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The fact that neutron star matter possesses the capability of maintaining a highly intense magnetic field has
been and still is among the most debatable issues in pulsar astrophysics. Over the years, there were several
independent suggestions that the dominant source of pulsar magnetism is either the field-induced or the spon-
taneous magnetic polarization of the baryon material. The Pauli paramagnetism of degenerate neutron matter
is one of the plausible and comprehensive mechanisms of the magnetic ordering of neutron magnetic moments,
promoted by a seed magnetic field inherited by the neutron star from a massive progenitor and amplified by
its implosive contraction due to the magnetic flux conservation. Adhering to this attitude and based on the
equations of magneto-elastic dynamics underlying continuum mechanics of single-axis magnetic insulators, we
investigate electrodynamics of a paramagnetic neutron star undergoing nonradial pulsations. We show that the
suggested approach regains a recent finding of Akhiezer, Laskin, and Peletminskii [1] that the spin-polarized
neutron matter can transmit perturbations by low-frequency transverse magneto-elastic waves. We found that
nonradial torsional magneto-elastic pulsations of a paramagnetic neutron star can serve as a powerful generator
of a highly intense electric field producing the magnetospheric polarization charge whose acceleration along the
open magnetic field lines leads to the synchrotron and curvature radiation. Analytic and numerical estimates
for periods of nonradial torsional magneto-elastic modes are presented and are followed by a discussion of their
possible manifestation in currently monitored activity of pulsars and magnetars.

PACS: 26.60.4-c, 26.50.+x, 52.35.Bj, 52.30.Db
1. INTRODUCTION

Recent years have seen resurgence of interest in
the magnetic properties of neutron star matter [1-4]
and of the early advanced hypothesis that considerable
contribution to the ultrastrong magnetic field of these
compact objects can be attributed to spin polarization
of stellar material [5-8]. This development calls into
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question our understanding of the laws governing con-
tinuum mechanics and macroscopic electrodynamics of
magnetically ordered nuclear matter. To the best of our
knowledge, the first significant step in this direction was
made in [1], cited in the abstract and hereafter referred
to as the Akhiezer-Laskin—Peletminskii (ALP) model,
advocating ferromagnetism of neutron stars. Using
equations of the magneto-hydrodynamic type adopted
from macroscopic electrodynamics of ferromagnetic di-
electrics [9], it was shown that magnetically ordered
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neutron matter can transmit perturbations by low-
frequency magneto-elastic waves along with the well-
known high-frequency spin waves typical of ferromag-
netic solids [9-11]. The observation of these oscillatory
motions in currently monitoring neutron stars is cru-
cial, in our opinion, for unambiguous identification of
the permanent magnetism of stellar material. This at-
titude motivates our present work, continuing investi-
gations begun in [1], aimed at searching characteristic
features of electromagnetic activity of neutron stars ow-
ing its origin to nonradial magneto-elastic pulsations of
paramagnetic neutron stars.

The fingerprints of the Pauli mechanism of the
field-induced (nonspontaneous) spin polarization of
neutron star matter can be traced in the existing sce-
nario of the pulsar birth in a supernova event [12,13].
The catastrophic collapse of the massive main sequence
star exhausting its nuclear fuel implies that implosive
contraction of a weakly magnetized massive star is ac-
companied by intensive neutronization of stellar mate-
rial due to the inverse -process

e+p—n+ve

responsible for fast cooling of pulsars [12]. Because this
urca process is controlled by the weak, parity violating
interaction, it is expected that the magnetic anisotropy
caused by the presence of a seed magnetic field intro-
duces in the final product of the collapse a tremendous
difference between the number of neutrons with spin
magnetic moments directed along the seed magnetic
field and those with oppositely directed spins, such that
the main body of the newly born neutron star mass de-
velops a permanent magnetization of the paramagnetic
type. The amplification of the magnetic field in this
process is attributed to implosive contraction that pro-
ceeds with the preserved magnetic flux.

