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We consider the problem of fixing the phases of Bogoliubov coefficients in quantum electrodynamics such that
the vacuum-vacuum amplitude can be expressed through them. For a constant electric field and particles with
spins 0 and 1/2, this is done starting from the definition of these coefficients. Using the symmetry between
electric and magnetic fields, we extend the result to a constant electromagnetic field. It turns out that for
a constant magnetic field, it is necessary to distinguish the in- and out-states, although they differ only by a
phase factor. For a spin-1 particle with the gyromagnetic ratio g = 2, this approach fails and we reconsider the

problem using the proper-time method.
PACS: 11.55.-m, 12.20.-m, 03.80.-r

1. INTRODUCTION

Even if the electromagnetic field does not create
pairs, virtual pairs lead to the appearance of a phase in
the vacuum—vacuum amplitude. This makes it neces-
sary to distinguish the in- and out-solutions even when
it is commonly assumed that there is only one complete
set of solutions as, e.g., in the case of a constant mag-
netic field. The in- and out-solutions then differ only by
a phase factor that is in essence the Bogoliubov coeffi-
cient. In terms of the in- and out-states, the propagator
takes the same form as for pair-creating fields.

We use the solutions with conserved quantum num-
bers and do not consider radiation processes. Then
the events in a cell with quantum numbers n are inde-
pendent of the events in cells with different quantum
numbers. In other words, we work in the diagonal rep-
resentation. The knowledge of the Bogoliubov coeffi-
cients is sufficient for obtaining the probability of any
process in the external field (disregarding the radiation
processes) [1-3]. But the real part of the action integral
W that defines the vacuum-vacuum amplitude,

<Oout|0in> = eiW7 W= /d4x£7 (1)

is not directly expressed through the Bogoliubov co-
efficients. At the same time, some effects related to
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ReW are observable. Thus, the Lagrange function £
of a slowly varying field determines the dielectric per-
mittivity and magnetic permeability of the field [4, 5].

The Lagrange function of a constant electromag-
netic field was obtained in [6-8] in the one-loop ap-
proximation and in [9] in the two-loop approximation.
Studying a model of particle production, De Witt noted
that Re W can be expressed through Bogoliubov coeffi-
cients with the natural choice of their phases [10]. Our
purpose is to choose these phases such that Re W can
be expressed through them. We show that for the con-
stant electric field and particles with spins 0 and 1/2,
the natural choice would be sufficient if it were not for
the necessity to make renormalizations. For a vector
boson with the gyromagnetic ratio g = 2, the situation
is more complicated even for a constant electric field.

We note that the transition amplitude for an elec-
tron to go from an in-state to an out-state is equal to
unity. To show this, we write the Bogoliubov transfor-
mations and the relation between (0, out| and (05, i | [2]
(where n is the set of quantum numbers)

— * 14
Gp out = CinGn in — C2nbn in’
+ — ) * L+ !
bn out = C2nln in + Clnbn in? (1 )

<0n out‘ = <0n m‘(CIn — Canln inbn m)

where
‘Cln|2 + |62n‘2 =1.
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Here, ay, i, (b} ,,,) is the particle (antiparticle) annihila-
tion (creation) operator, a, in|0p in) = 0, and similarly
for the out-states; |0, ;) is the vacuum state in the cell
with the quantum number n, ¢y, and cs,, are the Bo-
goliubov coefficients, and the asterisk denotes complex
conjugation.

The third relation in (1') implies Eq. (28) below and
the first relation implies that

a: in — cIn 1[(1: out + C2nbn zn]
Using this relation and the anticommutator

{an’ out s a; m} = 5n’,n-, we find [2]

<On out‘an outa+ 1 |0n tn> =
nin

*—1
=Cin

<On out‘on tn> =1 (1”)

The Pauli principle prohibits virtual pair creation in
the state occupied by the electron. Therefore, even the
phase of the scattering amplitude remains unchanged.
In particular, ¢5, = 0 for the constant magnetic field,
but we cannot assume that c;, = 1 without violating
Eq. (1) and Eqs. (28), (29) below because W # 0 [4, 5].
In other words, even if ¢o,, = 0, the in- and out-vacua
are different. (This is in contrast to the remark after
Eq. (15) in [10].) The Bogoliubov coefficient ¢;,, must
therefore be coordinated with the vacuum—-vacuum am-
plitude. For the constant electromagnetic field, we rep-
resent the action integral as a sum over the set of quan-
tum numbers n,

W = /d4af;£(af;) =

Then W,, define the phase of the Bogoliubov coefficient
(in general, complex).

In Secs. 2 and 3, starting from the definition of the
Bogoliubov coefficients, we consider the phase fixing
for particles with the respective spins 0 and 1/2.
Secs. 4-6, we reconsider the problem using a more gen-
eral proper-time method for spins 0, 1/2, and 1.

