КЛАССИЧЕСКИЕ И КВАНТОВЫЕ ЭФФЕКТЫ В ДИНАМИКЕ МЕЗОСКОПИЧЕСКОГО МАГНИТА, ИНДУЦИРОВАННЫЕ СПИНОВЫМ ТОКОМ

А. К. Звездин^{*}, К. А. Звездин

Институт общей физики Российской академии наук 119991, ГСП-1, Москва, Россия

Поступила в редакцию 22 апреля 2002 г.

Рассмотрена динамика квантовой системы с большим спином, обладающей магнитной анизотропией типа «легкая плоскость», под действием спин-поляризованного тока, пронизывающего эту систему. Спин-поляризованный ток (со спином электронов, поляризованным по «трудной оси» системы) индуцирует переориентацию магнитного момента системы от легкой плоскости к трудной оси. Получены аналитические выражения, определяющие характеристики процесса переориентации в двух предельных случаях: сильной и слабой диссипации в системе. Показано, что в случае сильной диссипации процесс переориентации носит пороговый характер с «мягким» (непрерывным) выходом магнитного момента из легкой плоскости. В случае слабой диссипации процесс переориентации является дискретным, т. е. сопровождается скачками магнитного момента и гистерезисом при возрастании и убывании спинового тока. При достаточно низкой температуре и в случае слабого затухания в динамике системы возникают квантовые эффекты. Спиновый ток индуцирует возбуждения квазианионного характера, а также блоховские осцилляции прецессионного движения магнитного момента и туннельные эффекты между различными квантовыми режимами прецессии. Эти квантовые эффекты проявляются, в частности, в виде скачков магнитного момента и пиков магнитной восприимчивости рассматриваемой системы.

PACS: 72.25.Ba

1. Недавно был предложен [1,2] и экспериментально подтвержден [3] новый механизм перемагничивания магнитных тел. Суть его заключается в том, что протекающий через намагниченный образец спин-поляризованный ток создает вращающий момент, действующий на магнитный момент образца и способный изменить его величину и направление. Спиновая поляризация тока возникает при его протекании через ферромагнитный металл и сохраняется при выходе тока из него на некоторой длине, величина которой зависит от свойств поверхности и материала, в который втекает поляризованный ток (для некоторых металлов и полупроводников эта длина может достигать 1 мкм и более). Спин-поляризованный ток пропорционален потоку момента импульса, а изменение последнего (в данной проблематике его называют спиновым током) при протекании через намагниченный образец и определяет величину действующего на спины образца вращающего момента. Этот новый эффект привлекает к себе большое внимание в наноэлектронике и наномагнетизме, так как открывает возможности для создания перспективных приборов. Разные аспекты обсуждаемого эффекта рассмотрены в работах [4–17].

В настоящей работе исследуется динамика перемагничивания под действием спинового тока мезоскопического магнитного образца с ромбической анизотропией. Акцентируется внимание на новых квантовых эффектах: блоховских осцилляциях и зенеровском макроскопическом туннелировании, которые индуцируются спин-поляризованным током.

2. Рассмотрим динамику магнитного момента магнитной молекулы (нанокластера) или наночастицы с магнитной анизотропией типа легкая плоскость¹⁾, расположенной между двумя плоскими кон-

^{*}E-mail: zvezdin@nnet.org

Точнее, ниже речь идет о ромбической анизотропии, а именно, предполагается, что в легкой плоскости существует слабая одноосная анизотропия

тактами, хотя бы один из которых является ферромагнитным. Предполагается, что зазор между контактами F_1 и F_2 достаточно узкий, так что между ними может протекать туннельный ток. Известно, что туннельный ток из ферромагнетика является спин-поляризованным. Пусть степень поляризации электронов равна *р.* Для ферромагнетиков Fe, Co, Ni, Cd величина p равна соответственно 0.40, 0.35, 0.23, 0.14 [18]. Особый интерес представляют так называемые ферромагнитные полуметаллы, у которых $p \approx 1$. К таковым относятся LaMnO₃, CrO₂, Fe₃O₄ и сплавы Гейслера (Heisler). Вместо диэлектрической может быть использована металлическая немагнитная прослойка с вкрапленными в нее наночастицами или редкоземельными ионами (например, Но, Ть и др.)²⁾. Относительно наночастицы (магнитной молекулы или редкоземельного иона) будем предполагать, что она обладает в основном состоянии магнитным моментом и магнитной анизотропией типа легкая плоскость, но с некоторой достаточно малой азимутальной анизотропией в легкой плоскости.

