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It is shown that the interaction of the Josephson degrees of freedom with states of condensate motion can pro-
duce their equilibrium bound states. As a result of the appearance of these states, first, the tunneling splitting
is significantly increased in double-well trapped condensates. Second, the bound states can realize an absolute
minimum of the thermodynamic energy for a sufficiently strong interaction. Transition to the new ground state
is a second-order phase transition. The existense of the bound state leads to an equilibrium distortion of the
condensate shape. This implies that the Josephson states can be detected by observing the change in the

condensate shape.
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1. INTRODUCTION

Since the discovery of two-component conden-
sates [1] and condensates in a double-well potential [2],
the phenomena caused by phase coherence of two con-
densate modes attract considerable attention, both ex-
perimental and theoretical (see, e.g., [3] and references
therein). In [2], spatial quantum coherence was ob-
served by means of an interference pattern in two over-
lapping condensates. This interference pattern was
confirmed in [4] by numerical simulation of the Gross—
Pitaevskii equation. In [5], coherent oscillations of
the relative populations were observed in driven two-
component condensates with different internal states.
As is well known, a clear manifestation of phase co-
herence is the Josephson effect. In numerous studies
devoted to the Josephson effect in systems of two con-
densates in different internal states [5, 6] or in a double-
well potential |7, 8], coherent Josephson oscillations are
considered for various dynamical regimes caused by the
competition between tunneling and intracondensate in-
teraction (nonlinearity). In [7], the Josephson coupling
energy is calculated for small-amplitude oscillations in
a double-well potential. Damping effects due to the
normal currents at a finite temperature are estimated
there. In [8], it is shown that for a relatively weak
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interaction, the particle number oscillations between
the condensates are complete. They are suppressed
when the total number of atoms in the condensates
exceeds a critical value and the behavior of the system
is governed by nonlinearity. Nonlinear Josephson-type
oscillations in the relative oscillations of driven two-
component condensates are studied in [6]. Decoherence
effects and quantum corrections to mean-field solutions
have been considered in [11,12]. In [13], the damping
effects of the Josephson current (even at zero temper-
ature) are derived within the functional integral ap-
proach. A detailed treatment of the nonlinear classical
dynamic of the condensates in a double-well potential
was given in [9,10]. In [14], the quantum and thermal
fluctuations of the phase are studed for condensates in
the double-well potential.

We emphasize that experimental observation of the
Josephson effect is difficult because the small energy
splitting associated with the Josephson coupling im-
plies that thermal and quantum fluctuations destroy
the phase coherence between two condensates even at
the lowest achievable temperatures [13,14]. While the
energy splitting can be increased, e.g., by lowering the
barrier height, it then becomes comparable with that
of motion states of the condensates.

But the problem of the interaction between the
Josephson degrees of freedom and states of motion (os-
cillations) of the trapped condensate has yet to be ana-
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lyzed. The present paper focuses on mechanisms of in-
creasing the tunneling splitting in a double-well poten-
tial and of formation of the bound states of the Joseph-
son degrees of freedom with trap oscillations. The
mechanisms are generated by a sufficiently strong in-
teraction between the Josephson and oscillation states.
These mechanisms may be important for experimen-
tal detection of the Josephson states. The considera-
tion proposed in the present paper is suitable for the
double-well trapped condensates and two-component
condensates in the same trap.

The results obtained in this paper are as follows.

1. As is well known [3,7,14], the Gross—Pitaevskii
equations for two condensates with a weak Joseph-
son coupling have stationary solutions corresponding
to the lowest states with the eigenenergies + F;, where
Ej is the Josephson coupling energy. This implies
that the double-well condensates form a macroscopic
two-level subsystem with the tunneling energy split-
ting 2FE if the dynamical Josephson oscillations of the
particle number are disregarded. In what follows, it
is shown that a sufficiently strong interaction between
the macroscopic two-level subsystem and the conden-
sate oscillation results in their equilibrium bound state.
Appearance of the bound state generates an essential
increase of the tunneling splitting of the macroscopic
two-level subsystem.