In

2. SCALAR PARTICLE IN THE CONSTANT
ELECTROMAGNETIC FIELD

For a set of wave functions with conserved quantum
numbers n, the Bogoliubov transformation is given by
+wn + Con 7wn-,
+'¢n + CIn ",

+Un = C1n

_tPp = CSn

(2)

where
1

|‘31n‘2 - ‘C2n|2 =

and 41, (T,) is the positive-frequency in- (out-) so-
lution, and similarly for the negative-frequency states.
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We are free to choose the phase of ¢, by redefining
1. Indeed, if we substitute

4
1 = e Lyne,
i2f new

Cin Cin >
then Eq. (2) and the propagator [2, 11]

i,¢ — e?ifj:1pgew7

=e€

Go(z,2') = zchln
. { N
—tn(z) by (2'),

retain their form in terms of the redefined quantities.
For definiteness, we assume that the particle charge

t>t,
t<t

(2)

is e’ = —e,e = |e|. For a constant electric field, we then
have [2] (n = (p1,p2,p3), Ay = —0,3E1)
V2m Tx T
—-— + z—) ,
1 2 4

-~ — x>

Clp = ———~ exXp (—

r(3-i) 3)
_m’ +pf +p

2eFE '
We note that in a weak electric field, |c2,]| is exponen-
tially small and can be neglected. The in- and out-
states then differ only by a phase factor. The same
must be true for the magnetic field, where ¢y, = 0
exactly and Incj,, is to be determined.

The probability amplitude that the vacuum in the

state n remains vacuum is [2]

<0n out ‘On zn>

The total vacuum-vacuum amplitude is
HC* -1

W(] :ZWOn’ Wgn:ilncln.

LT
Cop = €XD (—ﬂ'% - ZE) s

* —1
=Cyy -

(4)

_ i

out |02n

(5)

As we see below, cf,, must be replaced by C{7¢" in (4)
and (5). This is the renormalization of ¢,,. From (3),
we have

Incy, = % —————
As shown in [2], the vacuum-vacuum probability
|(0out|0in)|? obtained from (5) and (3) agrees with the
Schwinger result [8]. This implies that ImWy is cor-
rectly given by (5) and (3). To find ReWy, we first con-
sider the asymptotic representation (see Eq. (1.3.12)
in [12])

1 1
Inl <§ + i%) = ix[In(isx) — 1]+ 3 In2m +

N Z By, (1/2)
k

)172k
— 2h(2k — 1)

(i3 (7)
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(Letting k range to oo, we can say that the right-hand
side of (7) represent the left-hand side in a certain sense
exactly; the information encoded in the right-hand side
can be decoded [13].) From (6) and (7), it follows that

* —_—
Incy, =

)k
= l (Inse—1)+— +Zﬁ] (8)

This asymptotic expansion contains only the imaginary
part of In ¢}, or only the real part of Wy. It can be seen
from (8) that as the first step, we must pass from In ¢j,,
to

InCf, =Inel, +i [x(lnx—1) + ﬂ 9)

in order to have InCf,, — 0 as » — oo (i.e. as E — 0).
Because charge renormalization is necessary, we must
make the second step and introduce
*Tren * . 1
InCi " =Inej, +1i %(ln%—l)-l— +—1. (10)
4 243
In other words, we also let In C}) " contain the term
with k = 1 in (8). We then have the asymptotic repre-
sentation

. 1)% By (1/2)
In O = = Z 2Ue(2k — 1)72F—1 (11)

Summing (11) over n as

Z /d3pL3 /dp3 s eET, (12)

and making renormalization [8], we obtain the correct
asymptotic representation for Re Lg,

_ 1o (eE)?
Reﬁo = 2E + 1671'2
(=1)k By (1/2) m?
X —, o =—= (13)
,; E(k —1)(2k — 1)s2%2 2eE

To simplify formulas and minimize confusion with T in
Eq. (50), we often set L = T = 1 in the expressions
like (12). In addition, we drop the Maxwell part of the
Lagrangian in what follows (E?/2 in this case).

We now show that expression (9) can be brought to
the form suggested by the proper-time formalism,

1
InC}, =lnv2r+n(lnn—-1)—InT <§+n> =—F(n),

— de 72719 1 1 .
F(n)—2/ 7 <5h9—9>, n=ix. (14)
0

Differentiating (14) with respect to 1 and using
Eq. (2.4.22.5) in [14], we see that the results in the left-
and the right-hand sides coincide. In addition, both
sides have the same asymptotic behavior as n — oo.
We therefore have

Next, we note that the term i/245¢ in (10) can be writ-
ten as

—21%0 1
= / dbe (16)
and therefore,
*ren 1 [ dS N
InC;ren = _5/5 17 &P [—is(m®>+p7)] R(9),
0 (17)

Here, R(6) is a «regulatory. It is independent of the
quantum numbers n and is the same as in the proper-
time representation of the Lagrange function [8].

