КОМБИНАЦИОННОЕ РАССЕЯНИЕ СВЕТА, ВЗАИМОДЕЙСТВИЕ И ИНТЕРФЕРЕНЦИЯ ОПТИЧЕСКИХ КОЛЕБАНИЙ В СУПЕРИОННОМ КРИСТАЛЛЕ γ -Li₃PO₄

Б. Н. Маврин^а^{*}, В. В. Асонов^а, В. В. Фомичев^b, А. К. Иванов-Шиц^c, В. В. Киреев^c

^а Институт спектроскопии Российской академии наук 142190, Троицк, Московская обл., Россия

^b Московская государственная академия тонкой химической технологии им. М. В. Ломоносова

117571, Москва, Россия

^с Институт кристаллографии Российской академии наук 117333, Москва, Россия

Поступила в редакцию 11 июля 2002 г.

Исследованы поляризованные спектры комбинационного рассеяния света монокристалла γ -Li₃PO₄ при температурах примерно до 700 К. Показано, что в спектрах могут быть выделены колебания тетраэдров PO₄ и катионов литиевой подрешетки. Обнаружено, что с ростом температуры возникает интерференция однофононных оптических мод симметрии B_{2g} и A_g , сопровождающаяся антирезонансом в области частот около 190 см⁻¹. Численный анализ спектра в области взаимодействия оптических мод позволил обнаружить сильную температурную зависимость константы взаимодействия, определяемой ангармонической связью оптических и акустический мод.

PACS: 78.30.-j, 63.20.-e, 63.20.Kr

1. ВВЕДЕНИЕ

Высокотемпературный фосфат лития γ -Li₃PO₄ — перспективный материал из класса твердых электролитов, обладающих высокой ионной проводимостью [1]. Его колебательные спектры изучены недостаточно, до сих пор они исследованы лишь для многофазных керамических [2] и поликристаллических [3] образцов в ограниченной области частот. Представляет также интерес изучение влияния усиливающегося ангармонического движения ионов проводимости (Li⁺) с ростом температуры на колебательные спектры.

В данной работе исследованы спектры комбина-

ционного рассеяния света (КРС) ориентированного монокристалла метастабильного при комнатной температуре *γ*-Li₃PO₄ [4] в различных геометриях рассеяния. Обнаруженные линии в спектрах отнесены по типам симметрии колебаний, а также, в соответствии с теоретико-групповым анализом, к колебаниям (внутренним и внешним) изолированных тетраэдров РО₄, являющихся структурными элементами кристалла, и катионов литиевой подрешетки. Температурные измерения спектров позволили обнаружить интерференцию однофононных состояний, проявляющуюся в наблюдении антирезонанса и деформации контуров взаимодействующих линий, типичной для резонанса дискретного уровня со сплошным спектром. Численный анализ спектров показал сильную зависимость константы взаимодействия однофононных состояний от температуры.

^{*}E-mail: mavrin@isan.troitsk.ru

2. ТЕОРЕТИКО-ГРУППОВОЙ АНАЛИЗ КОЛЕБАНИЙ

Структура γ -Li₃PO₄ состоит из изолированных тетраэдров PO₄, связанных между собой литиевыми тетраэдрами [4]. Измерения распределения электронной плотности показали ковалентный характер связей P–O в тетраэдре PO₄ и лишь некоторую ковалентную составляющую связей Li–O [5]. Пространственная группа кристалла относится к центросимметричной ромбической группе D_{2h}^{16} (в примитивной ячейке 4 формульных единицы) [4]. Исходя из того что 8 атомов Li занимают позицию C₁; 4 атома Li, 4 атома P и 8 атомов O — C_s(xz), 8 атомов O — C₁, можно найти полное колебательное представление [6]:

$$\Gamma = 14A_g + 10B_{1g} + 14B_{2g} + 10B_{3g} + + 10A_u + 14B_{1u} + 10B_{2u} + 14B_{3u}.$$
 (1)

Все *g*-моды активны в КРС, колебания классов B_{1u} , B_{2u} и B_{3u} активны в ИК-поглощении, кроме трех акустических мод $(1B_{1u} + 1B_{2u} + 1B_{3u})$.