2. In Sec. 3-5, we consider the interaction between
anharmonic trap oscillations and the Josephson degrees
of freedom generated by the particle number transfer
between two condensates. Nonlinear dynamic oscilla-
tions of the particle number between two condensates
with the Josephson coupling are considered in [9, 10].
In the present paper, we derive the quantized spectrum
of the particle number generated by the Josephson cou-
pling in order to formulate the problem of the interac-
tion between the Josephson and oscillation degrees of
freedom in an adequate manner. The states of this
spectrum represent a quantum analogue of the nonli-
nar coherent Josephson oscillations considered in [10].
In what follows, the states of the quantized spectrum
are called the Josephson states. The spectrum is highly
nonequidistant and has a logarithmic singularity in the
density of states at the energy 2E;. We show that any
Josephson state can be realized by means of a given
initial disbalance of the particle number in two con-
densates.

3. We consider the interaction between trap oscil-
lations and the excited Josephson states corresponding
to a sufficiently large initial disbalance of the particle
number. We show that this interaction is responsible
for the formation of a bound state of 7i,, > 1 oscil-
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lation quanta with the Josephson state corresponding
to the initial disbalance of the particle number.
the Thomas—Fermi approximation at p > wg, where
4 is the chemical potential of the condensate and wy
is the characteristic frequency of the trap, h = 1 and
the bound state arises in the region of a sufficiently
dense oscillation spectrum. In this region, the level
separations are small compared with the harmonic os-
cillation frequency wg. The equilibrium values of the
oscillation quanta and the initial particle number dis-
balance are coupled self-consistently and can realize an
absolute minimum of the thermodynamic energy at a
sufficiently strong interaction. The thermodynamic av-
erage M, # 0 generates an equilibrium distortion of the
condensate shape. This allows detecting the Josephson
states by observing a change in the condensate shape.

In

2. BOUND STATE OF THE MACROSCOPIC
TWO-LEVEL SYSTEM AND TRAP
OSCILLATIONS

The Josephson coupling is realized for conden-
sates in a symmetric/asymmetric double-well potential
formed by two different traps with a barrier between
them [2]. The barrier is created by laser light, and its
height is directly proportional to the laser power and
can therefore be varied easily. The proposed mech-
anism is also suitable for condensates in different in-
ternal states in the same trap. Experimentally, this
may be a superposition of two Rb®" condensates in the
states [5, 6]

F=1,mp=—-1),|F=2mp=1).

For a weak Josephson coupling, the basis states are
the self-consistent ground states in the two condensates
separately. The wave function of a condensate with the
Josephson coupling is given by a superposition of these
states, namely,

U(r,t) = Y1(r)ay(t) + a(r)ax(t),

where ;(r) are normalized solutions of the Gross-
Pitaevskii equation,

b

ai(t) = NP (0)e O, i=1,2
with N; and 6;(t) being the particle numbers and
phases of each condensate.

As is well known [3,7,14], the Hamiltonian of two
condensates with a weak Josephson coupling is given by

Hj — Ey = Ec(AN)? = 2E; cos ¢, (1)
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where

AN:Nl—NQ, Eczau/ﬁN,

= 1 = uo are the chemical potentials, N is the total
particle number, and ¢ = 6, — - is the relative phase of
the condensates. The quantities F- and E; depend on
the total particle number N. In (1), the energy origin is
the mean-field total energy of the condensates, namely,
Ey = uN. The variables AN and ¢ are canonical. The
equations of motion can be written in the Hamiltonian
form,

99  9H;,  O(AN)  9H,

ot 9(AN)’ ot do

The lowest stationary solutions of these equations have
the eigenenergies F;, = £F; corresponding to sym-
metric (¢s = 2mn, (AN)y = 0) and antisymmetric
(pa = m(2n + 1), (AN), = 0) eigenfunctions.

Thus, the double-well trapped condensates form a
macroscopic two-level system with the tunneling split-
ting 2E; if we disregard the dynamical Josephson os-
cillations of the particle number.

In what follows, we show that a sufficiently strong
interaction between the macroscopic two-level system
and the condensate oscillation is responsible for the
formation of their equilibrium bound state. In this
state, the definite equilibrium number of the oscillation
quanta is coupled to the two-level system.

