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DISCLINATION MOTION IN LIQUID CRYSTALLINE FILMSE. I. Kats a;b*, V. V. Lebedev a; **, S. V. Malinin a;d ***a Landau Institute for Theoretial Physis, RAS117940, Mosow, Russiab Laue-Langevin Institute, F-38042, Grenoble, Frane Theoretial Division, LANL, Los-Alamos, NM 87545, USAd Forshungszentrum Jülih, D-52425, Jülih, GermanySubmitted 24 May 2002We theoretially study a single dislination motion in a thin free-standing liquid rystalline �lm. Bak-�ow e�etsand the own dynamis of the orientational degree of freedom (bond or diretor angle) are taken into aount.We �nd the orientation �eld and the hydrodynami veloity distribution around the moving dislination, whihallows us to relate the dislination veloity to the angle gradient far from the dislination. Di�erent ases areexamined depending on the ratio of the rotational and shear visosity oe�ients.PACS: 05.20.-y, 82.65.-i, 68.10.-m, 82.70.-y1. INTRODUCTIONPhysis of thin liquid-rystalline �lms has been areurrent hot topi during the past deade beause oftheir intriguing physial properties and a wide range ofappliations in display devies, sensors, and for manyother purposes. Hexati, nemati, and smeti-C liq-uid rystalline �lms belong to two-dimensional sys-tems with a spontaneously broken ontinuous rota-tional symmetry. An essential role in the behavior ofthe �lms is therefore played by vortex-like exitations(dislinations). Defets are almost neessarily presentin liquid rystals, and their dynamis plays a ruialrole in the overall pattern organization. Early studiesof defets foused on lassifying the stati properties ofthe defets and their interations [1, 2℄. More reently,the fous has shifted to examining the dynamis of de-fets (see, e.g., [3℄ and referenes therein). We notethat although defets are undesirable in most prati-al appliations of liquid rystals, suh as traditionaldisplay devies beause they destroy an optial adjust-ment, there are novel display designs (bistable, mul-*E-mail: kats�ill.fr**E-mail: lebede�landau.a.ru***E-mail: malinin�itp.a.ru

tidomain liquid rystalline strutures) exploiting defetproperties.Although experimental dynami studies are likelyto be more fruitful than stati ones, theoretial re-searh of the �lm dynamis is in a rather primitivestage. This is largely aounted for by a omplexityof dynami phenomena in �lms, and a omplete andunifying desription of the problem is still unavailable.Moreover, some papers devoted to this problem (dy-namis of defets) laim ontraditing results. Theseontraditions ome mainly from the fat that di�erentauthors take di�erent mirosopi dissipation meha-nisms into aount, but partially the soure of ontro-versy is related to semantis, beause di�erent de�ni-tions of the fores ating on defets are used (see, e.g.,the disussion in [4℄). We believe that suh problemsare irrelevant, if the marosopi (phenomenologial)approah to the �lm dynamis is used.In this paper, we theoretially examine the dislina-tion dynamis in free-standing liquid rystalline �lmsat sales that are muh larger than the �lm thikness,where the �lms an be treated as 2D objets. Our in-vestigation is devoted to the �rst (but ompulsory) stepof defet dynamis studies: a single point dislinationin a liquid rystalline �lm. A number of theoretiale�orts [5�9℄ deal with similar problems. Our justi�a-824



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Dislination motion in liquid rystalline �lmstion for adding one more paper to the subjet is thefat that in the literature, we did not see a full inves-tigation of the problem with the hydrodynami bak-�ow e�ets taken into aount. Evidently, these e�etsan drastially modify the dynamis of defets. Thegoal of this work is to study the dislination motionin free-standing liquid rystalline �lms on the basis ofhydrodynami equations ontaining some phenomeno-logial parameters (the elastiity modulus and shearand rotational visosity oe�ients).In our approah, the dislination is assumed to bedriven by a large-sale inhomogeneity in the bond ordiretor angle, whih leads to a motion of the dislina-tion with a nonzero veloity relative to the �lm. As aphysial realization of suh a nonuniform angle �eld, asystem of dislinations distributed with a �nite densityan be imagined. The inhomogeneity in the viinity ofa given dislination is then produed by �elds of otherdislinations. We an also think about a pair of disli-nations of the opposite topologial harges, in whihase the inhomogeneity is related to the mutual orien-tational distortion �elds reated by eah dislinationat the point of its ounterpart. In fat, the majorityof experimental and numerial studies of dislinationmotions in liquid rystals [10�18℄ is devoted to the in-vestigation of the dynamis of two oppositely hargeddefets. We solve the hydrodynami equations and �ndthe bond (diretor) angle and the �ow veloity distri-butions around the moving dislination. The resultsenable us to relate the dislination veloity and thegradient of the angle far from the dislination.An obvious ontext where our results an be appliedis the �lm dynamis near the Berezinskii�Kosterlitz�Thouless phase transition. The stati properties of the�lms near the transition have been investigated in agreat number of papers starting from the famous papersby Berezinskii [19℄ and Kosterlitz and Thouless [20℄.There are several works disussing the theory of dy-nami phenomena assoiated with vortex-like exita-tions in ondensed matter physis: vorties in type-IIsuperondutors (see, e.g., [21℄), vorties in super�uid4He and 3He (see, e.g., [22, 23℄), disloations in 2Drystals, and dislinations (and other topologial de-fets) in liquid rystals (see [10�14; 24�27℄). But mostof the theoretial works on the subjet start from phe-nomenologial equations of motion of the defets, andour aim is to derive the equations and to verify theirvalidity.The struture of our paper is as follows. Setion 2ontains basi hydrodynami equations for liquid rys-talline �lms neessary for our investigation. In Se. 3,we �nd the bond (diretor) angle and the �ow velo-

ity around the uniformly moving dislination, whihallows us to relate the dislination veloity to the an-gle gradient far from the dislination. Di�erent ases,depending on the ratio of the rotational and shear vis-osity oe�ients, are examined in Se. 4. Setion 5ontains a summary and disussion. The appendiesare devoted to the details of alulations of the veloityand bond angle �elds around the moving dislination.Those readers who are not very interested in mathe-matial derivations an skip these Appendies, �ndingall the essential physial results in the main text of thepaper.2. BASIC RELATIONS FOR LIQUIDCRYSTALLINE FILMSWe formulate the basi relations needed to desribea dislination motion in thin liquid rystalline �lms.Here, we investigate freely suspended hexati, nematiand smeti-C �lms that an be pulled from 3D (bulk)smetis [3℄. We examine sales larger than the �lmthikness, where the �lms an be treated as two-dimensional objets and an be desribed in terms of amarosopi approah ontaining some phenomenolog-ial parameters.Liquid rystalline �lms with the in-plane orienta-tional ordering of di�erent types (hexati, nemati, andsmeti-C) are observed experimentally. In these �lms,as in 3D nemati liquid rystals, the rotational sym-metry is spontaneously broken. The general analysisof their symmetry an be found in [28℄. The smeti-C �lms are haraterized by the diretor that is tiltedwith respet to the normal to the �lm, whih de�nesa preferred diretion in the plane of the �lm. The or-dering of this type an be desribed by a vetor Q�(the subsripts denoted by Greek letters take two val-ues, beause we treat the �lms as 2D objets). Thenemati �lms have higher symmetry D2, whih orre-sponds to the 2D nemati phase. The order parameterof the nemati phase is the irreduible (traeless) sym-metri tensor of the seond rank Q��. In the hexati�lms (pulled from smetis-B), moleules are loally ar-ranged in a triangular lattie, but the lattie is not anideal one. The positional order does not extend overdistanes larger than several moleular sizes. Never-theless, the bond order extends over marosopi dis-tanes. The phase is therefore haraterized by the D6hpoint group symmetry, and hene, the order parameterfor the ase is the sixth-rank symmetri irreduible ten-sor Q��Æ�� . In liquid rystalline �lms of all the typesenumerated above, the order parameter Q has two in-825



