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ELECTRONIC STRUCTURE OF CARBON NANOPARTICLESV. A. Osipov a*, E. A. Kohetov a**, M. Pudlak b***a Joint Institute for Nulear Researh, Bogoliubov Laboratory of Theoretial Physis141980, Dubna, Mosow region, Russiab Institute of Experimental Physis, Slovak Aademy of Sienes043 53 Kosie, Slovak RepubliSubmitted 19 April 2002The eletroni struture of graphiti nanopartiles is investigated within a gauge �eld-theory model. The loaland total densities of states (DOS) near the pentagonal defets (dislinations) are alulated for three geome-tries: sphere, one, and hyperboloid. It is found that the low-energy eletron states have a rather spei�dependene on both the energy and the distane from a dislination line. In partiular, the low-energy totalDOS has a usp that drops to zero at the Fermi energy for dislinations with the Frank index � < 1=2, whilea region of a nonzero DOS aross the Fermi level is formed for � = 1=2. The true zero-mode fermion stateis found for the graphiti hyperboloid. The appearane of an enhaned harge density near the Fermi level fornanoones with the 60Æ opening angle (180Æ dislination) is predited.PACS: 73.20.Dx, 73.50.Jt, 73.61.Wp1. INTRODUCTIONCarbon nanopartiles, whih are expeted to haveimportant impliations for the development of ele-troni devies, �at panel displays, nano-swithes, et.,have reently reeived great attention from both exper-imentalists and theorists (see, e.g., reviews [1, 2℄). Thehigh �exibility of arbon allows produing variouslyshaped arbon nanopartiles: nanotubes, fullerenes,ones, toroids, graphiti onions, and nanohorns. Par-tiular attention has been given to the peuliar ele-tron states due to topologial defets that have beenobserved in di�erent kinds of arbon nanopartiles bysanning tunneling mirosopy (STM). For example,STM images with �vefold symmetry (due to pentagonsin the hexagonal graphiti network) have been ob-tained in the C60 fullerene moleule [3℄. The peuliareletroni properties at the ends of arbon nanotubes(whih inlude several pentagons) have been probedexperimentally in [4, 5℄. Reently, the eletroni stru-ture of a single pentagon was revealed on an atomisale by STM in [6℄, where the enhaned harge den-sity at the pentagon, whih was loated at the apex of*E-mail: osipov�thsun1.jinr.ru**E-mail: kohetov�thsun1.jinr.ru***E-mail: pudlak�saske.sk

the onial protuberane of the graphiti partile, wasexperimentally lari�ed.By its nature, the pentagon ourring in a graphitesheet is a topologial defet. Atually, as mentionedin [7℄, �vefold oordinated partiles are orientationaldislination defets in the otherwise sixfold oordinatedtriangular lattie. Moreover, dislinations are generidefets in losed arbon strutures, fullerenes, and nan-otubes, beause in aordane with Euler's theorem,these mirorystals an only be formed with the to-tal dislination 4�. Aording to the geometry of thehexagonal network, this implies the presene of twelvepentagons (60Æ dislinations) on the losed hexati sur-fae.We note that graphiti ones are of speial interestbeause they an ontain a single pentagon at the apex,in ontrast to twelve pentagons in fullerene moleulesand nanotubes. This fat makes nanoones attrativefor experimental study of peuliar eletron states dueto topologial defets that were theoretially preditedin [8, 9℄. In partiular, analysis within the e�etive-mass theory shows that a spei� p3�p3 superstru-ture indued by pentagon defets an appear with thewave funtions deaying as r�1=5 [8℄. Reently, thispredition was experimentally veri�ed in [6℄. A reentstudy [10℄ within both tight-binding and ab initio al-11 ÆÝÒÔ, âûï. 1 161