Учитывая изолированность тетраэдров РО4 и ковалентный характер связей Р-О, имеет смысл для интерпретации спектра КРС выделить в полном представлении (1) отдельно колебания тетраэдров PO₄ и колебания катионов литиевой подрешетки. Колебания тетраэдра РО4 можно разделить на внутренние и внешние. К внутренним колебаниям иона $[PO_4]^{3-}$ (симметрия T_d) относятся 4 моды [7]: $\nu_1(A_1) - 970$ см⁻¹, $\nu_2(E) - 358$ см⁻¹, $u_3(F_2) - 1080 \text{ см}^{-1}$ и $u_4(F_2) - 500 \text{ см}^{-1}$. За счет динамического взаимодействия четырех тетраэдров РО4 в ячейке и за счет снятия вырождения под действием статического кристаллического поля эти моды в кристалле γ-Li₃PO₄ должны расщепиться на следующие КРС-активные компоненты [6]: $\nu_1 \rightarrow A_g + B_{2g}, \ \nu_2 \rightarrow A_g + B_{1g} + B_{2g} + B_{3g},$ $\nu_3, \nu_4 \to 2A_g + B_{1g} + 2B_{2g} + B_{3g}$. Внешние колебания (трансляции и вращения тетраэдра PO₄), активные в КРС, классифицируются следующим образом [6]:

$$\Gamma^{transt} = 2A_g + B_{1g} + B_{2g} + B_{3g},$$

$$\Gamma^{libr} = A_g + 2B_{1g} + B_{2g} + 2B_{3g}.$$
(2)

Вычитая из полного представления (1) колебания тетраэдра PO₄, мы получим КРС-активные типы колебаний, в которых должны участвовать атомы лития:

$$\Gamma^{\rm Li} = 5A_q + 4B_{1q} + 5B_{2q} + 4B_{3q}.$$

5 ЖЭТФ, вып.1

3. ТЕХНИКА ЭКСПЕРИМЕНТА

Монокристаллы γ -Li₃PO₄ были выращены методом кристаллизации поликристаллического ортофосфата лития из раствора в расплаве Li₃PO₄ : Li₂MoO₄ : LiF (массовое соотношение 50 : 34 : 16). В качестве затравки при кристаллизации использовался платиновый стержень. После полного растворения ортофосфата лития в расплаве (при 1030 °C) раствор охлаждался до 990 °C, а затем проводилась кристаллизация путем медленного охлаждения (0.15 град/ч) до 950 °C. Выросшие кристаллы размерами $2 \times 5 \times 7$ мм³ извлекались из расплава и охлаждались до комнатной температуры.

Спектры КРС кристалла были получены в стандартной 90-градусной геометрии с возбуждением линией с длиной волны 514.5 нм аргонового лазера и регистрацией на многоканальном спектрометре в области 50–1050 см⁻¹ с разрешением 3.5 см⁻¹. В эксперименте возбуждающее и рассеянное излучение распространялись вдоль кристаллографических осей. Для температурных измерений кристалл помещался в печку, температура которой поддерживалась с точностью ±2 К в диапазоне температур до 700 К.

4. ОБСУЖДЕНИЕ СПЕКТРОВ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА

Силовые постоянные связи Li–O коррелируют с ее длиной [8] и, учитывая, что средняя длина связи Li–O в кристалле γ -Li₃PO₄ около 2 Å [4], можно ожидать, что колебаниям катионов лития в тетраэдрическом окружении будут отвечать частоты в области ниже 500 см⁻¹ [8]. Следовательно, в области частот выше 500 см⁻¹ в спектрах КРС могут проявляться лишь колебания тетраэдра PO₄. Более того, с учетом ковалентного характера связи P–O можно ожидать, что линии КРС, относящиеся к колебаниям тетраэдра PO₄, будут более интенсивными, чем колебания Li–O. Мы использовали эти предположения при интерпретации спектра КРС кристалла γ -Li₃PO₄.

Сначала обсудим спектры в области частот выше 500 см⁻¹ (рис. 1). На рис. 1*a* показаны спектры колебаний A_g для трех компонент тензора, α_{xx} , α_{yy} и α_{zz} , которые оказались различными из-за анизотронии кристалла. Наиболее интенсивная линия частотой 950 см⁻¹ должна быть отнесена к колебанию ν_1 (как по своей интенсивности, так и по близости к положению линии в спектре свободного иона [PO₄]³⁻).