We now consider the case where a constant mag-
netic field is collinear with a constant electric field.

Then
1 7
2
0
x exp {—is[m® + e

1=0,1,...,

l C*TE'IZ E H

(18)
HQ2l+1)]} R(8,7)

T=-¢eHs,

and we assume that R(A,7) can be obtained by the
same reasoning as in [8] (or simply taken from [8]),

1 1 H> - E?
RO, 7)=1—|—+ = ——— ) sh#@si
0,7) <9T+6 folei )s sin 7, 19)
T=eHs, 60 =eFEs.

Integrating over ps, we obtain (see (12) with 7' = 1)

——eE
e /sshG

x exp {—is[m® + eH (2l + 1)]} R(6, 7). (20)

/dpg InCTe"(E, H)

213
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In this expression, we can turn the electric field off,

/dpglnC’*””( =0,H) =

1

2

ds exp {—is[m*+eH (21+1)]} R(0,7),

oo

0
T .
— | sinT.
6

To remove the integration over ps, we write the factor
572 as s7%/2571/2 and note that 1/y/5 must arise from
the integration over ps,

(21)

1
~+
=

R(0,7)=1— (

1 ei'/r/4 x o
2= [ dveo-is). @
Therefore,
eim/4 T ds
*ren _ _ e
InCien(B = 0.H) = 5= [ 7
0
x exp {—is[m® + eH (2l + 1) + p3]} R(0,7). (23)

(Substituting s — —it, we see that expression (23) is
purely imaginary.) From here or from (21), we obtain

zZlnC*’"e” =0,H)=
/dpQ/dpS Zl O*ren ):£0 —
_ eH /Oo ds
T 16m2 ) s?sinT
0
x exp(—ism?)R(0,7) (L=T=1), (24)

which agrees with [8,9]. Relation (39) below was used
here and the sum over [ was performed with the help
of the formula

1

Zexp [—iseH(2l +1)] = 2isin(eHs)

=0

(25)

3. ELECTRON IN THE CONSTANT
ELECTROMAGNETIC FIELD

The Bogoliubov transformation is given by

+¢n + can ~Un,
+¢n + CIn “Yn,

+¢n = Cin

—¢n = _C;n

214

where
‘Cln|2 + |02n‘2 =1

For the constant electric field, we have
—mx/2

. . [2m e
Cln = —i\| — =
n x TD(ix)’

— T —
Cop = € ) n—(p17p27p37r)'

(27)

These Bogoliubov coefficients are independent of the
spin state index r = 1,2.
As in the scalar case, we start with the relations [2]

<0n out‘on zn> = CIn, (28)
and
out‘ozn Hcln = iW1/27
(29)
Wl/2 = Zwl/Q;n-, Wl/?;n = _ilncIn‘
n
It follows from (27) that
. i 2 7w
lncl”:_?-i_ﬁl ;—T—IHF(Z%) (30)
The asymptotic expansion for T'(is) is
) ) 1 ) . 1
InT(ix) = <2%— 5) In(is) —isx+ 3 In 27 +
Boy 1-2k
—_— 31
“Z 2k2k—1)( ) (31)
(see Eq. (8.344) in [15] or Eq. (6.1.40.) in [16]). From
(30) and (31), we obtain
* * . _ z _
InCy, =lnej, +1¢ (%ln% »+ 4) =
B
k 2k 1-2k
- _ 2k 2
ZZ 2k2k—1)(%) , (32)
*ren — _ L
InCy" =InCy, o0
Boy 1-2k
ZZ 2k Sk — )(%) . (33)
As in the scalar case, we find that
1 [de 1
InCy, = -3 / %672“{1 <cthx - ;) ) (34)
0
ln C*T’En —
1 fde _y;,., 1 =
= | e 2@ |1 _ [ Z 4+ )th hz.
Q/ace x+3txctx(35)

0
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Equation (2.4.22.6) in [14] was used to verify (34), cf.
the text before Eq. (15).
The generalization of (35) to the presence of a con-

stant magnetic field is straightforward. We rewrite it
as (t =6 =eEs)

/°°d_9
0
0

+ 2 HI)|R(0,7) cthd, (36)

InCy{)*"(E, H)

[\D|I—l

x exp|—is(m?

where n = (p1,p2,p3,7“); l= lminalmin+1a sy lin =0
for r =1, lypin = 1 for r = 2, and R(6,7) can be taken

from the Lagrange function [8, 9] (7 = eHs),

1 E? —

H2
RO, 7)=1- <9— + ) tg7tho. (37)
T

3EH

Integrating over ps using the second equation in (12),
we find

A3 | ren E°°d9
/ﬁlncm = ﬁ/ 7
0

x exp[—is(m? + 2¢HI)|R(6,7) cthf. (38)