V. A. Osipov, E. A. Kohetov, M. Pudlak ÆÝÒÔ, òîì 123, âûï. 1, 2003ulations shows the presene of sharp resonant statesin the region lose to the Fermi energy. The strengthand position of these states with respet to the Fermilevel were found to depend sensitively on the numberand relative positions of the pentagons onstituting theonial tip. In partiular, a prominent peak ourringjust above the Fermi level was found for the nanoonewith three symmetri pentagons (whih orresponds toa 60Æ opening angle or, equivalently, to a 180Æ disli-nation). On the other hand, the ontinuum model sug-gested in [9℄ predits apial enhanement of the densityof states (DOS) at the Fermi energy (EF ) in the viin-ity of the apex for ones with 120Æ dislinations.It is interesting to note that the problem of spei�eletron states at the Fermi level due to dislinations issimilar to that of the fermion zero modes in topologi-ally nontrivial manifolds. In �eld theory, zero modeswere found to play an important role in understand-ing anomalies [11℄ and harge frationalization thatresults in unonventional harge�spin relations (e.g.,paramagnetism of harged fermions) [12℄. As men-tioned in [12℄, this �nding has been experimentally veri-�ed in trans-polyaetylene hains for one spatial dimen-sion. The Dira equation for massless fermions in three-dimensional spae�time in the presene of the magneti�eld was found to yield N�1 zero modes in the N -vor-tex bakground �eld [13℄. As we have shown in [14℄, theproblem of the loal eletroni struture of fullerene islosely related to Jakiw's analysis [13℄. We note thatthe �eld-theory models for Dira fermions in a planeand on a sphere [15, 16℄ were invoked to desribe thevariously shaped arbon materials. More reently, theimportane of the fermion zero modes was disussedin the ontext of high-temperature hiral superondu-tors [17�19℄ and fullerene moleules [16℄.Investigation of the eletroni struture requires for-mulating a theoretial model desribing eletrons onarbitrary urved surfaes with dislinations taken intoaount. An important ingredient of this model anbe provided by the self-onsistent e�etive-mass the-ory desribing the eletron dynamis in the viinity ofan impurity in graphite interalation ompounds [20℄.The most important fat found in [20℄ is that the ele-troni spetrum of a single graphite plane linearizedaround the orners of the hexagonal Brillouin zoneoinides with that of the Dira equation in (2+1)dimensions. This �nding stimulated formulation ofsome �eld-theory models for Dira fermions on hex-ati surfaes to desribe the eletroni struture of var-iously shaped arbon materials: fullerenes [14; 15℄, nan-otubes [21℄, and ones [9, 22℄.In this paper, we study the problem of eletron

states in arbon nanostrutures for three geometries:sphere, one, and hyperboloid. We note that in our ap-proah, the gauge theory of dislinations on �utuatingelasti surfaes [23℄ is basially used. More spei�ally,we formulate the Dira equation on a urved surfaewith a �ux due to a pentagonal apial dislination rep-resented by an Abelian gauge �eld. Both the loal andthe total density of states are alulated in eah ase.A speial attention is given to the orret inlusion ofthe spin onnetion for fermions. Atually, our analysisshows that the spin onnetion leads to a rede�nition ofwave funtions but leaves Dira equations unhanged.In other words, the spin onnetion does not in�uenethe eletron spetrum, but a�ets the DOS.The paper is organized as follows. The general for-malism for studing eletron states in the urved two-dimensional bakground is presented in Se. 2. Weformulate a �eld-theory model for Dira fermions onhexati surfaes of an arbitrary geometry with botheletrons and dislinations taken into aount. The�ux due to the pentagonal defet is represented byan Abelian gauge �eld within a self-onsistent gaugemodel. In Se. 3, we apply the model to the problemof eletron states in the fullerene moleule. We alu-late the loal and the total DOS and study zero-energyeletron states. In Se. 4, we onsider two arbitrary ge-ometries for the desription of nanoones, onial andhyperbolial. The results obtained are ompared withother approahes. Setion 5 is devoted to onludingremarks. 2. GENERAL FORMALISMOur onsideration is based on the e�etive-masstheory that was applied in [20℄ to study the sreen-ing of a single interalant within a grahite host, witha two-dimensional approximation used for the desrip-tion of the graphite host. The e�etive-mass expansionis equivalent to the k � p expansion of the graphite en-ergy bands around the K point in the Brillouin zonewhen the interalant potential is equal to zero. In fat,there are two degenerate Bloh eigenstates, 	1;2(K; r)at K, and the eletron wave funtion on a graphitelattie an therefore be approximated by	(k; r) = f1(�)ei��r	1(K; r) + f2(�)ei��r	2(K; r);where k = K+�. Keeping the terms of the order of � inthe Shrödinger equation results in a seular equationfor the amplitudes f1;2(�), whih after diagonalization�nally yelds the two-dimansional Dira equation [20℄i��� (r) = E (r): (1)162