The interaction can be realized by the following
mechanisms. First, the interaction can be implemented
if we allow the Josephson coupling energy to depend
on the atom displacement. The latter is generated by
the condensate oscillation. Second, the interaction can
be realized by applying a pair of traveling-wave laser
beams with the same Rabi frequency ) and the wave-
vector difference ¢, for instance, in the x direction. The
one-dimensional condensate is considered for simplicity.
The pulse frequences are chosen to be resonant with the
transition energy between the two stationary Josephson
states. A similar mechanism is used for the detection
of the motion states of a single trapped two-level atom
(see [15] and references therein) and N two-level atoms
in a trap [16].

In what follows, we assume that the interaction
generates the transition between the states |e,n’) and
lg,n). Here, |e) and |g) are two Josephson states, n and
n' are the numbers of oscillation quanta. The transition
matrix element can be written as

Gle,n'|oT exp (in(a™ +a)) +
+ 0 exp (—in(fﬁ + d)) lg,n). (2)

The operators a™ and @ are the creation and annihi-
lation operators associated with the oscillation state
and ot = |e)(g|. Each of two values N6* = +N,
where 0% = |e)(e| — |g)(g|, corresponds to one of the
two stationary Josephson states. The quantity G is de-
termined by the specific mechanism inducing the inter-
action. If the interaction is realized by applying laser
beams, it follows that in the rotating frame, G =
and 1 = ¢(2M Nwg)~'/? is the Lamb-Dicke parameter
caused, for example, by the center-of-mass motion of N
atoms in a trap with the characteristic frequency wyq.

We consider the classical states of motion of the
condensate. These states can be described in terms of
the complex amplitudes a*, a = n'/2eT#1 where

n = (ala*ala) = |af?

is the average number of quanta in the coherent state
|a). The variables n and ¢; are canonical. By the
classical state of motion, we mean that its number of
quanta is very large, n > 1. It is convenient to specify
the relation between the amplitudes a,a* and the ope-
rators @, 4t as a = N~'/24. The commutator of a and
a* is then equal to zero with macroscopic accuracy,

[a,a*] =1/N — 0.

The Hamiltonian of the motion states can be written
as Ne(n).

The Hamiltonian of the interacting stationary
Josephson and oscillation degrees of freedom therefore
becomes

2K
H:Ne(n)—l—N%az—}—Hmt, e= 2

—_—. 3
)
We are interested in the situation where the resonance
condition

de

—— = 4
i (4)
is satisfied with an integer k. In this case, the Hamil-
tonian H;,; can be represented as

Hint = Nlgro"a* + gja™ o],

(@) em)

Dynamical solutions generated by the Hamiltonian
of type (3), (5) are studied in numerous papers both
for a single trapped atom, N = 1, (see, e.g., [15,17],
and references therein) and for NV atoms in a trap [16].
In the present paper, we focus on the equilibrium prop-
erties of the system described by Hamiltonian (3), (5).

3
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We note that in order to determine the partition
function Z(N;T) in what follows, we must have a
macroscopic two-level system. The phase transitions
within the Dicke model that corresponds to the case
where £ = 1 in Egs. (3) and (5) have been discussed
in the context of superradiance [18] and recently, for
exciton condensation [19].

Substituting Hamiltonian (3), (5) in the expression
Z(N,T) = SpePHfor the partition function, we ob-
tain in the case of the classical oscillation degrees of
freedom that

7 AN
/d —BNe(n Spe ")
0 (6)
A~ € " -~
H, :§U”+[9k0 a* + grattor],
where 8 = 1/T, T is the temperature. Using the
eigenenergies
1/2
€ 4|gx[*n*
Eis=+— (1
2 2 < T g2

of the Hamiltonian H,, we arrive at the following ex-
pression for the partition function:

oo

:/dnexp{N (—,Ba(n)+
0
+ In 2ch%< 4‘gk|2 ‘ )}

dn e~ NF(0)

oo
/ M
0

The partition function in Eq. (7) has a maximum at
the value |a|?, = i, realizing a minimum of the func-
tion F'(n). That is, the value 71,,(T") is determined by

the equation
~1/2
<1 + = ) X

- o\ 1/2
% th [B% <1+ M) ] 8)

22
and is the number of oscillation quanta per atom of the
two-level system. This quantity plays the part of the
order parameter of the system for T' < T, where T, is
the transition temperature to the state with 7, # 0.

de

<_

dn

_ lguPhag

€

4|gk|?nk

2

m
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The new splitting Fy — Es = Ace of the Josephson
levels depends on the temperature and is defined by the
expression

_ /2
4|gk\2”ﬁ1 '
AE(T) =c <1 + T . (9)
At T =0, Eq. (8) becomes
4| gk |*nk K lae2\* s
<1+ ol el e n2k=1) (10)
where we used that
de _ ¢
dn k'

For a simple resonance with £ = 1, the solution for
fim (T = 0) is given by

Dl R
5= g3

We used that g1 = G(qlp) in accordance with Eq. (5).

