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BOUND STATES OF THE JOSEPHSON DEGREES OF FREEDOMAND TRAP OSCILLATIONSL. A. Manakova *Russian Resear
h Center �Kur
hatov Institute�123182, Mos
ow, RussiaSubmitted 11 September 2002It is shown that the intera
tion of the Josephson degrees of freedom with states of 
ondensate motion 
an pro-du
e their equilibrium bound states. As a result of the appearan
e of these states, �rst, the tunneling splittingis signi�
antly in
reased in double-well trapped 
ondensates. Se
ond, the bound states 
an realize an absoluteminimum of the thermodynami
 energy for a su�
iently strong intera
tion. Transition to the new ground stateis a se
ond-order phase transition. The existense of the bound state leads to an equilibrium distortion of the
ondensate shape. This implies that the Josephson states 
an be dete
ted by observing the 
hange in the
ondensate shape.PACS: 03.75.Fi, 05.30.Jp, 32.80.Pj1. INTRODUCTIONSin
e the dis
overy of two-
omponent 
onden-sates [1℄ and 
ondensates in a double-well potential [2℄,the phenomena 
aused by phase 
oheren
e of two 
on-densate modes attra
t 
onsiderable attention, both ex-perimental and theoreti
al (see, e.g., [3℄ and referen
estherein). In [2℄, spatial quantum 
oheren
e was ob-served by means of an interferen
e pattern in two over-lapping 
ondensates. This interferen
e pattern was
on�rmed in [4℄ by numeri
al simulation of the Gross�Pitaevskii equation. In [5℄, 
oherent os
illations ofthe relative populations were observed in driven two-
omponent 
ondensates with di�erent internal states.As is well known, a 
lear manifestation of phase 
o-heren
e is the Josephson e�e
t. In numerous studiesdevoted to the Josephson e�e
t in systems of two 
on-densates in di�erent internal states [5; 6℄ or in a double-well potential [7; 8℄, 
oherent Josephson os
illations are
onsidered for various dynami
al regimes 
aused by the
ompetition between tunneling and intra
ondensate in-tera
tion (nonlinearity). In [7℄, the Josephson 
ouplingenergy is 
al
ulated for small-amplitude os
illations ina double-well potential. Damping e�e
ts due to thenormal 
urrents at a �nite temperature are estimatedthere. In [8℄, it is shown that for a relatively weak*E-mail: manakova�kurm.polyn.kiae.su

intera
tion, the parti
le number os
illations betweenthe 
ondensates are 
omplete. They are suppressedwhen the total number of atoms in the 
ondensatesex
eeds a 
riti
al value and the behavior of the systemis governed by nonlinearity. Nonlinear Josephson-typeos
illations in the relative os
illations of driven two-
omponent 
ondensates are studied in [6℄. De
oheren
ee�e
ts and quantum 
orre
tions to mean-�eld solutionshave been 
onsidered in [11; 12℄. In [13℄, the dampinge�e
ts of the Josephson 
urrent (even at zero temper-ature) are derived within the fun
tional integral ap-proa
h. A detailed treatment of the nonlinear 
lassi
aldynami
 of the 
ondensates in a double-well potentialwas given in [9; 10℄. In [14℄, the quantum and thermal�u
tuations of the phase are studed for 
ondensates inthe double-well potential.We emphasize that experimental observation of theJosephson e�e
t is di�
ult be
ause the small energysplitting asso
iated with the Josephson 
oupling im-plies that thermal and quantum �u
tuations destroythe phase 
oheren
e between two 
ondensates even atthe lowest a
hievable temperatures [13; 14℄. While theenergy splitting 
an be in
reased, e.g., by lowering thebarrier height, it then be
omes 
omparable with thatof motion states of the 
ondensates.But the problem of the intera
tion between theJosephson degrees of freedom and states of motion (os-
illations) of the trapped 
ondensate has yet to be ana-283
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uses on me
hanisms of in-
reasing the tunneling splitting in a double-well poten-tial and of formation of the bound states of the Joseph-son degrees of freedom with trap os
illations. Theme
hanisms are generated by a su�
iently strong in-tera
tion between the Josephson and os
illation states.These me
hanisms may be important for experimen-tal dete
tion of the Josephson states. The 
onsidera-tion proposed in the present paper is suitable for thedouble-well trapped 
ondensates and two-
omponent
ondensates in the same trap.The results obtained in this paper are as follows.1. As is well known [3; 7; 14℄, the Gross�Pitaevskiiequations for two 
ondensates with a weak Joseph-son 
oupling have stationary solutions 
orrespondingto the lowest states with the eigenenergies �EJ , whereEJ is the Josephson 
oupling energy. This impliesthat the double-well 
ondensates form a ma
ros
opi
two-level subsystem with the tunneling energy split-ting 2EJ if the dynami
al Josephson os
illations of theparti
le number are disregarded. In what follows, itis shown that a su�
iently strong intera
tion betweenthe ma
ros
opi
 two-level subsystem and the 
onden-sate os
illation results in their equilibrium bound state.Appearan
e of the bound state generates an essentialin
rease of the tunneling splitting of the ma
ros
opi
two-level subsystem.2. In Se
. 3�5, we 
onsider the intera
tion betweenanharmoni
 trap os
illations and the Josephson degreesof freedom generated by the parti
le number transferbetween two 
ondensates. Nonlinear dynami
 os
illa-tions of the parti
le number between two 
ondensateswith the Josephson 
oupling are 
onsidered in [9; 10℄.In the present paper, we derive the quantized spe
trumof the parti
le number generated by the Josephson 
ou-pling in order to formulate the problem of the intera
-tion between the Josephson and os
illation degrees offreedom in an adequate manner. The states of thisspe
trum represent a quantum analogue of the nonli-nar 
oherent Josephson os
illations 
onsidered in [10℄.In what follows, the states of the quantized spe
trumare 
alled the Josephson states. The spe
trum is highlynonequidistant and has a logarithmi
 singularity in thedensity of states at the energy 2EJ . We show that anyJosephson state 
an be realized by means of a giveninitial disbalan
e of the parti
le number in two 
on-densates.3. We 
onsider the intera
tion between trap os
il-lations and the ex
ited Josephson states 
orrespondingto a su�
iently large initial disbalan
e of the parti
lenumber. We show that this intera
tion is responsiblefor the formation of a bound state of �nm � 1 os
il-