@

The subsequent integration over py is performed using
the formula similar to (12) [2],

/ dp» = eHL. (39)

To sum over r and / in (36), we use the formula

2 00
§ : § :e—steHl —
r=1

=1lmin

—ictg(eHs) (40)

that follows from (25). In agreement with the Lagrange
function for the constant electromagnetic field [8, 9], we

therefore have
H T db
In *ren = -
Z 1 871'2 / 0

x exp(—ism®)R(f,T)cthfctgr (L=T =1). (41)

Returning to (38), we can switch the electric field
off,

dp3 1 OOds

C*ren - _ e

/ 2m dn | s2 x
0

x exp[—is(m? + 2eHI)|R(0,7), (42)

R(0.7)=1— G - §> tg T,

where [ are given in (36). As in the scalar case, using
(22), we obtain

e[ ds
2/ ) s3/2
0
x exp[—is(m? + p2 + 2eH)|R(0,7), (43)

l C*'r'en( — O/H) —

where n = (p1,pa2,ps3,7), L =0,1,2,... for r = 1, and
[=1,2,... forr =2.

In the subsequent sections, we give a heuristic
derivation of In C}°" not resorting to cj,,, but using
the proper-time method. The main problem occurring
here is that renormalizations must be made. We know
how to renormalize £ as a whole, but we must renor-
malize the contribution to it from a particular state n.
To do this, we assume, as before, that the regulator is
independent of n.

4. SCALAR PARTICLE

We take the vector potential of a constant electro-
magnetic field in the form

AM = (5u2Hx1 — (SugEt, (44)

but start with the particle in a constant magnetic field,
E = 01in (44). The propagator with coinciding = and
z' is given by (see, e.g., [11])

=\/26—H(x1+5—12{).

In accordance with (1), we must integrate Lo and hence
Go(z,x) over d*z. The integration over z; is done us-
ing the formula

| ot = var.
- . (46)
or/dxlpf(g): elHu
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Integrating over p° and 2, we obtain

/ dy G (1, ) = exp(3m/4 / dpg

— o0

x exp{—is[m? + eH (2l + 1) + p2]}. (47)

As noted in [3] (see Eq. (2.12) therin), it follows from
Schwinger results [8] that for a scalar particle (boson),

—in s = /d4xGb(x,x),
or W, = —i/dm2/d4xGb(az,x|m2).

This implies that £y can be obtained from (47) by in-
serting —1/s in the integrand. Also inserting the regu-
lator from (21), we obtain

(48)

iWo(E

_ exp 71'2/4 dpg 7 dpg x 7
- S3/2
l 0

0
X exp{—zs[m + eH(Ql +1) + p3]}R(0,7) =

/ dp> / dps Zl nCiren (L=T=1). (49)

=0, H) :mo(E:o,H):

For the constant electromagnetic field described by
vector potential (44), we now insert the expressions for
the wave functions in (2') (see [2] with the modifica-
tions for ¢/ = —e = —Je|) and use relation (93) in [11]
(or a relation similar to (96) below). We then find

637ri/4 < dp2 < dp3
Go(z,z|E,H) = — / — X
o(w,a] ) 2V/neE 27 27
< [eH D? 7 df
X ——\/ﬁ X
; T 1 / v/sh 26
2
9 .
X exp < 1520 12 thG) (50)
0 =eEs, =V2eFE (t — —E)

Integrating over z; (see (46)) and ¢, we obtain

oo

/dml / dtGo(z,z|E, H) =

7 dps 7 dps ~— 7 ds
/_W/_Wz/sh(eEs
—o00 —oc 0

[\.')IN

=0

x exp{—isim? + eH (21 + 1)]}. (51)

Passing from Gq(z, ) to Ly is realized by inserting the
factor —1/s in the integrand in (51). Also inserting the
regulator R(7,6), see Eq. (19), we obtain

x exp{—is[m? + eH (2l + 1)]}R(7,6). (52)

5. SPINOR PARTICLE

We first consider the electron in the constant mag-
netic field, £ = 0 in (44). The squared Dirac equation
can be brought to the form

¢ pp-py 1
B — N3t Z=0
{dg? LT oo T2 3} ’

(53)
_ g3 0
23 B ( 0 a3 ) ’

where ( is the same as in (45). We see that Z can be
written as

Z = diag(f1, f2, f1, f2) exp [i(p2xa+pszs—p°t)] , (54)

and f; and f, must satisfy the equation

d—gfz+ 5ol

2 2 2

We choose f1 = D;—1(¢) and fo = D;(¢) in order that
p> = 2eHI in both cases. The solutions of the Dirac
equation are obtained as the columns of the matrix [2]

