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The electronic structure of graphitic nanoparticles is investigated within a gauge field-theory model. The local
and total densities of states (DOS) near the pentagonal defects (disclinations) are calculated for three geome-

tries: sphere, cone, and hyperboloid.

It is found that the low-energy electron states have a rather specific

dependence on both the energy and the distance from a disclination line. In particular, the low-energy total
DOS has a cusp that drops to zero at the Fermi energy for disclinations with the Frank index v < 1/2, while
a region of a nonzero DOS across the Fermi level is formed for v = 1/2. The true zero-mode fermion state
is found for the graphitic hyperboloid. The appearance of an enhanced charge density near the Fermi level for
nanocones with the 60° opening angle (180° disclination) is predicted.

PACS: 73.20.Dx, 73.50.Jt, 73.61.Wp

1. INTRODUCTION

Carbon nanoparticles, which are expected to have
important implications for the development of elec-
tronic devices, flat panel displays, nano-switches, etc.,
have recently received great attention from both exper-
imentalists and theorists (see, e.g., reviews [1, 2]). The
high flexibility of carbon allows producing variously
shaped carbon nanoparticles: nanotubes, fullerenes,
cones, toroids, graphitic onions, and nanohorns. Par-
ticular attention has been given to the peculiar elec-
tron states due to topological defects that have been
observed in different kinds of carbon nanoparticles by
scanning tunneling microscopy (STM). For example,
STM images with fivefold symmetry (due to pentagons
in the hexagonal graphitic network) have been ob-
tained in the Cgo fullerene molecule [3]. The peculiar
electronic properties at the ends of carbon nanotubes
(which include several pentagons) have been probed
experimentally in [4, 5]. Recently, the electronic struc-
ture of a single pentagon was revealed on an atomic
scale by STM in [6], where the enhanced charge den-
sity at the pentagon, which was located at the apex of
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the conical protuberance of the graphitic particle, was
experimentally clarified.

By its nature, the pentagon occurring in a graphite
sheet is a topological defect. Actually, as mentioned
in [7], fivefold coordinated particles are orientational
disclination defects in the otherwise sixfold coordinated
triangular lattice. Moreover, disclinations are generic
defects in closed carbon structures, fullerenes, and nan-
otubes, because in accordance with Euler’s theorem,
these microcrystals can only be formed with the to-
tal disclination 4w. According to the geometry of the
hexagonal network, this implies the presence of twelve
pentagons (60° disclinations) on the closed hexatic sur-
face.

We note that graphitic cones are of special interest
because they can contain a single pentagon at the apex,
in contrast to twelve pentagons in fullerene molecules
and nanotubes. This fact makes nanocones attractive
for experimental study of peculiar electron states due
to topological defects that were theoretically predicted
in [8, 9]. In particular, analysis within the effective-
mass theory shows that a specific v/3 x v/3 superstruc-
ture induced by pentagon defects can appear with the
wave functions decaying as r—'/5 [8]. Recently, this
prediction was experimentally verified in [6]. A recent
study [10] within both tight-binding and ab initio cal-
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culations shows the presence of sharp resonant states
in the region close to the Fermi energy. The strength
and position of these states with respect to the Fermi
level were found to depend sensitively on the number
and relative positions of the pentagons constituting the
conical tip. In particular, a prominent peak occurring
just above the Fermi level was found for the nanocone
with three symmetric pentagons (which corresponds to
a 60° opening angle or, equivalently, to a 180° discli-
nation). On the other hand, the continuum model sug-
gested in [9] predicts apical enhancement of the density
of states (DOS) at the Fermi energy (EF) in the vicin-
ity of the apex for cones with 120° disclinations.

It is interesting to note that the problem of specific
electron states at the Fermi level due to disclinations is
similar to that of the fermion zero modes in topologi-
cally nontrivial manifolds. In field theory, zero modes
were found to play an important role in understand-
ing anomalies [11] and charge fractionalization that
results in unconventional charge-spin relations (e.g.,
paramagnetism of charged fermions) [12]. As men-
tioned in [12], this finding has been experimentally veri-
fied in trans-polyacetylene chains for one spatial dimen-
sion. The Dirac equation for massless fermions in three-
dimensional space—time in the presence of the magnetic
field was found to yield N —1 zero modes in the N-vor-
tex background field [13]. As we have shown in [14], the
problem of the local electronic structure of fullerene is
closely related to Jackiw’s analysis [13]. We note that
the field-theory models for Dirac fermions in a plane
and on a sphere [15, 16] were invoked to describe the
variously shaped carbon materials. More recently, the
importance of the fermion zero modes was discussed
in the context of high-temperature chiral superconduc-
tors [17-19] and fullerene molecules [16].