E. I. Kats, V. V. Lebedev, S. V. Malinin ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002dependent omponents (e.g., Qxx and Qxy for the 2Dnematis). We note that the order an be readily ob-served in the smeti-C or nemati �lms by looking forin-plane anisotropies in quantities suh as the diele-tri permeability tensor. Beause of its intrinsi sixfoldrotational symmetry, the hexati orientational order ishardly observable. But it an be deteted, e.g., as asixfold pattern of spots in the in-plane monodomainX-ray struture fator, proportional to Q��Æ�� (see,e.g., [3℄ and referenes therein).In aordane with the Goldstone theorem, in �lmsof all types with a broken rotational symmetry, the onlydegree of freedom of the order parameter that is rele-vant at large sales is an angle ' (like the phase of theorder parameter for the super�uid 4He). In hexatis,it is the bond angle, whereas in 2D nematis and insmeti-C �lms, it is an angle related to the diretor.It is onvenient to express a variation of the order pa-rameter in terms of a variation of the angle '. For thesmeti-C �lms, the relation isÆQ� = �Æ'���Q�; (2.1)where ��� is the two-dimensional antisymmetri tensor.For an orientational order with a higher symmetry, therelation has a similar form. For example, for hexati�lms, ÆQ��Æ�� = �Æ'���Q��Æ�� + : : : ; (2.2)where the dots represent the sum of all other possi-ble ombinations of the same struture. Therefore, for�lms of all types, the order parameter an be harater-ized by its absolute value jQj and the phase ', whih aretraditionally represented as a omplex quantity 	 (see,e.g., [24℄). The quantity is written as 	 = jQj exp(6i')for hexati �lms, as 	 = jQj exp(2i') for 2D nemati�lms, and as 	 = jQj exp(i') for smeti-C �lms.The angle ' should be inluded into the set of themarosopi variables of the �lms. A onvenient start-ing point of the onsideration is the energy density (perunit area) �v2=2 + ", where � is the 2D mass density,v is the �lm veloity, and " is the internal energy den-sity. The latter is a funtion of the mass density �, thespei� entropy �, and the angle '. In fat, " dependson r', beause any homogeneous shift of the angle 'does not a�et the energy. For hexati �lms, the lead-ing terms of the energy expansion over gradients of 'are " = "0(�; �) + K2 (r')2; (2.3)where K is the only (beause of the hexagonal symme-try) orientational elasti module of the �lm. For low-symmetry �lms (2D nemati or smeti-C �lms) two

orientational elasti modules are introdued, the longi-tudinal and transversal ones with respet to the spe-i� in-plane diretion (haraterized by the so-alled-diretor). But �utuations of the diretor lead to arenormalization of the modules, and isotropization ofthe smeti-C or 2D nemati �lms [29℄ ours at largesales. The same isotropi expression (2.3) for the elas-ti energy an therefore be used at large sales.The omplete dynami equations for the freely sus-pended liquid rystalline �lms, valid at the sales largerthan the �lm thikness, an be found in [30℄. Weonsider a quasistationary motion of the dislination.Then hard degrees of freedom are not exited. Inother words, we an aept inompressibility and ne-glet bending deformations (whih are suppressed bythe presene of the surfae tension in freely suspended�lms). Similarly, the thermo-di�usive mode is not ex-ited for the quasistationary dislination motion, whihimplies the isothermal ondition. For freely suspended�lms, suh e�ets as the substrate frition (relevant,e.g., for Langmuir �lms) are absent. In desribing thedislination motion, we an therefore onsider the sys-tem of equations for only the veloity v and the angle'. The equations have to be formulated under the on-ditions � = onst, T = onst (where T is the tempera-ture), and rv = 0.The equation for the veloity follows from the mo-mentum density j = �v onservation law,�tj� = �r� [T�� � �(r�v� +r�v�)℄ ; (2.4)where T�� is the reative (nondissipative) stress tensorand � is the 2D shear visosity oe�ient of the �lm.For two-dimensional hexatis, the reative stress tensoris (see [30℄, hapter 6)T�� = �v�v� � &Æ�� +Kr�'r�'�� K2 ��rr�'� K2 ��rr�'; (2.5)where & = "� ��"=�� is the surfae tension. We notethat the ratio K�=�2 is a dimensionless parameter thatan be estimated by substituting 3D quantities insteadof 2D ones (beause all the 2D quantities an be es-timated as the orresponding 3D quantities times the�lm thikness, and the latter drops from the ratio). Forall known liquid rystals, the ratio is 10�3�10�4 (see,e.g., [1�3; 31℄), and an therefore be treated as a smallparameter of the theory.The seond dynami equation, the equation for thebond angle, is�t' = 12���r�v� � v�r�'+ K r2'; (2.6)826



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Dislination motion in liquid rystalline �lmswhere  is the so-alled 2D rotational visosity oe�-ient. We did not �nd the values of the oe�ient  forthin liquid rystalline �lms in the literature. For bulkliquid rystals (see, e.g., [1�3; 31℄), the 3D rotationalvisosity oe�ient is usually several times larger thanthe 3D shear visosity oe�ient. We an therefore ex-pet that  > �. But in order to span a wide range ofpossibilities, we treat the dimensionless ratio � = =�as an arbitrary parameter in what follows.If dislinations are present in the �lm, it is no longerpossible to de�ne a single-valued ontinuous bond-anglevariable '. But the order parameter is a well-de�nedfuntion of oordinates that goes to zero at the dislina-tion position. The gradient of '(t; r) is a single-valuedfuntion of r and is analyti everywhere exept at anisolated point, the position of the dislination. Thephase aquires a ertain �nite inrement at eah rota-tion around the dislination,I dr�r�' = 2�s; (2.7)where the integration ontour is a losed ounterlok-wise loop around the dislination position and s is thetopologial harge of the dislination: s = (1=6)n forthe hexati ordering, s = (1=2)n for the 2D nematisymmetry, and s = n for the smeti-C �lms, where nis an integer. We an restrit ourselves to dislinationswith the unitary harge n = �1 only, beause dislina-tions with larger jsj possess a higher energy than theset of unitary dislinations with the same net topolog-ial harge, and defets with larger harges are there-fore unstable with respet to the dissoiation to theunitary ones. Therefore, dislinations with the hargesjnj > 1 do not play an essential role in the physis of�lms [1�3; 31℄. To write the expressions given below ina ompat form, we keep the notation s for the topolog-ial harge, with the respetive values jsj = 1; 1=2; 1=6for the smeti-C, nemati, and hexati �lms.The stati bond angle is determined by the station-ary ondition ÆE=Æ' = 0, whereE = Z d2r ��2v2 + "�is the energy of the �lm. For the energy density inEq. (2.3), the ondition is redued to the Laplae equa-tion r2' = 0. For an isolated stati dislination, thereis a symmetri solution of this equation '0 that satis�esEq. (2.7) and whose gradient is given byr�'0 = �s��� r� �R�(r�R)2 ; (2.8)whereR is the position of the dislination. If the originof the referene system is plaed at this point, we an