(m —ill)Z, (56)

where TT = 7,1, T, = —id, + eA,.
Using the y-matrices in the standard representa-
tion [4], we have

216
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m + HO 0 —H3 —H1 + ZHQ
0 _ _ .
il = 0 m + H Iy — Il 113 (57)
H3 H1 - ZH2 m — HO 0
H1 + ZH2 —H3 0 m — HO
In terms of (, we obtain
. . d ¢
II; + Iy = —iv2eH <d_( — 5) ,
(58)
Iy —illy = —iv2eH <dic + g) .
Also using the relations
d
<d_§ + %) Di(¢) = 1D;-1(C),
(59)
d
(- 5) 2 =D
we find (with the exponetial factor in (54) omitted for brevity)
(m +p°)Di-1(¢) 0 —psDi—1(¢)  ilv2eHD;—1(Q)
e 0 (m +p°) Di(C) —iv2eHD;(() p3Di(Q)
—i)Z = 60
= pDia(Q)  —iVIHDI () (m—p")Dis(Q) 0 o
iv2eHDy(() —p3Di(C) 0 (m —p°)Di(C)

\
Choosing the second and the first columns as ; and
1o (with the subscripts 1 and 2 indicating spin states)
and normalizing them, we obtain

0
(m + p°)Di(C)
—ilV3eHD, 1 (C)
—p3Di(Q)

iq-x

+1 = N,

n

1/4 1
) 2p0(p° 4+ m)1!’

P’ =/m2+2eHl+p2, q-x=poxs+ psxs — p't,

n = (p2,p3,l,7), (=V2eH (acl + f—;f_) , (61)
(m 4+ p°)Dy—1(C)
0 .
= N,V1 gz
e psDa(Q) | (62)
ivV2eH Di_y (C)
1=0,1,2,...

217

As can be seen from (62), [ actually begins with unity
in this state. The negative-frequency solutions 1,
are obtained from (61) and (62) by the substitution
q — —q. We note that Eqs. (61) and (62) differ from
Eq. (10.5.9) in [4] because the authors there assumed
the charge of a spinor particle to be positive.

Having obtained the wave functions, we next find
the contribution to £/, from each state 1,. For the
field that does not create pairs, the propagator has the
standard form

Gijo(z,2") =
‘ ()4 hn(2'), t>t, . .
_7lpn(x)7wn(x )7 t<t7
(63)
In the standard representation, we have
I 0 10

B

(%)

From (61) and (64), we find

(1)

0 —I 0 1
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try )y ()4 11 (@ )=

= No{l(m +p")* = 31D} (¢) — 2¢HI’ D1 (¢)}.  (65)
Integrating over x1, we obtain, see (46),
/ dytry o (€)1 (2) = 0
oo (66)
P’ =/m2+2eHl+p3, 1=0,1
From (62), we obtain, similarly,
r - m
/ dzitry e ()4 (x) = ok I=1,2,... (67)
— o

For the negative-frequency states, we must substi-
tute p° — —p°. We can then write

i7r/4 dS
\/_ Vs

incorporating both lines in (63).
(63) and (66)-(68) that

1
ol

exp[—is(m? + 2eHI + p3)], (68)

It thus follows from

/ dritr Gy oz, ) =

3177/4
m/ exp[—is(m? + 2eHI + p2)], (69)

where [ =0,1,... forr =1andl=1,2,... for r = 2.
We next use the analogue of (48) for the electron,

W1/2 zz/dMTrGl/g(x,x\M),

m

(70)

where Tr means the integration over d*x and the trace
over spin indices; we set VT =1 as above. Because

oo
z‘/dmmexp(—ism2) =

m

—ism?

e
2s

(70)

we see that T, can be obtained from (69) by insert-
ing the factor 1/2ms in the integrand. We therefore
find

e3i7r/4
ds

3/2

El/QZZ X

o0

<[

0

exp[—i(m? + 2eHI + p3)]R(0,7). (71)
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This is in agreement with (43) and (29). To check this
result, we integrate over dp, /27 with the help of (39),
over dps /27 with the help of (22), and use (40). Then,
as expected, we obtain

eH @

872 | 82
0

Lip(E=0H)=

x exp(—ism?)R(0,7)ctgT, (72)

see Eq. (47) in Ch. 1 in the last Ref. in [9] for E = 0.