Investigation of the electronic structure requires for-
mulating a theoretical model describing electrons on
arbitrary curved surfaces with disclinations taken into
account. An important ingredient of this model can
be provided by the self-consistent effective-mass the-
ory describing the electron dynamics in the vicinity of
an impurity in graphite intercalation compounds [20].
The most important fact found in [20] is that the elec-
tronic spectrum of a single graphite plane linearized
around the corners of the hexagonal Brillouin zone
coincides with that of the Dirac equation in (2+41)
dimensions. This finding stimulated formulation of
some field-theory models for Dirac fermions on hex-
atic surfaces to describe the electronic structure of var-
iously shaped carbon materials: fullerenes [14, 15], nan-
otubes [21], and cones [9, 22].

In this paper, we study the problem of electron
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states in carbon nanostructures for three geometries:
sphere, cone, and hyperboloid. We note that in our ap-
proach, the gauge theory of disclinations on fluctuating
elastic surfaces [23] is basically used. More specifically,
we formulate the Dirac equation on a curved surface
with a flux due to a pentagonal apical disclination rep-
resented by an Abelian gauge field. Both the local and
the total density of states are calculated in each case.
A special attention is given to the correct inclusion of
the spin connection for fermions. Actually, our analysis
shows that the spin connection leads to a redefinition of
wave functions but leaves Dirac equations unchanged.
In other words, the spin connection does not influence
the electron spectrum, but affects the DOS.

The paper is organized as follows. The general for-
malism for studing electron states in the curved two-
dimensional background is presented in Sec. 2. We
formulate a field-theory model for Dirac fermions on
hexatic surfaces of an arbitrary geometry with both
electrons and disclinations taken into account. The
flux due to the pentagonal defect is represented by
an Abelian gauge field within a self-consistent gauge
model. In Sec. 3, we apply the model to the problem
of electron states in the fullerene molecule. We calcu-
late the local and the total DOS and study zero-energy
electron states. In Sec. 4, we consider two arbitrary ge-
ometries for the description of nanocones, conical and
hyperbolical. The results obtained are compared with
other approaches. Section 5 is devoted to concluding
remarks.

2. GENERAL FORMALISM

Our consideration is based on the effective-mass
theory that was applied in [20] to study the screen-
ing of a single intercalant within a grahite host, with
a two-dimensional approximation used for the descrip-
tion of the graphite host. The effective-mass expansion
is equivalent to the k - p expansion of the graphite en-
ergy bands around the K point in the Brillouin zone
when the intercalant potential is equal to zero. In fact,
there are two degenerate Bloch eigenstates, ¥y »(K,r)
at K, and the electron wave function on a graphite
lattice can therefore be approximated by

U(k,r) = fi(k)e™ U (K 1) + fo(k)e™ Ty (K, 1),

where k = K+k. Keeping the terms of the order of k in
the Schrodinger equation results in a secular equation
for the amplitudes fi »(x), which after diagonalization
finally yelds the two-dimansional Dirac equation [20]

"0t (r) = Ei(r). (1)
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Here, v* are the Dirac matrices that in 2D reduce to
the conventional Pauli matrices, the energy F is mea-
sured relative to the Fermi energy, and the two-com-
ponent wave function ¢ o (f1, f2)T represents two
graphite sublattices. As mentioned in [20], the k - p
approximation essentially amounts to replacing the
graphite bands by conical dispersions at the Fermi en-
ergy.

For our purpose, we need a generalization of Eq. (1)
incorporating both a disclination field and a nontrivial
background geometry. A possible description of discli-
nations on arbitrary two-dimensional elastic surfaces is
offered by the gauge approach [23]. In accordance with
the basic assumptions of this approach, disclinations
can be incorporated in the elasticity theory Lagrangian
by introducing a compensating U (1) gauge field W,,. It
is important that the gauge model admits vortex-like
solutions for wedge disclinations [23], thus representing
a disclination as a vortex of elastic medium. The phys-
ical meaning of the gauge field is that the elastic flux
due to rotational defect, which is directly related to
the Frank vector (see Sec. 3), is completely determined
by the circulation of the W, field around the disclina-
tion line. In the gauge theory context, the disclination
field can be straightforwardly incorporated in (1) by
the standard substitution

Op = 0y —iW,,.