Following this line of argument, we consider the ho-
mogeneous model of a paramagnetic neutron star un-
dergoing nonradial pulsations triggered either by the
implosive effect of a supernova event or by gamma-
bursting starquakes. In doing this, we utilize a some-
what different, as compared to the ALP model, form
of the macroscopic equations governing the motions
of magnetically polarized neutron matter, adopted
from the macroscopic electrodynamics of single-axis
magneto-elastic insulators [14]. One of the purposes
is to show that the proposed approach is interesting
in its own right because the continuum mechanics of
magnetically polarized stellar matter is less studied in
astrophysics compared to magneto-hydrodynamics un-
derlying our understanding of the motions of highly
conductive stellar matter threaded by a magnetic field.
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Different aspects of this project have been reported in
proceedings of several recent conferences [15-17], and
our goal here is to bring them together in extended
fashion.

The paper is organized as follows. In Sec. 2, the
macroscopic equations of the magneto-elastic dynam-
ics of spin-polarized nuclear matter are introduced and
the dispersion equation for the wave transport of mag-
netization is derived. Section 3 presents a variational
calculation of the periods of nonradial torsional pul-
sations of paramagnetic neutron stars with emphasis
on the generation of the magnetospheric polarization
charge responsible for the radiation from the star; the
obtained analytic estimates are quantified using param-
eters that are typical of radio pulsars and magnetars.
The last section provides a brief summary of the results
obtained.

2. GOVERNING EQUATIONS FOR
MAGNETO-ELASTIC DYNAMICS

In what follows, we assume, as in most of the works
cited above, that permanently magnetized baryon mat-
ter of a neutron star possesses properties of a degener-
ate Fermi gas of neutrons condensed by self-gravity to
the normal nuclear density p = 2.8 - 10!'* g-em=3. To
describe the equilibrium state of spin-polarized neutron
star matter, we use a linear constitutive equation in the
form given in [18],

M = y B, (2.1)
where y > 0 stands for the average paramagnetic sus-
ceptibility of homogeneous neutron star matter, which
is estimated to be x ~ 2y r at the normal nuclear den-
sity [5-8], where xr is the Pauli paramagnetic suscep-
tibility of zero-temperature, degenerate, neutron Fermi
gas compressed to the nuclear density,

3 un
XFZ—nM—

~1.3-107%
2 (S '

n (2.1), B denotes the fossil magnetic field frozen in
the neutron star core.

The macroscopic description of motions of neutron
star matter in terms of the theory of continuous media
implies that the space scale of material displacements
is much larger than the spacing between baryons. The
basic suggestion underlying continuum models of neu-
tron star material is to identify the behavior of many-
component spin polarized baryon matter with that of
the spin-polarized neutron degenerate Fermi gas of the
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equivalent density p subjected to the standard continu-
ity equation

@ ﬁvk

Hereafter,
d/dt=0/0t+v -V

stands for the convective derivative. The second sug-
gestion of particular interest is to consider the magne-
tization field m(r,¢) (magnetic moment per unit vol-
ume) as an independent dynamical variable of motion,
on equal footing with the bulk density p(r,t) and the
elastic displacement velocity v(r,t). According to [14],
the distinguishing feature of mechanical behavior of
magneto-elastic insulators is that the dynamics of their
intrinsic deformations is controlled by a driving force
originating from antisymmetric magnetic stresses 7;;
(see also [19]). The dynamical equation of magneto-
elasticity is given by

dUl' 6Tik 1
= ik = = [m; B, — mp Byl .
7 B Tik [m; By, — my, B;]

p (2.3)

2

Thus, the antisymmetric form of the magnetic stress
tensor 7;; exhibits a substantially non-Hookean cha-
racter!) of magneto-elasticity, which comes into play
only when the direction of the local magnetization m
deviates from the direction of the equilibrium magneti-
zation M. The constitutive equation for the evolution
of m is given by

dm; 1 (Ov  Ov
—_— = Wwj , ik = — — s 2.
dt Wik Mk Wik 2 (695, 8l‘k ) ( 5)

where w;; is interpreted as the antisymmetric rate-of-
deformation tensor [14].