Рис.1. Спектры КРС кристалла γ -Li₃PO₄ в области частот выше 600 см⁻¹: a — колебания симметрии A_g , δ — колебания симметрий B_{1g} , B_{2g} и B_{3g}

Пара линий выше 950 см⁻¹ (1022 и 1032 см⁻¹) может быть отнесена к ожидаемым двум колебаниям: ν_3 (2 A_g), а ниже 950 см⁻¹ (602 и 622 см⁻¹) — к ν_4 . Отнесение дублета 602, 622 см⁻¹ к ν_4 не столь однозначно, поскольку частота ν_4 в свободном ионе находится вблизи 500 см⁻¹. При этом отнесении мы опирались на относительные интенсивности линий (линии ниже 600 см⁻¹ слабее дублета) и на малую вероятность возможности появления других линий в этой области спектра. При интерпретации спектров колебаний B_{1g} , B_{2g} и B_{3g} (рис. 16) принималось во внимание, что эти колебания по частоте должны быть близки к соответствующим колебаниям A_g в ν_1 , ν_3 и ν_4 . Результаты сведены в таблицу.

Отнесение линий в спектре ниже 600 см⁻¹ (рис. 2) оказалось более затруднительным из-за переналожения линий (и, соответственно, смешивания форм колебаний), относящихся к внутреннему колебанию ν_2 тетраэдра PO₄, внешним колебаниям тетраэдра PO₄ и колебаниям катионов лития.

При отнесении линий к колебанию ν_2 мы учитывали, что они должны быть интенсивными по сравнению с другими линиями в спектре ниже 500 см⁻¹, а также должны быть вблизи 400 см⁻¹, т.е. вблизи положения ν_2 в спектре свободного иона [PO₄]³⁻. Кроме того, можно ожидать, что ширины линий ν_2 будут меньше ширин линий, относящихся к колеба-

ниям Li (из-за суперионного движения ионов Li даже при комнатной температуре). В спектре колебаний A_q (рис. 2*a*) мы отнесли интенсивную линию с частотой 388 см $^{-1}$ к колебанию ν_2 . Однако остается непонятным, почему эта линия доминирует в спектре компонент α_{xx} и α_{yy} тензора, но практически отсутствует в спектре компоненты α_{zz} . Можно предположить, что это обусловлено структурой кристалла, в котором изолированные тетраэдры РО₄ образуют цепочки вдоль оси z и соседние цепочки направлены своими тетраэдрами в противоположные стороны [4]. Наиболее интенсивные линии с частотами 381, 424 и 363 см $^{-1}$ соответственно симметрии B_{1q}, B_{2q} и B_{3q} (рис. 26) отнесены к колебанию ν_2 , исходя из тех же соображений, что и для симметрии А_q (см. таблицу).

Частоты внешних колебаний тетраэдра PO₄ обычно наблюдаются в области ниже 250 см⁻¹ (например, в KH₂PO₄ [9]). Согласно теоретико-групповому анализу (2), в спектрах КРС внешних колебаний в γ -Li₃PO₄ ожидается по три симметрии каждого типа. Внешние колебания наиболее четко проявляются в спектре колебаний A_g (геометрия z(xx)y (рис. 2*a*)). В этом спектре видны три низкочастотные линии с частотами 140, 157 и 219 см⁻¹ (слабая линия с частотой 169 см⁻¹ видна за счет проникновения интенсивной линии

Рис.2. Спектры КРС кристалла γ -Li₃PO₄ в области частот ниже 600 см⁻¹: a — колебания симметрии A_g , δ — колебания симметрий B_{1g} , B_{2g} и B_{3g}

Частота	Отнесение	Частота	Отнесение			
Внутренние колебания тетраэдра РО ₄						
363	B_{3g}	948	B_{2g} U_1			
381	B_{1g}	950	$A_g \int^{\nu_1}$			
388	$A_g $ ν_2	1022, 1032	A_q			
424	B_{2g}	1045	$B_{1g} \int^{\nu_3}$			
602,622	A_g	1021,1060	B_{2g}			
602	B_{1g}	1031	$B_{3g} \int^{\nu_3}$			
602,626	B_{2g} \downarrow^{ν_4}					
602	B_{3g}					
Внешние колебания тетраэдра РО4						
140, 157, 219	A_g	136, 160, 217	B_{2g}			
138,169,218	B_{1g}	159	B_{3g}			
Колебания ионов лития						
284, 327, 360, 474, 489	A_g	336, 360, 459, 485, 517 B_{2g}				
325,358,399,488	B_{1g}	322,455,487,562	B_{3g}			

Частоты линий (в с	см ⁻¹) к	ристалла 🗠	γ-Li ₃ PO ₄ и	их отнесение
--------------------	----------------------	------------	-------------------------------------	--------------

из геометрии y(xy)z). Их особенностью является то, что их ширина мала по сравнению с более высокочастотными линиями, и, скорее всего, они могут быть отнесены к внешним колебаниям тетраэдра PO_4 . В этой же области частот должны находиться и внешние колебания других типов симметрии $(B_{1g}, B_{2g} \ u \ B_{3g})$ тетраэдра PO_4 (рис. 26, таблица).