Within the linear approximation to gauge theory of
disclinations (which amounts to the conventional elas-
ticity theory with linear defects), the basic field equa-
tion that describes the U(1) gauge field in a curved

background is given by
D,F* =0, FrF =Wk —oFwr, (2)

where the covariant derivative D, := 9, + ', involves
the Levi-Civita (torsion-free, metric compatible) con-

nection
1 Agix . 09 Ogux
ko ko~ ki ul  O9u
Fu)\ T (FM)/\ - 29 (830” o ol ’ (3)

with g, being the metric tensor on a Riemannian sur-
face . with local coordinates z# = (2!, 2?). For a single
disclination on an arbitrary elastic surface, a singular

solution to (2) is found to be [23]
Wk = —ve"* DG (x,y), (4)

where

2162 (2!, 2?)

D, D*G(z', z%) = ,
uD*G( ) 77

(5)

with e, = \/geur being the totally antisymmetric ten-
sor on X, €12 = —ez1 = 1. We note that Eqgs. (2)—(5)
self-consistently describe a defect located on an arbi-
trary surface [23].

To describe fermions in a curved background, we
need a set of orthonormal frames {e,} for the metric
guv; local SO(2) rotations act on the frames as

ea = e, =MNes, AS€SO(2).

It then follows that
Guv = ezeféaﬁa

where e# is the zweibein, with the orthonormal frame
indices being a, = {1,2} and the coordinate in-
dices p,v = {1,2}. As usual, to ensure that physi-
cal observables are independent of a particular choice
of the zweinbein fields, a local so(2)-valued gauge field
w, must be introduced. The gauge field of the local
Lorentz group is known as the spin connection. For
the theory to be self-consistent, the zweinbein fields
must be chosen to be covariantly constant [24],

Dﬂeg = 81163 - szeg + (wﬂ)gef = 07

which determines the spin connection coefficients ex-
plicitly,

(w)* = g Dye™. (6)

Finally, Dirac equation (1) on a surface ¥ in the
presence of the U(1) external gauge field W, is written
as

ivteh(V, —iW, )y = Ey, (7)

where V,, = 9, + Q, with

@ = ) [0, 7] ®

being the spin connection term in the spinor represen-
tation.

3. SPHERICAL FULLERENE MOLECULES

Variously shaped fullerene molecules appear in the
process of graphite vaporization. The more spherical of
them is the Cgp molecule also nicknamed the «bucky
bally. Others are either slightly (as Crq, whose shape
is more like an elliptical deformation) or remarkably
deformed. We are interested here in the Cgg molecule
and in its spherical generalizations like the Co4g and
Cs40 molecules.

11*
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3.1. The model

To describe a sphere, we use the polar projective
coordinates

1 2

r=r zo=¢; 0<r<oo, 0<¢p<2m,

where R is the radius of the sphere. In these coordi-
nates, the metric tensor becomes

4R _ AR
=G S R ()
Gro = gor = 0,
and therefore,
4Ry
VG = y/det [|gu]| = (RZ+ 22

Nonvanishing coefficients of connection (3) are given by

” 2r ” _TR2 —r?
R? 412’

I TR e T
s _ 1 R? — 2
iy e

and the general representation for the zweibeins is

Locally, it describes a topological vortex on the Eu-
clidean plane, which confirms the observation that
disclinations can be viewed as vortices in elastic me-
dia.

The elastic flow through a surface on the sphere is
given by the circular integral

%%Wdr:y.