lation quanta with the Josephson state 
orrespondingto the initial disbalan
e of the parti
le number. Inthe Thomas�Fermi approximation at � � !0, where� is the 
hemi
al potential of the 
ondensate and !0is the 
hara
teristi
 frequen
y of the trap, h = 1 andthe bound state arises in the region of a su�
ientlydense os
illation spe
trum. In this region, the levelseparations are small 
ompared with the harmoni
 os-
illation frequen
y !0. The equilibrium values of theos
illation quanta and the initial parti
le number dis-balan
e are 
oupled self-
onsistently and 
an realize anabsolute minimum of the thermodynami
 energy at asu�
iently strong intera
tion. The thermodynami
 av-erage �nm 6= 0 generates an equilibrium distortion of the
ondensate shape. This allows dete
ting the Josephsonstates by observing a 
hange in the 
ondensate shape.2. BOUND STATE OF THE MACROSCOPICTWO-LEVEL SYSTEM AND TRAPOSCILLATIONSThe Josephson 
oupling is realized for 
onden-sates in a symmetri
/asymmetri
 double-well potentialformed by two di�erent traps with a barrier betweenthem [2℄. The barrier is 
reated by laser light, and itsheight is dire
tly proportional to the laser power and
an therefore be varied easily. The proposed me
h-anism is also suitable for 
ondensates in di�erent in-ternal states in the same trap. Experimentally, thismay be a superposition of two Rb87 
ondensates in thestates [5; 6℄jF = 1;mF = �1i; jF = 2;mF = 1i:For a weak Josephson 
oupling, the basis states arethe self-
onsistent ground states in the two 
ondensatesseparately. The wave fun
tion of a 
ondensate with theJosephson 
oupling is given by a superposition of thesestates, namely,	(r; t) =  1(r)a1(t) +  2(r)a2(t);where  i(r) are normalized solutions of the Gross�Pitaevskii equation,ai(t) = N1=2i (t)ei�i(t); i = 1; 2;with Ni and �i(t) being the parti
le numbers andphases of ea
h 
ondensate.As is well known [3; 7; 14℄, the Hamiltonian of two
ondensates with a weak Josephson 
oupling is given byHJ �E0 = EC(�N)2 � 2EJ 
os�; (1)284
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hemi
al potentials, N is the totalparti
le number, and � = �1��2 is the relative phase ofthe 
ondensates. The quantities EC and EJ depend onthe total parti
le numberN . In (1), the energy origin isthe mean-�eld total energy of the 
ondensates, namely,E0 � �N . The variables �N and � are 
anoni
al. Theequations of motion 
an be written in the Hamiltonianform, ���t = �HJ�(�N) ; �(�N)�t = ��HJ�� :The lowest stationary solutions of these equations havethe eigenenergies Es;a = �EJ 
orresponding to sym-metri
 (�s = 2�n, (�N)s = 0) and antisymmetri
(�a = �(2n+ 1), (�N)a = 0) eigenfun
tions.Thus, the double-well trapped 
ondensates form ama
ros
opi
 two-level system with the tunneling split-ting 2EJ if we disregard the dynami
al Josephson os-
illations of the parti
le number.In what follows, we show that a su�
iently strongintera
tion between the ma
ros
opi
 two-level systemand the 
ondensate os
illation is responsible for theformation of their equilibrium bound state. In thisstate, the de�nite equilibrium number of the os
illationquanta is 
oupled to the two-level system.The intera
tion 
an be realized by the followingme
hanisms. First, the intera
tion 
an be implementedif we allow the Josephson 
oupling energy to dependon the atom displa
ement. The latter is generated bythe 
ondensate os
illation. Se
ond, the intera
tion 
anbe realized by applying a pair of traveling-wave laserbeams with the same Rabi frequen
y 
 and the wave-ve
tor di�eren
e q, for instan
e, in the x dire
tion. Theone-dimensional 
ondensate is 
onsidered for simpli
ity.The pulse frequen
es are 
hosen to be resonant with thetransition energy between the two stationary Josephsonstates. A similar me
hanism is used for the dete
tionof the motion states of a single trapped two-level atom(see [15℄ and referen
es therein) and N two-level atomsin a trap [16℄.In what follows, we assume that the intera
tiongenerates the transition between the states je; n0i andjg; ni. Here, jei and jgi are two Josephson states, n andn0 are the numbers of os
illation quanta. The transitionmatrix element 
an be written asGhe; n0j�+ exp �i�(â+ + â)�++ �� exp ��i�(â+ + â)� jg; ni: (2)

