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(QUASI)ELASTIC LARGE-ANGLE ELECTRON�MUONSCATTERING IN THE TWO-LOOP APPROXIMATION:CONTRIBUTIONS OF THE EIKONAL TYPEV. V. Bytev a, E. A. Kuraev a*, B. G. Shaikhatdenov a;ba Joint Institute for Nulear Researh141980, Dubna, Moskow Region, Russiab Departamento de Físia, Cinvestav del IPN07000, Méxio D.F., MexioSubmitted 16 Oktober 2002A part of the eikonal-type ontributions to the e� large-angle high-energy sattering ross-setion is onsideredin a quasi-elasti experimental set-up. In addition to virtual orretions, we examine inelasti proesses withemission of one and two soft real photons and soft lepton and pion pairs. Virtual photon ontributions are givenwithin a logarithmi auray. Box-type Feynman amplitudes with leptoni and a hadroni vauum polarizationinsertion and double-box ones are onsidered expliitly. Wherever appropriate, the analyti expressions obtainedare ompared with those predited by the struture funtion approah.PACS: 11.80.-m, 13.10.+q, 13.65.+i1. INTRODUCTIONThe need for evalution of the radiative orretionsat the two-loop order is ditated by the experimentaldata on observables for a ollider alibration proessof eletron�positron sattering that has reahed an im-pressive level of auray. Inspired by this, we on-sider the determination of the seond-order radiativeorretions to the ross-setion of Bhabha sattering tobe our ultimate goal. At the same time, beause thetask of two-loop alulus is rather involved, it appearsto be easier to onsider the eletron�muon sattering�rst, despite di�erent masses of interating partiles.The latter proess is also important in itself beause itforms a bakground to the rare proesses, in partiularthose violating lepton number (for more details, see [1℄and referenes therein). Improving theoretial predi-tions on its observables ould therefore impose morestringent bounds on the physis beyond the StandardModel.The aim of this investigation is to alulate thenext-to-leading order ontributions to the large-angle*E-mail: kuraev�thsun1.jinr.ru

eletron�muon high-energy ross-setione�(p1) + ��(p2)! e�(p01) + ��(p02); (1)in a quasielasti experimental set-up,2"� "01 � "022" = �"" � �� 1; �"� m�(m�) ; (2)where ", "01, and "02 are the energies of the initial andsattered leptons in the enter-of-mass referene frameand the Mandelstam variables are muh larger than themass squared of any partile involved in the proess.The quantity �" indiates the energy resolution of de-tetors that are supposed to trak �nal partiles. In theleading logarithmi approximation, the ross-setion isthat of the Drell�Yan proess [2℄,d�(s; t) = Z 4Yi=1 dxiD(xi; �t) d�0(sx1x2; tx1x3)�� �1 + ��K� ; (3)where �t = ln �tmem� ; t = (p1 � p01)2;s = (p1 + p2)2; u = (p1 � p02)2 : (4)224
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Fig. 1. Box-type graphs with a vauum polarization insertionIn the above expression, the quantities D(xi; �t) are thenonsinglet struture funtions that satisfy the renor-malization group (RG) evolution equations. Their ex-pansion in the leading logarithmi approximation(�=�)� 1; (�=�)�t � 1an be written asD(x; �t) = Æ(1� x) + 1Xn=1 1n! ���t2� �n P(n)(x) : (5)In a quasielasti set-up, it is appropriate to use onlythe Æ-part of the splitting funtion P(n)(x) denoted byP(n)� (x),P(n)(x) = 1Zx dyy P(1)(y)P(n�1)�xy� ; n � 2;P(1)(x) = �1+x21�x �+ = lim�!0�P(1)� (x)+P(1)� (x)�;P(1)� (x) = P(1)� Æ(1� x); P(1)� = 2 ln�+ 32 ;P (1)� (x) = 1 + x21� x �(1� x��): (6)