Оставшиеся линии в области частот ниже 600 см⁻¹ (рис. 2), кроме отнесенных к колебаниям тетраэдра PO_4 , должны быть связаны с

колебаниями, в которых участвуют атомы Li (см. таблицу).

5. ТЕМПЕРАТУРНЫЕ ИЗМЕРЕНИЯ И ИНТЕРФЕРЕНЦИЯ ОДНОФОНОННЫХ СОСТОЯНИЙ

Ионная проводимость в γ-Li₃PO₄ экспоненциально возрастает с температурой и подчиняется закону Аррениуса [1]. При нагреве кристалла γ-Li₃PO₄ при-

Рис. 3. Спектры КРС кристалла γ -Li₃PO₄ в геометрии рассеяния x(zx)y (колебания симметрии B_{2g}) при различных температурах

мерно до 700 К мы не обнаружили изменений в спектрах, которые могли бы свидетельствовать о фазовом переходе в данной области температур, в то же время вследствие ангармонизма все линии КРС заметно уширялись (особенно линии колебаний ионов лития) и претерпевали низкочастотный сдвиг с ростом температуры.

В данной работе мы хотели бы обратить внимание на взаимодействие оптических фононов с ростом температуры, особенно сильно проявившееся в геометрии x(zx)y, когда активны колебания B_{2g} (рис. 3). При комнатной температуре в области частот 170–380 см $^{-1}$ видны две интенсивные линии — 217 и 337 см⁻¹ — симметрии B_{2g} . С ростом температуры линия 337 см⁻¹ испытывает значительный температурный сдвиг частоты ($\sim 0.09 \text{ см}^{-1}/\text{K}$), в то время как температурный сдвиг линии 217 см⁻¹ существенно меньше (рис. 3 и 4). Ширина линии 337 см⁻¹ увеличивается от 17 см⁻¹ при комнатной температуре до 75 см^{-1} при 680 K, при этом крылья линии 337 см⁻¹ перекрываются с линией 217 см⁻¹ и при температурах 570 и 680 К видна интерференция этих линий (рис. 3). Она проявляется в изменении формы линии 217 см⁻¹: линия становится асимметричной и возникает глубокий минимум (антирезонанс) вблизи 190 см⁻¹.

Рис. 4. Температурная зависимость частот взаимодействующих мод: сплошная линия — измеренные положения частот, штриховая линия — вычисленные положения частот без учета взаимодействия

Такая форма полосы возникает, например, при ферми-резонансе дискретного уровня со сплошным спектром [10], причем она однозначно свидетельствует о том, что компоненты тензоров КРС дискретного уровня и сплошного спектра имеют противоположные знаки. Но интерференция в нашем случае не может быть представлена как ферми-резонанс, поскольку она происходит между однофононными состояниями. Смешивание однофононных состояний становится возможным [11] при учете непрямой связи между оптическими фононами через ангармоническое взаимодействие каждого оптического фонона с двумя акустическими фононами, на которые оптические фононы могут распадаться. Ранее интерференция однофононных состояний наблюдалась при взаимодействии мягкой моды с жесткой модой в спектрах КРС AlPO₄ [12], а также в спектрах гиперкомбинационного рассеяния [13] и ИК-поглощения [14] SrTiO₃. Если положения взаимодействующих оптических фононов ν_s и ν_r еще далеки друг от друга, как и в нашем случае (рис. 4), то интенсивность спектра КРС в области взаимодействия фононов может быть описана мнимой частью восприимчивости [10,13]:

$$\chi(\nu) = \chi_s(\nu) + \chi_r(\nu) + \chi_{sr}(\nu) =$$

= $\frac{M_s^2}{G_s^{-1} - \gamma^2 G_r} + \frac{M_r^2}{G_r^{-1} - \gamma^2 G_s} + \frac{2\gamma M_s M_r G_r}{G_s^{-1} - \gamma^2 G_r},$ (3)