The operators â+ and â are the 
reation and annihi-lation operators asso
iated with the os
illation stateand �+ = jeihgj. Ea
h of two values N�̂z = �N ,where �z = jeihej � jgihgj, 
orresponds to one of thetwo stationary Josephson states. The quantity G is de-termined by the spe
i�
 me
hanism indu
ing the inter-a
tion. If the intera
tion is realized by applying laserbeams, it follows that in the rotating frame, G = 
and � = q(2MN!0)�1=2 is the Lamb�Di
ke parameter
aused, for example, by the 
enter-of-mass motion of Natoms in a trap with the 
hara
teristi
 frequen
y !0.We 
onsider the 
lassi
al states of motion of the
ondensate. These states 
an be des
ribed in terms ofthe 
omplex amplitudes a�; a = n1=2e�i'1 , wheren = hajâ+âjai = jaj2is the average number of quanta in the 
oherent statejai. The variables n and '1 are 
anoni
al. By the
lassi
al state of motion, we mean that its number ofquanta is very large, n� 1. It is 
onvenient to spe
ifythe relation between the amplitudes a; a� and the ope-rators â; â+ as a = N�1=2â. The 
ommutator of a anda� is then equal to zero with ma
ros
opi
 a

ura
y,[a; a�℄ = 1=N ! 0:The Hamiltonian of the motion states 
an be writtenas N�(n).The Hamiltonian of the intera
ting stationaryJosephson and os
illation degrees of freedom thereforebe
omeŝH = N�(n) +N "2�z +Hint; " � 2EJN : (3)We are interested in the situation where the resonan
e
ondition k � d�dn = " (4)is satis�ed with an integer k. In this 
ase, the Hamil-tonian Hint 
an be represented asHint = N [gk�+ak + g�ka�k��℄;gk = G� ikk!�� q22M!0�k=2 : (5)Dynami
al solutions generated by the Hamiltonianof type (3), (5) are studied in numerous papers bothfor a single trapped atom, N = 1, (see, e.g., [15; 17℄,and referen
es therein) and for N atoms in a trap [16℄.In the present paper, we fo
us on the equilibrium prop-erties of the system des
ribed by Hamiltonian (3), (5).285



L. A. Manakova ÆÝÒÔ, òîì 123, âûï. 2, 2003We note that in order to determine the partitionfun
tion Z(N ;T ) in what follows, we must have ama
ros
opi
 two-level system. The phase transitionswithin the Di
ke model that 
orresponds to the 
asewhere k = 1 in Eqs. (3) and (5) have been dis
ussedin the 
ontext of superradian
e [18℄ and re
ently, forex
iton 
ondensation [19℄.Substituting Hamiltonian (3), (5) in the expressionZ(N;T ) = Sp e��Ĥ for the partition fun
tion, we ob-tain in the 
ase of the 
lassi
al os
illation degrees offreedom thatZ(N ;T ) = 1Z0 dn e��N�(n) �Sp e��Ĥ��N ;Ĥ� = "2�z + [gk�+ak + g�ka+k��℄; (6)where � = 1=T , T is the temperature. Using theeigenenergiesE1;2 = �"2 �1 + 4jgkj2nk"2 �1=2of the Hamiltonian Ĥ� , we arrive at the following ex-pression for the partition fun
tion:Z(N ;T ) = 1Z0 dne��N�(n) �e��E1 + e��E2�N == 1Z0 dn exp(N  � �"(n)++ ln"2 
h �"2 �1 + 4jgkj2nk"2 �1=2#!) �� 1Z0 dn e�NF (n): (7)The partition fun
tion in Eq. (7) has a maximum atthe value jaj2m � �nm realizing a minimum of the fun
-tion F (n). That is, the value �nm(T ) is determined bythe equation� d�dn�n=�nm = jgkj2k�nk�1m" �1 + 4jgkj2�nkm"2 ��1=2 �� th "� "2 �1 + 4jgkj2�nkm"2 �1=2# (8)and is the number of os
illation quanta per atom of thetwo-level system. This quantity plays the part of theorder parameter of the system for T < T
, where T
 isthe transition temperature to the state with �nm 6= 0.