The above equations of dissipation-free magneto-
elastic dynamics can be represented in the following
equivalent vector form:

% +p(r,t) V- v(r,t) =0, (2.6)
dv(r,t) 1 _
T KV x [m(r,t) x M], M= xB, (2.7)

1) The linear elastodynamics of material displacements u; in
an isotropic solid under pure shear deformations that are not
accompanied by density fluctuations is described by the Lamé
equation [20]

0%u; oo Ouy,
P = v 5 =0,
ot oxy, oxy,
ou du;
k + z) ,
ox; oxy,

(2.4)

1
Oik = 20 Uik,  Uigp = B (

where o;; is the symmetric tensor of elastic stresses, p is the
shear modulus, and wu; is the strain tensor.

dm(r,t)
dt

w(r,t) = %[V x v(r,t)].

= [w(r,t) x M],
(2.8)

This form accentuates the fact that the magneto-elastic
driving force

f(r,t) =V x 7(r,t)

in Eq. (2.7) is inextricably related to the magnetic
torque density
1

T(r,t) = E[m(r,t) x BJ;
we again see that magneto-elastic effects manifest
themselves when the magnetization field m devi-
ates from the direction of the saturated magnetiza-
tion M = yB. Equation (2.8) describing differen-
tial rotation of the magnetization about the magnetic
anisotropy axis is the standard equation of precession
under which the direction of m changes but the magni-
tude does not. It is noteworthy that similar equations
have recently been used in the study of the large-scale
motions of a poorly conducting interstellar medium
possessing properties of gas-based ferrocolloidal soft
matter consisting of tiny ferromagnetic solid grains sus-

pended in a dense magnetically passive and electrically
neutral fluid [22].

2.1. Wave transport of magnetization in
paramagnetic neutron star matter

Applying the standard linearization procedure to
Eqs. (2.6)—(2.8),

v = vg+ov(r,t), m — mg+ om(r,t),

3

where
vg=0, my=M =B,
we obtain
V.ov(r,t) =0, V- -dm(r,t) =0, (2.9)
dov(r,t) 1
%mT(t"’t) = %[[v x dv(r,t)] x M]. (2.11)

This set of coupled equations describes transmission
of linear fluctuations in incompressible spin-polarized
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baryon matter that are not accompanied by the ap-
pearance of the density of magnetic poles (the right-
hand sides of Egs. (2.9)). Substitution of the plane-
wave form of the fluctuating variables

ov x exp(iwt—ik - r), om o exp(iwt—ik -r) (2.12)

in (2.11) leads to the transversality conditions

k-ov=0, k-dm=0.

Inserting (2.12) in (2.10) yields
5 LI
v=——(k- m.
wp o
After substitution of (2.12) in (2.11), we obtain that
1
wéim = —5[(k -M) ov — k(dv - M)].

Taking the scalar product of the last equation with
k # 0 and considering the above transversality con-
ditions, we obtain

ov-M = 0.

Given this, the link between the frequency and the wave
vector in the magneto-elastic wave is defined by the
coupled equations

wpdv + %(k -M)ém = 0,
1X (2.13)
wom + §(k -M) ov = 0.

Eliminating (k - M), we find that magneto-elastic os-
cillatory motions satisfy the energy equipartition prin-
ciple

pov?

2

_ 0m?
=

(2.14)

which states that in the magneto-elastic wave, the ki-
netic energy of fluctuating elastic displacements equals
the mean potential energy of fluctuating magnetization.
The compatibility of Eqs. (2.13) leads to the dispersion
relation of the magneto-elastic wave,

(k-M)? _ x
dxp 4p

w2

= (k-B)? = VH E? cos’ 6, (2.15)

where 6 is the angle between k and M. Tt is remarkable
that the speed of the wave transport of magnetization

MB
4p

Vm (2.16)
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in paramagnetic neutron matter is proportional to the
intensity of the fossil magnetic field B; in ferromag-
netic neutron matter, this speed is proportional to the
intensity of the spontaneous magnetization M. This
is noteworthy because the magneto-elastic wave trans-
port of magnetization is characterized by a dispersion-
free law, w o< k, in contrast to spin waves that have
quadratic dispersion in k, w o k2. It is therefore ex-
pected that under the cooling of paramagnetic neutron
star, the temperature variation of the equilibrium mag-
netization M (T") follows the Curie law

which is due to the dispersion-free nature of magneto-
phonons, instead of the Bloch law

M (0) — M(T)/M(0) o< T?/?

for ferromagnetic dielectrics, which is due to quadratic
dispersion of magnons.