The struture funtion then beomesD(x; �t) = Æ(1� x)�1 + 1Xn=1 1n! ���t2� �n P(n)� �: (7)Beause the struture funtion approah outlined is a-pable of providing only the leading logarithmi or-retions, we need to expliitly alulate the so-alledK-fator entering Eq. (3) in the one- and two-loop ap-proximations.Broadly speaking, the radiative orretions to thedi�erential ross-setion in the adopted mass regulari-zation sheme are of two types. The �rst ones are thosearising from the virtual photon emission up to the se-ond order of perturbation theory, whih requires alu-lating, among others, the real two-loop Feynman ampli-tudes. They su�er from infrared divergenes, whih areregularized by assigning the photon a negligibly small

mass � that is set to zero at the end of the alula-tions. Contributions of the seond type ome from theemission of soft real photons and harged partile pairs.The general struture of the orretion to theross-setion an be represented as a sum of three types:vertex, eikonal, and deorated box type. Eah of themontains virtual and real soft photon ontributions, isfree of infrared divergenes, and preserves the strutureof the leading log orretion predited on the basis ofRG ideas through the ontributions of individual dia-grams ontaining up to the fourth power of the largelogarithm �t at the two-loop order. In this regard, wereall that in our previous paper [1℄, it was shown thatthe vertex ontributions already provide a result on-sistent with the RC approah. Beause the �rst-orderradiative orretions oming from box-type diagramsare given in our previous work devoted to the evalua-tion of vertex-type ontributions [1℄, we here onen-trate on the investigation of some eikonal box-type di-agrams at the seond order of perturbation theory. Inthe ase of elasti proesses, they orrespond to graphswith one, two (box diagram), and three (double boxdiagram) virtual photons mediated between interat-ing leptons. Box-type graphs with a vauum polariza-tion insertion of either of the virtual exhange photonsinto the Green's funtion must also be taken into a-ount (see Fig. 1). A single soft photon approximationmust be applied to the one-loop orreted Feynmanamplitudes in order to obtain another set of ontribu-tions. Finally, the emission of two soft photons (pairsof harged partiles) must also be taken into aountat this order.We brie�y desribe the ontents of the paper. InSe. 2, we onsider the vauum polarization e�ets inbox-type Feynman amplitudes with lepton (���; e�e) andpion (���+) pairs running a loop. Also in this se-tion we onsider the orresponding ontribution om-ing from a soft lepton pair and a soft harged pion pairprodution with one soft photon emission (see Fig. 2)assoiated with the one-loop self-energy amplitudes ofthe virtual exhange photon. In Se. 3, the results ofevaluation of the orretions orresponding to a singleand double soft photon emission (see Fig. 3) and to a3 ÆÝÒÔ, âûï. 2 225
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��Fig. 2. Soft lepton and pion pair prodution

Fig. 3. Sample diagrams pertaining to the double softphoton emissionsquare of box-type diagrams are presented; they are fol-lowed by brief onluding remarks. In Appendix A, wepresent a set of salar integrals for box-type diagramswith a vauum polarization insertion. In Appendix B,we give some details of the derivation of radiative or-retions oming from the squared box-type diagramsand all the integrals enountered during the alula-tion.2. BOX-TYPE DIAGRAMS WITH A VACUUMPOLARIZATION INSERTIONVauum polarization e�ets in the box-type Feyn-man amplitudes an be taken into aount by replaingone of the photon propagators by the vauum polariza-tion insertion (see [3℄). In the ase where leptons withthe mass � run a loop, it is given by1k2 ! �3� 1Z0 �(v)dv(1� v2)(k2 �M2(v)) ;M2 = 4�21� v2 ; �(v) = 2� (1� v2)(2� v2) ; (8)and for a pion�antipion pair in the loop, it is1k2 ! �3� 1Z4m2� dM2M2 R(M2)k2 �M2 ;R(M2) = �e�e!hadr(M2)�e�e!��� : (9)Here, the quantity M is the invariant mass of thehadroni jet produed in a single-photon annihilation