Passing over to the constant electromagnetic field
described by vector potential (44), we use y-matrices
in the spinor representation because both az and Y3
are then diagonal. The squared Dirac equation has the

form
(T + m? + g)Z = 0,
(H—iE)os 0 (73)
gZe( 0 (H+z'E)ag>’

with II,, defined in (56). Hence,

Z = diag(f1, f2, f3, fa) expli(paza + p3x3)].  (74)

In terms of ¢ and T (see (45) and (50)), we obtain
the equation

2 2 1
0? T2
+ 2¢E {—aTQ + T 5] +m2} fia=0 (75)

for fi and fo and similarly,

<-2
2 T2
+ 2el |:8T2 +T:|Z§:| +m2}f3,4 =0 (76)

for f3 and f4. From these equations, it follows that

*7Z = diag{D; 1(¢)D_,._1(x),

Di(Q)D—is(x), Di-1(¢) D-is(x),
Di(Q)D—ie—1(x)} X
x expli(pazs + psxs)], x = e™AT. (77)

Solutions of the Dirac equation with y-matrices in the
spinor representation are obtained as the columns of
the matrix
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m 0 HO + H3 H1 - ZH2
. O, +40, MM°-1I
(m — i) Z = 0 " L oz (78)
HO — H3 —H1 + ZHQ m 0
—I; —illy, [O° 413 0 m
In terms of y, we have | where 7 = —e /4T In terms of this variable, we have
_i Jd X
0 - _ in/4 ./ - A )
1" £ 115 e 2eE <6Xi 2) s (79) HOiHS:_eZﬂ'/4 /2% E (%:F%> ) (84)
X = /AT
Also taking (58), (59), and the relations Similarly to (80), we find
(II° + T5) D, (y) = —e~/*u\/2eED, _1 (), (80) (I° + T13)D, (1) = '™/*V2eED, (1), s5)
(M° —T3) D, (x) = e~"™/*V2e ED, 41 (x) (TI° — T13) D, (1) = —e™/*u\/2eED,_, (7).
into account, we find four columns of the matrix ) ) )
(m — z'f[) +yz Using these relatlgns7 we obtain the four columns of
- the matrix (m —iII); Z in (78) and (83),
mD;—1(¢)D—ix—1(x)
0
. mD;—1(¢)Dix(7)
e~ m/4\/2e ED; 1(¢)D_i,.(X) 0
| —iV2eHD(()D—is—1(x) =i/ 50/2eED;_1 () Diner (7)|
_ . —iv/2eHD; () Dj,e(7)
mDy(¢)D—ix(x)
ilV2eHD; 1(Q)D_ine(x) | 0
[/ *5/2e EDy(¢) D—ise—1 (x) mDy({)Dise1(7)
- (81) ilv2eHD; 1 (C)Dj,e1(7)
6“7/4%\/2€ED1—1(C)D—i%—l(X) ei”/4\/26—ED[(<)Di%(T)
i\/ 26HD[(C)D,,'%(X) B
mD;-1(¢)D—ix(x) ’ ei™/*\/2e ED;_1({) Di.(7)
L 0 i\/ 26HD[(C)DZ'%,1(T) (86)
_ mDi—1(C)Dise—1(7) 7
—il\/ QGHD[_l(C)D_i%_l (X) 0
e” ™ /4\/2e ED(¢) D (X) ]
0 ' [ —ilv2eHD;_{ () Dy (7)
mDi(()D—is—1(X) e /4526 EDy() Dy (1)
Here and below, exp[i(paz2 + p3x3)] is dropped for 0
brevity. We let Tty (T1)9) denote the fourth (first) mD;(¢) D, (7)
column multiplied by the normalization factor TNV, )
(t N, V1): Using the fourth and the first columns again, we have
T eH\ !
TN, =exp (_T) (Z!QeE)—l/Z <T> . (82) —ilv/2e HD; 1 () D> (7)
—in/4 ./ .
We next consider the positive-frequency solution of s (x) = LN, € #V2eED1 () Dise-1(7) X
(73) as t = —o0, 0
. le(C)DZ%(T)
+Z = diag{D;—1(¢) Diz(7), Di(¢) Dize—1(7), « expli(pos + pszs)],  (87)
xpli(paa: x3)],
Di-1(§)Dise-1(7), D) Dine(7)}, (83) P TR
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+a2(2) =
le_l(ODi%(T)
0
= +Nn\/Z efiﬂ'/4%\/ﬁD[71(<)Di%71(T)
—~iv/2eHD;(¢) Die(7)

x expli(paza + p3x3)], (88)

where ¢ N,, = TN,/ /3, see (82).

We note that _Z (~Z) can be obtained from *Z
(+Z) by the substitution y — —x (7 — —7). To obtain
_ap-functions from the corresponding T 1)-functions, we
also change the sign of v/2eE in the columns in addition
to these substitutions; this is because of the relations
(see (79) and (80))

(TI1° + T3) D, (£x) = Fe~ "/ *u/2eED, 1 (£Y),
(I1° — T3) D, (£x) = e ™/*V2eED, 1 (£Y).
Thus,

(89)

—ilv/2eHD; 1 (¢)D—ise—1(—X)
—e~/*\/2e ED;(¢)D_s,.(—X)
0
mD({)D_is—1(—X)

x expli(paza + p3xs3)],

X

(90)

le,l (C)D—ixfl (_X)
0
_e—i“/4\/Qe—ED[_1 (O)D—i(—=x)
—iv2e HD () D—ise—1(—X)

x expli(paza + p3x3)], —Np=71N,, (91)

and similarly for 1 and ~)s.