write '0 = s artg(y=x), where x and y are oordinatesof the observation point r. In dynamis, distribution(2.8) is disturbed as ' varies in time. It is also per-turbed beause of the presene of an angle distortionrelated to boundaries or other dislinations.In what follows, we have in mind a ase where asystem of a large number of dislinations (with an un-ompensated topologial harge) is reated. For 3Dnematis, this an be done rather easily [1�3℄, beausethe energies of positive and negative defets are di�er-ent due to the intrinsi elasti anisotropy. We are un-aware of experimental or theoretial studies of defetnuleation mehanisms in free-standing �lms. Hope-fully, the situation with a �nite 2D density of defetsan also be realized for �lms (for instane, the defetsould even appear spontaneously as a mehanism torelieve frustrations in hiral smeti or hexati �lms,similarly to the formation of the Abrikosov vortex lat-tie in superondutors [32℄). Examining the motionof a dislination in this ase, we investigate a viinityof the dislination of the order of the inter-dislinationdistane. Far from the dislination, the bond angle 'an then be written as onst + ur, where u is muhlarger than the inverse inter-dislination distane (be-ause the number of dislinations is large). Near thedislination position, the bond angle ' an be approx-imated by expression (2.8). Our main problem is toestablish a general oordinate dependene of ' and v,whih in partiular allows relating the bond (diretor)angle gradient u and the veloity of the dislination.3. FLOW AND ANGLE FIELDS AROUND AUNIFORMLY MOVING DISCLINATIONHere, we proeed to the main subjet of our study, asingle dislination driven by a large-sale inhomogene-ity in the bond (diretor) angle '. The dislinationveloity is determined by an interplay of the hydrody-nami bak-�ow and the intrinsi dynamis of the an-gle '. To �nd the dislination veloity, one has to solvethe system of equations (2.4), (2.5), and (2.6) with on-straint (2.7) ensuring a suitable asymptoti behavior.As we explained in the previous setion, the angle 'is supposed to behave as onst+ ur at large distanesfrom the dislination. We work in the referene systemwhere the �lm as a whole is at rest. This means thatthe �ow veloity exited by the dislination must tendto zero far from the dislination.We onsider the situation where the dislinationmoves with a onstant veloity V. The angle ' andthe �ow veloity are then funtions of r � Vt (where827



E. I. Kats, V. V. Lebedev, S. V. Malinin ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002R = Vt is the dislination position). Equation (2.4)for the veloity an then be written as�(V� � v�)r�v� + �r2v� + K2 ���r�r2'��Kr�'r2'+r� �& � K2 (r')2� = 0: (3.1)We an omit the �rst (inertial) term in the left-handside of (3.1), whih is small beause of the smallness ofthe parameter K�=�2. It then follows from Eqs. (2.4)�(2.5) thatr2v�+K2� ���r�r2'�K� r�'r2'+r�$ = 0; (3.2)where $ = ��1[& � (K=2)(r')2℄. Under the same on-ditions, the equation for the angle ' following fromEq. (2.6) isr2'+ K V�r�' = K v�r�'� 2K���r�v� : (3.3)We seek a solution haraterized by the asymptoti be-havior that the veloity v vanishes and r' tends to aonstant vetor u as r !1. It is lear from the sym-metry of the problem that the gradient u of the bondangle is direted along the Y axis if the veloity is di-reted along the X axis. Therefore, '! uy as r !1.Our problem is to �nd a relation between V and u,that is, between the dislination veloity and the bondangle gradient far from the dislination. There are twodi�erent regions: the region of large distanes r � u�1and the region near the dislination r � u�1. At largedistanes, orretions to the leading behavior ' � uyare small and the problem an be treated in the linearapproximation with respet to these orretions. In theregion near the dislination, ' is lose to stati value(2.8) and the �ow veloity v is lose to the dislinationveloity V (the speial ase where the ratio =� is ex-tremely small is disussed in Se. 4C). In what follows,these two regions are examined separately. The rela-tion between u and V an be found by mathing theasymptotis at r � u�1. As a result, we obtainV = K� Cu; (3.4)where C is a dimensionless fator depending on the di-mensionless ratio � = =�. This fator C is of the orderof unity if � � 1. We are interested in the asymptotibehavior of C at small and large � .A. The region near the dislinationWe onsider the region r � u�1. Here, we an write' = '0(r�R) + '1(r�R); (3.5)

where R = Vt is the dislination position, '0 is thestati bond (diretor) angle with gradient (2.8), and'1 is a small orretion to '0. The gradients of '0 aredetermined by Eq. (2.8).Linearizing Eqs. (3.2) and (3.3) with respet to '1,we obtain�r2v� + K2 ���r�r2'1 �Kr�'0r2'1 ++r� �& � K2 (r')2� = 0; (3.6)r2'1 � K v�r�'0 + 2K���r�v� == � KV�r�'0: (3.7)Introduing a new variable � = (K=�)r2'1 we rewriteEqs. (3.6), (3.7) asr2v� + 12���r���r�'0�+r�$ = 0; (3.8)�� �v�r�'0 + �2 ���r�v� = ��V���'0; (3.9)where � = =�, as above, and$ = ��1 �& �K=2(r')2�. It follows from Eq.(3.8) and r�v� = 0 that r2$ = r�'0r��. Asolution of the system in Eqs. (3.8)�(3.9) an bewritten as v� = V� + ���r�
; (3.10)where V� is the obvious (beause of the Galilean in-variane) fored solution and the stream funtion 
desribes a zero mode of system (3.8)�(3.9). The sys-tem is homogeneous in r, and 
 is therefore a sum ofontributions that are power-like funtions of r.Taking the url of Eq. (3.8), we obtain�r4
� 12r2�� ��r�'0r� = 0: (3.11)Substituting � expressed in terms of v from Eq. (3.9)in Eq. (3.11) and using expliit expressions (2.8) for thederivatives of '0, we obtain�1 + �4 �r4
+ s� � 2r2 �2r
� 1r2r2
�� s 1r2 �2r
 + s 1r3 �r
� = 0 (3.12)828



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Dislination motion in liquid rystalline �lmsin the polar oordinates (r; �). Solutions of Eq. (3.12)are superpositions of the terms / r�+1 exp(im�). Sub-stituting this r; �-dependene in Eq. (3.12), we obtainan equation for � that has the roots� = � 1p2"2 + 2m2 � s(1� s) ~� ����2 + 2m2 � s(1� s) ~��2�� 4s ~� (m2 � 1 + s)� 4(m2 � 1)2o1=2#1=2; (3.13)where ~� = � (1 + �=4)�1. Hene, 0 < ~� < 4 for any and �. Evidently, all the roots in Eq. (3.13) are real.We emphasize that there is no solution � = 0 (orre-sponding to a logarithmi behavior of the veloity in r)among the set (3.13). The �rst angular harmoni withjmj = 1 is of partiular interest beause '1 = ur sin�and 
 = �V r sin� far from the dislination. If � issmall, there is a pair of small solutions among (3.13),� = ��1; �1 = sp� =2; (3.14)for m = �1. Otherwise, for any other relevant m,solutions (3.13) have no speial smallness (terms withm = 0 are forbidden beause of the symmetry).We established that 
 is a superposition of theterms / r�+1 exp(im�) with the exponents � deter-mined by Eq. (3.13). The veloity an then be foundfrom Eq. (3.10). To avoid a singularity in the veloityat small r, one should keep ontributions with posi-tive � only. In other words, the veloity �eld ontainsontributions with all powers � given by (3.13), but thefators at the terms with negative � are formed at r � a(where a is the dislination ore radius), and the or-responding ontributions to the veloity are thereforenegligible at r � a (this statement must be lari�edand re�ned for small negative exponents ��1 in thelimit of small � , see Se. 4C). We onlude that theorretion to V in the �ow veloity v related to 
 inEq. (3.10) is negligible at r � a. We thus arrive at thenon-slipping ondition for the dislination motion: thedislination veloity V oinides with the �ow veloityv at the dislination position.Next, to �nd ', one should solve the equation(K=�)r2' = �, where � is determined from Eq. (3.9).In addition to the part determined by the veloity, '1an then involve zero modes of the Laplaian. Themost dangerous zero mode is Uy, beause it produes