ÆÝÒÔ, òîì 123, âûï. 1, 2003 Eletroni struture of arbon nanopartilesHere, � are the Dira matries that in 2D redue tothe onventional Pauli matries, the energy E is mea-sured relative to the Fermi energy, and the two-om-ponent wave funtion  / (f1; f2)T represents twographite sublatties. As mentioned in [20℄, the k � papproximation essentially amounts to replaing thegraphite bands by onial dispersions at the Fermi en-ergy.For our purpose, we need a generalization of Eq. (1)inorporating both a dislination �eld and a nontrivialbakground geometry. A possible desription of disli-nations on arbitrary two-dimensional elasti surfaes iso�ered by the gauge approah [23℄. In aordane withthe basi assumptions of this approah, dislinationsan be inorporated in the elastiity theory Lagrangianby introduing a ompensating U(1) gauge �eldW�. Itis important that the gauge model admits vortex-likesolutions for wedge dislinations [23℄, thus representinga dislination as a vortex of elasti medium. The phys-ial meaning of the gauge �eld is that the elasti �uxdue to rotational defet, whih is diretly related tothe Frank vetor (see Se. 3), is ompletely determinedby the irulation of the W� �eld around the dislina-tion line. In the gauge theory ontext, the dislination�eld an be straightforwardly inorporated in (1) bythe standard substitution�� ! �� � iW�:Within the linear approximation to gauge theory ofdislinations (whih amounts to the onventional elas-tiity theory with linear defets), the basi �eld equa-tion that desribes the U(1) gauge �eld in a urvedbakground is given byD�F�k = 0; F �k = ��W k � �kW�; (2)where the ovariant derivative D� := �� + �� involvesthe Levi-Civita (torsion-free, metri ompatible) on-netion�k�� := (��)k� = 12gkl��gl��x� + �g�l�x� � �g���xl � ; (3)with g�k being the metri tensor on a Riemannian sur-fae � with loal oordinates x� = (x1; x2). For a singledislination on an arbitrary elasti surfae, a singularsolution to (2) is found to be [23℄W k = ��"k�D�G(x; y); (4)where D�D�G(x1; x2) = 2�Æ2(x1; x2)pg ; (5)

with "�k = pg��k being the totally antisymmetri ten-sor on �, �12 = ��21 = 1: We note that Eqs. (2)�(5)self-onsistently desribe a defet loated on an arbi-trary surfae [23℄.To desribe fermions in a urved bakground, weneed a set of orthonormal frames fe�g for the metrig�� ; loal SO(2) rotations at on the frames ase� ! e0� = ���e�; ��� 2 SO(2):It then follows thatg�� = e��e��Æ�� ;where e�� is the zweibein, with the orthonormal frameindies being �; � = f1; 2g and the oordinate in-dies �; � = f1; 2g. As usual, to ensure that physi-al observables are independent of a partiular hoieof the zweinbein �elds, a loal so(2)-valued gauge �eld!� must be introdued. The gauge �eld of the loalLorentz group is known as the spin onnetion. Forthe theory to be self-onsistent, the zweinbein �eldsmust be hosen to be ovariantly onstant [24℄,D�e�� := ��e�� � ����e�� + (!�)��e�� = 0;whih determines the spin onnetion oe�ients ex-pliitly, (!�)�� = e��D�e�� : (6)Finally, Dira equation (1) on a surfae � in thepresene of the U(1) external gauge �eld W� is writtenas i�e��(r� � iW�) = E ; (7)where r� = �� +
� with
� = 18(!�)�� [�; � ℄ (8)being the spin onnetion term in the spinor represen-tation.3. SPHERICAL FULLERENE MOLECULESVariously shaped fullerene moleules appear in theproess of graphite vaporization. The more spherial ofthem is the C60 moleule also niknamed the �bukyball�. Others are either slightly (as C70, whose shapeis more like an elliptial deformation) or remarkablydeformed. We are interested here in the C60 moleuleand in its spherial generalizations like the C240 andC540 moleules.163 11*



V. A. Osipov, E. A. Kohetov, M. Pudlak ÆÝÒÔ, òîì 123, âûï. 1, 20033.1. The modelTo desribe a sphere, we use the polar projetiveoordinatesx1 = r x2 = '; 0 � r <1; 0 � ' < 2�;where R is the radius of the sphere. In these oordi-nates, the metri tensor beomesgrr = 4R4(R2 + r2)2 ; g'' = 4R4r2(R2 + r2)2 ;gr' = g'r = 0; (9)and therefore,pg :=qdet jjg�� jj = 4R4r(R2 + r2)2 :Nonvanishing oe�ients of onnetion (3) are given by�rrr = � 2rR2 + r2 ; �r'' = �rR2 � r2R2 + r2 ;�'r' = 1r R2 � r2R2 + r2 ;and the general representation for the zweibeins ise1r = e2' = 2R2 os'R2 + r2 ; e1' = �e2r = �2R2 sin'R2 + r2 ;whih in view of Eq. (6) gives!12r = !21r = 0; !12' = �!21' = 2r2R2 + r2 =: 2!: (10)The following solution of Eqs. (4) and (5) an be easilyfound: G = ln r; Wr = 0; W' = �; r 6= 0:

Loally, it desribes a topologial vortex on the Eu-lidean plane, whih on�rms the observation thatdislinations an be viewed as vorties in elasti me-dia.The elasti �ow through a surfae on the sphere isgiven by the irular integral12� I W dr = �:Generally, there are no restritions on the value of thewinding number � apart from � > �1 for topologialreasons. But if we take the symmetry group of the un-derlying rystal lattie into aount, the possible valuesof � beome �quantized� in aordane with the groupstruture (e.g., � = 1=6; 1=3; 1=2; : : : for the hexagonallattie). We note that the elasti �ux is haraterizedby the Frank vetor !, j!j = 2��, with � being theFrank index. Thus, the elasti �ux is �lassial� inits origin, i.e., there is no quantization (in ontrast tothe magneti vortex). In some physially interestingappliations, however, vorties with a frational wind-ing number have already been onsidered (see, e.g., thedisussion in [17℄). We also note that a detailed theoryof magneti vorties on the sphere has been presentedin [25℄.In 2D, the Dira matries an be hosen as the Paulimatries, 1 = ��2 and 2 = �1; Eq. (8) then reduesto 
' = i!�3: (11)As a result, the Dira operatorD̂ := i�e��(r� + iW�)on the two-sphere beomes
D̂ = D̂y = r2 +R22R2 8>><>>: 0 e�i'���r + i�' + �r + !r �ei'��r + i�' + �r � !r � 0 9>>=>>; : (12)In proving that the operator D̂ is Hermitian, we usethat in the presene of a metri,�yr = ��r � 12�r ln g:For massless fermions, �3 serves as a onjugation ma-trix, and the energy eigenmodes are symmetri withrespet to E = 0:

�3 E =  �E :The generator of the loal Lorentz transformations��� 2 SO(2) takes the form �i�', and the generatorof the Dira spinor transformations �(�) is�12 = i4 [1; 2℄ = 12�3:164



ÆÝÒÔ, òîì 123, âûï. 1, 2003 Eletroni struture of arbon nanopartilesThe total angular momentum of the 2D Dira systemis therefore given byLz = �i�' + 12�3;whih ommutes with operator (12). Consequently, theeigenfuntions are lassi�ed with respet to the eigen-values of Jz = j +1=2, j = 0;�1;�2; : : : and are to betaken in the form = � u(r)ei'jv(r)ei'(j+1)� : (13)As follows from Eq. (12), the spin onnetion terman be taken into aount by rede�ning the wave fun-tion as  = ~ pR2 + r2; (14)whih redues eigenvalue problem (7) to�r~u� (j � �)r ~u = ~E~v;� �r~v � (j + 1� �)r ~v = ~E~u; (15)where ~E = 2R2ER2 + r2 :3.2. Extended eletron statesThe general solution to (15) is not available, un-fortunately. But beause we are mainly interested ineletron states near the dislination line, we an re-strit our onsideration to the ase of small r. In thisase, a solution to (15) (with (14) taken into aount)is found to be �uv � = A� J�(2Er)�J��(2Er)� ; (16)where � = �(j � �); �� = �(j � � + 1);and A is a normalization fator. Therefore, there aretwo independent solutions with �(��) > 0 and �(��) < 0.We note that the respetive signs ��� in (16) orre-spond to states with E > 0 and E < 0. As alreadynoted, �3 serves as the onjugation matrix for mass-less fermions and the energy eigenmodes are symmet-ri with respet to E = 0. We an therefore onsidereither ase, for instane, E > 0.The important restritions ome from the normal-ization onditionZ (juj2 + jvj2)pg dx1dx2 = 1: (17)

From (16), it follows that A2 / E. On the other hand,the integrand in (17) must be nonsingular at smallEr. This imposes a restrition on possible values of j.Namely, for �; �� > 0, we obtain j � � > �1=2 and for�; �� < 0, we have j�� < �1=2. It follows that possiblevalues of j do not overlap at any �.In the viinity of a pentagon, the eletron wavefuntion is given by�uv � / �E1=2+�r� ;E1=2+��r�� � : (18)In partiular, in the leading order, we obtain	 /8><>: pE; � = 0;E1=3r�1=6; � = 1=6;E1=6r�1=3; � = 1=3:Beause the loal density of states diverges as r ! 0,it is more appropriate to onsider the total density ofstates on a path 0 < r � Æ for small Æ, rather than theloal quantities. For this, we must integrate the ele-tron density over a small disk jrj < Æ. (We reall thatr and ' are stereographially projeted oordinates onthe sphere.) The result is
D(E; Æ) / 8>>>>>>>><>>>>>>>>:

(EÆ)Æ; � = 0;(EÆ)2=3Æ; � = 1=6; 5=6;(EÆ)1=3Æ; � = 1=3; 2=3;Æ; � = 1=2: (19)
For the defet-free ase (� = 0), we obtain the well-known behavior of the total DOS in the Æ disk given byD(E; Æ) / EÆ2 (in aordane with the previous ana-lysis [20℄). For � = 1=6; 1=3; 2=3; 5=6, the low-energytotal DOS has a usp that drops to zero at the Fermienergy. Most intriguing is the ase where � = 1=2 anda region of a nonzero DOS aross the Fermi level isformed. This implies loal metallization of graphite inthe presene of a 180Æ dislination. In the fullerenemoleule, however, there are twelve 60Æ dislinations,and therefore, the ase � = 1=6 is atually realized.3.3. Zero-energy modesAn interesting issue to be addressed is the existeneof zero-energy modes. For the two-sphere, this problem165