of a lepton pair and R(M2) is the known experimen-tal input ratio [4℄. For the matrix element squared, wethen obtainÆjMj2vp(lept) = 28�43t �� 1Z0 dv �(v)1� v2 �S(s; t;M2)� S(u; t;M2)� (10)for the vauum polarization indued by leptons, andÆjMj2vp(hadr) = 28�43t �� 1Z4m2� dM2M2 R(M2)�S(s; t;M2)� S(u; t;M2)� (11)for the hadroni vauum polarization ontribution.The quantity S(s; t;M2) is universal irrespetive ofthe virtual pair running a self-energy loop and is givenby S(s; t;M2) = Z d4ki�2 Tr(e) Tr(�)(1)(2)(3)(4) ; (12)where (1) = k2 � 2kp1; (2) = k2 + 2kp2;(3) = k2 � 2kq + ~t; (4) = k2 � �2;Tr(e) = 14 Spfp1�p01�(p1 � k)�g;Tr(�) = 14 Spfp2�p02�(p2 + k)�g;p21 = m2e ; p22 = m2�;~t = t�M2; q = p1 � p01: (13)
Using a set of salar, vetor, and tensor box-type inte-grals given in Appendix A, we an express the quantityS(s; t;M2) through several basi integrals,S(s; t;M2) = u�ln s�~t + M2t ln �~tM2����s(s� u) + t~t2 ��I134 + I234�++ s(s2 + u2)I + s�u+ ~t2���I123 � I124 + ~tI� ; (14)where Iijl = Z d4ki�2 1(i)(j)(l) ;I = Z d4ki�2 1(1)(2)(3)(4) : (15)226



ÆÝÒÔ, òîì 123, âûï. 2, 2003 (Quasi)elasti large-angle eletron�muon sattering : : :Performing loop-momentum integration and negletingterms of the order ofm2�=(�t)� 1, we �nd, in the limitof large invariant variables,�S(s; t;M2)� S(u; t;M2)�����jtj�M2 == s2 + u2t Lus(�m � 2�t � ��) ++ (u� s)�12�2 + �2m � 12L2st � 12L2ut + ln2 m�me �++ uLst � sLut ; (16)�m = ln M2mem� ; �� = ln mem��2 ;Lst = ln s�t ; Lut = ln ut ; Lus = ln �us :In the opposite limit, the result is found to be�S(s; t;M2)� S(u; t;M2)�����M2�jtj == 1M2 �s2 + u22 Lus(�s + �u + 2��) ++ 32(u2�s � s2�u) + t2Lus + t(u� s)���32�m + 74�+ s2 + u22 �2�: (17)For the leptoni vauum polarization with the massM2 = 4�21� v2(where both ases � = me;m� are taken into aount),further integration leads to the following expressionwithin the logarithmi auray:d�boxvpd�0 = 2�23�2 �t�2Lsu�32�t + �� � 103 ��� s2 � u2s2 + u2 (L2st + L2ut � 2�2) ++ 2ts2 + u2 [(t� s)Lst � (t� u)Lut℄�: (18)To �nalize this result, we must remove infrared di-vergenes. For this, the interferene between the softphoton emission tree-level amplitudes and those bear-ing a leptoni vauum polarization insertion must betaken into aount, with the resultd�vpd�0 = �4�23�2 ��t�53��(2 ln�+��)Lsu+�tLsu�� 12(L2ut � L2st)� Li2�1� 2 ��; (19)

where � is given in Eq. (2),  = os dp1; p01 is the o-sine of the sattering angle in enter-of-mass refereneframe, and the dilogarithm funtion is de�ned by thestandard formulaLi2(x) = � xZ0 ln(1� t)t dt: (20)Next, we must onsider the ontribution omingfrom the soft lepton pair prodution with the total pairenergy not exeeding �" (2�� �"� "). This an beread o�, e.g., from Ref. [5℄,d�spd�0 = �2�23�2 �t�Lsu ��t + Lst + Lut++2�2 ln�� 53��� 2Li2�1� 2 ��: (21)The �nal logarithmially aurate result for the totalorretion given by the leptoni vauum polarizationand the soft e�e; ��� pair prodution is then brought tothe form (see Eqs. (18), (19), (21))d�vp+spd�0 = 2�23�2 �t�2(L2ut � L2st) + 8Lus ln��� s2 � u2s2 + u2 (L2ut + L2st � 2�2) ++ 2ts2+u2 (tLsu�sLst+uLut)+4Li2�1�2 ��: (22)This expression is seen to ontain only a next-to-leadingterm (of the order of �2�t) and to be free of infrareddivergenes.We now onsider the soft pion pair prodution withthe total pair energy below �" and the invariant masssquared M2 bounded as4m2� �M2 < (�")2 � "2 = s=4: (23)The orresponding ontribution to the di�erentialross-setion arises from the interferene of the �up�down� pair prodution, whih refers to pairs reatedby virtual photons emitted from the eletron line andthe muon line,d�dM2d�0 ������ = 2�4��M2 �2 d4qM2 �� Z d3q+d3q�2"+2"� Æ4(q+ + q� � q)���Qp01qp01 � Qp1qp1 ��Qp02qp02 � Qp2qp2 �;q2 =M2; Q = q+ � q�: (24)
227 3*