Deserving special comment is the case of the homo-
geneous spherical mass of paramagnetic matter, which
is obviously of particular relevance for neutron stars.
In the case of the homogeneous spherical mass of (non-
ferromagnetic) magnetics, the internal magnetic field is
uniform and is expressed by the equations

B+2H=0
and
B=H+4rM,
which imply that
B = 8—ﬂ-M;
3

see, for instance, Ref. [21, § 76, problem 2], where it
is emphasized that the latter equations hold for solely
nonferromagnetic materials. Substituting this latter
value of B in (2.16), we find

This form of the speed of the magneto-elastic wave is
very similar to that found in [1]. On this ground, we can
conclude that magneto-elastic waves is a feature generic
to the permanent magnetization of neutron star mat-
ter of both ferromagnetic and paramagnetic types. For
condensed media possessing a highly pronounced prop-
erty of magnetic polarizability, the considered magneto-
elastic dynamic wave has the same physical significance
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as the Alfvén magneto-hydrodynamic wave does for in-
compressible magnetoactive plasma.

Quantitatively, the speed of a magneto-elastic wave
in paramagnetic neutron matter compressed to the nor-
mal nuclear density with the magnetic field strength
B ~ 10'2-10'"* (cm/s) -G, typical of pulsars and mag-
netars, falls into the interval 10° < Vj; < 108 cm/s; for
comparison, the speed of the zero-temperature longitu-
dinal sound wave is

2
cs = ?F ~ 10° cm/s.

The transverse magneto-elastic wave is therefore a
slowly propagating exitation in spin-polarized neutron
star matter possessing properties of the degenerate
paramagnetic Fermi gas of neutrons.

3. NONRADIAL MAGNETO-ELASTIC
PULSATIONS OF A PERMANENTLY
MAGNETIZED NEUTRON STAR

The purpose of the remainder of this paper is to
elucidate the character of mechanical distortions of a
neutron star caused by strong coupling between fluctu-
ations of the local magnetization and material displace-
ment and their effect on electromagnetic activity of a
paramagnetic neutron star. In doing this, we focus on
nonradial magneto-elastic pulsations, which are of par-
ticular interest in pulsar astrophysics [23-25]. Circum-
stantial evidence for the neutron star pulsations is the
coherence of millisecond micropulses inferred in [26].

The eigenfrequencies of nonradial magneto-elastic
pulsations can be computed on the basis of the energy
variational principle. The starting point of this method
is the energy balance equation

9 [ pov?

ot 2
dw = %[V x ov(r,t)],

av :/ [bm x B] - dw dV,
(3.1)

which is obtained by taking the scalar product of (2.10)
with dv and integrating by parts over the star volume;
the surface integral is then dropped because the crustal
material of a neutron star possesses properties of a mag-
netoactive solid-state plasma in which the magnetic or-
dering effects are heavily suppressed. The left-hand
side of (3.1) exhibits a substantially rotational char-
acter of motions accompanying magneto-elastic pulsa-
tions of a permanently magnetized neutron star. The

next step is to use the factorized representation of the
velocity and vorticity fields

ov(r,t) = a(r)a(t), Odw(r,t) = ¢(r)al(t),

3.2
Bx) = 3 [V xalr)] o

where a(r) is the field of instantaneous displacements
and a(t) defines the temporal evolution of fluctuations.
Inserting (3.2) in (2.11) and eliminating time deriva-
tives, we obtain

dm(r,t) = p(r)a(t),

1 (3.3)
u(r) = [¢(r) x M] = S[[V x a(r)] x M].
Substitution of (3.2) and (3.3) in (3.1) leads to
-2 -2
d—H: , H= Ma +I&a S a+wla=0,
s _ K ‘
W=

where the inertia M and the stiffness K of magneto-
elastic vibrations are given by

M = / pa?dv,
‘ 1 (3.5)

K=x" /ude: 4—/[[v x a] x M]?dV.

X

Thus, computing the frequency of the magneto-elastic
mode requires specifing the field a of instantaneous dis-
placements that have the differentially rotational char-
acter, as follows from the expression for the coefficient
K of the restoring force of magneto-elastic pulsations.