We note that
( ) > 0.
N=Nm

The solution for n,, exists when the interaction is suf-
ficiently strong, that is,

<§>2 (qlo)?

This relation implies that the system in question un-
dergoes a quantum phase transition at the critical value
G. = ¢(qlo) of the interaction strength.

At G(qlp) > ¢, the tunneling splitting Ae(T = 0)
and thermodynamic energy E,, of the system discribed
by Hamiltonian (3), (5) are determined by the expres-
sions

d*F(n)
dn?

(12)

N GQ(qlo)2

e

G’2(ql0)2

A
: 4e

>e, E,~-N (13)
Therefore, first, the splitting caused by the interaction
is much greater than the «unperturbed» splitting e.
Second, the bound state realizes the absolute minimum
of the thermodynamic energy within the range g1 > e.

It is worth noting that the consideration proposed
above applies in the case where gro < 1, where rq is

the (typical) mean interatom spacing. The [y value is
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the characteristic size of the condensate. As a result,
we arrive at the relation

Transition to the state with 7, # 0 is second-order
at k = 1. Imposing that n,,, — 0 at the transition tem-
perature T, we obtain from (8) at k =1 and |¢g1]| > ¢
that

_ g1 _ G?(qly)? _ Ae(T =0)

T,
¢ 2 2 2

(14)
It is interesting to discuss the solutions of Eq. (10)
for multiple resonances with & > 1. As can be easily
seen, the character of the ground state changes drasti-
cally at k& # 1. Already at k = 2, solutions of Eq. (10)
with 7i,,, > 1 are absent.
At k> 1, Eq. (10) implies

4
ko
T'm & 7rk2>'

2e2

——  Aex 1
mk?|gi : 5( -

We see that n,,, ~ 1 and Ae ~ ¢ at k> 1, and there-
fore, the effect of the interaction is negligible, unlike
the solution for a simple resonance with & = 1 obtained
above.

For a one-dimensional condensate, the appearance
of a state with f,, # 0 corresponds to the center-of-
mass oscillation of IV atoms with a displaced zero point.
The «capture» of oscillation quanta by the macroscopic
two-level system can therefore be considered as a mech-
anism of the formation of the equilibrium coherent state
of motion.

In the general case, the existence of a nonzero value
of fi,, leads to an equilibrium distortion of the conden-
sate shape. The distortion is self-consistently coupled
to the tunneling splitting. In particular, the stationary
Josephson states can be detected by observing a change
in the condensate shape, and vice versa.

A remark is in order. The quantities de/dn = w(n)
specify the level separations of the oscillation spectrum.
They are independent of n for harmonic oscillations,
where w(n) = wg and for the states in the region of
a «dense» (semiclassical) oscillation spectrum. In this
region, the level separations w(n) are small compared
with wg and, in addition, are slowly-varying function of
n, wn) ~w < wo.

3. QUANTUM SPECTRUM OF THE PARTICLE

NUMBER

The quantization of Hamiltonian (1) produces the
particle number spectrum in the Josephson potential
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Ejcos¢. Asis shown in what follows, any Josephson
state can be realized by means of a given initial disbal-
ance of the particle number. It is therefore interesting
to obtain the complete spectrum generated by Hamil-
tonian (1) and to represent it as a function of the initial
disbalance.

The Schrédinger equation for Hamiltonian (1) is de-
rived by the quantization rule

(AN) = —id/96.

As a result, we obtain the Mathieu equation

d2
_E0d732 —2FEjco8¢,| ¥ =¢cU,

EEHJ—EO.