We note in passing that the wave functions for the
electron in a constant electric field were written in [2]
using y-matrices in the standard representation. Act-
ing on these functions by the operator

1

S()

we obtain the solutions in the spinor representation.
Taking the magnetic field into account is realized by
the substitutions

1
1

1
-1

U=

H

. >1/4
X
m

exp(ipaz2){1,p1 — ip2, p1 +ip2} — <

y %{Dl(g), —ilv2eHDy1((),ivV2eH D11 ()}
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for r = 1. For r = 2, we must replace [ by [ —1 in these
substitutions.
The electron propagator is given by

Gija(z,2")
-y
where ¢ = *B, n = (p2,ps3,l,r) for the constant
electromagnetic field, and cf,, is given in (27), where

p? = 2eHl in the expression for », see (3) and (15). In
the spinor representation,

[

(a17a27a37a4)6 = (a37a47a17a2)~

t>t,
t<t,

+¢n(ﬁv)+1ﬁn($’),

——¢n($)71/_)n(96')-, (92)

0 I
I 0

B (93)

and therefore,

Using (81), (82), and (87), we now obtain

- eH me™*/2
tr(*Yepy (x) 4 (2)) = ERNT X
x DY (O{e™ ™4 D_i(X) D—ine(—X) +

+ei™ D,y () D—ise—1(=x)}-

Integrating over x1, we obtain, see (46),

/

me~7%/2
" V2eEx
+e™%D . (X)D—ize1(=x)},
i 4 201l
2eE

daytr(To (2) 1 (2))

{e7™AD_ () D_ie(=X) +  (95)

[=0,1,...

For r = 2, we obtain the same expression, but with
1=1,2,...

We next multiply (95) with i/cf,, according to
(92) and use the relation (see Eq. (93) in [11] with
—ix — —ix+1/2)

L(i5¢) D_ise(X) D—ise(—X) = \/E/ \/sdhe—Qe .

% exp(—2isf + 6 — %TZ thé), 6=eEs, (96)

and the relation obtained from this by the substitution
i —>ix+ 1.
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We now obtain from (95) and (96) that

o0

[ dn ) ) = -1
Yo, T T areE
T ' 97
X / il 2chfexp <—2i%9 _ 2 tht‘)) , (97)
sh 26 2
0
_ _ b
T =2eE (t eE).
Integrating this expression over ¢, we obtain
i _
[t [ o uttion) i) -
Cin
—o0  —00
i (98)
= im/ds cth(eEs) exp[—is(m? + 2eHI)],
0
1=0,1,2,...
For » = 2, we have the same expression, but with
[1=1,2,...

Taking the remarks after Eq. (70") into account
and inserting the regulator R(#,7) in the integrand,
we obtain the contribution to L/, from the state
n = (pa,ps,l,r). Summing over | and r (see (40)) and
integrating over dps /27 and dpz /27 (see (39) and (12))
we obtain, in agreement with (41), that

3

¢2HE [ ds
— [ —x
82 s
0
x exp(—ism?)R(#, ) cth § ctg 7.

Ly =

(99)

We finally note that for H = 0, we have

/ dt%tr(ﬁbl(x) Ty (z) = im/ds cth(eEs) x
e Cin 0

x exp[—is(m? 4+ p? +p3)], 1=0,1,2,... (100)

instead of (98). Inserting 1/2ms and R(#,0), we see
that this agrees with (35) and (29).

6. VECTOR BOSON

The propagator and the effective Lagrange function
for the vector boson with the gyromagnetic ratio g = 2
in a constant electromagnetic field were obtained by
Vanyashin and Terentyev [17]. In another form, the
propagator was found by the author [11]. In the latter
paper, there is a misprint in Eq. (73), where the argu-
ment of sin and cos should be 27, not 7. In addition,
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the statement that the divergence term in the expres-
sion for the current in Eq. (38) does not contribute is
not true when the magnetic field is present; this, how-
ever, is of no consequence because the expression was
used only for the normalization of wave functions.

The results of Vanyashin and Terentyev imply that
relation (48) in the present paper also holds for the
vector boson if we take G, = G*,,. Using (48), we can
reproduce the expression for £; in [17] starting from
our propagator. Indeed, our result for

/

C

e?EH
1672

ds
shfsint

G*, = exp(—ism?) x

X {2 cos 27+2 chQG—LZ[eH cth+eEcth9]} (101)
m

can be written in a simpler form if we note that

a1
dsshfsint
- (102)
ShesinT[eHcth+eEcth9]},
T=eHs, 6 =¢ekFEs.