The new splitting E1 � E2 = �" of the Josephsonlevels depends on the temperature and is de�ned by theexpression �"(T ) = "�1 + 4jgkj2�nkm"2 �1=2 : (9)At T = 0, Eq. (8) be
omes�1 + 4jgkj2�nkm"2 � = �k2jgkj2"2 �2 �n2(k�1)m ; (10)where we used that d�dn = "k :For a simple resonan
e with k = 1, the solution for�nm(T = 0) is given by�nm = � "2G(ql0)�2 "�G2(ql0)2"2 �2 � 1# ;l20 = 12M!0 : (11)We used that g1 = G(ql0) in a

ordan
e with Eq. (5).We note that �d2F (n)dn2 �n=�nm > 0:The solution for �nm exists when the intera
tion is suf-�
iently strong, that is,�G" �2 (ql0)2 > 1: (12)This relation implies that the system in question un-dergoes a quantum phase transition at the 
riti
al valueG
 = "(ql0) of the intera
tion strength.At G(ql0) � ", the tunneling splitting �"(T = 0)and thermodynami
 energy Em of the system dis
ribedby Hamiltonian (3), (5) are determined by the expres-sions�" � G2(ql0)2" � "; Em � �NG2(ql0)24" : (13)Therefore, �rst, the splitting 
aused by the intera
tionis mu
h greater than the �unperturbed� splitting ".Se
ond, the bound state realizes the absolute minimumof the thermodynami
 energy within the range g1 � ".It is worth noting that the 
onsideration proposedabove applies in the 
ase where qr0 � 1, where r0 isthe (typi
al) mean interatom spa
ing. The l0 value is286
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hara
teristi
 size of the 
ondensate. As a result,we arrive at the relationql0 & 1:Transition to the state with �nm 6= 0 is se
ond-orderat k = 1. Imposing that �nm ! 0 at the transition tem-perature T
, we obtain from (8) at k = 1 and jg1j � "that T
 = jg1j22" = G2(ql0)22" = �"(T = 0)2 : (14)It is interesting to dis
uss the solutions of Eq. (10)for multiple resonan
es with k > 1. As 
an be easilyseen, the 
hara
ter of the ground state 
hanges drasti-
ally at k 6= 1. Already at k = 2, solutions of Eq. (10)with �nm � 1 are absent.At k � 1, Eq. (10) implies�nkm � 2"2�k2jgkj2 ; �" � "�1 + 4�k2� : (15)We see that �nm � 1 and �" � " at k � 1, and there-fore, the e�e
t of the intera
tion is negligible, unlikethe solution for a simple resonan
e with k = 1 obtainedabove.For a one-dimensional 
ondensate, the appearan
eof a state with �nm 6= 0 
orresponds to the 
enter-of-mass os
illation ofN atoms with a displa
ed zero point.The �
apture� of os
illation quanta by the ma
ros
opi
two-level system 
an therefore be 
onsidered as a me
h-anism of the formation of the equilibrium 
oherent stateof motion.In the general 
ase, the existen
e of a nonzero valueof �nm leads to an equilibrium distortion of the 
onden-sate shape. The distortion is self-
onsistently 
oupledto the tunneling splitting. In parti
ular, the stationaryJosephson states 
an be dete
ted by observing a 
hangein the 
ondensate shape, and vi
e versa.A remark is in order. The quantities d�=dn � !(n)spe
ify the level separations of the os
illation spe
trum.They are independent of n for harmoni
 os
illations,where !(n) = !0 and for the states in the region ofa �dense� (semi
lassi
al) os
illation spe
trum. In thisregion, the level separations !(n) are small 
omparedwith !0 and, in addition, are slowly-varying fun
tion ofn, !(n) � ! � !0.3. QUANTUM SPECTRUM OF THE PARTICLENUMBERThe quantization of Hamiltonian (1) produ
es theparti
le number spe
trum in the Josephson potential