a nonzero momentum �ux to the dislination ore (andthe Magnus fore assoiated to it),I dr� ���T� � KU: (3.15)But beause of the ondition � 6= 0, all the ontribu-tions to the veloity orrespond to zero visous mo-mentum �ux to the origin. Consequently, it is impos-sible to ompensate the Magnus fore by other terms.The above reasoning leads us to the onlusion thatthe fator U (and therefore, the Magnus fore) mustbe zero. Thus, '1 ontains only terms proportional tor�+1 with � > 0. This onlusion is related to thefat that for free-standing liquid rystalline �lms, anydistortion of the bond angle unavoidably produes hy-drodynami bak-�ow motions (i.e. v 6= 0). For liq-uid rystalline �lms on substrates (Langmuir �lms), inontrast to free-standing �lms, hydrodynami motions(bak-�ows) are strongly suppressed by the substrate,and the situation where the bak-�ow is irrelevant forthe dislination motion an be realized.B. The remote regionLet us onsider the region r � u�1, where we anwrite ' = uy+ ~' and linearize the system of equations(3.2) and (3.3) with respet to ~'. We then obtain thesystem of linear equations for v and ~',r2v�+K2� ����r�r2 ~'�2u�r2 ~'�+r�$ = 0;(r2 + 2p�x) ~'+ 2K (���r�v� � 2uvy) = 0; (3.16)where p = V =2K. Taking the url of the �rst equationand eliminating the Laplaian, we obtain���r�v� = K2� ��r2 + 2u�x� ~'+�� ; (3.17)where � is a harmoni funtion. In terms of �, system(3.16) is redued to��1+�4 �r4+2pr2�x��u2�2x� ~' = �2 u�x�: (3.18)Equation (3.18) an be written as(r2 + 2k1�x)(r2 � 2k2�x) ~' = ~�2 u�x�; (3.19)k1;2 = 12(1+�=4)  sp2+� �1+�4 �u2�p! : (3.20)829



E. I. Kats, V. V. Lebedev, S. V. Malinin ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002The quantities k1 and k2 have the meaning of har-ateristi wave vetors. We onlude from Eq. (3.19)that zero modes of the operator in the left-hand side ofthe equation are proportional toexp(�k1r � k1x); exp(�k2r + k2x);that is, they are exponentially small everywhere outsidenarrow angular regions near the X axis. The behav-ior of the zero modes inside the regions is power-likein r. In addition, there is a ontribution to ~' relatedto the harmoni funtion �. It ontains a part thatdeays as a power of r (the leading term is / r�1) atr � u�1. This solution is examined in more detail inAppendix A.4. DIFFERENT REGIMES GOVERNED BY �The behavior of the veloity and the bond (diretor)angle �elds around the moving dislination is sensitiveto the ratio of the rotational and the shear visosity o-e�ients � = =�. In this setion, we examine di�erentases depending on the � value.A. The ase where � &&& 1We start analyzing di�erent mobility regimes withthe most probable ase where � & 1. If � � 1, thenthe fator C in Eq. (3.4) is of the order 1 and u � p. Itthen follows from Eqs. (3.20) that k1; k2 � u. This isa manifestation of the fat that there is a unique har-ateristi sale in this ase, given by u�1. We an thenestimate ~' by mathing the solutions in the regionsnear the dislination and far from it at r � u�1. Weonlude that it is a funtion of the dimensionless pa-rameter ur; the funtion is of the order of unity, whenits argument ur is of the order of unity.For large � , there remains a unique harateris-ti sale u�1, and onsequently, C � 1 in this ase.To prove the statement, we �rst treat small distanesr � u�1. As shown in Se. 3A, the respetive orre-tions '1 and Æv to '0 and V are expanded in the seriesover the zero modes haraterized by exponents (3.13).In partiular, form = 1, we an write '1 � uy(ur)�. Inthe large-� limit, the exponents � given by (3.13) areregular beause ~� ! 4. From (3.13), we have �1 � 1,and in this ase, � � K�r2 uy(ur)�1 :Comparing Eqs. (3.8) and (3.9), we onlude thatfor large � , the term involving � an be omitted in

Eq. (2.9), and the equation therefore beomes a on-straint imposed on the veloity. Equation (3.8) thengives jÆvj � K�ruy(ur)�1 :The dislination veloity an now be found from therelation V � jÆvj at the sale u�1, that is, p � �u, orC � 1. The omplete analysis also overs the remoteregion. With the ondition p � �u, it follows thatk1;2 � u�1. Using the proedure given in Appendix A,we an then prove that the solutions in the two regionsan be mathed at r � u�1, and therefore, there areno new harateristi sales, indeed. We also note thatthe rotational visosity  drops from the hydrodynamiequations at large � . Although this is not true insidethe dislination ore (see Appendix D), the boundaryonditions for v and ' on the ore boundary reveal nodramati hanges of the behavior. Consequently, it isthe shear visosity alone that determines the dislina-tion mobility, whih implies that C � 1.We an therefore say that in the limit as � ! 1,no additional features appear ompared to � � 1. Butthis is not the ase for small � , beause u � p for� � 1. We study this ase in the next Subsetion.B. Small �Here, we onsider the ase where � � 1. Thislimit is physially attained at anomalously large �, withK�=�2 still treated as the smallest dimensionless pa-rameter. This justi�es the use of the same equations(3.2) and (3.3) as in the previous subsetions.For r � u�1, the analysis given in Se. 3A is or-ret. As we noted, the ontributions to v and '1 relatedto the modes with negative � should not be taken intoaount there. For � � 1, the leading role is played bythe mode with the smallest exponent (�1 = sp�=2),beause the presene of modes with positive exponents� � 1 would ontradit the ondition of smooth math-ing at r � u�1. Stritly speaking, negleting a smallnegative exponent ��1 is orret under the ondition�1j ln(ua)j � 1, where a is the ore radius of the disli-nation. This is the ase onsidered in this subsetion.The opposite ase, whih we all the extremely small-�limit, is analyzed in Se. 4C. At r � u�1, we an there-fore write'1 � uy(ur)�1 ; V � vx � �1uK (ur)�1 ; (4.1)with the oe�ient at y(ur)�1 determined from math-ing at r � u�1, where r' � 1=r. Similarly, mathing830



