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ELECTRONIC STRUCTURE OF CARBON NANOPARTICLESV. A. Osipov a*, E. A. Ko
hetov a**, M. Pudlak b***a Joint Institute for Nu
lear Resear
h, Bogoliubov Laboratory of Theoreti
al Physi
s141980, Dubna, Mos
ow region, Russiab Institute of Experimental Physi
s, Slovak A
ademy of S
ien
es043 53 Kosi
e, Slovak Republi
Submitted 19 April 2002The ele
troni
 stru
ture of graphiti
 nanoparti
les is investigated within a gauge �eld-theory model. The lo
aland total densities of states (DOS) near the pentagonal defe
ts (dis
linations) are 
al
ulated for three geome-tries: sphere, 
one, and hyperboloid. It is found that the low-energy ele
tron states have a rather spe
i�
dependen
e on both the energy and the distan
e from a dis
lination line. In parti
ular, the low-energy totalDOS has a 
usp that drops to zero at the Fermi energy for dis
linations with the Frank index � < 1=2, whilea region of a nonzero DOS a
ross the Fermi level is formed for � = 1=2. The true zero-mode fermion stateis found for the graphiti
 hyperboloid. The appearan
e of an enhan
ed 
harge density near the Fermi level fornano
ones with the 60Æ opening angle (180Æ dis
lination) is predi
ted.PACS: 73.20.Dx, 73.50.Jt, 73.61.Wp1. INTRODUCTIONCarbon nanoparti
les, whi
h are expe
ted to haveimportant impli
ations for the development of ele
-troni
 devi
es, �at panel displays, nano-swit
hes, et
.,have re
ently re
eived great attention from both exper-imentalists and theorists (see, e.g., reviews [1, 2℄). Thehigh �exibility of 
arbon allows produ
ing variouslyshaped 
arbon nanoparti
les: nanotubes, fullerenes,
ones, toroids, graphiti
 onions, and nanohorns. Par-ti
ular attention has been given to the pe
uliar ele
-tron states due to topologi
al defe
ts that have beenobserved in di�erent kinds of 
arbon nanoparti
les bys
anning tunneling mi
ros
opy (STM). For example,STM images with �vefold symmetry (due to pentagonsin the hexagonal graphiti
 network) have been ob-tained in the C60 fullerene mole
ule [3℄. The pe
uliarele
troni
 properties at the ends of 
arbon nanotubes(whi
h in
lude several pentagons) have been probedexperimentally in [4, 5℄. Re
ently, the ele
troni
 stru
-ture of a single pentagon was revealed on an atomi
s
ale by STM in [6℄, where the enhan
ed 
harge den-sity at the pentagon, whi
h was lo
ated at the apex of*E-mail: osipov�thsun1.jinr.ru**E-mail: ko
hetov�thsun1.jinr.ru***E-mail: pudlak�saske.sk

the 
oni
al protuberan
e of the graphiti
 parti
le, wasexperimentally 
lari�ed.By its nature, the pentagon o

urring in a graphitesheet is a topologi
al defe
t. A
tually, as mentionedin [7℄, �vefold 
oordinated parti
les are orientationaldis
lination defe
ts in the otherwise sixfold 
oordinatedtriangular latti
e. Moreover, dis
linations are generi
defe
ts in 
losed 
arbon stru
tures, fullerenes, and nan-otubes, be
ause in a

ordan
e with Euler's theorem,these mi
ro
rystals 
an only be formed with the to-tal dis
lination 4�. A

ording to the geometry of thehexagonal network, this implies the presen
e of twelvepentagons (60Æ dis
linations) on the 
losed hexati
 sur-fa
e.We note that graphiti
 
ones are of spe
ial interestbe
ause they 
an 
ontain a single pentagon at the apex,in 
ontrast to twelve pentagons in fullerene mole
ulesand nanotubes. This fa
t makes nano
ones attra
tivefor experimental study of pe
uliar ele
tron states dueto topologi
al defe
ts that were theoreti
ally predi
tedin [8, 9℄. In parti
ular, analysis within the e�e
tive-mass theory shows that a spe
i�
 p3�p3 superstru
-ture indu
ed by pentagon defe
ts 
an appear with thewave fun
tions de
aying as r�1=5 [8℄. Re
ently, thispredi
tion was experimentally veri�ed in [6℄. A re
entstudy [10℄ within both tight-binding and ab initio 
al-11 ÆÝÒÔ, âûï. 1 161
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ulations shows the presen
e of sharp resonant statesin the region 
lose to the Fermi energy. The strengthand position of these states with respe
t to the Fermilevel were found to depend sensitively on the numberand relative positions of the pentagons 
onstituting the
oni
al tip. In parti
ular, a prominent peak o