(16)

For ¢ > 2Fj, this equation has a continuum spec-
trum. The states of this spectrum correspond to
classical states with an unlimited phase change,
—00 < ¢ < +o0; they are called the self-trapping
states in [9,10]. In the region —2E; < ¢ < 2Ej,
Eq. (16) has a discrete spectrum. It corresponds to
the finite-motion region of Hamiltonian (1), where the
relative phase changes within

—arccos(e/2Ey) < ¢ < arccos(e/2Ey)

for each . In the Josephson regime [3] at E; > E¢,
the number of levels in a well is large and the discrete
spectrum is determined by the Bohr—Sommerfeld for-
mula

doy
V) = f AN Gie,) =
1/2
= % dfr {Eic (¢, + 2Ej cos qﬁ)} =
= ve[B(r) = (1= $)E(x)], (17)
where
1/2
VC:§<§_2> : ﬁ2=%, ve> 1, (18)
™ J

and K (k) and E(k) are the complete elliptic integrals of
the first and second kind. The density of states py(e,)
follows from Eq. (17) and is equal to

1 dv  K(k)
v) = — = 1
palev) 2r de,  mlwy (19)
The level separations in (17) are given by
de W
V)= — = —2 wn=2EcENY? (2
o) = T = g, wn = 2AECEN. (20)
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At (E;/Ec)Y? > 1, we have the relation w,, < 2E;.
The quantity w,, determines the maximum splitting of
the levels in the Josephson well. In what follows, the
states with v < v, are called the «libration» states.

In the region v > v,, the v(¢) dependence and den-
sity of states are determined by

_ A (BN
ve) =5 (52)  RE6 .
1 k'K (k™)
Pel®) =5 =

States (21) with v > v, are called the self-trapping
states.
Equations (17) and (21) imply that

e(v) & —2E5 + wnv,

e(v) ~ 4r*Ecr?,

1<Ky Lu,,

22
V> . ( )

At the same time, it is easy to show that

d*e(v)

0° <0 for v<u,
and »

dgy(;) >0 for v>v,..

At v = v, the curve e(v) has an inflection point.

Because the energy is conserved, the state with a
given value of v can be realized by defining the initial
values of (AN)y and ¢(0) as

e(v) = Ec(AN)2 — 2E; cos ¢(0).

Supposing that ¢(0) = 0, we obtain the following rela-
tion between v and (AN)g:

e(v)

Using Eqgs. (22) and (23), we arrive at the expressions

—2E; + Ec(AN)3. (23)

vV =

1
SIAN)]
for the self-trapping (sf) states and

(£2) @amg

for the «libration» (1) states.

Wm

Combining (19) and (21), we obtain the dependence

T
1— —

+
3 e 2B, (25)

pa.c(g) < w,tIn

Therefore, a new logarithmic singularity appears at
the boundary separating the libration and self-trapping
spectra.

288

4. INTERACTION OF THE EXCITED
JOSEPHSON STATES AND ANHARMONIC
CONDENSATE OSCILLATIONS

In this and the next sections, we show that the spec-
trum of the system can change drastically due to the
interaction between excited Josephson states (22)—(24)
with sufficiently large values of v and oscillations of the
condensate.

As in Sec. 2, two mechanisms can be proposed for
the realization of the interaction. First, the interaction
can be produced by a dependence of E¢ in Eq. (23) on
the atom displacements. The latter are generated by
the condensate oscillation. Second, the interaction can
be realized by applying a two-photon traveling-wave
laser pulse with the Rabi frequency 2. The pulse cre-
ates the condensates with different particle numbers
and induces the interaction of atom displacements with
the excited Josephson states corresponding to the par-
ticle number disbalance created by the pulse. The gen-
eral description proposed in what follows is indepen-
dent of the specific mechanism producing the interac-
tion.

The states of motion of the condensate are classi-
cal. These states are defined in Sec. 2. For semiclassical
Josephson states with v > 1, the ¢,, ¢ amplitudes can
be written as

e, = v1/%eie2,
It is convenient to rewrite £(v) and ¢, in terms of the
variable

[(AN)ol
=i b
Combining this inequality with the requirement that
[(AN)ol
= - 1
TSN Sh

we arrive at the conditions for the x values,
1< o< N2
Using Eqgs. (22) and (23), we find that

(26)

v = (o),
e(v) = N(—=E;/N + Ecz?).

