае важен выбор направления магнитного

поля, поскольку от этого сильно зависят величина зеемановского расщепления и интенсивность зеемановских переходов. Для направления $\mathbf{H} \parallel z$ зеемановские переходы практически запрещены. В случае $\mathbf{H} \perp z$ мало зеемановское расщепление. Поэтому эксперимент лучше проводить в наклонном магнитном поле, в условиях, когда достаточно велико зеемановское расщепление и интенсивность индуцированных переходов не мала.

Предложенный в данной работе метод расчета *g*-фактора в квантовых точках позволит провести последовательное сопоставление теории и существующих экспериментальных данных по *g*-факторам дырочных (электронных) состояний в квантовых точках, выращенных в различных гетеросистемах, поскольку его применимость не ограничивается квантовыми точками в системе Ge/Si.

Работа выполнена при поддержке РФФИ (гранты №№ 02-02-16020, 99-02-39051ГФЕН), программы «Университеты России» (грант № УР.01.01.019) и INTAS (грант № 2001-0615).

ЛИТЕРАТУРА

- M. Bayer, V. B. Timofeev, T. Gutbrod et al., Phys. Rev. B 52, R11623 (1995).
- В. К. Калевич, Б. П. Захарченя, О. М. Федорова, ФТТ 37, 283 (1995).
- **3**. Е. Л. Ивченко, А. А. Киселев, ФТП **26**, 1471 (1992).
- A. A. Kiselev and E. L. Ivchenko, Phys. Rev. B 58, 16353 (1998).
- 5. А. А. Киселев, Л. В. Моисеев, ФТТ **37**, 1574 (1996).
- X. Marie, T. Amand, P. Jeune et al., Phys. Rev. B 60, 5811 (1999).
- A. A. Kiselev and K. W. Kim, Phys. Rev. B 64, 125303 (2001).
- 8. Г. Л. Бир, Г. Е. Пикус, Симметрия и деформационные эффекты в полупроводниках, Наука, Москва (1972), сс. 303, 325, 393.
- A. V. Dvurechenskii, A. V. Nenashev, and A. I. Yakimov, Nanotechnology 13, 75 (2002).
- А. Абрагам, Б. Блини, Электронный парамагнитный резонанс переходных ионов, т. 1, Мир, Москва (1972), с. 24.

- D. J. Chadi and M. L. Cohen, Phys. Stat. Sol. (b) 68, 405 (1975).
- 12. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
- 13. D. J. Chadi, Phys. Rev. B 16, 790 (1977).
- 14. А. В. Ненашев, А. В. Двуреченский, ЖЭТФ 118, 570 (2000).
- J.-M. Jancu, R. Sholz, F. Beltram, and F. Bassani, Phys. Rev. B 57, 6493 (1998).
- 16. A. A. Kiselev and U. Rossler, Phys. Rev. B 50, 14283 (1994).
- 17. Л. Д. Ландау, Е. М. Лифшиц, *Квантовая механика*, Наука, Москва (1989), с. 43.
- 18. А. В. Двуреченский, А. И. Якимов, А. В. Марков и др., Изв. РАН, сер. физ. 64, 288 (1998).
- A. I. Yakimov, A. V. Dvurechenskii, Yu. Yu. Proskuryakov et al., Appl. Phys. Lett. 75, 1413 (1999).
- 20. C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989).
- 21. J. C. Hensel and K. Suzuki, Phys. Rev. Lett. 22, 838 (1969).
- 22. R. L. Aggarwal, Phys. Rev. B 2, 446 (1970).
- 23. В. Ф. Гантмахер, И. Б. Левинсон, Рассеяние носителей тока в металлах и полупроводниках, Наука, Москва (1984), с. 37.
- 24. С. А. Альтшулер, Б. М. Козырев, Электронный парамаенитный резонанс, Физматгиз, Москва (1961), с. 20.
- 25. M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B 56, 4047 (1997).
- 26. M. Bayer, A. Kuther, F. Forchell et al., Phys. Rev. Lett. 82, 1748 (1999).
- 27. A. Zrenner, M. Markmann, E. Beham et al., J. Electr. Materials 28, 542 (1999).
- 28. M. Bayer, O. Stern, A. Kuther, and A. Forchel, Phys. Rev. B 61, 7273 (2000).
- 29. H.-A. Engel and D. Loss, Phys. Rev. Lett. 86, 4648 (2001).