urringjust above the Fermi level was found for the nano
onewith three symmetri
 pentagons (whi
h 
orresponds toa 60Æ opening angle or, equivalently, to a 180Æ dis
li-nation). On the other hand, the 
ontinuum model sug-gested in [9℄ predi
ts api
al enhan
ement of the densityof states (DOS) at the Fermi energy (EF ) in the vi
in-ity of the apex for 
ones with 120Æ dis
linations.It is interesting to note that the problem of spe
i�
ele
tron states at the Fermi level due to dis
linations issimilar to that of the fermion zero modes in topologi-
ally nontrivial manifolds. In �eld theory, zero modeswere found to play an important role in understand-ing anomalies [11℄ and 
harge fra
tionalization thatresults in un
onventional 
harge�spin relations (e.g.,paramagnetism of 
harged fermions) [12℄. As men-tioned in [12℄, this �nding has been experimentally veri-�ed in trans-polya
etylene 
hains for one spatial dimen-sion. The Dira
 equation for massless fermions in three-dimensional spa
e�time in the presen
e of the magneti
�eld was found to yield N�1 zero modes in the N -vor-tex ba
kground �eld [13℄. As we have shown in [14℄, theproblem of the lo
al ele
troni
 stru
ture of fullerene is
losely related to Ja
kiw's analysis [13℄. We note thatthe �eld-theory models for Dira
 fermions in a planeand on a sphere [15, 16℄ were invoked to des
ribe thevariously shaped 
arbon materials. More re
ently, theimportan
e of the fermion zero modes was dis
ussedin the 
ontext of high-temperature 
hiral super
ondu
-tors [17�19℄ and fullerene mole
ules [16℄.Investigation of the ele
troni
 stru
ture requires for-mulating a theoreti
al model des
ribing ele
trons onarbitrary 
urved surfa
es with dis
linations taken intoa

ount. An important ingredient of this model 
anbe provided by the self-
onsistent e�e
tive-mass the-ory des
ribing the ele
tron dynami
s in the vi
inity ofan impurity in graphite inter
alation 
ompounds [20℄.The most important fa
t found in [20℄ is that the ele
-troni
 spe
trum of a single graphite plane linearizedaround the 
orners of the hexagonal Brillouin zone
oin
ides with that of the Dira
 equation in (2+1)dimensions. This �nding stimulated formulation ofsome �eld-theory models for Dira
 fermions on hex-ati
 surfa
es to des
ribe the ele
troni
 stru
ture of var-iously shaped 
arbon materials: fullerenes [14; 15℄, nan-otubes [21℄, and 
ones [9, 22℄.In this paper, we study the problem of ele
tron

states in 
arbon nanostru
tures for three geometries:sphere, 
one, and hyperboloid. We note that in our ap-proa
h, the gauge theory of dis
linations on �u
tuatingelasti
 surfa
es [23℄ is basi
ally used. More spe
i�
ally,we formulate the Dira
 equation on a 
urved surfa
ewith a �ux due to a pentagonal api
al dis
lination rep-resented by an Abelian gauge �eld. Both the lo
al andthe total density of states are 
al
ulated in ea
h 
ase.A spe
ial attention is given to the 
orre
t in
lusion ofthe spin 
onne
tion for fermions. A
tually, our analysisshows that the spin 
onne
tion leads to a rede�nition ofwave fun
tions but leaves Dira
 equations un
hanged.In other words, the spin 
onne
tion does not in�uen
ethe ele
tron spe
trum, but a�e
ts the DOS.The paper is organized as follows. The general for-malism for studing ele
tron states in the 
urved two-dimensional ba
kground is presented in Se
. 2. Weformulate a �eld-theory model for Dira
 fermions onhexati
 surfa
es of an arbitrary geometry with bothele
trons and dis
linations taken into a

ount. The�ux due to the pentagonal defe
t is represented byan Abelian gauge �eld within a self-
onsistent gaugemodel. In Se
. 3, we apply the model to the problemof ele
tron states in the fullerene mole
ule. We 
al
u-late the lo
al and the total DOS and study zero-energyele
tron states. In Se
. 4, we 
onsider two arbitrary ge-ometries for the des
ription of nano
ones, 
oni
al andhyperboli
al. The results obtained are 
ompared withother approa
hes. Se
tion 5 is devoted to 
on
ludingremarks. 2. GENERAL FORMALISMOur 
onsideration is based on the e�e
tive-masstheory that was applied in [20℄ to study the s
reen-ing of a single inter
alant within a grahite host, witha two-dimensional approximation used for the des
rip-tion of the graphite host. The e�e
tive-mass expansionis equivalent to the k � p expansion of the graphite en-ergy bands around the K point in the Brillouin zonewhen the inter
alant potential is equal to zero. In fa
t,there are two degenerate Blo
h eigenstates, 	1;2(K; r)at K, and the ele
tron wave fun
tion on a graphitelatti
e 
an therefore be approximated by	(k; r) = f1(�)ei��r	1(K; r) + f2(�)ei��r	2(K; r);where k = K+�. Keeping the terms of the order of � inthe S
hrödinger equation results in a se
ular equationfor the amplitudes f1;2(�), whi
h after diagonalization�nally yelds the two-dimansional Dira
 equation [20℄i
��� (r) = E (r): (1)162
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troni
 stru
ture of 
arbon nanoparti
lesHere, 
� are the Dira
 matri
es that in 2D redu
e tothe 
onventional Pauli matri
es, the energy E is mea-sured relative to the Fermi energy, and the two-
om-ponent wave fun
tion  / (f1; f2)T represents twographite sublatti
es. As mentioned in [20℄, the k � papproximation essentially amounts to repla
ing thegraphite bands by 
oni
al dispersions at the Fermi en-ergy.For our purpose, we need a generalization of Eq. (1)in
orporating both a dis
lination �eld and a nontrivialba
kground geometry. A possible des
ription of dis
li-nations on arbitrary two-dimensional elasti
 surfa
es iso�ered by the gauge approa
h [23℄. In a