We can then integrate the term in the square brackets
in (101) by parts,

_ ie?EH / ds "
1672m?2 ) shfsint
C
x exp(—ism?)[eH ctg T + eE cthf]} —
e’EH ds )
— _‘ 1
- 1672 /sthinTeXp( ism®),  (103)
C

where we discarded a divergent term independent of F
and H. Expression (101) is therefore equivalent to

e’EH ds

1672 shf@sinrt X
C

x exp(—ism?)(2cos 2T +2ch 26 — 1).

(104)

Inserting —1/s in the integrand, we obtain Eq. (21)
in [17]; we agree with the subsequent formulas in that
paper.

Returning to our present problem, we note that for
a constant electric field, ¢}, is independent of the polar-
ization state of the vector boson and is the same as in
the scalar case [11]. Nevertheless, Im £; is not simply
3Im Lo [17]. The knowledge of ¢}, is therefore not use-
ful in obtaining In C}]°". Resorting to the proper-time
method, we find that the problem is more difficult than
in the previous cases. As seen already from (101), the
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dependence on m? is more complicated here and the

contributions from the electric and magnetic fields are
not factorized in the proper-time integrand. For these
reasons, we here consider only the constant magnetic
field.

It follows from [11] that for the spin states
r=1,2,3,

N eH 1 1
AT ) V1) =\ = S G e
x {—(+ 1)*eHD}(¢) +

+[m? +eH (2l + 1)]D} 1 (Q)},  (105)
@) 5, (0) =\ S DHO. (109

N _ JeH 1 l
+05 () 493, (2) =/ S 2001 2mE(mE 1 eHD)
x {=2eH[m? + eH (2l + 1)]D}(¢) + [eHDy+1(¢) —

— (m* + eHI)D;_1 ()] +

+ [eHD;11(¢) + (m?* + eHI)D;_1(O)]*]}.  (107)

Integrating the expressions in (105)—(107) over #; with
the help of (46), we obtain 1/2|p°| in all three cases,
but

l:lmin-,lmin-l']-a""/

—Lor= (108)
Imin = 0, r=2
, =
The vector boson propagator is given by [11]
G (2, 2') = i / dp> / dps
™ ™
3. W *U (1 !
, >t
. { L) 3 () " on
r=11lmin - ﬁ(x)—iﬁn ( )a t<t.

We see from (68) and (48) and the above results that
the contribution to £; from the state with the quantum
numbers n = (p2, p3, [, r) is

eiﬂ'/4
ilnc},, = —i—= x

27
o0

ds )
X / 37z &XP {—isim® +eH(2l + 1) +p3]}. (110)
0

The sum over r and [ is performed using the formula

3 oo
Z Z exp [—iseH (2l + 1)] =

r=11lmin

1+ 2cos2eHs
—— (111
2isineH s ( )

that can be obtained from (25). To integrate over
dps /27 and dps /2w, we use (39) and (12). Inserting
R(7), we then obtain

oo
ZW eH dS
nin =~ | o X
spimim 1672 | s2sinT
n 0

x exp(—ism?)(3 — 4sin® T)R(7). (112)

In accordance with [17], R(7) is defined as

3—4sin27'_>3< 1 1 7

sin T sint T 6
3 —4sin’T
=—R(7). (113
sin T (7). (113)
This implies that
i 3 7
A= (31
3—sin“7 \7 2 (114)
R(7)lrar = oo
TS 120
From (110), we therefore have
. . ein/4 T ds
'Lln Cl,;en = —'Lﬁ m X
0
x exp {—is[m® + eH (20 + 1) + p3]} R(7), (115)

where [ is given in (108). Substituting 7 — —it and
rotating the integration contour, we see that In C}) "
is real, as it should be for the magnetic field.

7. CONCLUSIONS

We have shown how the renormalized phase of
the vacuum—vacuum amplitude in quantum electro-
dynamics can be expressed through the properly
fixed phases of the Bogoliubov coefficients; a nonzero
phase of the former indicates nonzero phases of the
latter. In general, the knowledge of the Bogoliubov
coefficients is insufficient for obtaining the phase of the
vacuum—vacuum amplitude. Additional information is
needed. Thus, in the case of constant magnetic and
electromagnetic fields, we have used the symmetry be-
tween the electric and magnetic fields in the Lagrange
function. In the case of a vector boson, the knowledge
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of the Bogoliubov coefficients is not useful in fixing
their phases. Resorting to the proper-time method
shows that the expressions for the phases are in general
more complicated than that for lower-spin particles.
For this reason, we have presented the results only for
the constant magnetic field, where they turned out to
be as simple as expected.

I am grateful to V. I. Ritus for discussions that led
to the appearance of this paper. This work was sup-
ported in part by the Russian Foundation for Basic
Research (projects 00-15-96566 and 010230024).
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