V. V. Bytev, E. A. Kuraev, B. G. Shaikhatdenov ÆÝÒÔ, òîì 123, âûï. 2, 2003We �rst perform the invariant pion pair phase spaeintegration,Z d3q+d3q�2"+2"� Æ4(q+ + q� � q)Q�Q� == 13 ��2 �g�� � q�q�q2 �Q2; � =s1� 4m2�q2 : (25)Upon rearranging the phase volume,Z d4qdq2 = 12 �"Zpq2 dq0qq20 � q2 Z d
q ; (26)the right-hand side of Eq. (24) an be reast to the form�23�2 �"ZM dq0qq20 �M2 �� Z d
q4� � p1p2p1q � p2q � p1p02p1q � p02q� == �23�2�Lsu ln 2�"M +O(1)�: (27)The �nal result is then given byd�dM2d�0 ������ = �26�2M2 �Lsu(�t � �m) +O(1)� : (28)Obviously, the ontribution oming from the box-typediagrams with the hadroni vauum polarization an-not be obtained in analyti form beause of the pres-ene of the quantity R(M2).3. SQUARED BOX AND THECORRESPONDING SOFT PHOTONCORRECTIONSThe �up�down� interferene of the soft photonemission from the eletron line and the muon line anbe evaluated using the expressionIpApB = 14� Z d3k! pApBpAk � pBk ����!<�" == �ln� + 12���LAB + 14 �L2AB � ln2 m�me ��� �26 + 12Li2�1 + 2 �; (29)whereLAB = ln�2pApBmem� � ; pApB = "2(1� );

p2A = m2e ; p2B = m2�; "A = "B � " ;and the quantity ! is the soft photon energy. Usingthe known results for the interferene of the Born andbox-type elasti amplitudes (see Appendix B), we ob-tain that in the soft photon approximation, the singlesoft photon emission ontribution is given byd�boxd�0 = ����2�2Lsu(�t + ��) + t2s2 + u2 ���ut Lst � st Lut + s� u2t (�2 + L2ut + L2st)���� ��Lsu�t + 12(L2ut � L2st)� 2Lsu�ln� + 12���++ Li2�1� 2 ��: (30)In the ase of the emission of two soft photons with thetotal energy not exeeding �", we haved�d�0 = �2�� �2(�12�tLsu + 14(L2st � L2ut) ++Lsu�ln�+12����12Li2�1�2 ��2��26 L2su): (31)Finally, from the evaluation of the squared box-typegraphs in Appendix B, we infer the logarithmi ontri-bution d�BBd�0 = �2�2 t2s2 + u2 �t�A�t +B�; (32)where the oe�ients are given byA = 2s2 + u2t2 (L2us + �2);B = 4s2+u2t2 (L2us+�2)��+2Lus �st Lut�ut Lst�++ s� ut ��2(2Lst � Lus)� Lus(L2ut + L2st)�+ 8ut �2:4. SUMMARYThis paper is devoted to the determination of apart of the seond-order radiative orretions to theross-setion of the proess of large-angle quasi-elastie� sattering, namely those orresponding to eikonalbox-type diagrams. For box-type diagrams with a va-uum polarization insertion, we obtain the formulas inEqs. (16), (17), and (28), whih imply that the ontri-butions oming from the interferene between the tree-level diagram and those (bearing a vauum polarization228