V. A. Osipov, E. A. Kohetov, M. Pudlak ÆÝÒÔ, òîì 123, âûï. 1, 2003an be solved exatly (see [13, 14℄). Namely, for E = 0,Eq. (15) redues to�r~u0 � (j � �)r ~u0 = 0;��r~v0 � (j + 1� �)r ~v0 = 0: (20)We an onstrut self-onjugate solutions �~u00 � and� 0~v0�, where~u0 = Arj�� ; ~v0 = Ar�(j��+1): (21)The normalization onditionZ j 0j2pg dr d' = 1 (22)yields 2�A2 1Z0 4R4r2lR2 + r2 r dr = 1; (23)where l = j � � for u0 and l = �(j � � + 1) for v0.Finally, A2 = sin���4�2R2(1+��) ;for u0 and A2 = � sin��4�2R2(1��)for v0. We note that the restrition �1 < j � � < 0serves to avoid divergene in (22). In the defet-freease (� = 0), this yields no zero modes on the sphere.We note that this agrees with the general observationthat the Dira operator an have no zero modes on amanifold with an everywhere positive Rii salar ur-vature R. Indeed, we easily obtain that D̂2 = �+R=4,where the Laplae�Beltrami operator � has nonnega-tive eigenvalues [26℄. For the two-sphere, R = 1=R2,and therefore, D̂2 > 0.In the ase where � = 1=6, in whih we are inter-ested here, the only possible value of j is j = 0, andtherefore, u0 / r�1=6 and v0 / r�5=6 near the dislina-tion line. Thus, our analysis shows that two normaliz-able zero modes an exist on the sphere in the preseneof a dislination vortex. We note that this onlusionagrees with [15℄ (where a di�erent ontinuum modelwas formulated) and di�ers from [13, 14℄, where eitheru0 or v0 were found to be normalizable. The reason isthat in [13, 14℄, the external gauge �eld was assumed tobe well-behaved at the origin. In this paper, we admitsingular solutions as well.

The total density of states on the path 0 < r � Æbeomes D(Æ) / 8><>: Æ1=3; � = 1=6; 5=6;Æ2=3; � = 1=3; 2=3;Æ; � = 1=2: (24)It follows that this behavior di�ers from (19) and there-fore allows reognizing the zero-eigenvalue states in ex-periment. 4. NANOCONESA one-like struture (an exposed surfae) isformed when a pentagon is introdued into a graphitesheet. There are two possible senarios for modellingnanoones. First, the ut-and-glue proedure an beaomplished in whih the pentagon is onstrutedin the hexagonal network by utting out a 60Æ setorfrom the graphene sheet (a single layer of graphite).In this ase, we have a real ut with the onsequentdeparture from the �at surfae. Pentagonal defetsin ones an therefore be onsidered as apial disli-nations and the opening angle is diretly onnetedto the Frank index of the dislination. Beause ofthe symmetry of the graphite sheet, only �ve typesof ones an be reated from a ontinuous sheet ofgraphite. The total dislinations of all these onesare multiples of 60Æ, orresponding to the presene ofa given number (n) of pentagons at the apies. It isimportant to mention that arbon nanoones with theone angles 19Æ, 39Æ, 60Æ, 85Æ, and 113Æ have beenobserved in a arbon sample [27℄. We note that theseangles might orrespond to 300Æ, 240Æ, 180Æ, 120Æ,and 60Æ dislinations in graphite, respetively. Disks(n = 0) and one-open-end nanotubes (n = 6) have alsobeen observed in the same sample [27℄. This ase wastheoretially studied in [9; 10; 22℄. At the same time,the ones with the apex angles 30Æ, 50Æ, and 70Æ havealso been found [28, 29℄. These angles are forbiddenwithin the above senario. In [28, 29℄, the appearaneof suh ones was explained in terms of the open onemodel.Seond, a single dislination on a �nite graphitesheet is known to be bukled to sreen its energy, thusleading to a urved hexagonal network [7℄. In this on-text, the pentagon in graphene an result in a urvedone-like struture. The most appropriate one-like �g-ure is the hyperboloid. We note that this agrees witha suggestion made in [1℄ that nonsymmetri fullerenesof a speial form an serve as nuleating enters for thenanoone. We onsider both these senarios below.166