Generally, there are no restrictions on the value of the
winding number v apart from v > —1 for topological
reasons. But if we take the symmetry group of the un-
derlying crystal lattice into account, the possible values
of v become «quantized» in accordance with the group
structure (e.g., v =1/6,1/3,1/2,... for the hexagonal
lattice). We note that the elastic flux is characterized
by the Frank vector w, |w| = 27v, with v being the
Frank index. Thus, the elastic flux is «classical» in
its origin, i.e., there is no quantization (in contrast to
the magnetic vortex). In some physically interesting
applications, however, vortices with a fractional wind-
ing number have already been considered (see, e.g., the
discussion in [17]). We also note that a detailed theory
of magnetic vortices on the sphere has been presented

in [25].
ol — o2 — 2R? cos p ol — 2 — _ 2Rsing In 2D, the Dirac matrices can be chosen as the Pauli
T R24ge2 ¢ " R2 427 matrices, 7! = —02 and 72 = ¢'; Eq. (8) then reduces
which in view of Eq. (6) gives to
c 3
92 Q, = iwo”. (11)
wiQ = w?l = 0’ wi} = —w?pl = ]%2#4_2 =: 2w. (10)
r
As a result, the Dirac operator
The following solution of Eqs. (4) and (5) can be easily .
found; D = i”y“eg(vu + ZWU)
G=Inr, W,=0, W,=v, r#0. on the two-sphere becomes
) 10
o : civ (g, 4 et @
A Aar T+ R r r
P=Dl= =5 9, + (12)
. i voow
e <3T + = - —> 0
r r
. A o | 3
In proving that the operator D is Hermitian, we use o’YEp =Y_p.

that in the presence of a metric,

1
6;[ = -0, — 5& Ing.

For massless fermions, o3 serves as a conjugation ma-

trix, and the energy eigenmodes are symmetric with
respect to £ = O:

The generator of the local Lorentz transformations
A5 € SO(2) takes the form —id,, and the generator
of the Dirac spinor transformations p(A) is

i 1
Yy = — = _o°.
12 4[71,72] 20
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The total angular momentum of the 2D Dirac system
is therefore given by

L.=—-i0, + 103,
2
which commutes with operator (12). Consequently, the
eigenfunctions are classified with respect to the eigen-
values of J, = j+1/2,j =0,+1,+2,... and are to be
taken in the form

V= <U(1;§Z)E(ji1)) : (13)

As follows from Eq. (12), the spin connection term
can be taken into account by redefining the wave func-
tion as

b= GVEEFT (14

which reduces eigenvalue problem (7) to

where

3.2. Extended electron states

The general solution to (15) is not available, un-
fortunately. But because we are mainly interested in
electron states near the disclination line, we can re-
strict our consideration to the case of small . In this
case, a solution to (15) (with (14) taken into account)
is found to be

(=a(Smm)

where

n=+G-v), n=%G-v+1),

and A is a normalization factor. Therefore, there are
two independent solutions with 7(7) > 0 and 7(77) < 0.
We note that the respective signs «+» in (16) corre-
spond to states with £ > 0 and E < 0. As already
noted, 0% serves as the conjugation matrix for mass-
less fermions and the energy eigenmodes are symmet-
ric with respect to E = 0. We can therefore consider
either case, for instance, E > 0.

The important restrictions come from the normal-
ization condition

/(|u\2 + [v*)/gdatde® = 1. (17)

From (16), it follows that A? oc E. On the other hand,
the integrand in (17) must be nonsingular at small
Er. This imposes a restriction on possible values of j.
Namely, for 1,7 > 0, we obtain j — v > —1/2 and for
7,7 < 0, we have j —v < —1/2. Tt follows that possible
values of 7 do not overlap at any v.

In the vicinity of a pentagon, the electron wave
function is given by

U E/24npn,
(1) <E1/2+ﬁrﬁ ) ' (18)
In particular, in the leading order, we obtain

VE, v =20,
Uoxq EYV3p-16 p=1/6,
EVor=1/3 1y =1/3.

Because the local density of states diverges as r — 0,
it is more appropriate to consider the total density of
states on a patch 0 < r < ¢ for small §, rather than the
local quantities. For this, we must integrate the elec-
tron density over a small disk |r| < 0. (We recall that
r and ¢ are stereographically projected coordinates on
the sphere.) The result is

E6)?/35, v=1/6,5/6,

—~

D(E,$) (19)

E&)Y35, v=1/3,2/3,

>, o~

v=1/2.

For the defect-free case (v = 0), we obtain the well-
known behavior of the total DOS in the § disk given by
D(E,d) < E§” (in accordance with the previous ana-
lysis [20]). For v = 1/6,1/3,2/3,5/6, the low-energy
total DOS has a cusp that drops to zero at the Fermi
energy. Most intriguing is the case where v = 1/2 and
a region of a nonzero DOS across the Fermi level is
formed. This implies local metallization of graphite in
the presence of a 180° disclination. In the fullerene
molecule, however, there are twelve 60° disclinations,
and therefore, the case v = 1/6 is actually realized.