ÆÝÒÔ, òîì 123, âûï. 2, 2003 (Quasi)elasti large-angle eletron�muon sattering : : :insertion) with the straight and rossed �legs� beomein fat equal when we exhange s $ u (with the a-uray up to terms of the order of �2) and alternatethe overall sign of the ontribution. This is indeed amanifestation of the well-known symmetry relation be-tween amplitudes orresponding to di�erent hannelsof a given reation.The main results of this work are analyti formulasgiven in the logarithmi approximation, but interme-diate formulas presented to a power auray allow atleast a numeri evaluation of the impat of subleadingterms on the overall value of the orretions. For ex-ample, in Se. 2, we obtain two limiting ases of theleptoni vauum polarization ontribution, for a small(Eq. (16)) and large (Eq. (17)) lepton pair invariantmass M with onstant auray.As a onsisteny hek of the alulation, the aux-iliary infrared parameter � is expeted to ompletelyanel in the �nal results. Within the gauge invariantset of amplitudes onsidered in Se. 2, we show that in-tegrating over v and then adding the ontribution givenby the soft lepton pair prodution, we indeed obtain aresult free of infrared divergenes (Eq. (22)). The stru-ture of this orretion is in agreement with the RG pre-ditions and does not ontain large logarithms raised tothe power higher than the seond. But the same annotbe done for the ontributions alulated in Se. 3 be-ause the analysis there is in fat inomplete. We alsogive the expression for the ross-setion of a soft pionpair prodution (Eq. (28)). Here, we annot expliitlyshow the anellation of leading or next-to-leading log-arithms to our when the expression is ombined withthe orresponding virtual orretion. This is beause ofa partially nonanalyti form of the expression for theradiative orretions aused by the hadroni vauumpolarization insertion.In Se. 3, we examined the ontribution omingfrom squared box-type diagrams (see Eq. (32)) suppliedby the orresponding one and two soft photon emis-sion ontributions with the expliit expressions givenin Eqs. (30) and (31). To omplete the piture, wemust take the radiative orretions aused by genuinetwo-loop eikonal-type amplitudes into aount. Keep-ing in mind the validity of the RG approah in the lead-ing logarithmi approximation and the e�et of an-ellation of large logarithms in the expression for thelowest-order radiative orretions to eikonal-type dia-grams (see Ref. [1℄), we expet the interferene betweenthem and the Born-level amplitude to ompletely an-el when added to the ontributions in Eqs. (30)�(32).Their expliit evaluation will be the subjet of a forth-oming paper.

This work was supported in part by the RFBR(grant 01-02-17437) and INTAS (grant 00366). We arealso grateful to a Heisenberg�Landau 2001-02 grant forsupport. The work of B. G. S. was supported by Cona-yt (Méxio). APPENDIX AIn this appendix, we give a set of salar integralsenountered in dealing with box-type diagrams with avauum polarization insertion in one of the exhangevirtual photon propagators. Clearly, in this ase, weneed the integrals with a virtual exhange photon en-dowed with a mass M . In evaluating vetor and tensorintegrals, we therefore use the tehnique presented inAppendix B with the only hange that all the salarintegrals with three (Iijk) and four (I) denominatorsare replaed by the following ones:1) in the ase of a large mass M (M2 � s � �t),I123 = 1M2�� ln M2s � 1 ++ sM2 �12 ln M2s + 14��;I134 = � 1M2�ln M2m2e + 1 ++ tM2 �12 ln M2m2e + 14��;I234 = � 1M2�ln M2m2� + 1 ++ tM2 �12 ln M2m2� + 14��;I = � 12sM2�2�s�� + �2s � 4�23 �;I3 = ~tI � I124 = 1M2��2ts �s + 1� ln sM2 ++ sM2 �12 ln sM2 � 14 +� ts�2 �s�� ;
(A.1)

2) in the opposite limit �t�M2, we must use theintegralsI134 = 1t �ln M2m2e ln �tM2 + �26 + 12 ln2 �tM2 �;I234 = 1t �ln M2m2� ln �tM2 + �26 + 12 ln2 �tM2 �;229



V. V. Bytev, E. A. Kuraev, B. G. Shaikhatdenov ÆÝÒÔ, òîì 123, âûï. 2, 2003I123 = � 12s�2�s�m + 4�23 � �2s + ln2 m�me �;I = 1st�s [�� + 2�t � �m℄ ;I3 = 1s�2�s ln �tM2 + �s�m � 12�2s ++ 12 ln2 m�me + 2�23 �: (A.2)
APPENDIX BHere, we give the details of the box�box ontribu-tion alulation. First of all, we must distinguish threeases: two box squares with straight and rossed legsand one ase with the interferene of amplitudes withrossed and straight legs.To alulate the ontributions, we must evaluatetensor, vetor, and salar integrals with four and threedenominators. We �rst onsider the integral for the boxwith straight legs. The vetor integral an be writtenas Z d4kk�i�2(1)(2)(3)(4) = Ap1� +Bp2� + Cq�; (B.1)where quantities (1), (2), and (4) were de�ned in (13),and we use the notation m = me, M = m�, and (3) isk2 � 2kq + t withq = p1 � p01 = p02 � p2; q2 = t: (B.2)The oe�ients A, B, and C are determined asA = 12stu [�t2a� t(2s+ t)b� st℄;B = 12stu [�t(2s+ t)a� t2b+ st℄;C = 12stu [�sta+ stb� s2℄;a = I123 � I234; b = I134 � I123;  = tI: (B.3)