Другая топология эксперимента может быть основана на использовании проводящих органических молекул, которые методами самосборки выращиваются и контактируются с немагнитным или ферромагнитным металлом (например, Au, Ni)³⁾. Такой контакт достигается за счет хемосорбции так называемых тиоловых групп, которые формируются на конце органической молекулы, контактирующей с металлическим электродом. Примером таких органических молекул с тиоловой конечной группой являются бензол-тиольные молекулы. К другому концу органической молекулы химически или за счет вандерваальсовых сил «прицепляется» магнитный элемент — магнитный нанокластер или ион с анизотропией типа легкая плоскость⁴). В качестве другого контакта может быть использована магнитная металлическая (например, никелевая) игла атомного силового микроскопа. Такая конфигурация эксперимента является в настоящее время типичной для нанофизики и наноэлектроники.

Пусть, для определенности, трудная ось молекулы совпадает с осью *z*. В пионерской работе Слончевского [1] предложено следующее обобщение уравнения Ландау–Лифшица на ситуацию, когда магнитная частица подвержена действию спин-поляризованного тока:

$$\frac{d\mathbf{n}}{dt} = \left[[\mathbf{n} \times \gamma \mathbf{H}_{eff}] - \alpha \dot{\mathbf{n}} + \frac{I_e g}{eS} [\mathbf{n}_e \times \mathbf{n}] \right], \quad (1)$$

где **п** — единичный вектор, направленный вдоль полного магнитного момента частицы, **n**_e — единичный вектор, направленный вдоль среднего спина электронного тока, γ — гиромагнитное отношение, α — безразмерная константа затухания, I_e — полный ток, пронизывающий частицу,

$$g = \frac{1}{-4 + (1+p)^3 (3 + \mathbf{n}_e \cdot \mathbf{n})/4p^{3/2}} > 0, \qquad (2)$$

S — полный спин магнитной частицы, p — спиновая поляризация тока, определяемая как

$$p = \frac{\rho_{\uparrow} - \rho_{\downarrow}}{\rho_{\uparrow} + \rho_{\downarrow}},\tag{3}$$

где ρ_{\uparrow} (ρ_{\downarrow}) — плотность электронов со спином, направленным по (против) оси z; $\mathbf{H}_{eff} = \mathbf{H} + \mathbf{H}_A$, где \mathbf{H} — внешнее поле, \mathbf{H}_A — поле анизотропии.

3. Уравнение (1) в сферических координатах θ , φ , где полярный угол θ отсчитывается от оси z, а азимутальный φ — от оси x, совпадающей с осью легкого намагничивания, имеет вид

$$\dot{\theta}\sin\theta + \alpha\dot{\varphi}\sin^2\theta = -\frac{\gamma}{M}\frac{\partial E}{\partial\varphi} + \frac{Ig}{Se}\sin^2\theta, \quad (4)$$

$$\alpha \dot{\theta} - \dot{\varphi} \sin \theta = -\frac{\gamma}{M} \frac{\partial E}{\partial \theta}, \qquad (5)$$

где

$$E = K_1 \cos^2 \theta + K_2 \sin^2 \theta \sin^2 \varphi - MH \cos \theta, \quad (6)$$

 $0 < K_2 \ll K_1.$

Подставляя (6) в (4) и (5), получим

$$\dot{\theta} + \alpha \dot{\varphi} \sin \theta = -\frac{\omega_2}{2} \sin \theta \sin 2\varphi + j \sin \theta,$$
 (7)

$$\alpha \dot{\theta} - \dot{\varphi} \sin \theta = (\omega_1 - \omega_2 \sin^2 \varphi) \sin \theta \cos \theta - \omega_H \sin \theta, \quad (8)$$

где

$$\omega_1 = \gamma \frac{2K_1}{M}, \quad \omega_2 = \gamma \frac{2K_2}{M},$$

$$\omega_H = \gamma H, \quad j = \frac{gI}{Se}.$$
(9)

 $^{^{2)}}$ Сошлемся в этом контексте на работу [31], в которой изучалась квантовая динамика ионов ${\rm Ho}^{3+}$ в кристаллах ${\rm Li}({\rm Y},{\rm Ho}){\rm F}_4.$

³⁾ См. по этому поводу работы [32].