3.1. Comments on nonradial elastic pulsations
of a solid star

The eigenmodes of neutron stars associated with de-
formation properties of incompressible baryon material,
highly robust to mechanical distortions, can be speci-
fied, as was first suggested in [23], by spheroidal and
torsional modes of shear elastic vibrations of a solid
sphere. This terminology is due to Lamb [27], who
first tackled the latter problem and gave its solution
for substantially radial spheroidal and torsional elas-
tic vibrations of a solid sphere (see, e.g., [28]). In the
meantime, the case of nonradial pulsations, which is of
particular interest in the astrophysics of compact stars,
has not been considered in the literature on elasticity
and therefore deserves a special analysis. Essentially,
the problem is as follows. From classical equations of
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elastodynamics (2.4), it follows that the field of mate-
rial displacements

u(r,t) = a(r)a(t)

corresponding to standing elastic waves of pure shear
satisfying the Helmholtz equation

V2u + k*u = 0.

Clearly, this equation holds for the solenoidal field of
instantaneous displacements,

V2a + k*a =0,
where
k2 = w2/cf
and
i =plp

is the speed of elastic shear waves in solid bulk. The
poloidal solution

a, = Ap(L)V x V x [rjr(kr) Pr(z)]

describes even-parity spheroidal modes. The toroidal
solution

a; = Ay(L)V x [rjr(kr) Pr(2)]

describes odd-parity torsional modes; hereafter, jr, (kr)
is the spherical Bessel function and Pr,(z) (2 = cosf)
is the Legendre polynomial of the multipole degree L.
General properties of solenoidal vector fields, both the
toroidal and the poloidal ones, can be found in [29].
The arbitrary constants and the frequencies of these
modes are customarily found from the boundary con-
dition of a stress-free surface,

NkOiklr=r =0

(where n; are components of the unit vector normal
to the surface), which leads to a transcendent dis-
persion equation whose roots are determined by the
nodal structure of Bessel functions. In the case of low-
frequency nonradial substantially long wavelengths,
A = oo, with

E=w/c,=2m/X =0,

the Helmholtz equation of standing shear waves is re-
duced to the vector Laplace equation for the solenoidal
field of elastic displacements,

VZa =0,

V-.a=0. (3.6)
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The poloidal and toroidal solutions of (3.6) are given
by [24]

a,=N,(L)V xV x [vrl Pp(2)] =

=N, (L+1)VrEPp(2) (3.7)

a; = Ny(L)V x [rr" Pp(2)). (3.8)
From the standpoint of Lamb’s solutions for the fields
of displacements, the spherical Bessel function jy, (kr)
determining the radial dependence of a(r, §) asymptot-
ically tends in the long wavelength limit to the function
rL that has no nodes in the interval 0 < r < R; from
this, the term nonradial vibrations is derived. The fre-
quencies of nonradial shear modes can be computed
from the above expanded energy variational principle.
Taking the scalar product of Lamé equation (2.4) with

ui(r,t) = a;(r) a(t)

and integrating over the volume, we obtain

Ma+ Ka =0, M:/paiaidV,

K:%/( >2dV.

Substituting in (3.9) the poloidal and the toroidal
displacement fields in respective Eqgs. (3.7) and (3.8)
allows us to analytically express the respective fre-
quences of nonradial spheroidal and torsional shear
modes wy(L) and wy (L) of a spherical mass of an elastic
solid through the multipole degree L as

- (3.9)

833]'

c’iaj
8332'

ws(L) = we22L + 1)(L — 1)]*?,

wi(L) = we[(2L + 3)(L — 1)]'/2, (3.10)

Ct

R’

WE
where wp = [u/(p R?)]'/? is the natural unit of fre-
quency of elastic shear vibrations. Equations (3.10)
were obtained in recent works [30] in a somewhat dif-
ferent context. The goal of this short comment was
to demonstrate the efficiency of the energy variational
principle in the study of nonradial vibrations, which al-
lows computing the frequency of both the even-parity
s-mode and the odd-parity ¢-mode of the solid sphere
on an equal footing. It is also noteworthy that the
problem of inertial waves in a uniformly rotating solid,
which, in our opinion, is of particular interest in the
study of pulsations of rotating neutron stars, was only
recently considered and solved in [31].