In the general case, the v(x) dependence is implicit.
It is determined by Eqs. (17), (21), and (23). But in
the particular cases of the «libration» (¢(v) < E;) and
self-trapping (e(v) > Ej) states, the relations between
v and (AN)g can be represented in a simple form, as
can be seen from (24). Using Eqgs. (23) and (24), we
arrive at the following expressions:

E
SR e(n) + Ecx?|

H()ENE()(’H,,SU)ZN N

(27)
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c’(/sf) — N1/4x1/26i<p2 = N1/4cgvsf)’

1/2 1/2 28
cm:N(&> EN(E_) o B

v W W, T

For any mechanism producing the interaction be-
tween two subsystems, the interaction Hamiltonian can
be written in the form of a multiple Fourier series in

P1s P2,

Hiny = N Z [9k ks (N)a*kr ek 4 cel =
k1 ko
=N Y [l (v 2aeks
k1 ko

x exp (i(k1p1 — kaga)) + c.c.] , (29)
where agr = 1/2, ay = 1, and ki and ko are integers.
For simplicity, we disregard the phase-independent in-
teraction. Using Eq. (28), we obtain

G, (N) = gN 1A,
ka/2 (30)
! . Ec
gl (N) = gN itk (—) :

The constant ¢ is determined by the specific mechanism
producing the interaction.
We now assume that the term with the phase

¢Z = k1a~991 - k2r992-,

which varies anomalously slowly with time, can be
dropped in sum (29). This can be done under two
conditions. The first condition is

or equivalently,

kl,«EIn
Ty = ,
QkQTEC /

The second condition is

d2H0 dHint
< da? )Hm (Amar = < d >Hm‘ (82)

In writing this equation, we took into account that Hy
and H;,; are functions of a single dynamic variable,
e.g., ¢. The quantity €/, defines the level separations of
the oscillation spectrum.

As is shown in what follows, condition (31) is equiv-
alent to the condition of the minimum of the function
go(n, x) with respect to x. When the minimum exists,
it can provide the leading contribution into the ther-
modynamic functions.

7 KIOT®, Beim. 2

In addition, condition (31) implies that the phase
. is an approximate integral of motion if the depen-
dence on x near x,, is ignored,

Inequality (32) implies that the width of the near-
minimum region is large at the characteristic interac-
tion variation scale. From Eqs. (31) and (32), we can
obtain that time changing the ¢}, phase is proportional
to (d? Hy/dx?),, Az, where Ax is the variation of x near
the x,, value. The maximum value (Ax)pq. specifies
the width of the near-minimum region such that

doy

~ Az
dt v

The estimate for (Az)ma. is given in what follows.
Thus, the leading term in sum (29) is given by
Hf;g = Ng,(gsf’l)(N; n,a) cos g,

(33)
Or = ki1 — karpo.

All the remaining terms in this sum are rapidly oscil-
lating perturbations and are disregarded in this work.
Here and below, the index & in g and ¢ denotes the
set klra k‘gr.

It can be easily shown that in addition to the energy

H = Nzo(n, 2) + gx (Nin, 7) cos ],
the system in question has the integral of motion

n x dng
= —+ R —_
kl T k2r dt

No

Owing to this, condition (31) is equivalent to that of
the minimum of eq(ng, z) at x,, for a given value of ny,
as mentioned above.

Using Eqgs. (31)—(33), it is straightforward to write
the Hamiltonian

Hy = Ho + H{j)

near the minimum to the first nonvanishing order
in Ax,

H, =N {ag(nm;xm)—}—

+ <d260> (Az)?—grmcosor |, (34)

dx?

where
klrl‘m

k2r

Ny = Ng —
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(2 )m —om,,

The terms with the derivatives of H;,; are absent from
Eq. (34) because of condition (32).
Using that

Eo ~ o.)o(a/ao)Q/SJ\T_?’/5

(sf,1)

9km = Gy, (N§nma$m)-

Na

<_

0]

Na
0]

!
n

Wo

9km

[Tm = M|
TN

ao are the scattering and oscillator lengths, respec-
1
As is known [20], the relation (Na/ag) > 1 is
(or equivalently, condition (31)) specifies the region of
simplicity.
1/2
K . (36)
<gkm(N) )

in the Thomas-Fermi approximation [20] (where a and
tively), we can represent the range 1 < z,, < N'/?
as
2/5 2/5
iy 1
— — . (35
(@) cm@)em (@) @
valid in the Thomas—Fermi approximation. But
N-12(Na/ag)?/> < 1, and therefore, condition (35)
the dense oscillation spectrum, where €/, < wg. Here
and in what follows, we suppose that ki, = ko, = 1 for
From Eq. (34), the value of (Ax);;4. can be esti-
mated as
1/2
(Ax)max ~ <EC> .
Hence, condition (32) becomes
Ec
In what follows (see Eq. (49)) we show that the relation
(36) is satisfied with macroscopic accuracy.