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Dislination motion in liquid rystalline �lmsV � vx � V at r � u�1 gives V � �1uK=. The rela-tion an be rewritten as p � �1u� u, and we thereforeonlude that C � 1=p� .In aordane with Eq. (3.20), the relationp � p� u leads to k1;2 � p� u. In other words, a newsale p�1 (di�erent from u�1) appears in the problem.A detailed investigation of the remote region r � u�1is therefore needed to establish the r-dependenes ofthe bond angle ' and the veloity �eld v there. Thisinvestigation an be based on the equations formulatedin Se. 3B, whih are orret irrespetively of the valueof pr.Expliit expressions desribing the veloity and theangle are presented in Appendix A. They ontainthree dimensionless funtions �1(r=u), 1(r=u), and2(r=u). At ur � 1, only zero terms of the expan-sions of these funtions in the Taylor series an be kept.Only one of these three oe�ients is independent, seeEq. (A.10). The general solution an therefore be ex-pressed in terms of a single parameter, whih we hooseas � � �1(0). The proedure orresponds to the follow-ing onstrution of the solutions to equations of motion(3.16) in the region ur � 1. We have to math thesolutions in the outer and the inner regions (far fromand lose to the dislination respetively) at ur � 1.Tehnially, the mathing is equivalent to the appro-priate boundary onditions for the outer problem atur � 1, and these boundary onditions an be formallyreplaed by the loal soure terms in the equations,ating at ur � 1. We an expand these soures in thestandard multipolar series. We thus arrive at the ex-pansion with respet to the gradients of the Æ funtion.The gradients sale as u, and therefore, �, 1, and 2 aredimensionless funtions of the dimensionless ratior=u.To �nd the asymptoti behavior of the angle 'and of the veloity v, we �rst onsider the regionu�1 � r � p�1. From Eqs. (A.4), (A.5), and (A.10),we then derivevx = K(2s� �)u k1k2 ln(pr); (4.2)where we keep only the leading logarithmi ontribu-tion of the zero harmoni in vx. Mathing the velo-ity derivatives determined by Eqs. (4.1) and (4.2) atr � u�1, we �nd that � � 1 (we imply that s � 1).Using Exps. (A.2), (A.5), and (A.10), we obtain' = '0 + uy + spy ln(pr) (4.3)in the region u�1 � r � p�1. We see that there is onlya small orretion to the simple expression '0 + uy inthat region, beause p� u.

In the region pr � 1, the expressions for the an-gle ' and the veloity v are more ompliated. UsingEqs. (A.2), (A.3), (A.4), and (A.5), we obtain�x' = �sr�2 h1pk1 exp(�k1r � k1x) ++2pk2 exp(�k2r + k2x)i yr3=2 � �2 yr2 ; (4.4)�y' = u� 2sr�2 h1pk1 exp(�k1r � k1x)��2pk2 exp(�k2r + k2x)i 1r1=2 + �2 xr2 ; (4.5)vy = Ku �2sr�2 h1k2pk1 exp(�k1r � k1x) ��2k1pk2 exp(�k2r + k2x)i yr3=2 � p� yr2o ; (4.6)vx = �Ku �r�2 s�u2 � 1pk1r exp(�k1r � k1x)++ 2pk2r exp(�k2r + k2x)�+ p� xr2� ; (4.7)where 1 � 1 and 2 � 1 are determined by Eq.(A.10) (we omitted the argument 0 to simplify the nota-tion). Expressions (4.4), (4.5), (4.6), and (4.7) ontainterms of two types, isotropi and anisotropi ones. Theanisotropi ontributions are essential only in the nar-row angular regions near the X axis, where they dom-inate. It is worth noting a very nontrivial strutureof the �ow, in whih the isotropi �ux to the origin isompensated by the anisotropi terms.The expressions found in this subsetion general-ize the famous Lamb solution for the hydrodynami�ow around a hard ylinder, (see, e.g., [33�35℄) wherethe veloity �eld is exponentially small everywhere farfrom the ylinder exept for the wake of the orps,i.e., in a very narrow angular setor (�tail�). Dislina-tion motion in liquid rystalline �lms an be regardedas the motion of a ylinder framed by a �soft� (i.e.,deformable) orientational �eld '. Beause of the ad-ditional degree of freedom (ompared to the lassialLamb problem), our solution has two tails around themoving dislination: wake, beyond the dislination,and preursor in front of it. In fat, both degrees offreedom (the �ow veloity and the bond angle) are rel-evant.831



E. I. Kats, V. V. Lebedev, S. V. Malinin ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002C. Extremely small �In the above analysis, we implied the ondition�1j ln(ua)j � 1 (we reall that �1 = sp�=2 at small� ), imposing a restrition from below on � at a given u.If �1j ln(ua)j � 1, the terms with both � = ��1 deter-mined by Eq. (3.14) must be taken into aount nearthe dislination, whih leads to a logarithmi behaviorof the orretion '1 to '0 in that region,'1 � uy ln�ra� j ln(au)j�1; (4.8)instead of Eq. (4.1). Mathing the derivativesof expressions (4.3) and (4.8) at r � u�1 givesp � uj ln(au)j�1. In other words, C � [� ln(au)℄�1.This ase formally orresponds to the limit � ! 1 inour equations, where we an drop the bak-�ow hydro-dynami veloity in the equation for the bond angle.The situation was examined in the works [6�9℄. Wepresent the simple analysis of the ase in Appendix B.We also note that there is no rossover at r � u�1 inthe bond angle behavior in this situation.We now larify the question regarding the Magnusfore in this ase. In aordane with Eq. (4.8), thereative momentum �ux to the dislination ore isI dr� ���T� � Ku ln� ra� j ln(au)j�1:The �ux is therefore r-dependent, tending to zero asr ! a. This reative momentum �ux is ompensatedby the visous momentum �ux (related to derivativesof the �ow veloity v), whih is nonzero in this asebeause of the logarithmi behaviour of the �ow velo-ity in r near the dislination. The �ow veloity an befound from Eqs. (3.6) and (4.8) asv� � Ku�j ln(au)j ���r� hy ln2 �ra�i ;whih is a generalization of the Stokes�Lamb so-lution [33, 34℄. But unlike in the Lamb prob-lem (a hard ylinder moving in a visous liquid),jV � v(r = a)j � V in our ase, i.e., we have a slippingon the ore of the moving dislination. This slippingseems natural in the limit of extremely small valuesof � , orresponding to the limit � ! 1, that is, toa strongly suppressed hydrodynami �ow. Physially,this property implies that the dislination annot beunderstood as a hard impenetrable objet. It is alsoworth noting that the logarithmi behavior found aboveis similar to the general feature of two-dimensional hy-drodynami motion that omes from the well-knownfat (see, e.g., [33�35℄) that nonlinear terms annot benegleted in a two-dimensional laminar �ow even for a