The fact that spin-polarized neutron matter can
transmit perturbations by transverse waves indicates
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that the magnetic field penetrated into the body of the
star imparts to stellar material a supplementary por-
tion of elasticity generic to solids. In computing pe-
riods of nonradial magneto-elastic pulsations of a per-
manently magnetized neutron star, it therefore seems
natural to use the fields of instantaneous displacements
corresponding to nonradial spheroidal and torsional
shear vibrations of a solid sphere. In doing this, we note
that the poloidal vector field associated with spheroidal
nonradial pulsations is irrotational,

V xa,=0.

This implies that a paramagnetic neutron star does not
support nonradial spheroidal pulsations (because the
coefficient of the restoring force K in Eq. (3.5) van-
ishes), but solely supports nonradial torsional shear
pulsations coupled with fluctuations in magnetization.

3.2. Periods of torsional magneto-elastic
pulsations

Under the global nonradial differentially rotational
vibrations of a neutron star, the velocity field of tor-
sional material displacements is described by [24, 25]

ov(r,t) =u(r,t) = a;(r)a(t) =
= %[5w(r,t) x r],

dw(r,t) = N;Vrl Pr(2)a(t).

(3.11)

The constant NV is eliminated from the boundary con-
dition

ov| = %[ﬂ(t) xR], Q(t)=a(t)V PL(z),
as
1
Ni = pro (3.12)

The dipole field, with L = 1, corresponds to the rigid-
body rotation of the star, because the angular ve-
locity becomes a homogeneous vector. The differen-
tially rotational deformations of the star correspond-
ing to quadrupole, L = 2, and octupole, L = 3, over-
tones of nonradial torsional pulsations are illustrated
in Fig. 1. In spherical polar coordinates, the compo-
nents of the toroidal field of instantaneous displace-
ments a;(r) in the star undergoing torsional nonradial
pulsations about polar axis are given by

ar =0, ag=0,

3.13
a¢=NtrL(1—22)1/2dL(Z). (38.13)

dp

Computed with this field, the parameter of inertia as a
function of the multipole degree of vibration is given by

L(L+1)

_ 2 1 5 LiL+1)
M(L)—/path—47rpR GL+1)(20+43)°

(3.14)

It is easy to see that at L = 1, this parameter equals
the moment of inertia of rigid sphere,

M(L=1)= %MRQ,

where

_ 4 3
M= 3pR

is the star mass.

In the general case, the direction of the equilibrium
magnetic anisotropy M can be tilted to the polar axis
about which the torsional pulsations of the star occur,

M,=M [(1 — 22)1/2 cos ¢ sin 3 + zcosﬂ]
z = cosf,

My = M [zcos ¢ sin f — (1 — 22)'/? cos 3],

Mgy = —M sin ¢ sin f3,

3

(3.15)

where [ is the inclination angle between the polar axis
z and the vector M. After simple, but fairly tedious
calculation of integrals, we obtain the following analytic
form of the stiffness:

K(L) = & / [V x a;] x M?dV =
(L2 —1)(L +1)
iz -1
3L-1

X cos 3 [1+ mtgﬂ} . (3.16)

L
= tMBR?

The frequency of a nonradial torsional magneto-elastic
mode is given by

2L+ 3
w2(L)=w]2\,[(L2—1)2L_1cos,6’><
30 -1 ,
x[1+2(L_1)tgﬂ}, Wi = (3.17)

where wps is the natural unit of frequency and Vj; =
= [M B/4p]'/? is the speed of the magneto-elastic wave
in bulk. This mode can be considered as a magneto-
elastic counterpart of Walker’s mode for spherical ho-
mogeneous mass of a ferromagnetic solid [11]. For the
adopted constitutive equation of paramagnetic matter
B = x ' M, this frequency is given by

M2

R 3.18
Wi 4XpR2 ( )
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Fig.1. Geometrical illustration of torsional deformations of a neutron star undergoing quadrupole (left) and octupole (right)
nonradial pulsations

For an ideal homogeneous magnetic sphere, with
B = (87/3) M, this frequency is given by
2 M?
2
= — —. 3.19
Wnr 3 pR2 ( )
The corresponding period is Py = (2rwys)~'. This

mode, which is said to be the magneto-torsional or m /¢
mode in what follows, is unique to the permanent mag-
netization of neutron star matter and is an axial or
abnormal parity mode. In the case where § = 0 (the
model of the aligned magnetic torsator), the frequency

of the m/t mode is given by
w(L) = war [(L* = 1)(2L + 3) /(2L — 1)]'/?