⁴⁾ В настоящее время синтезировано и исследуется значительное число нанокластеров с такой анизотропией [33], см. также [34], где получены пленки Лэнгмюр-Блоджетт с магнитными молекулами Mn₁₂.

Основному состоянию этой системы (при H = 0) соответствует $\theta = \pi/2$, $\varphi = 0, \pi$. Легко убедиться, что при $\alpha = 0$ резонансная частота (частота ферромагнитного резонанса, ФМР) равна $\omega_p = \sqrt{\omega_1 \omega_2}$. Затухание в системе характеризуется частотой $\omega_d = \alpha \omega_1$. Естественно рассмотреть два предельных случая: сильного ($\omega_d \gg \omega_p$) и слабого ($\omega_d \ll \omega_p$) затухания.

4. Случай сильного затухания. При $\omega_d \gg \omega_p$ уравнения (7) и (8) принимают вид

$$\alpha \dot{\varphi} + \frac{\omega_2}{2} \sin 2\varphi = j, \tag{10}$$

$$\cos\theta = \frac{\omega_H}{\omega_1} - \frac{1}{\omega_1}\dot{\varphi}.$$
 (11)

Здесь использовано также условие $\omega_2 \ll \omega_1$. Уравнение (10) при начальном условии $\varphi(0) = 0$ имеет решение

$$\varphi = \begin{cases} 2 \arctan\left[\left(\frac{4j^2 - \omega_2^2}{4j^2}\right)^{1/2} \operatorname{tg} \frac{\pi t}{T} - \frac{\omega_2}{2j}\right], & j \ge \frac{\omega_2}{\alpha}, \\ \frac{1}{2} \operatorname{arcsin}\left(\frac{2j}{\omega_2}\right), & j \le \frac{\omega_2}{\alpha}. \end{cases}$$
(12)

Здесь *T* — период прецессии, индуцированной спиновым током,

$$T = \frac{4\pi\alpha}{\sqrt{4j^2 - \omega_2^2}} \,. \tag{13}$$

Намагниченность $M_z = M_0 \cos \theta$ определяется уравнением (11). Очевидно, намагниченность осциллирует при $j \ge \omega_2/\alpha$. При H = 0 ее среднее по периоду T значение равно

$$\langle M_z \rangle = \begin{cases} 0, & j \leq j_{c1}, \\ \frac{M_0}{2\alpha\omega_1} (4j^2 - \omega_2^2)^{1/2}, & j_{c1} \leq j \leq j_{c2}, \\ M_0, & j \geq j_{c2}. \end{cases}$$
(14)

Уравнение (14) представляет собой кривую намагничивания наночастицы спиновым током (рис. 1). Критические спиновые токи равны $j_{c1} = \omega_2/2$ и $j_{c2} = (\omega_2^2/4 + \alpha^2 \omega^2)^{1/2}$ (при H = 0). Первое, очевидно, следует из формул (12) и (13), последнее — из условия $M_z/M_0 = \cos \theta \leq 1$.

На рис. 2 представлена фазовая диаграмма рассматриваемой системы. Внешнее поле *H* очевидным образом смещает верхнюю границу фазовой диаграммы.