3.3. Zero-energy modes

An interesting issue to be addressed is the existence
of zero-energy modes. For the two-sphere, this problem
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can be solved exactly (see [13, 14]). Namely, for E = 0,
Eq. (15) reduces to

By~ U "M o,
. (20)
1_
—0,50 — wgo —0.

a
We can construct self-conjugate solutions <00> and

0
U

) , where

g = AriT, §g = Ap=U—vE), (21)
The normalization condition
/\¢0|2\/§dr dp =1 (22)
yields
x 4R4 21
2 r _
27 A N rdr=1, (23)
0
where | = j — v for ug and | = —(j — v + 1) for wvg.
Finally, )
2 sin i)
4= ey
for ug and )
5 sinmp
A= o

for vg. We note that the restriction —1 < j —v < 0
serves to avoid divergence in (22). In the defect-free
case (v = 0), this yields no zero modes on the sphere.
We note that this agrees with the general observation
that the Dirac operator can have no zero modes on a
manifold with an everywhere positive Ricci scalar cur-
vature R. Indeed, we easily obtain that D2 = A+R /4,
where the Laplace—Beltrami operator A has nonnega-
tive eigenvalues [26]. For the two-sphere, R = 1/R?,
and therefore, D2 > 0.

In the case where v = 1/6, in which we are inter-
ested here, the only possible value of j is j = 0, and
therefore, ug o r~1/% and vy & r~3/6 near the disclina-
tion line. Thus, our analysis shows that two normaliz-
able zero modes can exist on the sphere in the presence
of a disclination vortex. We note that this conclusion
agrees with [15] (where a different continuum model
was formulated) and differs from [13, 14], where either
ug or vy were found to be normalizable. The reason is
that in [13, 14], the external gauge field was assumed to
be well-behaved at the origin. In this paper, we admit
singular solutions as well.
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The total density of states on the patch 0 < r < §
becomes

§13, v =1/6,5/6,
D(6) < { 6%*/3 v=1/3,2/3, (24)
0, v=1/2.

It follows that this behavior differs from (19) and there-
fore allows recognizing the zero-eigenvalue states in ex-
periment.

4. NANOCONES

A cone-like structure (an exposed surface) is
formed when a pentagon is introduced into a graphite
sheet. There are two possible scenarios for modelling
nanocones. First, the cut-and-glue procedure can be
accomplished in which the pentagon is constructed
in the hexagonal network by cutting out a 60° sector
from the graphene sheet (a single layer of graphite).
In this case, we have a real cut with the consequent
departure from the flat surface. Pentagonal defects
in cones can therefore be considered as apical discli-
nations and the opening angle is directly connected
to the Frank index of the disclination. Because of
the symmetry of the graphite sheet, only five types
of cones can be created from a continuous sheet of
graphite. The total disclinations of all these cones
are multiples of 60°, corresponding to the presence of
a given number (n) of pentagons at the apices. It is
important to mention that carbon nanocones with the
cone angles 19°, 39°, 60°, 85°, and 113° have been
observed in a carbon sample [27]. We note that these
angles might correspond to 300°, 240°, 180°, 120°,
and 60° disclinations in graphite, respectively. Disks
(n = 0) and one-open-end nanotubes (n = 6) have also
been observed in the same sample [27]. This case was
theoretically studied in [9,10,22]. At the same time,
the cones with the apex angles 30°, 50°, and 70° have
also been found [28, 29]. These angles are forbidden
within the above scenario. In [28, 29], the appearance
of such cones was explained in terms of the open cone
model.

Second, a single disclination on a finite graphite
sheet is known to be buckled to screen its energy, thus
leading to a curved hexagonal network [7]. In this con-
text, the pentagon in graphene can result in a curved
cone-like structure. The most appropriate cone-like fig-
ure is the hyperboloid. We note that this agrees with
a suggestion made in [1] that nonsymmetric fullerenes
of a special form can serve as nucleating centers for the
nanocone. We consider both these scenarios below.
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4.1. Cone geometry
4.1.1. The model

In the polar coordinates (r,p) € R, a cone can be
regarded as the embedding

(r,p) — (arcosy, arsing, cr),

0<r<1,0<p <27,

with a and ¢ being the cone parameters. From this,
the components of the induced metric can easily be ob-
tained as

Grr = a? + 02-, Jop = a2r2., 9ro = Gor = 0. (25)

The opening angle of the cone, 6, is determined by
sin(0/2) = a/\/a? + 2.