(see [16]). This equation implies that the asymptotic
shortening of the period P(L) = (2rw(L)) *as L — oo

922

is inversely proportional to the multipole degree of vi-
brations, P(L) « 1/L. On the other hand, this indi-
cates the lengthening of periods as the multipole degree
of vibration L decreases. It seems quite plausible that
under the implosive effect of a supernova event or star-
quake, the permanently magnetized core of the nascent
neutron star can show a highly restless oscillatory be-
havior characterized by sufficiently large values of L,
whereas a mature object becomes quieter and its tran-
sition to lower overtones of magneto-elastic pulsations
is accompanied by lengthening of periods.

3.3. Application to pulsars and magnetars

To estimate the timing of magneto-elastic pulsa-
tions, we here evaluate periods of the m/t mode for
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Fig.2. The period Py of nonradial torsional magneto-
elastic pulsations (in seconds) of a neutron star as a
function of the multipole degree L of vibration

a homogeneous model of a paramagnetic neutron star
with the standard parameters, the mass M = 1.4 M
and the radius R = 12 km, and with the magnetic
susceptibility taken from the model of the degenerate
paramagnetic Fermi gas of neutrons condensed to the
normal nuclear density, which corresponds to the ho-
mogeneous neutron star model with the above param-
eters. In Fig. 2, we plot the period P(L) as a function
of the multipole degree of vibration L, computed in the
model of the aligned magnetic torsator for the magnetic
field intensity typical of both radio pulsars, B ~ 10!~
10'3, and supermagnetic anomalous X -ray pulsars and
soft gamma repeaters B ~ 10'4-10'%, dubbed magne-
tars [34]. For a neutron star with the magnetic field of
Crab-pulsar, the expected period of the m/t mode is
P ~ 3-5 min. It is remarkable that the computed peri-
ods are close to those for pulsed gamma emission of cur-
rently monitored soft gamma repeaters (see, e.g., [35]).
One of the salient features of the soft gamma repeater
radiation activity is that they do not display radiation
in the radio region. The pulsed gamma emission of
soft gamma repeaters becomes well discernible just af-
ter highly energetic gamma bursts [36], which are pre-
sumably associated with irregular starquakes [37]. In
Fig. 3, the period of torsional magneto-elastic pulsa-
tions of a paramagnetic neutron star is pictured in jux-
taposition with data on the periodic pulsed radiation
of soft gamma repeaters. Bearing in mind that the
computed periods fall into the realm of pulsed gamma
emission of magnetars, we conjecture that the detected
5-10 s periodicity of their pulsed gamma-activity is
powered by nonradial torsional magneto-elastic vibra-
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Fig.3. The period of nonradial torsional magneto-

elastic pulsations (in seconds) versus the magnetic field

intensity B and data on periods of pulsed gamma

emission of soft gamma repeaters taken from [38];

M = 14M.,, R = 12 km; L = 2 (1), 3 (2),
20 (3)

tions exhibiting permanent magnetization of this class
of neutron stars.

3.4. Magnetosphere of a permanently
magnetized neutron star

One more remarkable inference of the model under
consideration is that a paramagnetic neutron star un-
dergoing nonradial torsional magneto-elastic pulsations
is capable of generating a periodically oscillating elec-
tric field inducing the magnetospheric effect that has
many features in common with the Goldreich—Julian
effect [32, 33]). This can be readily seen from the
Minkowski equation describing the dielectric polariza-
bility D in moving permanently magnetized matter of
nonferromagnetic type (see, e.g., [21])

4m(2e + 1)

D =¢E
ek + 3

[v x M], (3.20)

under the assumption that the dielectric permeabili-
ty of spin-polarized baryon matter is infinitely large,
€ — 00, as in metallic solids. For a linear, small-ampli-
tude, differentially rotational fluctuations of such mat-
ter around the equilibrium state with vo = 0, Eq. (3.20)
is reduced to

Am(2e + 1)

0D = e/E +
3c

[Ov x M], (3.21)
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Fig.4. Cross-section of the paramagnetic neutron star structure according to expected electromagnetic properties of stellar
matter

and as € — oo, the last equation becomes?