где индекс «s» относится к «мягкой» моде 337 см⁻¹, а индекс «r» к «жесткой» моде 217 см⁻¹, M_i — компоненты тензора КРС (i = s или r), $G_i = (\nu - \nu_i - id_i)^{-1}$ — функции Грина мод ν_s и ν_r с затуханием $2d_i$, γ — константа взаимодействия мод, $\chi_i(\nu)$ — функции спектрального распределения каждой из мод без учета взаимодействия, $\chi_{sr}(\nu)$ — интерференционный член. Функции Im $\chi_i(\nu)$ положительны на всех частотах, а знак Im $\chi_{sr}(\nu)$ зависит от знаков M_i и, кроме того, знак изменяется на противоположный между частотами ν_s и ν_r .

Как указывалось выше, из формы спектров на рис. 3 следует, что тензорные компоненты M_s и M_r имеют разные знаки. Из экспериментальных спектров можно также найти затухания каждой из мод при всех температурах. Для подгонки расчетных спектров по формуле (3) к экспериментальным остается неопределенной константа взаимодействия γ и зависимость M_i от температуры. При заданных значениях γ и M_i частоты обеих мод ν_s и ν_r без учета взаимодействия могли быть однозначно найдены из совпадения максимумов соответствующих линий в расчетных и экспериментальных спектрах. В процессе подгонки мы обнаружили следующее.

Для того чтобы получить антирезонанс в спектрах вблизи 190 см⁻¹ при 570 и 680 К, константа взаимодействия γ должна быть велика (не менее 25 см⁻¹). Если считать константу γ постоянной при всех температурах, то для удовлетворительной подгонки относительных интенсивностей мод ν_s и ν_r требовалось уменьшение M_r в 2.5 раза и, соответственно, интенсивности полосы 217 см^{-1} в $(M_r)^2$ раз при увеличении температуры от комнатной до 680 К. Из спектров следовало, что интегральная интенсивность полосы частотой 337 см⁻¹ (и, следовательно, компонента M_s) после учета фактора заселенности оставалась практически постоянной при всех температурах. С другой стороны, если считать M_r постоянной при всех температурах, то для подгонки требовалось изменение константы взаимодействия (плавный рост с температурой).

Кристалл γ -Li₃PO₄ прозрачен в видимой области, и спектры KPC, возбуждаемые линией 514.5 нм, были получены вне резонансных условий. Поэтому нет оснований ожидать столь сильного уменьшения интенсивности линии 217 см⁻¹ по сравнению с другими линиями спектра при повышении

Рис. 5. Сопоставление вычисленных спектров с экспериментальными в области взаимодействия мод 217 и 337 см⁻¹

температуры. Однако могут быть причины увеличения константы взаимодействия с температурой [11], поскольку с ростом температуры частота моды 337 см⁻¹ существенно уменьшается (рис. 3 и 4) и может изменяться положение этой моды относительно двухфононного акустического континуума, ответственного за взаимодействие мод ν_s и ν_r .

Результат подгонки расчетных спектров к экспериментальным при постоянных значениях M_s и M_r для всех температур представлен на рис. 5. В расчете предполагалось, что контуры линий ν_s и ν_r без учета взаимодействия были лоренцевыми. Ширины контуров определялись из экспериментальных спектров. Параметры M_s и M_r были определены из подгонки вычисленного спектра к экспериментальному, полученному при комнатной температуре, в предположении, что $\gamma = 0$. При других температурах параметр γ в основном определял относительные интенсивности взаимодействующих мод, а оптимальный выбор ν_s и ν_r обеспечивал совпадение максимумов соответствующих полос в расчетном и экспериментальном спектрах. С ростом температуры для подгонки относительных интенсивностей полос в спектре требовалось увеличение γ (7, 13, 21 и 25 см⁻¹ соответственно при 370, 470, 570 и 680 К). Выбор значения $\gamma = 0$ при комнатной температуре был произволен. Если считать, что при комнатной

температуре $\gamma = \gamma_0 \neq 0$, то значения γ при других температурах увеличивались на величину γ_0 .