5. Случай слабого затухания ($\alpha \omega_1 \ll \omega_p$). В этом случае уравнения (7) и (8) принимают вид

$$\dot{\theta} = -\frac{\omega_2}{2}\sin\theta\sin 2\varphi + j\sin\theta, \qquad (15)$$

$$\dot{\varphi} = -\omega_1 \cos\theta + \omega_H. \tag{16}$$

Уравнения (15) и (16) имеют первый интеграл:

$$\ln \frac{\sin \theta}{(\operatorname{tg}(\theta/2))^{\omega_H/\omega_1}} - U(\varphi) = \operatorname{const}, \qquad (17)$$

14 ЖЭТФ, вып. 4 (10)

где

$$U(\varphi) = \frac{\omega_2}{4\omega_1}(1 - \cos 2\varphi) - \frac{j}{\omega_1}\varphi$$

При H = 0 уравнение (17) дает

$$\sin \theta = \exp\left(\frac{\omega_2}{2\omega_1}\sin^2\varphi - \frac{j}{\omega_1}\varphi\right). \tag{18}$$

Подставляя (18) в (16), получим

$$\dot{\varphi} = -\omega_1 \left(1 - \exp\left(\frac{\omega_2}{\omega_1} \sin^2 \varphi - \frac{2j}{\omega_1}\varphi\right) \right)^{1/2}.$$
 (19)

Начальным условием здесь является $\varphi(t=0) = 0$. Интегрируя (19), получим

$$\tau = \int_{0}^{\varphi} \frac{du}{\left(1 - \exp\left(\frac{\omega_2}{\omega_1}\sin^2 u - \frac{2j}{\omega_1}u\right)\right)^{1/2}}, \quad (20)$$

где $\tau = -\omega_1 t$.

Уравнения (16), (18)–(20) определяют зависимость намагниченности $M_z = M_0 \cos \theta$ от времени τ в параметрическом виде:

$$\cos\theta = \left(1 - \exp\left(\frac{\omega_2}{\omega_1}\sin^2\varphi - \frac{2j}{\omega_1}\varphi\right)\right)^{1/2},\qquad(21)$$

$$\tau = \int_{0}^{\varphi} \frac{du}{\cos \theta(u)} \,. \tag{22}$$

Рис. 1. Зависимость приведенного магнитного момента M_z/M_0 от величины $w = j/j_{c1}$, где $j_{c1} = \omega/2$ для случая сильного затухания $\alpha \omega_1 \gg \omega_p$

Рис. 2. Фазовая диаграмма $j - \omega_2$ для случая сильного затухания

Эта параметрическая форма дает возможность сравнительно легко построить численно зависимости $\cos \theta(\tau)$ и $\varphi(\tau)$. Характерные кривые приведены на рис. 3–5. Анализируя их, можно сделать следующие выводы о динамике индуцированной спиновым током переориентации магнитного момента наночастицы от легкой плоскости к оси z.

1. Существует критическое значение спинового тока $j_1 = 0.3623\omega_1$, ниже которого зависимость $\varphi(\tau)$ имеет несколько ветвей, между которыми имеется область («щель») таких значений угла φ , которые являются недоступными для магнитного момента. Рисунок 3 иллюстрирует эту ситуацию. На нем нижняя ветвь отвечает локализованному состоянию (финитному движению) магнитного момента, а верхняя — прецессионному движению с постепенным приближением к оси z. На рисунке видно также, что прецессия не является непрерывной, она сопровождается скачками и гистерезисами. Последнее означает (и это с очевидностью следует из неоднозначной зависимости $\varphi(\tau)$), что прямой и обратный ходы $\varphi(\tau)$ не совпадают.

Рис.3. Зависимость $\varphi(\tau)$ при $j=0.15\omega_1$, т.е. в области, где существуют запрещенные области для угла φ

Рис. 4. Зависимости $\varphi(\tau)$ и $\cos \theta(\tau)$ при $j = 0.45\omega_1$, т. е. в области $j_1 < j < j_2 \sim 0.65\omega_1$, где запрещенных областей для угла φ нет, но сохраняется неоднозначность зависимостей $\varphi(\tau)$ и $\theta(\tau)$

2. При $j_1 < j < j_2 \approx 0.65\omega_1$ запрещенных областей для угла φ нет, но сохраняется неоднозначность зависимости $\varphi(\tau)$, а следовательно, имеют место скачкообразное изменение величины углов $\varphi(\tau)$ и $\theta(\tau)$ и гистерезисы в динамике магнитного момен-

Рис. 5. Зависимости $\varphi(\tau)$ и $\cos \theta(\tau)$ при $j = 0.75\omega_1$, т.е. в области $j > j_2$, где динамика индуцированной спиновым током переориентации \mathbf{m} от легкой плоскости к трудной оси является плавной, хотя и немонотонной

та (рис. 4а, б).