small Reynolds number; these terms beome relevantfor su�iently large distanes. But in our ase, thesenonlinear terms do not ome from the onvetive hy-drodynami nonlinearity; they ome from the terms instress tensor (2.4) that are nonlinear in '.An expliit expression for ' and its asymptotiforms orresponding to the onsidered ase are given inAppendix B. An expression for the �ow veloity �eldindued by the dislination motion at extremely small� is derived in Appendix C.5. CONCLUSIONSWe now summarize the results of our paper. To un-derstand physis underlying the freely suspended �lmdynamis, we studied the ground ase � a single disli-nation motion in a thin hexati, smeti-C or nematiliquid rystalline �lm, driven by an inhomogeneity inthe bond (or diretor) angle. We investigated the uni-form motion (the one with a onstant veloity). In thisase, we derived and solved the equations of motionand found the bond angle and hydrodynami veloitydistributions around the dislination. This allows us torelate the veloity of the dislination V to the bond an-gle gradient u = jr'j in the region far from the disli-nation. That is why so muh e�ort is needed: the fullset of the equations must be solved every where, notonly loally. We established the proportionality oef-�ient C (see Eq. (3.4)) in this nonloal relationship;it has the meaning of an e�etive mobility oe�ient.The oe�ient C depends on the dimensionless ratio �of rotational () and shear visosity (�) oe�ients.There is little experimental knowledge of the valuesof the oe�ients  and � in liquid rystalline �lms. Itis generally believed that the orresponding values in a�lm (normalized by its thikness) and in a bulk materialare not very di�erent [31, 3℄, in whih ase we are in theregime of � � 1, where the oe�ient C is of the order1. But the ase where � � 1 is not exluded from theboth theoretial and material siene standpoints. Wefound the oe�ient C � 1=p� in the small-� limit.We established a highly nontrivial behavior of the �owveloity and of the bond angle, whih is power-like in rnear the dislination and extremely anisotropi far fromit. Only for extremely small � , � � 1= ln2(ua) (wherea is the dislination ore radius), we found a logarith-mi behavior C � [� ln(ua)℄�1. The main message ofour study is that the hydrodynami motion (that is,the bak-�ow), unavoidably aompanying any defetmotion in liquid rystals, plays a signi�ant role in thedislination mobility. Experimental evidene (see, e.g.,832



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Dislination motion in liquid rystalline �lmsthe reent publiation [36℄) shows that this is indeedthe ase.Our analysis an be applied to the motion of a disli-nation pair with the opposite topologial harges. Inthis ase, the role of the sale u�1 is played by thedistane R between the dislinations. In aordanewith Eq. (3.4), we then �nd that �tR / R�1 withouta logarithm (provided the rotational visosity oe�-ient  is not anomalously small, see Se. 4C for thequantitative riterion). This onlusion is on�rmed bythe results of numerial simulations for 2D nematis[15�18℄. The authors of [15�18℄ onsider the equationsof motion in terms of the tensor order parameter, on-sistently taking the oupling between the dislinationmotion and the hydrodynami �ow into aount. Theysimulated dynamis of the dislination pair annihilationand found that the distaneR between the dislinationssales depends on time t as t1=2, without logarithmiorretions (as this follows from our theoretial analy-sis) for all values of the parameter � exept extremelysmall ones. Unfortunately, we did not �nd in [16�18℄the magnitudes of the shear visosity that were usedin the simulations. Laking su�ient data on the val-ues of  and �, we an presently disuss only the gen-eral features of the dislination dynamis. For instane,the authors of [18℄ numerially found an asymmetry ofthe dislination dynamis with respet to the sign ofthe topologial harge (s = �1=2) in the one-onstantapproximation. In our approah, the asymmetry nat-urally appears from nonlinear terms in stress tensor(2.5) and from the �rst term in the right-hand sideof Eq. (2.6) responsible for the di�erent ouplings oforientational and hydrodynami �ow patterns for posi-tive and negative dislinations. This results in the fatthat for eah m, the smaller positive exponents in Eq.(3.13) (orresponding to the minus in the brakets) arelarger for s = 1=2 than for s = �1=2. The dislina-tion with s = 1=2 therefore exerts a stronger in�ueneon the �ow veloity; this onlusion was qualitativelyobtained in [18℄.Although the theory presented in this paper is validfor free-standing liquid rystalline �lms, the generalsheme an be applied to the liquid rystalline �lmson solid or liquid substrates. Beause suh a �lm isarranged on the substrate surfae, any of its hydrody-nami motions is aompanied by the substrate mo-tion. For solid substrates, the situation where the hy-drodynami bak-�ow is irrelevant for the dislinationdynamis an therefore be realisti. In Se. 4C (alsosee Appendix B), we examine this limit and reproduethe results in [6�9℄, where the hydrodynami bak-�owwas negleted from the very beginning. The ase of the

�lms on a liquid substrate requires a speial investiga-tion, but the approah and the main ideas of our paperould be useful there as well.Our results an be diretly tested by omparingwith the experimental data for smeti-C or nemati�lms. The hexati order parameter, whih has a sixfoldloal symmetry, is not oupled to the light in anysimple way (and therefore, ideal hexati dislinationsare hardly observed in optis). But it is possible toobserve the ore splitting of the dislinations in tiltedhexati smeti �lms [26℄. Indeed, beause of disonti-nuity of the tilt diretion (whih is loked to the bonddiretion), the hexati order and hexati dislinationsan be observed indiretly. The seond possibility ofdeteting the defets of hexati ordering and verifyingour theoretial results is the lassial light sattering(where the wave vetors are q = 102�104 m�1 andthe frequeny is ! . 108 s�1 in typial experiments).For a reasonably thik �lm, the power spetrum oflight sattering an have some additional struturerevealing the dislination properties (e.g., defets arethought to be relevant to the very low-frequeny noiseobserved in thin �lms). Experimental studies of thistype are highly desirable.The researh desribed in this publiation was madepossible in part by the RFFR Grant 00-02-17785 andINTAS Grant 30-234. SVM thanks the support of thiswork by the Deutshe Forshungsgemeinshaft, GrantKO 1391/4. Fruitful disussions with V. E. Zakharov,E. A. Kuznetzov, G. E. Volovik, and N. B. Kopnin aregratefully aknowledged.APPENDIX ADistanes far from the dislinationHere, we derive some results for the region far fromthe dislination. These results are used in the ase ofsmall � onsidered in Se. 4B.We examine the harmoni funtion � in Eq. (3.17).Beause the funtion is analyti in the region r > u�1,it an be expanded in the derivatives of ln r there. Next,beause of the symmetry of the problem, � is an an-tisymmetri funtion of y. At least one derivative �ymust therefore be present in eah term of the expan-sion, that is, � = u�̂1�y ln r; (A.1)where �̂1 = �1(r=u) and �1(z) is a series in z onvergingin a irle with the radius of the order 1. The expan-11 ÆÝÒÔ, âûï. 4 (10) 833



E. I. Kats, V. V. Lebedev, S. V. Malinin ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002sion oe�ients in the series �1(r=u) are determinedby mathing with the inner problem at r � u�1.Beause of the symmetry, the angle ~' an be rep-resented as�x ~' = �yB; �y ~' = �(H + �xB);r2B + �xH = 0: (A.2)The latter equation is the ondition ���r�r� ~' = 0.We note that r2 ~' = ��yH . In the region far from thedislination, we an use Eqs. (3.16) and (3.17). The in-ompressibility ondition r�v� = 0 must also be takeninto aount. We thus obtain expressions for the velo-ity in terms of B and H ,url v = K2� �y h�H + 2uB + u�̂1 ln(pr)i ;vy = Ku�y ��H + 2pB++ �4 h�H + 2uB + u�̂1 ln(pr)i� ; (A.3)vx = Ku�x��H + 2pB ++�4 h�H + 2uB + u�̂1 ln(pr)i��� K2� h�H + 2uB + u�̂1 ln(pr)i : (A.4)Solutions of Eq. (3.18) imply thatB = s�̂1K0(k1r)e�k1x + ̂2K0(k2r)ek2x��� 12 �̂1 ln(pr);H = 2s �k1̂1K0(k1r)e�k1x�k2̂2K0(k2r)ek2x� : (A.5)Here, the partiular representation in Eq. (A.1) is usedand an arbitrary funtion of y that an ontribute toH is hosen to be zero beause r ~' ! 0 (and hene,H ! 0) as r !1. In (A.5) ̂1 and ̂2 are dimensionlessdi�erential operators that an be represented as Taylorseries in r=u, i.e., 1(r=u) and 2(r=u). These fun-tions must sale with u beause the funtions must befound from mathing at r � u�1.Additionally, there are two onditions for the vari-ables in the region ur � 1. First, the orret irula-tion around the origin leads to the e�etive Æ-funtionalterm in Eq. (A.2),r2B + �xH = �2�sÆ(r): (A.6)