Удовлетворительное совпадение расчетных спектров с экспериментальными можно было получить для температур 295 и 370 К. При температурах выше 370 К не только увеличивался вклад от интенсивной линии 424 см⁻¹, но и появлялось отличие вычисленного спектра от экспериментального в области частот 200–250 см $^{-1}$ (на рис. 5 показано стрелкой). Можно предположить, что, как и в случае спектров $KPC AlPO_4$ [12], по мере повышения температуры, т.е. приближения моды ν_s к ν_r , появление дополнительной полосы в области частот 200-250 см⁻¹ обусловлено двухфононными акустическими состояниями, которые усилились в результате резонанса с приближающимся колебанием ν_s . Этот дополнительный вклад, который не учитывался в подгонке, мог также повлиять на характер интерференции в этой области частот. Как видно из рис. 4, ниже 500 К положения мод ν_s и ν_r с учетом взаимодействия мало отличаются от их положения без учета взаимодействия и лишь выше температуры 500 К это различие становится заметным благодаря сокращению расстояния между модами и увеличению константы взаимодействия этих мод.

Мы не обнаружили интерференционных явлений в спектрах колебаний B_{1g} и B_{3g} при нагреве примерно до 700 К. В спектре колебаний A_g (в геометрии y(xx)z) наблюдался антирезонанс вблизи частоты 190 см⁻¹ за счет интерференции фононов с частотами 219 и 284 см⁻¹. Линия 284 см⁻¹ с ростом температуры смещалась к более низким частотам, сильно уширялась и перекрывалась с линией 219 см⁻¹. Однако контуры полос были менее надежны для численного анализа из-за слабых интенсивностей взаимодействующих мод.

Таким образом, в данной работе впервые представлены спектры КРС кристалла γ-Li₃PO₄ в различных поляризациях, что позволило классифицировать наблюдаемые линии в спектрах по типам колебаний и выявить колебания тетраэдров РО₄ и литиевой подрешетки. Температурные исследования спектров позволили обнаружить интерференцию однофононных состояний литиевой подрешетки, обусловленную ангармоническим взаимодействием оптических и акустических фононов. Экспоненциальный рост катионной проводимости с температурой [1] усиливает ангармоническое движение ионов лития и, следовательно, взаимодействие оптических фононов, связанных с колебаниями ионов лития, с акустическими модами. Анализ спектров показал сильную зависимость константы взаимодействия оптических фононов от температуры, что, скорее всего, может быть объяснено как температурным ростом проводимости, так и изменением положения взаимодействующих мод относительно двухфононного акустического континуума, обусловливающего взаимодействие оптических мод.

ЛИТЕРАТУРА

- А. К. Иванов-Шиц, В. В. Киреев, О. К. Мельников, Л. Н. Демьянец, Кристаллография 46, 938 (2001).
- E. B. De Araujo, J. A. C. De Paiva, J. A. Freitas, and A. S. B. Sombra, J. Phys. Chem. Sol. 59, 689 (1998).
- T. Riedener, Y. Shen, R. J. Smith, and K. L. Bray, Chem. Phys. Lett. **321**, 445 (2000).
- О. С. Бондарева, М. А. Симонов, Н. В. Белов, ДАН СССР 240, 75 (1978).
- О. В. Якубович, В. С. Урусов, Кристаллография 42, 301 (1997).
- Г. Н. Жижин, Б. Н. Маврин, В. Ф. Шабанов, Onmuческие колебательные спектры кристаллов, Наука, Москва (1984), с. 39.
- К. Накамото, Инфракрасные спектры неорганических и координационных соединений, Мир, Москва (1966), с. 151.
- А. Н. Лазарев, А. П. Миргородский, И. С. Игнатьев, Колебательные спектры сложсных окислов, Наука, Ленинград (1975), с. 118.
- C. Y. She, T. W. Broberg, and D. F. Edwards, Phys. Rev. B 4, 1580 (1971).
- 10. М. В. Белоусов, Д. Е. Погарев, С. В. Погарев, в сб.: Колебания окисных решеток, Наука, Ленинград (1980), с. 249.
- A. Zavadovski and J. Ruvalds, Phys. Rev. Lett. 24, 1111 (1970).
- 12. J. F. Scott, Phys. Rev. Lett. 24, 1107 (1970).
- V. N. Denisov, B. N. Mavrin, V. B. Podobedov, and J. F. Scott, J. Raman Spectroscopy 14, 276 (1983).
- 14. J. L. Servoin, Y. Luspin, and F. Gervais, Phys. Rev. B 22, 5501 (1980).