ordan
e withthe basi
 assumptions of this approa
h, dis
linations
an be in
orporated in the elasti
ity theory Lagrangianby introdu
ing a 
ompensating U(1) gauge �eldW�. Itis important that the gauge model admits vortex-likesolutions for wedge dis
linations [23℄, thus representinga dis
lination as a vortex of elasti
 medium. The phys-i
al meaning of the gauge �eld is that the elasti
 �uxdue to rotational defe
t, whi
h is dire
tly related tothe Frank ve
tor (see Se
. 3), is 
ompletely determinedby the 
ir
ulation of the W� �eld around the dis
lina-tion line. In the gauge theory 
ontext, the dis
lination�eld 
an be straightforwardly in
orporated in (1) bythe standard substitution�� ! �� � iW�:Within the linear approximation to gauge theory ofdis
linations (whi
h amounts to the 
onventional elas-ti
ity theory with linear defe
ts), the basi
 �eld equa-tion that des
ribes the U(1) gauge �eld in a 
urvedba
kground is given byD�F�k = 0; F �k = ��W k � �kW�; (2)where the 
ovariant derivative D� := �� + �� involvesthe Levi-Civita (torsion-free, metri
 
ompatible) 
on-ne
tion�k�� := (��)k� = 12gkl��gl��x� + �g�l�x� � �g���xl � ; (3)with g�k being the metri
 tensor on a Riemannian sur-fa
e � with lo
al 
oordinates x� = (x1; x2). For a singledis
lination on an arbitrary elasti
 surfa
e, a singularsolution to (2) is found to be [23℄W k = ��"k�D�G(x; y); (4)where D�D�G(x1; x2) = 2�Æ2(x1; x2)pg ; (5)

with "�k = pg��k being the totally antisymmetri
 ten-sor on �, �12 = ��21 = 1: We note that Eqs. (2)�(5)self-
onsistently des
ribe a defe
t lo
ated on an arbi-trary surfa
e [23℄.To des
ribe fermions in a 
urved ba
kground, weneed a set of orthonormal frames fe�g for the metri
g�� ; lo
al SO(2) rotations a
t on the frames ase� ! e0� = ���e�; ��� 2 SO(2):It then follows thatg�� = e��e��Æ�� ;where e�� is the zweibein, with the orthonormal frameindi
es being �; � = f1; 2g and the 
oordinate in-di
es �; � = f1; 2g. As usual, to ensure that physi-
al observables are independent of a parti
ular 
hoi
eof the zweinbein �elds, a lo
al so(2)-valued gauge �eld!� must be introdu
ed. The gauge �eld of the lo
alLorentz group is known as the spin 
onne
tion. Forthe theory to be self-
onsistent, the zweinbein �eldsmust be 
hosen to be 
ovariantly 
onstant [24℄,D�e�� := ��e�� � ����e�� + (!�)��e�� = 0;whi
h determines the spin 
onne
tion 
oe�
ients ex-pli
itly, (!�)�� = e��D�e�� : (6)Finally, Dira
 equation (1) on a surfa
e � in thepresen
e of the U(1) external gauge �eld W� is writtenas i
�e��(r� � iW�) = E ; (7)where r� = �� +
� with
� = 18(!�)�� [
�; 
� ℄ (8)being the spin 
onne
tion term in the spinor represen-tation.3. SPHERICAL FULLERENE MOLECULESVariously shaped fullerene mole
ules appear in thepro
ess of graphite vaporization. The more spheri
al ofthem is the C60 mole
ule also ni
knamed the �bu
kyball�. Others are either slightly (as C70, whose shapeis more like an ellipti
al deformation) or remarkablydeformed. We are interested here in the C60 mole
uleand in its spheri
al generalizations like the C240 andC540 mole
ules.163 11*
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ribe a sphere, we use the polar proje
tive
oordinatesx1 = r x2 = '; 0 � r <1; 0 � ' < 2�;where R is the radius of the sphere. In these 
oordi-nates, the metri
 tensor be
omesgrr = 4R4(R2 + r2)2 ; g'' = 4R4r2(R2 + r2)2 ;gr' = g'r = 0; (9)and therefore,pg :=qdet jjg�� jj = 4R4r(R2 + r2)2 :Nonvanishing 
oe�
ients of 
onne
tion (3) are given by�rrr = � 2rR2 + r2 ; �r'' = �rR2 � r2R2 + r2 ;�'r' = 1r R2 � r2R2 + r2 ;and the general representation for the zweibeins ise1r = e2' = 2R2 
os'R2 + r2 ; e1' = �e2r = �2R2 sin'R2 + r2 ;whi
h in view of Eq. (6) gives!12r = !21r = 0; !12' = �!21' = 2r2R2 + r2 =: 2!: (10)The following solution of Eqs. (4) and (5) 
an be easilyfound: G = ln r; Wr = 0; W' = �; r 6= 0:

Lo
ally, it des
ribes a topologi
al vortex on the Eu-
lidean plane, whi
h 
on�rms the observation thatdis
linations 
an be viewed as vorti
es in elasti
 me-dia.The elasti
 �ow through a surfa
e on the sphere isgiven by the 
ir
ular integral12� I W dr = �:Generally, there are no restri
tions on the value of thewinding number � apart from � > �1 for topologi
alreasons. But if we take the symmetry group of the un-derlying 
rystal latti
e into a

ount, the possible valuesof � be
ome �quantized� in a

ordan
e with the groupstru
ture (e.g., � = 1=6; 1=3; 1=2; : : : for the hexagonallatti
e). We note that the elasti
 �ux is 
hara
terizedby the Frank ve
tor !, j!j = 2��, with � being theFrank index. Thus, the elasti
 �ux is �
lassi
al� inits origin, i.e., there is no quantization (in 
ontrast tothe magneti
 vortex). In some physi
ally interestingappli
ations, however, vorti
es with a fra
tional wind-ing number have already been 
onsidered (see, e.g., thedis
ussion in [17℄). We also note that a detailed theoryof magneti
 vorti
es on the sphere has been presentedin [25℄.In 2D, the Dira
 matri
es 
an be 
hosen as the Paulimatri
es, 
1 = ��2 and 
2 = �1; Eq. (8) then redu
esto 
' = i!�3: (11)As a result, the Dira
 operatorD̂ := i
�e��(r� + iW�)on the two-sphere be
omes
D̂ = D̂y = r2 +R22R2 8>><>>: 0 e�i'���r + i�' + �r + !r �ei'��r + i�' + �r � !r � 0 9>>=>>; : (12)In proving that the operator D̂ is Hermitian, we usethat in the presen
e of a metri
,�yr = ��r � 12�r ln g:For massless fermions, �3 serves as a 
onjugation ma-trix, and the energy eigenmodes are symmetri
 withrespe
t to E = 0:

�3 E =  �E :The generator of the lo
al Lorentz transformations��� 2 SO(2) takes the form �i�', and the generatorof the Dira
 spinor transformations �(�) is�12 = i4 [
1; 
2℄ = 12�3:164
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troni
 stru
ture of 
arbon nanoparti
lesThe total angular momentum of the 2D Dira
 systemis therefore given byLz = �i�' + 12�3;whi
h 
ommutes with operator (12). Consequently, theeigenfun
tions are 
lassi�ed with respe
t to the eigen-values of Jz = j +1=2, j = 0;�1;�2; : : : and are to betaken in the form = � u(r)ei'jv(r)ei'(j+1)� : (13)As follows from Eq. (12), the spin 
onne
tion term
an be taken into a

ount by rede�ning the wave fun
-tion as  = ~ pR2 + r2; (14)whi
h redu
es eigenvalue problem (7) to�r~u� (j � �)r ~u = ~E~v;� �r~v � (j + 1� �)r ~v = ~E~u; (15)where ~E = 2R2ER2 + r2 :3.2. Extended ele
tron statesThe general solution to (15) is not available, un-fortunately. But be
ause we are mainly interested inele
tron states near the dis
lination line, we 
an re-stri
t our 
onsideration to the 
ase of small r. In this
ase, a solution to (15) (with (14) taken into a

ount)is found to be �uv � = A� J�(2Er)�J��(2Er)� ; (16)where � = �(j � �); �� = �(j � � + 1);and A is a normalization fa
tor. Therefore, there aretwo independent solutions with �(��) > 0 and �(��) < 0.We note that the respe
tive signs ��� in (16) 
orre-spond to states with E > 0 and E < 0. As alreadynoted, �3 serves as the 
onjugation matrix for mass-less fermions and the energy eigenmodes are symmet-ri
 with respe
t to E = 0. We 
an therefore 
onsidereither 
ase, for instan
e, E > 0.The important restri
tions 
ome from the normal-ization 
onditionZ (juj2 + jvj2)pg dx1dx2 = 1: (17)

From (16), it follows that A2 / E. On the other hand,the integrand in (17) must be nonsingular at smallEr. This imposes a restri
tion on possible values of j.Namely, for �; �� > 0, we obtain j � � > �1=2 and for�; �� < 0, we have j�� < �1=2. It follows that possiblevalues of j do not overlap at any �.In the vi
inity of a pentagon, the ele
tron wavefun
tion is given by�uv � / �E1=2+�r� ;E1=2+��r�� � : (18)In parti
ular, in the leading order, we obtain	 /8><>: pE; � = 0;E1=3r�1=6; � = 1=6;E1=6r�1=3; � = 1=3:Be
ause the lo
al density of states diverges as r ! 0,it is more appropriate to 
onsider the total density ofstates on a pat
h 0 < r � Æ for small Æ, rather than thelo
al quantities. For this, we must integrate the ele
-tron density over a small disk jrj < Æ. (We re
all thatr and ' are stereographi
ally proje
ted 
oordinates onthe sphere.) The result is
D(E; Æ) / 8>>>>>>>><>>>>>>>>:

(EÆ)Æ; � = 0;(EÆ)2=3Æ; � = 1=6; 5=6;(EÆ)1=3Æ; � = 1=3; 2=3;Æ; � = 1=2: (19)
For the defe
t-free 
ase (� = 0), we obtain the well-known behavior of the total DOS in the Æ disk given byD(E; Æ) / EÆ2 (in a

ordan
e with the previous ana-lysis [20℄). For � = 1=6; 1=3; 2=3; 5=6, the low-energytotal DOS has a 
usp that drops to zero at the Fermienergy. Most intriguing is the 
ase where � = 1=2 anda region of a nonzero DOS a
ross the Fermi level isformed. This implies lo
al metallization of graphite inthe presen
e of a 180Æ dis
lination. In the fullerenemole
ule, however, there are twelve 60Æ dis
linations,and therefore, the 
ase � = 1=6 is a
tually realized.3.3. Zero-energy modesAn interesting issue to be addressed is the existen
eof zero-energy modes. For the two-sphere, this problem165
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an be solved exa
tly (see [13, 14℄). Namely, for E = 0,Eq. (15) redu
es to�r~u0 � (j � �)r ~u0 = 0;��r~v0 � (j + 1� �)r ~v0 = 0: (20)We 
an 
onstru
t self-
onjugate solutions �~u00 � and� 0~v0�, where~u0 = Arj�� ; ~v0 = Ar�(j��+1): (21)The normalization 
onditionZ j 0j2pg dr d' = 1 (22)yields 2�A2 1Z0 4R4r2lR2 + r2 r dr = 1; (23)where l = j � � for u0 and l = �(j � � + 1) for v0.Finally, A2 = sin���4�2R2(1+��) ;for u0 and A2 = � sin��4�2R2(1��)for v0. We note that the restri
tion �1 < j � � < 0serves to avoid divergen
e in (22). In the defe
t-free
ase (� = 0), this yields no zero modes on the sphere.We note that this agrees with the general observationthat the Dira
 operator 
an have no zero modes on amanifold with an everywhere positive Ri

i s
alar 
ur-vature R. Indeed, we easily obtain that D̂2 = �+R=4,where the Lapla
e�Beltrami operator � has nonnega-tive eigenvalues [26℄. For the two-sphere, R = 1=R2,and therefore, D̂2 > 0.In the 
ase where � = 1=6, in whi
h we are inter-ested here, the only possible value of j is j = 0, andtherefore, u0 / r�1=6 and v0 / r�5=6 near the dis
lina-tion line. Thus, our analysis shows that two normaliz-able zero modes 
an exist on the sphere in the presen
eof a dis
lination vortex. We note that this 
on
lusionagrees with [15℄ (where a di�erent 
ontinuum modelwas formulated) and di�ers from [13, 14℄, where eitheru0 or v0 were found to be normalizable. The reason isthat in [13, 14℄, the external gauge �eld was assumed tobe well-behaved at the origin. In this paper, we admitsingular solutions as well.

The total density of states on the pat
h 0 < r � Æbe
omes D(Æ) / 8><>: Æ1=3; � = 1=6; 5=6;Æ2=3; � = 1=3; 2=3;Æ; � = 1=2: (24)It follows that this behavior di�ers from (19) and there-fore allows re
ognizing the zero-eigenvalue states in ex-periment. 4. NANOCONESA 
one-like stru
ture (an exposed surfa
e) isformed when a pentagon is introdu
ed into a graphitesheet. There are two possible s
enarios for modellingnano
ones. First, the 
ut-and-glue pro
edure 
an bea

omplished in whi
h the pentagon is 
onstru
tedin the hexagonal network by 
utting out a 60Æ se
torfrom the graphene sheet (a single layer of graphite).In this 
ase, we have a real 
ut with the 
onsequentdeparture from the �at surfa
e. Pentagonal defe
tsin 
ones 
an therefore be 
onsidered as api
al dis
li-nations and the opening angle is dire
tly 
onne
tedto the Frank index of the dis
lination. Be
ause ofthe symmetry of the graphite sheet, only �ve typesof 
ones 
an be 
reated from a 
ontinuous sheet ofgraphite. The total dis
linations of all these 
onesare multiples of 60Æ, 
orresponding to the presen
e ofa given number (n) of pentagons at the api
es. It isimportant to mention that 
arbon nano
ones with the
one angles 19Æ, 39Æ, 60Æ, 85Æ, and 113Æ have beenobserved in a 
arbon sample [27℄. We note that theseangles might 
orrespond to 300Æ, 240Æ, 180Æ, 120Æ,and 60Æ dis
linations in graphite, respe
tively. Disks(n = 0) and one-open-end nanotubes (n = 6) have alsobeen observed in the same sample [27℄. This 
ase wastheoreti
ally studied in [9; 10; 22℄. At the same time,the 
ones with the apex angles 30Æ, 50Æ, and 70Æ havealso been found [28, 29℄. These angles are forbiddenwithin the above s
enario. In [28, 29℄, the appearan
eof su
h 
ones was explained in terms of the open 
onemodel.Se
ond, a single dis
lination on a �nite graphitesheet is known to be bu
kled to s
reen its energy, thusleading to a 
urved hexagonal network [7℄. In this 
on-text, the pentagon in graphene 
an result in a 
urved
one-like stru
ture. The most appropriate 
one-like �g-ure is the hyperboloid. We note that this agrees witha suggestion made in [1℄ that nonsymmetri
 fullerenesof a spe
ial form 
an serve as nu
leating 
enters for thenano
one. We 
onsider both these s
enarios below.166
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troni
 stru
ture of 
arbon nanoparti
les4.1. Cone geometry4.1.1. The modelIn the polar 
oordinates (r; ') 2 R2, a 
one 
an beregarded as the embedding(r; ')! (ar 
os'; ar sin'; 
r);0 < r < 1; 0 � ' < 2�;with a and 
 being the 
one parameters. From this,the 
omponents of the indu
ed metri
 