5. THE GROUND STATE

At a fixed value of ng, the leading contribution
to the partition function comes from the neighbor-
hood of the minimum at x = z,,. The expression for
Z(no; xm; T) is

oo s
Z(no; m; T') = const / dAx/dgék X
—00 -7
const

x exp (= Hpy(no, Az, ¢p)) = W X

x exp [=BNeo(N;nm; ) + In Io(BNgim)]

where Io(z) is the modified Bessel function. Equa-
tion (37) implies that the free energy of the system
is given by

(37)

1
F = Neg(nm; xm) + §T1n(BNEO) -

—TInIsg(BNgrm), (38)
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Using Eq. (38), we obtain the equation for the 7,
value realizing the minimum of the free energy,

( ) ( ) L (BN gkm)

o To(ANgem)’
where I (z) = Ij(z). In addition to fi,,, the ther-
modynamic average of cos ¢y can be determined from

Eqs. (37) or (38). This average is equal to

dgkm
dn,,

dEOm

.. (39)

OlnZ
(oS kT = = N gom)

_ OF _ Li(BNgkm)
TO(BNgem)  Io(BNgrm)

The order parameters fi,, and {(cos @)y describe the
new coherent state. There is a bound state of the n,,
oscillation quanta and the Josephson state generated
by the initial disbalance of the particle number that
corresponds to the x,, value. In addition, this state
has the equilibrium phase coherence factor (cos ¢y ).
The 7, # 0 value provides the equilibrium distortion
of the condensate shape. The above equations imply
that the shape distortion is self-consistently coupled to
the x,, value defining the equilibrium initial disbalance
of the particle number.

At T = 0, the i, value realizes the minimum of the
thermodynamic energy

(40)

Em = Nleo(N; 1, Tm) = Grem (N5 0m, 2] (41)

To determine fi,, (T = 0), it is suitable to use the fol-
lowing consideration. It is well known that the level
separations €/, are slowly varying functions of n within
the dense (semiclassical) spectrum. We can therefore
suppose that €} ~ const = wp < wp. Under this as-
sumption, the x,, value is independent of n,, and 7,
is equal to

~

gD (N,
2wb

DO | =

) Qsf | =

(It is worth noting that (9?E,,/dn2,) > 0.) Here and
in what follows, the notation g,gsiil) (N) = g6FD(N) is

used. Taking Eq. (42) into account, we readily obtain

g = 9 (N)am @y _ gV (N)ap,
im 2wb ’ im 2wb
Ew) __E; _g¥P(N) (| 8EZal
N N sFe g ) (43)
EY __Er_ gV (Naw (| 16E2an
N N 16Ec gD2(N) )
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Bound states of the Josephson degrees ...

The expressions for the energies imply, first, that
we obtain the minimum in the region of a sufficiently
dense oscillation spectrum that satisfies condition (35).
The minimum corresponds to the formation of a bound
state for the n,,,x, values. Second, as can be seen
from Eq. (43), the absolute minimum of FE,, can be
realized within the ranges

g (N)
SEc

g2(N)

1<z, < (44)
These conditions are satisfied when the interaction
matrix elaments ¢(!)(N) are sufficiently large. We
estimate the condensate parameters that are re-
quired for the existence of the absolute minimum.
In the Thomas—Fermi approximation, the inequality
g (N) > Ec is valid if the total particle number is
not very large, namely,

N« wio (%‘])8/3. (45)

In turn, the relation g)?(N) > E2 is valid within the
range

2

0.6
Noir__ 9 (% 1 46
Ql/2w3/2 ( a ) >4 (46)

where we use that E; = QN. Condition (46) is satis-
fied for all admissible parameters if
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Q1/2w3/2 -

We emphasize that the right-hand side inequalities
in Eq. (44) are much stronger than the condition
T & N1/2,