Because the cone itself appears when one or more sec-
tors are removed from graphene, all possible angles are
divisible by 7/3. Therefore, the Frank index of the
apical disclination can be specified by

v =1-sin(6/2).

At v = 0, we obtain a flat graphene sheet (6 = 7). For
convenience, we introduce the parameter

f:l—l—cQ/a2

0

=Dt =
Or

Va2 + c?

1

e'v <

Making the substitution

ar

((p = f(ﬁ’,"a7 a = \/gw7
we reduce the eigenvalue problem in Eq. (7) to
&a-%ﬁu-ma:E@
(27)
Ve s
—8rU—T(j+1—U)U—Eu,

where E = \/€a E.

4.1.2. Electron states

In contrast to the previous case of the two-sphere,
the cone is essentially a flat manifold (the scalar cur-
vature R = 0 everywhere on the cone, except at the
origin) and as a result, (27) allows an exact solution.
Namely, the general solution to (27) is found to be [22]

0 (25)

+.J;(Er)

u (28)

v

+ —(i0, + v —w)

)
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such that
sin(8/2) = 1//€
and

1/V/E=1—-w.

Nonvanishing coefficients of connection (3) are now
given by

r
g bl
The general representation for the zweibeins is found
to be

T —_
FWP_

1

e, = Va2+c2cosyp,
2 _ /a2 2 gj
€, =\Va® +cesinyp,

which in view of Eq. (6) gives

61:—

¢ arsin @,

62

p = arcosy,

w? =wp =0,
(26)
wi=-wil =1-1//€ = 2.

The external gauge potential is then W, = 0, W, = v,
and the Dirac operator on the cone takes the form

where

n=+(E(G —v+1/2) —1/2),
=+ —v+1/2)+1/2).

As earlier, we consider the case where E > 0. Normal-
ization condition (17) now becomes

1

2m/€a® A2 /(Jg (Er) + J,%(Er))r dr = 1. (29)

0

The normalization factor can be extracted from the
asymptotic formula for Bessel functions at large argu-
ments. Indeed, 7 —n = 1 in our case, and therefore,

J3+J,-2]—>2/71'Er for Er>> 1.



V. A. Osipov, E. A. Kochetov, M. Pudlak

MWITD, Tom 123, Bem. 1, 2003

Substituting this in (29) yields

E

A% =,
4a

Clearly, (29) must be nonsingular at small r. This im-
poses a restriction on possible values of j. For n, 7 > 0,
we obtain j > —1 (i.e., 5 =0,1,2,...) and for n,7 < 0,
we have j < —=2v (j =—1,-2,... at v < 1/2).

We are interested in the electron states near the
apex of the cone. As follows directly from (28), the
wave functions behave as

(o) (

for small r. In the leading order, we obtain

u E/24npn,

E1/2+p7 (30)

v

U o E(172u)/2(171/),r71//(171/) )

In particular, we obtain

VE, v =20,
Vo EXor=1/5 u=1/6,
EV4=120 y =1/3.

Finally, the total density of states on the patch
0 <r <4 is given by

D(E,¥) x
{ B420)/(1=0) §(042)/(1=),
6%

E(l—Ql})/(l—l})5(2—31/)/(1—1/)’

It should be stressed that according to (31), a spe-
cific behavior of D(E, d) occurs only for v = 1/2, where
D o E"§. This prediction of our model agrees with a
finding in [10], where the prominent peak just above
the Fermi level was found for the nanocone with three
symmetric pentagons (180° disclination). In the lead-
ing order, it follows from (31) that

(31)

Eé§?, v=0,
EA5895 v =1/6,
D(E,}) ’ (32)
EV2§32 v =1/3,
0, v=1/2.