ÆÝÒÔ, òîì 123, âûï. 1, 2003 Eletroni struture of arbon nanopartiles4.1. Cone geometry4.1.1. The modelIn the polar oordinates (r; ') 2 R2, a one an beregarded as the embedding(r; ')! (ar os'; ar sin'; r);0 < r < 1; 0 � ' < 2�;with a and  being the one parameters. From this,the omponents of the indued metri an easily be ob-tained asgrr = a2 + 2; g'' = a2r2; gr' = g'r = 0: (25)The opening angle of the one, �, is determined bysin(�=2) = a=pa2 + 2:Beause the one itself appears when one or more se-tors are removed from graphene, all possible angles aredivisible by �=3. Therefore, the Frank index of theapial dislination an be spei�ed by� = 1� sin(�=2):At � = 0, we obtain a �at graphene sheet (� = �). Foronveniene, we introdue the parameter� = 1 + 2=a2

suh that sin(�=2) = 1=p�and 1=p� = 1� �:Nonvanishing oe�ients of onnetion (3) are nowgiven by �r'' = �r� ; �'r' = �''r = 1r :The general representation for the zweibeins is foundto be e1r =pa2 + 2 os'; e1' = �ar sin';e2r =pa2 + 2 sin'; e2' = ar os';whih in view of Eq. (6) gives!12r = !21r = 0;!12' = �!21' = 1� 1=p� =: 2!: (26)The external gauge potential is then Wr = 0; W' = �,and the Dira operator on the one takes the form
D̂ = D̂y = 2664 0 e�i'�� �rpa2 + 2 + 1ar (i�' + � + !)�ei'� �rpa2 + 2 + 1ar (i�' + � � !)� 0 3775 :Making the substitution = ~ r�; � =p�!;we redue the eigenvalue problem in Eq. (7) to�r~u� p�r (j � �)~u = ~E~v;� �r~v � p�r (j + 1� �)~v = ~E~u; (27)where ~E = p�aE.4.1.2. Eletron statesIn ontrast to the previous ase of the two-sphere,the one is essentially a �at manifold (the salar ur-vature R = 0 everywhere on the one, exept at theorigin) and as a result, (27) allows an exat solution.Namely, the general solution to (27) is found to be [22℄� ~u~v� = Ar�� J�( ~Er)�J��( ~Er)! ; (28)

where � = �(p�(j � � + 1=2)� 1=2);�� = �(p�(j � � + 1=2) + 1=2):As earlier, we onsider the ase where E > 0. Normal-ization ondition (17) now beomes2�p�a2A2 1Z0 (J2� ( ~Er) + J2�� ( ~Er))r dr = 1: (29)The normalization fator an be extrated from theasymptoti formula for Bessel funtions at large argu-ments. Indeed, �� � � = 1 in our ase, and therefore,J2� + J2�� ! 2=� ~Er for ~Er � 1:167



V. A. Osipov, E. A. Kohetov, M. Pudlak ÆÝÒÔ, òîì 123, âûï. 1, 2003Substituting this in (29) yieldsA2 = E4a:Clearly, (29) must be nonsingular at small r. This im-poses a restrition on possible values of j. For �; �� > 0,we obtain j > �1 (i.e., j = 0; 1; 2; : : : ) and for �; �� < 0,we have j < �2� (j = �1;�2; : : : at � < 1=2).We are interested in the eletron states near theapex of the one. As follows diretly from (28), thewave funtions behave as�uv� / �E1=2+�r� ;E1=2+��r�� � (30)for small r. In the leading order, we obtain	 / E(1�2�)=2(1��)r��=(1��):In partiular, we obtain	 / 8><>: pE; � = 0;E2=5r�1=5; � = 1=6;E1=4r�1=2; � = 1=3:Finally, the total density of states on the path0 < r � Æ is given byD(E; Æ) // ( E(1+2�)=(1��)Æ(�+2)=(1��); �; �� > 0;E(1�2�)=(1��)Æ(2�3�)=(1��); �; �� < 0: (31)It should be stressed that aording to (31), a spe-i� behavior of D(E; Æ) ours only for � = 1=2, whereD / E0Æ. This predition of our model agrees with a�nding in [10℄, where the prominent peak just abovethe Fermi level was found for the nanoone with threesymmetri pentagons (180Æ dislination). In the lead-ing order, it follows from (31) thatD(E; Æ) / 8>>>>><>>>>>: EÆ2; � = 0;E4=5Æ9=5; � = 1=6;E1=2Æ3=2; � = 1=3;Æ; � = 1=2: (32)As an be seen, the extended states with a nonzero den-sity of states at EF appear only at � = 1=2. This on-lusion disagrees with the results obtained in [9℄, wherea nonzero DOS at EF was found to our at � = 1=3.We now omment on this disagreement brie�y. Thereis an important point where our onsideration di�ers