an easily be ob-tained asgrr = a2 + 
2; g'' = a2r2; gr' = g'r = 0: (25)The opening angle of the 
one, �, is determined bysin(�=2) = a=pa2 + 
2:Be
ause the 
one itself appears when one or more se
-tors are removed from graphene, all possible angles aredivisible by �=3. Therefore, the Frank index of theapi
al dis
lination 
an be spe
i�ed by� = 1� sin(�=2):At � = 0, we obtain a �at graphene sheet (� = �). For
onvenien
e, we introdu
e the parameter� = 1 + 
2=a2

su
h that sin(�=2) = 1=p�and 1=p� = 1� �:Nonvanishing 
oe�
ients of 
onne
tion (3) are nowgiven by �r'' = �r� ; �'r' = �''r = 1r :The general representation for the zweibeins is foundto be e1r =pa2 + 
2 
os'; e1' = �ar sin';e2r =pa2 + 
2 sin'; e2' = ar 
os';whi
h in view of Eq. (6) gives!12r = !21r = 0;!12' = �!21' = 1� 1=p� =: 2!: (26)The external gauge potential is then Wr = 0; W' = �,and the Dira
 operator on the 
one takes the form
D̂ = D̂y = 2664 0 e�i'�� �rpa2 + 
2 + 1ar (i�' + � + !)�ei'� �rpa2 + 
2 + 1ar (i�' + � � !)� 0 3775 :Making the substitution = ~ r�; � =p�!;we redu
e the eigenvalue problem in Eq. (7) to�r~u� p�r (j � �)~u = ~E~v;� �r~v � p�r (j + 1� �)~v = ~E~u; (27)where ~E = p�aE.4.1.2. Ele
tron statesIn 
ontrast to the previous 
ase of the two-sphere,the 
one is essentially a �at manifold (the s
alar 
ur-vature R = 0 everywhere on the 
one, ex
ept at theorigin) and as a result, (27) allows an exa
t solution.Namely, the general solution to (27) is found to be [22℄� ~u~v� = Ar�� J�( ~Er)�J��( ~Er)! ; (28)

where � = �(p�(j � � + 1=2)� 1=2);�� = �(p�(j � � + 1=2) + 1=2):As earlier, we 
onsider the 
ase where E > 0. Normal-ization 
ondition (17) now be
omes2�p�a2A2 1Z0 (J2� ( ~Er) + J2�� ( ~Er))r dr = 1: (29)The normalization fa
tor 
an be extra
ted from theasymptoti
 formula for Bessel fun
tions at large argu-ments. Indeed, �� � � = 1 in our 
ase, and therefore,J2� + J2�� ! 2=� ~Er for ~Er � 1:167
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hetov, M. Pudlak ÆÝÒÔ, òîì 123, âûï. 1, 2003Substituting this in (29) yieldsA2 = E4a:Clearly, (29) must be nonsingular at small r. This im-poses a restri
tion on possible values of j. For �; �� > 0,we obtain j > �1 (i.e., j = 0; 1; 2; : : : ) and for �; �� < 0,we have j < �2� (j = �1;�2; : : : at � < 1=2).We are interested in the ele
tron states near theapex of the 
one. As follows dire
tly from (28), thewave fun
tions behave as�uv� / �E1=2+�r� ;E1=2+��r�� � (30)for small r. In the leading order, we obtain	 / E(1�2�)=2(1��)r��=(1��):In parti
ular, we obtain	 / 8><>: pE; � = 0;E2=5r�1=5; � = 1=6;E1=4r�1=2; � = 1=3:Finally, the total density of states on the pat
h0 < r � Æ is given byD(E; Æ) // ( E(1+2�)=(1��)Æ(�+2)=(1��); �; �� > 0;E(1�2�)=(1��)Æ(2�3�)=(1��); �; �� < 0: (31)It should be stressed that a

ording to (31), a spe-
i�
 behavior of D(E; Æ) o

urs only for � = 1=2, whereD / E0Æ. This predi
tion of our model agrees with a�nding in [10℄, where the prominent peak just abovethe Fermi level was found for the nano
one with threesymmetri
 pentagons (180Æ dis
lination). In the lead-ing order, it follows from (31) thatD(E; Æ) / 8>>>>><>>>>>: EÆ2; � = 0;E4=5Æ9=5; � = 1=6;E1=2Æ3=2; � = 1=3;Æ; � = 1=2: (32)As 
an be seen, the extended states with a nonzero den-sity of states at EF appear only at � = 1=2. This 
on-
lusion disagrees with the results obtained in [9℄, wherea nonzero DOS at EF was found to o