3. При $j > j_2$ динамика индуцированной спиновым током переориентации магнитного момента от легкой плоскости к оси z является плавной (рис. 5a, δ).

6. При достаточно низких температурах и малых размерах наночастицы нужно учитывать квантовые эффекты в динамике системы. Рассмотрим этот вопрос для случая, когда отклонение магнитного момента от легкой плоскости, т. е. $\psi = \pi/2 - \theta$, является малым параметром. Естественно рассматривать при этом случай слабой диссипации, когда квантовые эффекты проявляются наиболее заметно. При $\psi \ll 1$ уравнение (16) дает

$$\psi = \frac{\omega_H - \dot{\varphi}}{\omega_1} \,. \tag{23}$$

Подставляя (23) в (15), получим

$$\ddot{\varphi} + \frac{1}{2}\omega_p^2 \sin 2\varphi = j\omega_1 + \dot{\omega}_H.$$
(24)

Функции Лагранжа и Гамильтона уравнения (24) имеют вид

$$L = \frac{J\varphi^2}{2} - U(\varphi), \qquad (25)$$

$$H = \frac{P_{\varphi}^2}{2J} + U(\varphi), \qquad (26)$$

где $J = M/2\gamma\omega_1$, а обобщенный импульс P_{φ} и потенциальная энергия $U(\varphi)$ равны соответственно

$$P_{\varphi} = \frac{\partial L}{\partial \dot{\varphi}} = J \dot{\varphi} \tag{27}$$

И

$$U(\varphi) = K_2 \sin^2 \varphi - \frac{M}{\gamma} \left(j + \frac{\dot{\omega}_H}{\omega_1} \right) \varphi.$$
 (28)

Заметим, что намагниченность $M_z = M_0 \cos \theta$ может быть выражена через P_{φ} следующим образом:

$$M_z = \frac{M^2}{2K_1} - 2\gamma P_{\varphi}.$$
 (29)

Уравнения (24)-(28) изоморфны соответствующим уравнениям, описывающим динамику перехода Джозефсона в классическом приближении.

В 1963 году Андерсон [19] предложил описывать макроскопические квантовые эффекты в динамике перехода Джозефсона, рассматривая макроскопические заряд и фазу, которые являются обобщенными импульсом и координатой системы, как операторы. В нашем случае аналогичными величинами являются намагниченность $M_z = M_0 \cos \theta$ и угловая переменная φ , или, согласно (29), P_{φ} и φ . Коммутационное соотношение для последних имеет вид

$$[P_{\varphi}, \varphi] = i\hbar. \tag{30}$$

Учитывая (26)-(30), можно написать уравнение Шредингера

$$i\hbar\dot{\Psi} = \left(\frac{P_{\varphi}^2}{2J} + \frac{1}{2}K_2(1 - \cos 2\varphi) - F\varphi\right)\Psi,\qquad(31)$$

где $\Psi(\varphi, t)$ — волновая функция, описывающая прецессию полного спина наночастицы,

$$F = \frac{M}{\gamma} \left(j + \frac{\dot{\omega}_H}{\omega_1} \right). \tag{32}$$

Уравнение (31) подробно исследовано в [23] (см. также [24–25]) для задачи о динамике квазиклассического спина под действием магнитного поля, линейно зависящего от времени. Вместо скорости изменения поля по времени в данной задаче фигурирует величина F (32).

 14^{*}

Уравнение Шредингера с потенциальной энергией типа «стиральная доска», как в (31), ранее уже изучалось. В качестве примеров можно указать задачу о движении электрона в кристалле под действием однородного постоянного электрического поля [20, 21] и задачу о слабой сверхпроводимости [22].