EJ 
os�. As is shown in what follows, any Josephsonstate 
an be realized by means of a given initial disbal-an
e of the parti
le number. It is therefore interestingto obtain the 
omplete spe
trum generated by Hamil-tonian (1) and to represent it as a fun
tion of the initialdisbalan
e.The S
hrödinger equation for Hamiltonian (1) is de-rived by the quantization rule(�N)! �i�=��:As a result, we obtain the Mathieu equation��EC d2d�2 � 2EJ 
os�r�	 = "	;" � HJ �E0: (16)For " > 2EJ , this equation has a 
ontinuum spe
-trum. The states of this spe
trum 
orrespond to
lassi
al states with an unlimited phase 
hange,�1 < � < +1; they are 
alled the self-trappingstates in [9; 10℄. In the region �2EJ < " < 2EJ ,Eq. (16) has a dis
rete spe
trum. It 
orresponds tothe �nite-motion region of Hamiltonian (1), where therelative phase 
hanges within� ar

os("=2EJ) < � < ar

os("=2EJ)for ea
h ". In the Josephson regime [3℄ at EJ � EC ,the number of levels in a well is large and the dis
retespe
trum is determined by the Bohr�Sommerfeld for-mula�("�) = I d�r� �N(�r; "�) == I d�r� � 1EC ("� + 2EJ 
os�)�1=2 == �
hE(�)� (1� �2)K(�)i; (17)where�
 = 8� �EJEC�1=2 ; �2 = "� + 2EJ4EJ ; �
 � 1; (18)andK(�) and E(�) are the 
omplete ellipti
 integrals ofthe �rst and se
ond kind. The density of states �d("�)follows from Eq. (17) and is equal to�d("�) = 12� d�d"� = K(�)�2!m : (19)The level separations in (17) are given by!("�) = d"d� = �!m2K(�) ; !m = 2(ECEJ )1=2: (20)287



L. A. Manakova ÆÝÒÔ, òîì 123, âûï. 2, 2003At (EJ=EC)1=2 � 1, we have the relation !m � 2EJ .The quantity !m determines the maximum splitting ofthe levels in the Josephson well. In what follows, thestates with � < �
 are 
alled the �libration� states.In the region � � �
, the �(") dependen
e and den-sity of states are determined by�(") = 4�2 �EJEC�1=2 �E(��1);�
(") = 12�2 ��1K(��1)!m : (21)States (21) with � > �
 are 
alled the self-trappingstates.Equations (17) and (21) imply that"(�) � �2EJ + !m�; 1� � � �
;"(�) � 4�2EC�2; � � �
: (22)At the same time, it is easy to show thatd2"(�)d�2 < 0 for � < �
and d2"(�)d�2 > 0 for � > �
:At � = �
, the 
urve "(�) has an in�e
tion point.Be
ause the energy is 
onserved, the state with agiven value of � 
an be realized by de�ning the initialvalues of (�N)0 and �(0) as"(�) = EC(�N)20 � 2EJ 
os�(0):Supposing that �(0) = 0, we obtain the following rela-tion between � and (�N)0:"(�) = �2EJ +EC(�N)20: (23)Using Eqs. (22) and (23), we arrive at the expressions� = 12� j(�N)0jfor the self-trapping (sf) states and� = �EC!m� (�N)20for the �libration� (l) states: (24)Combining (19) and (21), we obtain the dependen
e�d;
(") / !�1m ln ����1� "2EJ �����1 ; "! 2E�J : (25)Therefore, a new logarithmi
 singularity appears atthe boundary separating the libration and self-trappingspe
tra.