ur at � = 1=3.We now 
omment on this disagreement brie�y. Thereis an important point where our 
onsideration di�ers

from [9℄. Our model is based on the gauge-theory ap-proa
h where defe
ts on an elasti
 
urved surfa
e aredes
ribed by an Abelian gauge �eld. As a result, the�ux due to pentagonal api
al dis
lination (elasti
 vor-tex) is expli
itly in
orporated into the Dira
 equation.On the other hand, the model in [9℄ treats the appro-priate boundary 
onditions for ele
tron states resultingfrom the 
ut-and-glue pro
edure. In that approa
h,the gauge �eld 
arries information about the boundary
onditions. In fa
t, both models are similar but notidenti
al, whi
h is exempli�ed by the di�erent predi
-tions.To examine the ele
tron states at the Fermi energy,we return to (27) and set E = 0. The solution readsu0 = Ar�1=2+ejp�; v0 = Br�1=2�ejp� ; (33)where ej = j��+1=2. A simple analysis shows that forj = 0, both u0 and v0 are normalizable on the 
one ofa �nite size. Both solutions are singular. For � = 1=6,we obtainju0j2 / r�1=5=a2; jv0j2 / r�9=5=a2:For any other j, either u0 or v0 is found to be normaliz-able and the solutions be
ome nonsingular. As before,the total DOS 
an be 
onsidered for singular states.It is easy to �nd that D / Æ1=5 for u0 and D / Æ9=5for v0. This result di�ers from [8℄, where, althoughin a di�erent framework, the states on a �nite 
onewith a single-pentagon defe
t have been found at theFermi energy (these states de
ay away from the apexas j j2 / r�2=5). At the same time, our study 
on�rmsthe prin
ipal 
on
lusion in [8, 30℄ that the states 
on-tributing to the nonzero DOS at the Fermi energy ex-hibit a power-law behavior for a single-pentagon defe
t.We also note that there are no zero-energy ele
tronstates on a single dis
lination in monolayer graphite ofan in�nite length (a ! 1). We emphasize that this
on
lusion agrees with the results of numeri
al 
al
ula-tions in [30℄, where the lo
al density of states at theFermi level was found to be zero for �ve-memberedrings (pentagons). We also note that for � = 1=2,D / Æ for both u0 and v0.4.2. Hyperboloid geometry4.2.1. The modelThe upper half of a hyperboloid 
an be regarded asthe embedding(�; ')! (a sh� 
os'; a sh� sin'; 
 
h�);0 � � <1; 0 � ' < 2�:168
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troni
 stru
ture of 
arbon nanoparti
lesFrom this, the 
omponents of the indu
ed metri
 
anbe obtained asg�� = a2 
h2 �+ 
2 sh2 �; g'' = a2 sh2 �;g'� = g�' = 0; (34)whi
h yields���� = (a2 + 
2) sh 2�2g�� ;��'' = �a2 sh 2�2g�� ; �''� = �'�' = 
th� (35)for the nonvanishing 
oe�
ients of the 
onne
tion. Ina rotating SO(2) frame, the zweibeins be
omee1� = pg�� 
os'; e2� = pg�� sin';e1' = �a sh� sin'; e2' = a sh� 
os'; (36)

whi
h in view of Eq. (6) gives the spin 
onne
tion 
o-e�
ients !12� = !21� = 0;!12' = �!21' = 12 �1� a 
h�pg�� � =: !; (37)and therefore, 
' = i!�3: (38)The external gauge potential is then W� = 0,W' = �, and the Dira
 operator on the hyperboloidtakes the formD̂ = 2664 0 e�i'�� ��pg�� + 1a sh� (i�' + � + !)�ei'� ��pg�� + 1a sh� (i�' + � � !)� 0 3775 :It 
an be veri�ed that D̂ = D̂y:The substitution ~ =  psh�redu
es the eigenvalue problem in Eq. (7) to��~u�q
th2 �+ b2 ~j~u = ~E~v;� ��~v �q
th2 �+ b2 ~j~v = ~E~u; (39)where ~E = pg��E; b = 
=a; ~j = j � � + 1=2:4.2.2. Ele
tron statesTo study ele
tron states on the hyperboloid, wemust analyze Eqs. (39). Be
ause of the nonvanishings
alar 
urvature, the general solution of the Dira
 equa-tion on the hyperboloid (as well as on the sphere) isnot available and we are for
ed to simplify the prob-lem. Fortunately, we are interested in the behavior ofthe ele
tron states near the apex and 
an therefore 
on-sider only the 
ase of small �. We then obtain��~u� ~j� ~u = Ea~v;���~v � ~j� ~v = Ea~u; (40)