As can be seen, the extended states with a nonzero den-
sity of states at Ep appear only at v = 1/2. This con-
clusion disagrees with the results obtained in [9], where
a nonzero DOS at Er was found to occur at v = 1/3.
We now comment on this disagreement briefly. There
is an important point where our consideration differs
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from [9]. Our model is based on the gauge-theory ap-
proach where defects on an elastic curved surface are
described by an Abelian gauge field. As a result, the
flux due to pentagonal apical disclination (elastic vor-
tex) is explicitly incorporated into the Dirac equation.
On the other hand, the model in [9] treats the appro-
priate boundary conditions for electron states resulting
from the cut-and-glue procedure. In that approach,
the gauge field carries information about the boundary
conditions. In fact, both models are similar but not
identical, which is exemplified by the different predic-
tions.

To examine the electron states at the Fermi energy,
we return to (27) and set E = 0. The solution reads

ug = Ar~V2HIVE gy = Br*1/2*7‘/2, (33)
where j = j—v+1/2. A simple analysis shows that for
j =0, both ug and vy are normalizable on the cone of
a finite size. Both solutions are singular. For v = 1/6,
we obtain

lug|? o ril/s/a2, lvg|? o rig/s/a?

For any other j, either ug or vg is found to be normaliz-
able and the solutions become nonsingular. As before,
the total DOS can be considered for singular states.
It is easy to find that D o 6'/° for ug and D o §°/°
for vg. This result differs from [8], where, although
in a different framework, the states on a finite cone
with a single-pentagon defect have been found at the
Fermi energy (these states decay away from the apex
as [¢|? o< r72/%). At the same time, our study confirms
the principal conclusion in [8, 30] that the states con-
tributing to the nonzero DOS at the Fermi energy ex-
hibit a power-law behavior for a single-pentagon defect.
We also note that there are no zero-energy electron
states on a single disclination in monolayer graphite of
an infinite length (¢« — o0). We emphasize that this
conclusion agrees with the results of numerical calcula-
tions in [30], where the local density of states at the
Fermi level was found to be zero for five-membered
rings (pentagons). We also note that for v = 1/2,
D o 6 for both ug and vg.

4.2. Hyperboloid geometry
4.2.1. The model

The upper half of a hyperboloid can be regarded as
the embedding

(x,p) = (ashxcosp,ashyxsinp,cchy),

0<x<o0, 0<p<27.
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From this, the components of the induced metric can
be obtained as

gy =@ ch? x + P sh’x, gy, =a’sh’y,

(34)

which in view of Eq. (6) gives the spin connection co-
efficients

Jox = gxe =0, AT 37
which ylelds W;Q = —w?pl = % |:1 — aChX:| = w, ( )
rx - (a® + ¢*)sh 2y VI
XX 29XX ’
2 19 (35) and therefore,
a®sh2y
be = 29 v TGy =I5, =cthy
e Q, = iwo®. (38)
for the nonvanishing coefficients of the connection. In
a rotating SO(2) frame, the zweibeins become
. The external gauge potential is then W, = 0,
1 _ 2 _ X ;
ef T VI CORE e ; Vo S gs (36) W, = v, and the Dirac operator on the hyperboloid
e, = —ashxsing, e, =ashycosyp, takes the form
\
i Oy .
0 e | - (10p + v + w)
B vy ashy
B 0 1
el ( X+ (i10y +v — w)) 0
VOxx ashy v
. . \
It can be verified that D = Dt. with the obvious solutions
The substitution
) i = A\/EaxJj—,(Eax),
Qp:w“/ ShX ’INJZA\/EGXJU,,,JFH(EGX).
reduces the eigenvalue problem in Eq. (7) to As can be seen, this is exactly the case of a sphere,
5 ~ ~ which should not be surprising, because these two ma-
Oyt — \/ cth™ x + b? ju = Ev, (39) nifolds are locally diffeomorphic. Evidently, the total

— 9y 0 —y/cth® y + b2 jo = Ei,

where

E=gxE b=cla, j=j—-v+1/2

4.2.2. Electron states

To study electron states on the hyperboloid, we
must analyze Eqs. (39). Because of the nonvanishing
scalar curvature, the general solution of the Dirac equa-
tion on the hyperboloid (as well as on the sphere) is
not available and we are forced to simplify the prob-
lem. Fortunately, we are interested in the behavior of
the electron states near the apex and can therefore con-
sider only the case of small y. We then obtain

=3}
|
> a2 |
=
I
&
=)
S

(o))
>

|
[S5)
=
(S
|
(41
I
=
Q
=
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DOS on a finite hyperboloid is the same as on the
sphere (see (19)).