4. INTERACTION OF THE EXCITEDJOSEPHSON STATES AND ANHARMONICCONDENSATE OSCILLATIONSIn this and the next se
tions, we show that the spe
-trum of the system 
an 
hange drasti
ally due to theintera
tion between ex
ited Josephson states (22)�(24)with su�
iently large values of � and os
illations of the
ondensate.As in Se
. 2, two me
hanisms 
an be proposed forthe realization of the intera
tion. First, the intera
tion
an be produ
ed by a dependen
e of EC in Eq. (23) onthe atom displa
ements. The latter are generated bythe 
ondensate os
illation. Se
ond, the intera
tion 
anbe realized by applying a two-photon traveling-wavelaser pulse with the Rabi frequen
y 
. The pulse 
re-ates the 
ondensates with di�erent parti
le numbersand indu
es the intera
tion of atom displa
ements withthe ex
ited Josephson states 
orresponding to the par-ti
le number disbalan
e 
reated by the pulse. The gen-eral des
ription proposed in what follows is indepen-dent of the spe
i�
 me
hanism produ
ing the intera
-tion.The states of motion of the 
ondensate are 
lassi-
al. These states are de�ned in Se
. 2. For semi
lassi
alJosephson states with � � 1, the 
� ; 
�� amplitudes 
anbe written as 
� = �1=2ei'2 :It is 
onvenient to rewrite "(�) and 
� in terms of thevariable x = j(�N)0jN1=2 � 1:Combining this inequality with the requirement thatx = j(�N)0jN � 1;we arrive at the 
onditions for the x values,1� x� N1=2: (26)Using Eqs. (22) and (23), we �nd that� = �(x);"(�) = N(�EJ=N +ECx2):In the general 
ase, the �(x) dependen
e is impli
it.It is determined by Eqs. (17), (21), and (23). But inthe parti
ular 
ases of the �libration� ("(�)� EJ ) andself-trapping ("(�)� EJ) states, the relations between� and (�N)0 
an be represented in a simple form, as
an be seen from (24). Using Eqs. (23) and (24), wearrive at the following expressions:H0 � N"0(n; x) = N ��EJN + �(n) +ECx2� ; (27)288
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(sf)� = N1=4x1=2ei'2 � N1=4
(sf)x ;
(l)� = N �EC!m�1=2xei'2 � N �EC!m�1=2
(l)x : (28)For any me
hanism produ
ing the intera
tion be-tween two subsystems, the intera
tion Hamiltonian 
anbe written in the form of a multiple Fourier series in'1, '2,Hint = N Xk1k2 �gk1k2(N)a�k1
k2� + 
.
.� == N Xk1;k2 hg(sf;l)k1k2 (N)nk1=2x�k2 �� exp (i(k1'1 � k2'2)) + 
.
.i ; (29)where �sf = 1=2, �l = 1, and k1 and k2 are integers.For simpli
ity, we disregard the phase-independent in-tera
tion. Using Eq. (28), we obtaing(sf)k1k2(N) = gN�1+k2=4;g(l)k1k2(N) = gN�1+k2 �EC!m�k2=2 : (30)The 
onstant g is determined by the spe
i�
 me
hanismprodu
ing the intera
tion.We now assume that the term with the phase�rk = k1r'1 � k2r'2;whi
h varies anomalously slowly with time, 
an bedropped in sum (29). This 
an be done under two
onditions. The �rst 
ondition isk1r �d�(n)dn � = k2r �d"J(x)dx � ; (31)or equivalently,xm = k1r"0n2k2rEC ; �0n � �d�(n)dn � :The se
ond 
ondition is�d2H0dx2 �x=xm (�x)max � �dHintdx �x=xm : (32)In writing this equation, we took into a

ount that H0and Hint are fun
tions of a single dynami
 variable,e.g., x. The quantity �0n de�nes the level separations ofthe os
illation spe
trum.As is shown in what follows, 
ondition (31) is equiv-alent to the 
ondition of the minimum of the fun
tion"0(n; x) with respe
t to x. When the minimum exists,it 
an provide the leading 
ontribution into the ther-modynami
 fun
tions.

In addition, 
ondition (31) implies that the phase�rk is an approximate integral of motion if the depen-den
e on x near xm is ignored,d�rkdt � k1r �H0�n � k2r �H0�x � 0:Inequality (32) implies that the width of the near-minimum region is large at the 
hara
teristi
 intera
-tion variation s
ale. From Eqs. (31) and (32), we 
anobtain that time 
hanging the �rk phase is proportionalto (d2H0=dx2)m�x, where�x is the variation of x nearthe xm value. The maximum value (�x)max spe
i�esthe width of the near-minimum region su
h thatd�rkdt � �x:The estimate for (�x)max is given in what follows.Thus, the leading term in sum (29) is given byH(r)int = Ng(sf;l)k (N ;n; x) 
os�k;�k = k1r'1 � k2r'2: (33)All the remaining terms in this sum are rapidly os
il-lating perturbations and are disregarded in this work.Here and below, the index k in gk and �k denotes theset k1r; k2r.It 
an be easily shown that in addition to the energyH = N ["0(n; x) + gk(N ;n; x) 
os�k ℄;the system in question has the integral of motionn0 = nk1r + xk2r ; dn0dt = 0:Owing to this, 
ondition (31) is equivalent to that ofthe minimum of "0(n0; x) at xm for a given value of n0,as mentioned above.Using Eqs. (31)�(33), it is straightforward to writethe Hamiltonian Hm = H0 +H(r)intnear the minimum to the �rst nonvanishing orderin �x,Hm = N �"0(nm;xm)++ �d2"0dx2 �m (�x)2�gkm 
os�k� ; (34)where nm = n0 � k1rxmk2r ;7 ÆÝÒÔ, âûï. 2 289
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; gkm = g(sf;l)k (N ;nm; xm):The terms with the derivatives of Hint are absent fromEq. (34) be
ause of 
ondition (32).Using that EC � !0(a=a0)2=5N�3=5in the Thomas�Fermi approximation [20℄ (where a anda0 are the s
attering and os
illator lengths, respe
-tively), we 
an represent the range 1 � xm � N1=2as1N �Naa0 �2=5 � k1rk2r � �0n!0�� 1N1=2 �Naa0 �2=5 : (35)As is known [20℄, the relation (Na=a0) � 1 isvalid in the Thomas�Fermi approximation. ButN�1=2(Na=a0)2=5 � 1, and therefore, 
ondition (35)(or equivalently, 
ondition (31)) spe
i�es the region ofthe dense os
illation spe
trum, where �0n � !0. Hereand in what follows, we suppose that k1r = k2r = 1 forsimpli
ity.From Eq. (34), the value of (�x)max 
an be esti-mated as (�x)max � �gkmEC �1=2 :Hen
e, 
ondition (32) be
omesjxm � nmjxmnm � � ECgkm(N)�1=2 : (36)In what follows (see Eq. (49)) we show that the relation(36) is satis�ed with ma
ros
opi
 a