Уравнение (31) аналогично уравнению Шредингера для частицы, движущейся в периодическом потенциале под действием «силы» F. Отсылая читателя за деталями к [23–25], укажем здесь только результаты анализа: спектр системы является зонным, как у электрона в кристалле, волновые функции представляют собой функции Блоха, определяемые непрерывным параметром m — квазиспином. Соответствующие возбуждения — квазичастицы с дробным (или непрерывным) спиновым числом весьма близки по своим свойствам анионам [26–28].

Ширины низших нулевой и первой разрешенных зон равны соответственно $2\hbar^2/J$ и $6\hbar^2/J$. Низшая запрещенная зона равна K_2 , более высокие быстро уменьшаются по величине.

Спиновый ток (и поле *H*) возбуждают когерентные квантовые осцилляции прецессионного движения магнитного момента. Так, магнитный момент, имеющий в начальный момент времени среднее значение квазиспина, равное нулю, смещается к границе зоны Бриллюэна, отражается от нее, затем распространяется до левой границы зоны Бриллюэна, отражается от нее и т. д. Этот процесс называют блоховскими осцилляциями. Их частота в данном случае равна

$$f_{Bloch} = \left(j + \frac{\dot{\omega}_H}{\omega_1}\right) S. \tag{33}$$

Каждое отражение от границы зоны Бриллюэна проявляется как скачок угла θ , т. е. M_z .

Если спиновый ток (или внешнее магнитное поле) имеет гармоническую составляющую частоты f, то возможны резонансы на частотах $f_r = rf_{Bloch}$, r — рациональное число. Такие резонансы называют резонансами Штарка.

При возрастании спинового тока,

$$\frac{M}{\gamma}\left(j+\frac{\dot{\omega}_H}{\omega_1}\right) > K_2,\tag{34}$$

возникает туннельный эффект Зенера между соседними разрешенными зонами [29, 30]. В частности, вероятность туннельного перехода в единицу времени между двумя нижними зонами равна

$$g_{01} = f_{Bloch} \exp(-\beta), \qquad (35)$$

где $\beta = \pi K_2^2 / 2\hbar^2 (\dot{\omega}_H + j\omega_1).$

В этом случае волновую функцию $|\psi\rangle$ процесса следует рассматривать как суперпозицию двух амплитуд, $|\psi\rangle = c_1|0\rangle + c_2|1\rangle$, где $|0\rangle$ и $|1\rangle$ — волновые функции, описывающие блоховские осцилляции

в нулевой и первой разрешенных зонах. 7. Приведем некоторые численные оценки. Предположим, что наночастицы представляют собой тонкопленочный элемент толщиной $d \sim 1$ нм. Пусть $K_1 \sim 10^6$ эрг/см³, $M_s = 0.8 \cdot 10^3$ Гс · см³, тогда $\omega_1 = 2\gamma K_1/M_s \sim 10^{11}$ с⁻¹, $\omega_2 \approx 0.01\omega_1 = 10^9$ с⁻¹, т.е. реализуется случай слабого затухания. При этом критические значения $j_{c1} = 3.5 \cdot 10^{10}$ с⁻¹, $j_{c2} = 6.5 \cdot 10^{10}$ с⁻¹. Этим значениям соответствуют плотности тока через структуру $I_1 = 3.5 \cdot 10^8$ A/см² и $I_2 = 6.5 \cdot 10^8$ A/см².

Частота блоховских осцилляций, оцениваемая по формуле (33), равна 10⁸ Гц ($f_{Bloch} \sim gI/e$) при плотности тока порядка 10⁴ A/см² и диаметре наночастицы порядка 1 нм. Для таких наночастиц зенеровский пробой начинается при плотностях тока порядка 10⁷–10⁸ A/см².

8. Таким образом, в работе получены аналитические выражения, характеризующие переориентацию магнитного момента наночастиц, обладающих ромбической анизотропией, от легкой плоскости к трудной оси под действием спинового тока. Показано, что при низких температурах и в случае слабого затухания спиновый ток индуцирует когерентные квантовые эффекты в наночастицах: блоховские осцилляции прецессионного движения намагниченности и туннельные переходы между различными квантовыми режимами прецессии.