The salar integrals I and Iijk are given byI = Z d4ki�2(1)(2)(3)(4) == 2st�ln smM � i�� ln �t�2 ;

I123 = Z d4ki�2(1)(2)(3) == � 12s�2�ln smM � i�� ln �2mM ++ �23 � �ln smM � i��2 + ln2 Mm �;I134 = Z d4ki�(1)(3)(4) = 1t �12 ln2 �tm2 + 2�23 �;I234 = Z d4ki�(2)(3)(4) = 1t �12 ln2 �tM2 + 2�23 �: (B.4)
To onsider the tensor integral, we use the algebraialmethod,Z d4kk�k�i�2(1)(2)(3)(4) = agg�� + a11p1�p1� ++ a22p2�p2� + a12(p1�p2� + p1�p2�) ++a1q(p1�q�+p1�q�)+a2q(p2�q�+p2�q�)++ aqqq�q� : (B.5)Multiplying the above equation with four-vetors p1,p2, and q, we obtain a system of algebrai equations,whene the quantities aij are expressed through thesalar integrals,a22 = 1s (A2 � ta2q);a11 = 1s (A4 + ta1q);a12 = 1s (A1 � 2ag � ta1q);ag = 12(A9 � 2taqq � ta1q + ta2q);a1q = 1t (A1 �A5 � ta2q);a2q = 1s+ t (A3 +A10 �A5 �A9);aqq = 1t(s+ t) (tA3 + s(A5 +A9 �A10)):

(B.6)
The quantities Aj are given byA1 = 1s (I13 � I12);A2 = I234 + 1s (I12 � I23) ++ 1t (2I34 � I23 � I24);A3 = I123 + 1s (2I12 � I13 � I23) += 1t (�I23 + I34);230



ÆÝÒÔ, òîì 123, âûï. 2, 2003 (Quasi)elasti large-angle eletron�muon sattering : : :A4 = I134 + 1s (I12 � I13) ++ 1t (2I34 � I13 � I14);A5 = 1s (I23 � I12);A9 = tC + I123 + 1s (2I12 � I13 � I23);A10 = I123; (B.7)
where Iij denote salar integrals with two denomina-tors,I12 = Z d4ki�2(1)(2) = ln �2M2 � ln sM2 + i� + 1;I13 = Z d4ki�2(1)(3) = I14 = Z d4ki�2(1)(4) == ln �2M2 + ln M2m2 + 1;I23 = Z d4ki�2(2)(3) = I24 = Z d4ki�2(2)(4) == ln �2M2 + 1;I34 = Z d4ki�2(3)(4) = ln �2M2 � ln �tM2 + 1;

(B.8)
and Iijk and I are determined above. For rossed legsin a box-type diagram, we must evaluate the integralsZ d4kk�i�2(1)(~2)(3)(4) = ~Ap1� � ~Bp02� + ~Cq�; (B.9)where (~2) = k2 + p02k and~A = 12stu [�t2~a� t(2u+ t)~b� u t ~℄;~B = 12stu [�t(2u+ t)~a� t2b+ u t ~℄;~C = 12stu [�u t ~a+ u t~b� u2 ~℄;~a = I1~23 � I~234; ~b = I134 � I1~23; ~ = t~I: (B.10)The integrals are given by~I = Z d4ki�2(1)(~2)(3)(4) = 2ut ln �umM ln �t�2 ;I1~23 = Z d4ki�2(1)(~2)(3) = � 12u �� �2 ln �umM ln �2mM + �23 �� ln2 �umM + ln2 Mm �;I~234 = Z d4ki�(~2)(3)(4) = 1t �12 ln2 �tM2 + 2�23 �; (B.11)