ura
y.5. THE GROUND STATEAt a �xed value of n0, the leading 
ontributionto the partition fun
tion 
omes from the neighbor-hood of the minimum at x = xm. The expression forZ(n0;xm;T ) isZ(n0;xm;T ) = 
onst 1Z�1 d�x �Z�� d�k �� exp (��Hm(n0;�x; �k)) = 
onst(�NEC)1=2 �� exp [��N"0(N ;nm;xm) + ln I0(�Ngkm)℄ ; (37)where I0(x) is the modi�ed Bessel fun
tion. Equa-tion (37) implies that the free energy of the systemis given byF = N"0(nm;xm) + 12T ln(�NEC)�� T ln I0(�Ngkm); (38)

Using Eq. (38), we obtain the equation for the �nmvalue realizing the minimum of the free energy,�d"0mdnm �nm=�nm = �dgkmdnm �nm=�nm I1(�Ngkm)I0(�Ngkm) ; (39)where I1(x) = I 00(x). In addition to �nm, the ther-modynami
 average of 
os�k 
an be determined fromEqs. (37) or (38). This average is equal toh
os�kiT = � � lnZ�(�Ngkm) == �FT�(�Ngkm) = I1(�Ngkm)I0(�Ngkm) : (40)The order parameters �nm and h
os�kiT des
ribe thenew 
oherent state. There is a bound state of the �nmos
illation quanta and the Josephson state generatedby the initial disbalan
e of the parti
le number that
orresponds to the xm value. In addition, this statehas the equilibrium phase 
oheren
e fa
tor h
os�kiT .The �nm 6= 0 value provides the equilibrium distortionof the 
ondensate shape. The above equations implythat the shape distortion is self-
onsistently 
oupled tothe xm value de�ning the equilibrium initial disbalan
eof the parti
le number.At T = 0, the �nm value realizes the minimum of thethermodynami
 energyEm = N ["0(N ;nm; xm)� gkm(N ;nm; xm)℄: (41)To determine �nm(T = 0), it is suitable to use the fol-lowing 
onsideration. It is well known that the levelseparations �0n are slowly varying fun
tions of n withinthe dense (semi
lassi
al) spe
trum. We 
an thereforesuppose that �0n � 
onst � !b � !0. Under this as-sumption, the xm value is independent of nm and �nmis equal to�n1=2m = g(sf;l)(N)x�m2!b ; �sf;l = 12 ; 1: (42)(It is worth noting that (�2Em=�n2m) > 0.) Here andin what follows, the notation g(sf;l)k=1 (N) � g(sf;l)(N) isused. Taking Eq. (42) into a

ount, we readily obtain�g(sf)1m = g(sf)2(N)xm2!b ; �g(l)1m = g(l)2(N)x2m2!b ;E(sf)mN = �EJN � g(sf)2(N)8EC �1� 8E2Cx2mg(sf)2(N)� ;E(l)mN = �EJN � g(l)2(N)xm16EC �1� 16E2Cxmg(l)2(N) � : (43)290
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ientlydense os
illation spe
trum that satis�es 
ondition (35).The minimum 
orresponds to the formation of a boundstate for the �nm; xm values. Se
ond, as 
an be seenfrom Eq. (43), the absolute minimum of Em 
an berealized within the ranges1� xm < g(sf)(N)8EC ; 1� xm < g(l)2(N)16E2C : (44)These 
onditions are satis�ed when the intera
tionmatrix elaments g(sf;l)(N) are su�
iently large. Weestimate the 
ondensate parameters that are re-quired for the existen
e of the absolute minimum.In the Thomas�Fermi approximation, the inequalityg(sf)(N) � EC is valid if the total parti
le number isnot very large, namely,N � g!0 �a0a �8=3 : (45)In turn, the relation g(l)2(N)� E2C is valid within therange N0:1 g2
1=2!3=20 �a0a �0:6 � 1; (46)where we use that EJ = 
N . Condition (46) is satis-�ed for all admissible parameters ifg2
1=2!3=20 � 1:We emphasize that the right-hand side inequalitiesin Eq. (44) are mu
h stronger than the 
onditionxm � N1=2.The transition to the state with �nm 6= 0 andh
os�kiT 6= 0 is se
ond-order. Requiring that �nm ! 0at the transition temperature, we obtain from Eq. (39)that T (sf;l)
 = g(sf;l)2(N)x�m!b N: (47)The dependen
es of transition temperatures (47) on thetotal parti
le number are given byT (sf)
 � N�0:2; T (l)
 � N0:8: (48)The transition temperature T (sf)
 therefore has thema
ros
opi
 smallness in 
omparison with the T (l)
 tem-perature. Along with 
onditions (45) and (46), thisfa
t implies that the libration Josephson state forms abound state with the 
ondensate os
illation rather thana self-trapping state.