from [9℄. Our model is based on the gauge-theory ap-proah where defets on an elasti urved surfae aredesribed by an Abelian gauge �eld. As a result, the�ux due to pentagonal apial dislination (elasti vor-tex) is expliitly inorporated into the Dira equation.On the other hand, the model in [9℄ treats the appro-priate boundary onditions for eletron states resultingfrom the ut-and-glue proedure. In that approah,the gauge �eld arries information about the boundaryonditions. In fat, both models are similar but notidential, whih is exempli�ed by the di�erent predi-tions.To examine the eletron states at the Fermi energy,we return to (27) and set E = 0. The solution readsu0 = Ar�1=2+ejp�; v0 = Br�1=2�ejp� ; (33)where ej = j��+1=2. A simple analysis shows that forj = 0, both u0 and v0 are normalizable on the one ofa �nite size. Both solutions are singular. For � = 1=6,we obtainju0j2 / r�1=5=a2; jv0j2 / r�9=5=a2:For any other j, either u0 or v0 is found to be normaliz-able and the solutions beome nonsingular. As before,the total DOS an be onsidered for singular states.It is easy to �nd that D / Æ1=5 for u0 and D / Æ9=5for v0. This result di�ers from [8℄, where, althoughin a di�erent framework, the states on a �nite onewith a single-pentagon defet have been found at theFermi energy (these states deay away from the apexas j j2 / r�2=5). At the same time, our study on�rmsthe prinipal onlusion in [8, 30℄ that the states on-tributing to the nonzero DOS at the Fermi energy ex-hibit a power-law behavior for a single-pentagon defet.We also note that there are no zero-energy eletronstates on a single dislination in monolayer graphite ofan in�nite length (a ! 1). We emphasize that thisonlusion agrees with the results of numerial alula-tions in [30℄, where the loal density of states at theFermi level was found to be zero for �ve-memberedrings (pentagons). We also note that for � = 1=2,D / Æ for both u0 and v0.4.2. Hyperboloid geometry4.2.1. The modelThe upper half of a hyperboloid an be regarded asthe embedding(�; ')! (a sh� os'; a sh� sin';  h�);0 � � <1; 0 � ' < 2�:168



ÆÝÒÔ, òîì 123, âûï. 1, 2003 Eletroni struture of arbon nanopartilesFrom this, the omponents of the indued metri anbe obtained asg�� = a2 h2 �+ 2 sh2 �; g'' = a2 sh2 �;g'� = g�' = 0; (34)whih yields���� = (a2 + 2) sh 2�2g�� ;��'' = �a2 sh 2�2g�� ; �''� = �'�' = th� (35)for the nonvanishing oe�ients of the onnetion. Ina rotating SO(2) frame, the zweibeins beomee1� = pg�� os'; e2� = pg�� sin';e1' = �a sh� sin'; e2' = a sh� os'; (36)

whih in view of Eq. (6) gives the spin onnetion o-e�ients !12� = !21� = 0;!12' = �!21' = 12 �1� a h�pg�� � =: !; (37)and therefore, 
' = i!�3: (38)The external gauge potential is then W� = 0,W' = �, and the Dira operator on the hyperboloidtakes the formD̂ = 2664 0 e�i'�� ��pg�� + 1a sh� (i�' + � + !)�ei'� ��pg�� + 1a sh� (i�' + � � !)� 0 3775 :It an be veri�ed that D̂ = D̂y:The substitution ~ =  psh�redues the eigenvalue problem in Eq. (7) to��~u�qth2 �+ b2 ~j~u = ~E~v;� ��~v �qth2 �+ b2 ~j~v = ~E~u; (39)where ~E = pg��E; b = =a; ~j = j � � + 1=2:4.2.2. Eletron statesTo study eletron states on the hyperboloid, wemust analyze Eqs. (39). Beause of the nonvanishingsalar urvature, the general solution of the Dira equa-tion on the hyperboloid (as well as on the sphere) isnot available and we are fored to simplify the prob-lem. Fortunately, we are interested in the behavior ofthe eletron states near the apex and an therefore on-sider only the ase of small �. We then obtain��~u� ~j� ~u = Ea~v;���~v � ~j� ~v = Ea~u; (40)

with the obvious solutions~u = ApEa�Jjj��j(Ea�);~v = ApEa�Jjj��+1j(Ea�):As an be seen, this is exatly the ase of a sphere,whih should not be surprising, beause these two ma-nifolds are loally di�eomorphi. Evidently, the totalDOS on a �nite hyperboloid is the same as on thesphere (see (19)).We now onsider the zero-energy modes, settingE = 0 in (39). The general solution is found to be~u(�) = A �(k h�+�)2k �� h��+ h��~j=2 ;~v(�) = A �(k h�+�)2k �� h��+ h���~j=2 ; (41)where k =p1 + b2; � =q1 + k2 sh2 �:An important restrition omes from the normalizationondition (see (17)) whih on a �nite hyperboloid yields~j > �1=2 for u(�) and ~j < 1=2 for v(�). We see thatfor �1=2 < ~j < 1=2, both u(�) and v(�) are normal-izable simultaneously. For the zero-energy mode, thetotal DOS on a �nite hyperboloid is found to be thesame as on the sphere (see (24)).169