and I134 is given in (B.4).For the tensor integral, we haveZ d4kk�k�i�2(1)(~2)(3)(4) = ~agg�� + ~a11p1�p1� ++ ~a22p02�p02� � ~a12(p1�p02� + p1�p02�) ++ ~a1q(p1�q� + p1�q�)� ~a2q(p02�q� + p02�q�) ++ ~aqqq�q� ; (B.12)where we use~a22 = 1u ( ~A2 � t~a2q);~a11 = 1u ( ~A4 + t~a1q);~a12 = 1u ( ~A1 � 2~ag � t~a1q);~ag = 12( ~A9 � 2t~aqq � t~a1q + t~a2q);~a1q = 1t ( ~A1 � ~A5 � t~a2q);~a2q = 1u+ t ( ~A3 + ~A10 � ~A5 � ~A9);~aqq = 1t(u+ t) (t ~A3 + u( ~A5 + ~A9 � ~A10)):
(B.13)

The quantities ~Aj are given by~A1 = 1u(I13 � I1~2);~A2 = I~234 + 1u (I1~2 � I~23) ++ 1t (2I34 � I~23 � I~24);~A3 = I1~23 + 1u (2I1~2 � I13 � I~23) ++ 1t (�I~23 + I34);~A4 = I134 + 1u (I1~2 � I13) ++ 1t (2I34 � I13 � I14);~A5 = 1u(I~23 � I1~2);~A9 = t ~C + I1~23 + 1u(2I1~2 � I13 � I~23);~A10 = I1~23;
(B.14)

where Iij denote salar integrals with two denomina-tors,231



V. V. Bytev, E. A. Kuraev, B. G. Shaikhatdenov ÆÝÒÔ, òîì 123, âûï. 2, 2003I1~2 = Z d4ki�2(1)(~2) = ln �2M2 � ln �uM2 + 1;I~23 = Z d4ki�2(~2)(3) = I~24 = Z d4ki�2(~2)(4) == ln �2M2 + 1; (B.15)and Iijk and I are determined above. The other inte-grals I13, I14, and I34 are given in (B.8).With all these integrals, it is straightforward to ob-tain the �nal result for the squared box-type diagrams.With the intent to realize subsequent numeri alula-tions, we give it in the form where all terms not en-haned by large logarithms are retained,X jMboxj2 = 16�4B(s; t; u);B(s; t; u) = 8(s2 + u2)t2 (L2us + �2)�� ln2��t�2 �� 4 ln��t�2 ��� Lus �s� ut (L2ut + L2st � Lut � Lst) + Lus�++ (s� u)22 � 1s2L4ut + 1u2L4st�++ 2(s� u) ��1sL3ut + 1uL3st�+ 2 �L2ut + L2st�++ �2(4 ln��t�2 ��s� ut (2Lst � Lus) + 2ut �++ hLut �1� us �� 1i2 ++ 2 hLst �1� su�� 1i2 � 1)++ �42 �1� us�2 : (B.16)

For ompleteness, we here present a formula for theinterferene of a tree-level and a box-type diagram am-plitudes,2XM?BornMbox ==X jMBornj2��(2Lsu(�t + ��) ++ t2s2 + u2 �ut Lst � st Lut ++ s� u2t (�2 + L2ut + L2st)�): (B.17)Adding to this expression the ontribution arising fromthe �up�down� interferene of a soft photon emissionby eletron and muon lines, we arrive at the expressionfor the radiative orretions given in Eq. (16) in [1℄.REFERENCES1. V. Bytev, E. Kuraev, and B. Shaikhatdenov, E-printarhives, hep-ph/0203127, Zh. Eksp. Teor. Fiz. 122,472 (2002).2. E. Kuraev and V. Fadin, Sov. J. Nul. Phys. 41, 466(1985); 47, 1009 (1988).3. J. Shwinger, Phys. Rev. 76, 790 (1949); R. Barbieri,J. Mignao, and E. Remiddi, Nuovo Cim. A 11, 865(1972).4. S. Eidelman and F. Jegerlehner, Z. Phys. C 67, 585(1995).5. A. Arbuzov et al., Sov. J. Nul. Phys. 60, 591 (1997);Yad. Fiz. 60, 673 (1997).6. A. B. Arbuzov, E. A. Kuraev, and B. G. Shaikhatde-nov, Zh. Eksp. Teor. Fiz. 115, 392 (1999).
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