We now consider the zero-energy modes, setting
E =0in (39). The general solution is found to be

:|3/2
}3/2

k=v1+02, A=1/1+k2sh?y.

An important restriction comes from the normalization
condition (see (17)) which on a finite hyperboloid yields
j > —1/2 for u(x) and j < 1/2 for v(y). We see that
for —1/2 < j < 1/2, both u(x) and v(y) are normal-
izable simultaneously. For the zero-energy mode, the
total DOS on a finite hyperboloid is found to be the
same as on the sphere (see (24)).

or A —chy
A +chy
o A —chy
A +chy

a(y)=A [(k chy +A)

o(y) = A [(kchx+A)

where
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Although the local electronic structures are similar
on the hyperboloid and the sphere, there is a principal
global distinction. We consider an unbounded hyper-
boloid (full locus). In this case, additional restrictions
at the upper limit of the integral in (17) must be taken
into account. We obtain —1/2 < j < —1/2k for u(x)
and 1/2k < j < 1/2 for v(x). Therefore, either u(y) or
v(y) becomes normalizable on the hyperboloid of the
infinite volume. We see that as ¢/a — 0, the normal-
izable solution does not exist. In fact, the hyperboloid
then becomes a plane. Consequently, our results are in
accordance with the planar case. The total density of
states on an infinite hyperboloid for a variety of defects
is as follows:

Y3 v=1/6, cla>+5/2,
823, v=1/3, c/a>2V2,

D(6) o 823 v=2/3, c/a>2V2, (42)
63 v=5/6, c/a>5/2.

We note that the normalizable zero-energy states do
not exist for the defect with v = 1/2 as well as for the
defect-free case v = 0. The most important conclusion
from our consideration is that there is a possibility for
the true zero-mode fermion state on the hyperboloid.
As we have shown, the normalized zero-mode states on
both the sphere and the cone exist only for a finite sys-
tem size and disappear in the infinite-size limit. For an
infinite hyperboloid, a normalized zero-energy electron
state can exist in the presence of a disclination flux.

5. CONCLUSIONS

We have formulated a gauge field-theory model de-
scribing electron states on graphitic nanoparticles. The
topological nature of the pentagonal defect is found to
markedly modify the low-energy electronic structure.
In particular, the total density of extended states has
a rather specific dependence on both the energy and
the distance from the disclination line. We have found
that the low-energy total DOS has a characteristic cusp
at the Fermi energy for any disclinations with v < 1/2.
In particular, this finding suppresses the extended elec-
tron states with a nonzero DOS at Er in the fullerene
molecule with v = 1/6. For zero-mode states, the total
DOS on the patch 0 < r < § behaves as §'/3. A similar
behavior is found for a graphitic hyperboloid. There
is, however, a principal distinction due to the possibil-
ity for the true zero-mode fermion state to occur on
the hyperboloid. Namely, the normalized zero-energy
electron state can exist even on the infinite-size hyper-
boloid.
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We have shown that the local and total DOS
at the apices of nanocones are strongly dependent
on the pentagon concentration. In particular, our
model predicts anomalous behavior of D(E,dJ) only
for v 1/2 (three pentagons at the apex), where
D o E°§, that is, the enhanced charge density at Er
is located at the apex of the cone at the 60° opening
angle. This implies local metallization, thus suggest-
ing some important applications of nanocone-based
structures in microelectronic devices. First of all,
such a remarkable increase of the DOS must provoke
the corresponding enhancement of the field emission
current, thereby decreasing the threshold voltage for
emitted electrons. We note that this conclusion agrees
well with the results in [10], where the prominent peak
appearing just above the Fermi level was established in
a nanocone with three pentagons at the apex. It was
proposed that such peculiar nanocones are good can-
didates for nanoprobes in scanning probe microscopy
and excellent candidates for field-emission devices.
As was also mentioned in [10], the nanocones with
free pentagons at the tip have the highest probability
of nucleation and are frequently observed [27]. It
is expected that localized states at the Fermi level
may give rise to materials with novel electronic and
magnetic properties. We hope that our predictions will
motivate further measurements of electronic properties
of graphitic nanoparticles.
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