Один из авторов (А. К. З.) выражает искреннюю признательность В. Барбара и Р. Жиро за дискуссии по проблематике, связанной с данной работой, и за теплое гостеприимство в Laboratoire L. Neel (Grenoble). Работа выполнена при финансовой поддержке РФФИ (проект 02-02-17389), а также в рамках программы «Физические свойства наноструктур» и INTAS (грант № 99-01839).

ЛИТЕРАТУРА

- J. C. Slonczewski, J. Magn. Magn. Mat. 159, L1 (1996).
- 2. L. Berger, Phys. Rev. B 54, 9353 (1996).
- M. V. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chang, M. Seck, V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998).

- 4. L. Berger, J. Appl. Phys. 49, 2156 (1978).
- 5. L. Berger, J. Appl. Phys. 55, 1954 (1984).
- P. P. Frutas and L. Berger, J. Appl. Phys. 57, 1266 (1985).
- C.-Y. Hung and L. Berger, J. Appl. Phys. 63, 4276 (1988).
- J. C. Slonczewski, J. Magn. Magn. Mat. 195, L261 (1999).
- Ya. B. Bazaliy, B. A. Jones, and Shou-Cheng Zhang, E-print archives, cond-mat/0009034.
- 10. J. E. Wegrowe et al., Europhys. Lett. 45, 626 (1999).
- 11. E. B. Myers et al., Science 285, 867 (1999).
- 12. J. A. Katine et al., Phys. Rev. Lett. 84, 3149 (2000).
- 13. J. Z. Sun, J. Magn. Magn. Mat. 202, 157 (1999).
- 14. C. Heede, P. E. Zilberman, and R. J. Elliott, E-print archives, cond-mat/0005064.
- 15. Ya. B. Bazaliy et al., Phys. Rev. B 57, R3213 (1998).
- 16. J. Z. Sun, Phys. Rev. B 62, 570 (2000).
- 17. L. Berger, J. Appl. Phys. 81, 4880 (1997).
- 18. W. P. Pratt et al., Phys. Rev. Lett. 66, 3060 (1991).
- 19. P. W. Anderson, in *Lectures on the Many-Body Problem*, ed. by E. Caianielo, Acad. Press, New York (1964), Vol. 2, p. 113
- 20. G. H. Wannier, Phys. Rev. 117, 432 (1960).
- 21. F. Bloch, Phys. Rev. Lett. 137, A787 (1965); 166, 415 (1968).

- 22. К. К. Лихарев, Введение в динамику джозефсонов-
- 23. А. К. Звездин, Кр. сообщ. по физике, ФИАН, № 12, 13 (1999).

ских переходов, Наука, Москва (1985).

- 24. А. К. Звездин, Кр. сообщ. по физике, ФИАН, № 4 (2000).
- 25. А. К. Звездин, Кр. сообщ. по физике, ФИАН, № 3, 37 (2001).
- 26. J. M. Leinaas and J. Myrheim, Il Nuovo Cimento 37, 1 (1977).
- 27. F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982); 49, 957 (1982).
- 28. S. Rao, E-print archives, hep-th/9209066.
- 29. C. Zener, Proc. Roy. Soc. A 145, 523 (1934).
- 30. L. V. Keldysh, Sov. Phys. JETP 6, 763 (1958).
- 31. R. Giraud, W. Wernsdorfer, A. Tkatchuk, D. Mailly, and B. Barbara, Phys. Rev. Lett. 87, 057401 (2001).
- 32. M. A. Reed et al., Science 278, 253 (1997);
 J. K. Gimzewski and C. Joachim, Science 283, 1683 (1999);
 J. Chen et al., Science 286, 1550 (1999);
 C. P. Collier et al., Science 289, 1172 (2000);
 E. G. Emberley and G. Kirczenow, E-print archives, cond-mat/0201344.
- 33. W. Wernsdorfer, private communication.
- 34. M. Clemente-Leon, H. Soyer, E. Coronado, C. Minotand, C. J. Gomez-Garsia, and P. Delhaes, Angew. Chem. Int. Ed. 37, 2842 (1998).