The seond ondition is the absene of the �ux to theorigin, Z d� vr(r; �) = 0: (A.7)Relations (A.6) and (A.7) lead to the onditions1(0) + 2(0) + �1(0)2s = 1; (A.8)�1 + �4 � [k11(0)� k22(0)℄��p+ �u4 ��� �1(0) + 2(0) + �1(0)2s �+ �u8s �1(0) = 0: (A.9)At small � , the solution of Eqs. (A.8) and (A.9) is�1(0) = �; 1(0) = k1 � �k2=2sk1 + k2 ;2(0) = k2 � �k1=2sk1 + k2 : (A.10)We also assumed that � . 1, whih is justi�ed inSe. 4B. APPENDIX BSuppressed FlowHere, we demonstrate how the dislination veloityV an be found if the hydrodynami veloity v is negli-gible (e.g., beause a substrate frition). We reproduethe results in [6�9℄.In the absene of the hydrodynami �ow, the equa-tion for the angle ' is purely di�usive,�t' = Kr2'; (B.1)as follows from Eq. (2.6) with v = 0. We assumethat ' ! uy as r ! 1. The dislination motion isfored by the �external �eld� u. We seek a solution'(t; x; y) = '(x � V t; y). From Eq. (B.1), we then ob-tain2p�x'+r2' = 0; where 2p = V=K: (B.2)In what follows, we onsider the solution orrespondingto a single dislination with the irulationI drr' = 2�s; (B.3)where the integral is taken along a ontour enompass-ing the dislination ounter antilokwise. The quan-tity s in Eq. (B.3) is an arbitrary parameter (whih is834



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Dislination motion in liquid rystalline �lmsequal to �1=6 for hexatis, �1=2 for nemati, and �1for smeti-C ordering). For a suitable solution of Eq.(B.2) orresponding to Eq. (B.3), we have�x' = s�y Z d2q2� 1q2 � 2ipqx exp(iq � r) == s exp(�px)�yK0(pr): (B.4)This derivative tends to zero as r ! 1, as it shouldbe. Expression (B.4) does not determine ' unambigu-ously beause �x(uy) = 0, and we an therefore obtaina new solution by adding a term uy to a given solution.We note that uy is the zero mode of the Eq. (B.2). Thesolution an therefore be written as' = �+ uy;�(x0; y) = �s 1Zx0 dx exp(�px)�yK0(pr); (B.5)where � tends to zero as r ! 1. To relate p and uin Eq. (B.5), we must know the boundary onditionsat r ! 0, or in fat, at r � a, where a is the ore ra-dius. At small r, the angle ' an be written as a series' = '0 + '1 + : : : , where '0 orresponds to the statidislination and '1 is the �rst orretion to '0 relatedto the motion. Mathing with the inner problem givesr'1(a) � p; (B.6)beause the solution for the order parameter inside theore is an analyti funtion of r=a and the expansion inp is a regular expansion in pa (see [7℄ and Appendix D).Expanding Eq. (B.4) in p, we obtain1s�x' � � yr2 + pxyr2at pr � 1. In aordane with Eq. (B.5), we thenobtain with the logarithmi auray (i.e., in the mainapproximation in j ln(pa)j � 1) that'1 = spy ln(pr) + uy: (B.7)Using boundary ondition (B.6), we now obtainu = sp ln� 1pa� (B.8)with the same logarithmi auray. This an berewritten as V = 2Kus ln(1=pa) : (B.9)

The same answer (B.9) an be found from the en-ergy dissipation balane. First of all, we an �nd theenergy E orresponding to solution (B.5),E = Z d2r K2 (r')2 == K Z d2r �12u2 + 12(r�)2 + u�y�� ; (B.10)where the �rst term is the energy of the external �eld,the seond term represents the energy of the dislina-tion itself, and the third term is the oupling energy.Obviously, only the last ross-term depends on time.For jx� V tj � p�1,1Z�1 dy �y� = ( 0 if x > V t;�2�s if x < V t:It then follows from Eq. (B.10) that�tE = �2�sKuV: (B.11)On the other hand, we an use Eq. (B.1) to obtain�tE = �K2 Z d2r (r2')2: (B.12)Replaing r2' with 2p�x' here in aordane with Eq.(B.2), we obtain�tE = �V 2 Z d2r (�x')2:The main logarithmi ontribution to the inte-gral omes from the region a < r < p�1, where�x' � �sy=r2. We thus obtain�tE = ��s2V 2 ln� 1pa� : (B.13)Comparing the expression with Eq. (B.11), we �nd thesame answer (B.9).APPENDIX CExtremely small �Here, we onsider the �ow veloity indued by themoving dislination for extremely small � . The veloityis zero in the zero approximation in � (this ase is on-sidered in Appendix B), and we therefore examine thenext, �rst-order approximation in � . We use the sameformalism and the same notation as in Appendix A.835 11*



E. I. Kats, V. V. Lebedev, S. V. Malinin ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002In aordane with Appendix A, solutions of theomplete set of nonlinear stationary equations an berepresented as�x ~' = �yB; �y ~' = �(H + �xB); (C.1)url v = K2� [��yH+2u�yB+2us�y ln r+�0℄ ; (C.2)vx = �K2� �� �yr�2 [��yH + 2u�yB + 2us�y ln r +�0℄ ; (C.3)vy = K2� �� �xr�2 [��yH + 2u�yB + 2us�y ln r +�0℄ ; (C.4)where B, H , and �0 are to be found from the equations� �yH + 2p�yB + �4r�2(r2 � 2u�x)�� [��yH + 2u�yB + 2us�y ln r +�0℄ == ��2 ��yr�2 [��yH + 2u�yB + 2us�y ln r + �0℄�� �yB + �xr�2 [��yH + 2u�yB + 2us�y ln r +�0℄�� (�xB +H)�; (C.5)�0 = 2r�2[(�xB +H)�x�yH + �yB�2yH ℄; (C.6)r2B + �xH = �2�sÆ(r): (C.7)If � is extremely small, s2� ln2(ua) � 1, the solu-tion of Eqs. (C.5)�(C.7) an be ontinued to the viin-ity of the ore. In the leading approximation, the solu-tion for ' oinides with the solution for the angle ~'Lin the motionless liquid. This ase, examined in [6�9℄,is desribed in Appendix B. The funtions BL and HLorresponding to ~'L are given by2pBL = HL = 2spK0(pr) exp(�px): (C.8)This solution gives�0 = 2s2p yr2 ln�minfr; p�1ga � : (C.9)Negleting the nonlinear right-hand side of Eq. (C.5),we an then �ndH(r) = 4�s1 + �=4 Z d2q(2�)2 exp(iq � r)��pq2 � (s�p=4)(q2 + 2iuqx) ln �minf(qa)�1; (pa)�1g�(q2 � 2ik1qx)(q2 + 2ik2qx) :(C.10)