2) Equation (3.22) has the same physical meaning as the equa-
tion
1 1
E=—-[uxB], u=_[wxr|,
c 2
in the Goldreich—Julian theory [32] of pulsar magnetosphere re-
sulting from the perfect conductivity condition ¢ — oo in the

Ohm law: 1
j:(r(E+7[v><B}>.
c

924

6E:—§—Z[6VXM], 5V:%[6w><r]. (3.22)

Identifying the angular velocity magnitude with the
frequency of magneto-torsional pulsations, we find
the intensity of equatorial electric field E ~ 10'0-
102 P! -V -cm~!. This field pulls off the charged
particles from the star surface and accelerates them
along the open magnetic field lines frozen into the neu-
tron star; the electric force F, ~ eF is much greater
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than the Newtonian force of gravitational attraction
F, ~ mg: the ratio F./F, ~ 108-10'°. The density
of the resultant magnetospheric polarization charge is
given by

1 4
Numerically, the particle density of the polarization
charge 0n. = |6p/e| is of the order 1072B - P;,*-cm™2.
We can expect that magneto-elastic pulsations causing
periodic fluctuations of the open magnetic field lines
frozen into the star core should affect the electromag-
netic (synchrotron and/or curvature [39]) radiation by
periodic deviations of the beam direction. For neutron
stars with the magnetic field intensity typical of radio
pulsars, the above periodicity manifests itself as a long
periodic modulation of the main pulse train. In search-
ing for this effect, the satellite-based telescopes seem
to be more promising, because proper rotation of the
Earth highly limits the monitoring time of radio pulsars
by stationary Earth-based telescopes. Understandably,
this discussion is suggestive rather than conclusive.

4. SUMMARY AND CONCLUSION

While the magnetic flux conservation in the pro-
cess of contraction of the main sequence star, predicted
in [40], serves as a sufficiently reliable guide in esti-
mating the surface magnetic field for both pulsars and
magnetars, the electrodynamics of neutron star matter
responsible for the long-term stability of such highly
intense fields remains one of the challenges in astro-
physics of compact stars (e.g., [41]). One of the plau-
sible explanations is that the fossil magnetic field of a
collapsed massive star, amplified by processes of catas-
trophic implosion, resides in the star interior by caus-
ing strong spin polarization of baryon matter in the
neutron star core such that the main body of the neu-
tron star mass comes into gravitational equilibrium in
the state of permanent magnetization promoted by the
Pauli paramagnetism. The resultant structure of the
paramagnetic neutron star relevant to this scenario,
pictured in Fig. 4, is thought of as a dense magnetic
core (composed of spin-polarized baryon matter) cov-
ered by a magnetoactive solid-state plasma (composed
of highly mobile electrons and the crystallized struc-
ture of immobilized protons and nuclei). It is note-
worthy that the presence of a magnetic core provides
a natural justification of the magnetoplasma processes

in the neutron star crust like Alvfén waves [42] and
helicons [43].

To explore characteristic features of electromag-
netic activity of a neutron star owing its origin to
the permanent magnetization of stellar material,
we have considered a highly idealized model of a
homogeneous paramagnetic star undergoing global
nonradial magneto-elastic pulsations. Highlighted are
magneto-elastic dynamics equations adopted from the
macroscopic theory of poorly conducting magnetics; it
was shown that this theory can be efficiently utilized
in the study of motions of permanently magnetized
stars associated with large-scale transport of magne-
tization in an incompressible magnetically ordered
stellar matter. What is newly disclosed here is that
a permanently magnetized neutron star can support
torsional nonradial magneto-elastic pulsations gen-
erating the electric field responsible for the neutron
star magnetosphere. The net outcome of this paper
is that the paramagnetic magnetization of neutron
star matter is not inconsistent with the available
data on electromagnetic activity of both pulsars and
magnetars.
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