with the obvious solutions~u = ApEa�Jjj��j(Ea�);~v = ApEa�Jjj��+1j(Ea�):As 
an be seen, this is exa
tly the 
ase of a sphere,whi
h should not be surprising, be
ause these two ma-nifolds are lo
ally di�eomorphi
. Evidently, the totalDOS on a �nite hyperboloid is the same as on thesphere (see (19)).We now 
onsider the zero-energy modes, settingE = 0 in (39). The general solution is found to be~u(�) = A �(k 
h�+�)2k �� 
h��+ 
h��~j=2 ;~v(�) = A �(k 
h�+�)2k �� 
h��+ 
h���~j=2 ; (41)where k =p1 + b2; � =q1 + k2 sh2 �:An important restri
tion 
omes from the normalization
ondition (see (17)) whi
h on a �nite hyperboloid yields~j > �1=2 for u(�) and ~j < 1=2 for v(�). We see thatfor �1=2 < ~j < 1=2, both u(�) and v(�) are normal-izable simultaneously. For the zero-energy mode, thetotal DOS on a �nite hyperboloid is found to be thesame as on the sphere (see (24)).169



V. A. Osipov, E. A. Ko
hetov, M. Pudlak ÆÝÒÔ, òîì 123, âûï. 1, 2003Although the lo
al ele
troni
 stru
tures are similaron the hyperboloid and the sphere, there is a prin
ipalglobal distin
tion. We 
onsider an unbounded hyper-boloid (full lo
us). In this 
ase, additional restri
tionsat the upper limit of the integral in (17) must be takeninto a

ount. We obtain �1=2 < ~j < �1=2k for u(�)and 1=2k < ~j < 1=2 for v(�). Therefore, either u(�) orv(�) be
omes normalizable on the hyperboloid of thein�nite volume. We see that as 
=a ! 0, the normal-izable solution does not exist. In fa
t, the hyperboloidthen be
omes a plane. Consequently, our results are ina

ordan
e with the planar 
ase. The total density ofstates on an in�nite hyperboloid for a variety of defe
tsis as follows:D(Æ) / 8>>>>><>>>>>: Æ1=3; � = 1=6; 
=a > p5=2;Æ2=3; � = 1=3; 
=a > 2p2;Æ2=3; � = 2=3; 
=a > 2p2;Æ1=3; � = 5=6; 
=a > p5=2: (42)We note that the normalizable zero-energy states donot exist for the defe
t with � = 1=2 as well as for thedefe
t-free 
ase � = 0. The most important 
on
lusionfrom our 
onsideration is that there is a possibility forthe true zero-mode fermion state on the hyperboloid.As we have shown, the normalized zero-mode states onboth the sphere and the 
one exist only for a �nite sys-tem size and disappear in the in�nite-size limit. For anin�nite hyperboloid, a normalized zero-energy ele
tronstate 
an exist in the presen
e of a dis
lination �ux.5. CONCLUSIONSWe have formulated a gauge �eld-theory model de-s
ribing ele
tron states on graphiti
 nanoparti
les. Thetopologi
al nature of the pentagonal defe
t is found tomarkedly modify the low-energy ele
troni
 stru
ture.In parti
ular, the total density of extended states hasa rather spe
i�
 dependen
e on both the energy andthe distan
e from the dis
lination line. We have foundthat the low-energy total DOS has a 
hara
teristi
 
uspat the Fermi energy for any dis
linations with � < 1=2.In parti
ular, this �nding suppresses the extended ele
-tron states with a nonzero DOS at EF in the fullerenemole
ule with � = 1=6. For zero-mode states, the totalDOS on the pat
h 0 < r < Æ behaves as Æ1=3. A similarbehavior is found for a graphiti
 hyperboloid. Thereis, however, a prin
ipal distin
tion due to the possibil-ity for the true zero-mode fermion state to o

ur onthe hyperboloid. Namely, the normalized zero-energyele
tron state 
an exist even on the in�nite-size hyper-boloid.

We have shown that the lo
al and total DOSat the api
es of nano
ones are strongly dependenton the pentagon 
on
entration. In parti
ular, ourmodel predi
ts anomalous behavior of D(E; Æ) onlyfor � = 1=2 (three pentagons at the apex), whereD / E0Æ, that is, the enhan
ed 
harge density at EFis lo
ated at the apex of the 
one at the 60Æ openingangle. This implies lo
al metallization, thus suggest-ing some important appli
ations of nano
one-basedstru
tures in mi
roele
troni
 devi
es. First of all,su
h a remarkable in
rease of the DOS must provokethe 
orresponding enhan
ement of the �eld emission
urrent, thereby de
reasing the threshold voltage foremitted ele
trons. We note that this 
on
lusion agreeswell with the results in [10℄, where the prominent peakappearing just above the Fermi level was established ina nano
one with three pentagons at the apex. It wasproposed that su
h pe
uliar nano
ones are good 
an-didates for nanoprobes in s
anning probe mi
ros
opyand ex
ellent 
andidates for �eld-emission devi
es.As was also mentioned in [10℄, the nano
ones withfree pentagons at the tip have the highest probabilityof nu
leation and are frequently observed [27℄. Itis expe
ted that lo
alized states at the Fermi levelmay give rise to materials with novel ele
troni
 andmagneti
 properties. We hope that our predi
tions willmotivate further measurements of ele
troni
 propertiesof graphiti
 nanoparti
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