6. CONCLUDING REMARKSWe have found that the intera
tion between theJosephson and os
illation states results in a new 
oher-ent ground state of the double-well trapped 
ondensate.There is a bound state of the �nm os
illation quanta andthe Josephson states. The latter are either two sta-tionary states forming the ma
ros
opi
 two-level sub-system or the ex
ited Josephson states generated by ade�nite initial disbalan
e of the parti
le number. Boththe xm value de�ning the disbalan
e and the tunnel-ing splitting N" of the stationary Josephson states areself-
onsistently 
oupled to the number of the os
illa-tion quanta entering the bound state.We emphasize that the bound states arise near theextremum points of the �unperturbed� spe
trum of thesystem. For a two-level Josephson subsystem, there isa resonan
e between the �initial� tunneling splitting "and the os
illation frequen
y.For the ex
ited Josephson states in Se
s. 3 and 4, anew 
oherent state is formed in the neighbourhood ofthe minimum of the energy "0(n0;x) if 
onditions (31),(32) are satis�ed.The resonan
e and the minimum 
onditions spe
ifythe type of the intera
tion between the Josephson andos
illation states.In addition, minimum 
ondition (31) imposes es-sential restri
tions on the spe
trum of the os
illationstates that 
an e�e
tively intera
t with the Joseph-son degrees of freedom. This 
ondition implies thatthe ex
ited Josephson states 
an intera
t only with theos
illation states having a su�
iently large density ofstates (su
h that inequalities (35) are satis�ed). Forinstan
e, in an asymmetri
 double-well potential, theenergy "(n) of its 
lassi
al os
illation states has threebran
hes. Two bran
hes have energies "1;2(n) � Vb,where Vb is the barrier height. There is a maximumat "1;2(nmax) = Vb. The third bran
h has the en-ergy "3(n) � Vb and the minimum at the energy"3(nmin) = Vb. Therefore, the region of the dense os-
illation spe
trum exists in the neighbourhood of thebarrier top.A similar situation 
an o

ur for the stationaryJosephson states in Se
. 2. In the Thomas�Fermi ap-proximation, resonan
e 
ondition (4) 
an be satis�edwithin the range of the dense spe
trum 
lose to thebarrier top.We emphasize that in both 
ases, the bound statesof the highly ex
ited os
illation state and Josephson de-grees of freedom are formed. These states 
an realizethe absolute minimum of the thermodynami
 energy,as shown in Eqs. (13) and (43).291 7*
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. 4, 
ondition (32) is realized withinrange (36). Substituting the expressions for �nm and�g1m obtained above in (36), we �nd that this equationbe
omes jxm � nmj(sf;l) �  g(sf;l)1m (N)EC !1=2 ; (49)and is therefore satis�ed with ma
ros
opi
 a

ura
y.The bound states exist at a su�
iently strong inter-a
tion determined by 
onditions (12) and (44). These
onditions are experimentally 
ontrolled by means ofeither the intera
tion matrix elements G, g or the par-ti
le number N (see Eqs. (12), (45), and (46)).For the stationary Josephson states in Se
. 2, theme
hanism proposed above provides an essential in-
rease of the tunneling splitting that turns out to de-pend on temperature. It is de�ned by (11). For theex
ited Josephson states intera
ting with the anhar-moni
 os
illation, two order parameters des
ribe thenew ground state. These are the number �nm of the os-
illation quanta entering the bound state and the phase
oheren
e fa
tor in Eq. (40).The se
ond-order phase transitions to states with�nm 6= 0 
an be observed at T = T
, where the tran-sition temperatures T
 are de�ned by Eqs. (14), (47),and (48).We �nally note that the appearan
e of bound statesgenerates an equilibrium distortion of the 
ondensateshape spe
i�ed by the �nm values in Eqs. (11) and (42).This me
hanism 
an provide an experimental dete
tionof the Josephson states. The latter 
an be observed by
hanging the 
ondensate shape.I am grateful to Yu. M. Kagan and L. A. Maksimovfor helpful dis
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