V. A. Osipov, E. A. Kohetov, M. Pudlak ÆÝÒÔ, òîì 123, âûï. 1, 2003Although the loal eletroni strutures are similaron the hyperboloid and the sphere, there is a prinipalglobal distintion. We onsider an unbounded hyper-boloid (full lous). In this ase, additional restritionsat the upper limit of the integral in (17) must be takeninto aount. We obtain �1=2 < ~j < �1=2k for u(�)and 1=2k < ~j < 1=2 for v(�). Therefore, either u(�) orv(�) beomes normalizable on the hyperboloid of thein�nite volume. We see that as =a ! 0, the normal-izable solution does not exist. In fat, the hyperboloidthen beomes a plane. Consequently, our results are inaordane with the planar ase. The total density ofstates on an in�nite hyperboloid for a variety of defetsis as follows:D(Æ) / 8>>>>><>>>>>: Æ1=3; � = 1=6; =a > p5=2;Æ2=3; � = 1=3; =a > 2p2;Æ2=3; � = 2=3; =a > 2p2;Æ1=3; � = 5=6; =a > p5=2: (42)We note that the normalizable zero-energy states donot exist for the defet with � = 1=2 as well as for thedefet-free ase � = 0. The most important onlusionfrom our onsideration is that there is a possibility forthe true zero-mode fermion state on the hyperboloid.As we have shown, the normalized zero-mode states onboth the sphere and the one exist only for a �nite sys-tem size and disappear in the in�nite-size limit. For anin�nite hyperboloid, a normalized zero-energy eletronstate an exist in the presene of a dislination �ux.5. CONCLUSIONSWe have formulated a gauge �eld-theory model de-sribing eletron states on graphiti nanopartiles. Thetopologial nature of the pentagonal defet is found tomarkedly modify the low-energy eletroni struture.In partiular, the total density of extended states hasa rather spei� dependene on both the energy andthe distane from the dislination line. We have foundthat the low-energy total DOS has a harateristi uspat the Fermi energy for any dislinations with � < 1=2.In partiular, this �nding suppresses the extended ele-tron states with a nonzero DOS at EF in the fullerenemoleule with � = 1=6. For zero-mode states, the totalDOS on the path 0 < r < Æ behaves as Æ1=3. A similarbehavior is found for a graphiti hyperboloid. Thereis, however, a prinipal distintion due to the possibil-ity for the true zero-mode fermion state to our onthe hyperboloid. Namely, the normalized zero-energyeletron state an exist even on the in�nite-size hyper-boloid.

We have shown that the loal and total DOSat the apies of nanoones are strongly dependenton the pentagon onentration. In partiular, ourmodel predits anomalous behavior of D(E; Æ) onlyfor � = 1=2 (three pentagons at the apex), whereD / E0Æ, that is, the enhaned harge density at EFis loated at the apex of the one at the 60Æ openingangle. This implies loal metallization, thus suggest-ing some important appliations of nanoone-basedstrutures in miroeletroni devies. First of all,suh a remarkable inrease of the DOS must provokethe orresponding enhanement of the �eld emissionurrent, thereby dereasing the threshold voltage foremitted eletrons. We note that this onlusion agreeswell with the results in [10℄, where the prominent peakappearing just above the Fermi level was established ina nanoone with three pentagons at the apex. It wasproposed that suh peuliar nanoones are good an-didates for nanoprobes in sanning probe mirosopyand exellent andidates for �eld-emission devies.As was also mentioned in [10℄, the nanoones withfree pentagons at the tip have the highest probabilityof nuleation and are frequently observed [27℄. Itis expeted that loalized states at the Fermi levelmay give rise to materials with novel eletroni andmagneti properties. We hope that our preditions willmotivate further measurements of eletroni propertiesof graphiti nanopartiles.This work was supported by the Siene and Teh-nology Department of Mosow region and the Rus-sian Foundation for Basi Researh (grant 01-02-97021)and by the Slovak Sienti� Grant Ageny (grant7043(MP)). REFERENCES1. Yu. E. Lozovik and A. M. Popov, Usp. Fiz. Nauk 167,751 (1997).2. A. V. Eletskii, Usp. Fiz. Nauk 167, 945 (1997).3. J. G. Hou et al., Phys. Rev. Lett. 83, 3001 (1999).4. D. L. Carroll et al., Phys. Rev. Lett. 78, 2811 (1997).5. P. Kim et al., Phys. Rev. Lett. 82, 1225 (1999).6. B. An et al., Appl. Phys. Lett. 78, 3696 (2001).7. D. R. Nelson and L. Peliti, J. de Phys. (Paris) 48, 1085(1987).8. K. Kobayashi, Phys. Rev. B 61, 8496 (2000).170
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