The transition to the state with 7, # 0 and
(cos ¢ )1 # 0 is second-order. Requiring that 7i,, — 0
at the transition temperature, we obtain from Eq. (39)
that

g(sf7l)2 (N)xo‘

T = m N, (47)

Wh

The dependences of transition temperatures (47) on the
total particle number are given by

Tc(sf) ~ N_O'Z, Tc(l) ~ N0'8. (48)

The transition temperature Tc(sf) therefore has the
macroscopic smallness in comparison with the Tc(l) tem-
perature. Along with conditions (45) and (46), this
fact implies that the libration Josephson state forms a
bound state with the condensate oscillation rather than

a self-trapping state.

6. CONCLUDING REMARKS

We have found that the interaction between the
Josephson and oscillation states results in a new coher-
ent ground state of the double-well trapped condensate.
There is a bound state of the n,, oscillation quanta and
the Josephson states. The latter are either two sta-
tionary states forming the macroscopic two-level sub-
system or the excited Josephson states generated by a
definite initial disbalance of the particle number. Both
the z,, value defining the dishbalance and the tunnel-
ing splitting Ne of the stationary Josephson states are
self-consistently coupled to the number of the oscilla-
tion quanta entering the bound state.

We emphasize that the bound states arise near the
extremum points of the «unperturbed» spectrum of the
system. For a two-level Josephson subsystem, there is
a resonance between the «initial» tunneling splitting
and the oscillation frequency.

For the excited Josephson states in Secs. 3 and 4, a
new coherent state is formed in the neighbourhood of
the minimum of the energy o(no; ) if conditions (31)
(32) are satisfied.

The resonance and the minimum conditions specify
the type of the interaction between the Josephson and
oscillation states.

3

In addition, minimum condition (31) imposes es-
sential restrictions on the spectrum of the oscillation
states that can effectively interact with the Joseph-
son degrees of freedom. This condition implies that
the excited Josephson states can interact only with the
oscillation states having a sufficiently large density of
states (such that inequalities (35) are satisfied). For
instance, in an asymmetric double-well potential, the
energy ¢(n) of its classical oscillation states has three
branches. Two branches have energies ¢12(n) < Vj,
where V}, is the barrier height. There is a maximum
at €12(Nmaez) = Vb. The third branch has the en-
ergy e3(n) > V, and the minimum at the energy
€3(Nmin) = Vi. Therefore, the region of the dense os-
cillation spectrum exists in the neighbourhood of the
barrier top.

A similar situation can occur for the stationary
Josephson states in Sec. 2. In the Thomas—Fermi ap-
proximation, resonance condition (4) can be satisfied
within the range of the dense spectrum close to the
barrier top.

We emphasize that in both cases, the bound states
of the highly excited oscillation state and Josephson de-
grees of freedom are formed. These states can realize
the absolute minimum of the thermodynamic energy,
as shown in Eqs. (13) and (43).

7*
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As shown in Sec. 4, condition (32) is realized within
range (36). Substituting the expressions for 7, and
J1m obtained above in (36), we find that this equation

becomes
o0y \

and is therefore satisfied with macroscopic accuracy.

The bound states exist at a sufficiently strong inter-
action determined by conditions (12) and (44). These
conditions are experimentally controlled by means of
either the interaction matrix elements GG, g or the par-
ticle number N (see Eqs. (12), (45), and (46)).

For the stationary Josephson states in Sec. 2, the
mechanism proposed above provides an essential in-
crease of the tunneling splitting that turns out to de-
pend on temperature. It is defined by (11). For the
excited Josephson states interacting with the anhar-
monic oscillation, two order parameters describe the
new ground state. These are the number 71, of the os-
cillation quanta entering the bound state and the phase
coherence factor in Eq. (40).

The second-order phase transitions to states with
fi;, 7 0 can be observed at T' = T,, where the tran-
sition temperatures T, are defined by Eqs. (14), (47),
and (48).

We finally note that the appearance of bound states
generates an equilibrium distortion of the condensate
shape specified by the 7, values in Eqs. (11) and (42).
This mechanism can provide an experimental detection
of the Josephson states. The latter can be observed by
changing the condensate shape.

I am grateful to Yu. M. Kagan and L. A. Maksimov
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