B(r) an be found similarly. Using B and H in Eqs.(C.3) and (C.4), we alulate the �ow veloity v(r) thatvanishes at in�nity.For r � p�1 this solution oinides with expressions(A.5), (A.8), and (A.9) with�1(0) = 2s+ 2s2pu ln� 1pa� :For pr � 1, expression (C.10) is redued to (C.8) andthis region produes the main ontribution to �0 in(C.9). The following expressions are obtained in theinner region (pr � 1) from the solution in Eqs. (C.1)�(C.10):'1 = �u� sp ln 1pa� y + spy ln ra ; (C.11)url v = Ks2p� ln ra yr2 : (C.12)A relation between p and u is �xed by ondition (B.6),leading to u = sp ln[1=(pa)℄, whih is equivalent to Eq.(B.9). The �ow veloity at pr � 1 and ln(r=a)� 1 isv� = �s2�8 V ���r� hy ln2 � ra�i ; (C.13)whih orresponds to the stream funtion
 = �V y � Ks2p4� y ln2 � ra� : (C.14)The expansion with respet to � near the dislinationis regular and an be derived from Eqs. (3.8) and (3.9)with the ondition r'1(a) � p: ~'L + uy is the zeroterm of the series for ', and expression (C.14) repre-sents the zero and the �rst terms for 
.We note that in aordane with Eq. (C.13) in thelimit as � ! 0, the �ow veloity tends to zero near thedislination ore, v(a)=V = O(� ), despite the fat thatthe dislination itself moves with the �nite veloity V ;thus, there is a slipping on the dislination ore in thislimit. APPENDIX DSolution with the omplete order parameterHere, we onsider the dynami equations for theoupled veloity �eld v and the omplete order param-eter 	 = Q exp(i'=jsj) desribing the 2D orientationalorder in liquid rystalline �lms. These equations areneeded to examine the veloity �eld lose to the disli-nation position. We assume that the ore size a is larger836



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Dislination motion in liquid rystalline �lmsthan harateristi moleular sales and work in theframework of the mean �eld theory.Formally, the equations an be derived using thePoisson braket method [30, 37℄. In the mean �eldapproximation, the energy assoiated with the orderparameter isH	 = Ks22 Z d2r�jr	j2 + 12a2 �1� j	j2�2� ;its density beomes the K-ontribution in Eq. (2.3) atlarge sales r � a. The only nontrivial Poisson braketthat must be added to the standard expressions is [28℄fj�(r1);	(r2)g = �r�	Æ(r1 � r2) ++ i2jsj	(r2)���r�Æ(r1 � r2):To be spei� we use the expressions for the energy andthe Poisson braket for hexatis �lms. The dynamiequations are given by��tv� + �v�r�v� = �r2v� � s2K2 ���r�	��r2	+ 1a2	 �1� j	j2�� ++r�	�r2	� + 1a2	� �1� j	j2����� ijsjK4 ���r� �	�r2	�	r2	�	+r�~&;�t	+ v�r�	 = i2jsj	���r�v� ++ Ks22s �r2	+ 1a2	 �1� j	j2�� ; (D.1)the relation s = s2=2 ensures the redution to Eq.(2.6) in the limit j	j = 1, and the kineti oe�ientsare believed to be independent of Q (otherwise, we anassume, for example, the dependene s = s2j	j2=2).The slow dynamis of a 2D liquid rystalline systemwith dislinations an be desribed by Eqs. (D.1) withthe additional inompressibility ondition rv = 0 thatallows exluding the passive variable ~& .If the distane from the dislination to a bound-ary or other dislinations is muh larger than a(i.e., the perturbation of the stati solution 	0 == Q0 exp(i'0=jsj) for a single defet is small), we anlinearize Eqs. (D.1) with respet to the perturbation

expressed in terms of the respetive orretions Q1 and'1 to Q0 and '0,�r2v��2s�r�Q0(v� � V�)r�Q0 + 1s2Q20r�'0 �� �(v� � V�)r�'0 � 12��r�v��+2s 12s2 ���r����Q20�(v� � V�)r�'0 � 12���r�v���++r�~& = 0; (D.2)Ks22s �r2Q1 � (r'0)2s2 Q1 � 2r�'1r�'0s2 Q0++ 1a2s �1� 3Q20�Q1� = (v� � V�)r�Q0; (D.3)Ks22s �r2'1+2Q�10 (r�Q1r�'0+r�Q0r�'1)� == �12���r�v� + (v� � V�)r�'0: (D.4)In terms of the dimensionless quantities L = �
=K,R = r=a, and � = 2s=(s2�), Eq. (D.2) beomes (aspreviously, we onsider a dislination with the unitarytopologial harge jsj or �jsj)r4RL+ �4 ��4s2 (�RQ0)2R2 �2�L+�r2R + 2sR �R� �� �Q20�r2R � 2sR �R�L�� = 0; (D.5)where r2R � �2R + 1R�R + 1R2 �2� and Q0 is found from��2R + 1R�R � 1R2�Q0 +Q0(1�Q20) = 0;Q0(0) = 0; Q0(1) = 1:If � � 1, as it follows from Eq. (D.5), a new saleR � 1=p� � 1 appears inside the ore, the �rst termin Eq. (D.5) an be negleted at larger sales, and thereis no rossover at R � 1.If Q0 � 1, Eq. (D.5) is redued to Eq. (3.12). IfR � 1, Q0 = AR (A � 0:58) and Eq. (D.5) an berewritten asr2R �r2RL+ A�4 (R2r2R � 4s2)L� = 0:The solution of the equation is a superposition of theterms �(R) sin(m�) with di�erent m. After imposing837



E. I. Kats, V. V. Lebedev, S. V. Malinin ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002the ondition �(R) = 0, two onstants remain in thegeneral solution of the ordinary di�erential equationfor �(R); two partial solutions that are regular nearR = 0 are given byRjmj and Rjmj 2F1 jmj � pm2 + 4s22 ;jmj+pm2 + 4s22 ; 1 + jmj; �A2�R24 ! ;where 2F1 is the hypergeometri funtion(2F1(a; b; ; z) = 1 + abz= + : : : ). Two onstants(e.g., the derivatives �(jmj)(0) and �(jmj+2)(0)) arehosen to ensure the slowest possible growth at R� 1in order to eliminate the largest exponent among � inEq. (3.13).If � � 1, it is possible to derive a better approxi-mation in the ore region. We an expand Q0(R) in aseries, seek a series solution �(R), and extrat the termsof the highest order in � . For example, for m = 1, theseries for �(R) begins with l1R+ l3R3, whih �xes twoonstants in the partial solution,�(R) = l1R �1 + 1A2�s(2� s2) ��1� s2A2�R28 ++ 2F1 1�p1+4s22 ; 1+p1+4s22 ; 2; �A2�R24 !!#++ l3 8A2�s2R "�1 + 2F1 1�p1 + 4s22 ;1 +p1 + 4s22 ; 2; �A2�R24 !# :The solutions of Eqs. (D.3) and (D.4) are given byQ1 = #(R)�� sin(m�); '1 = �(R) sin(m�);where # and � must be found from the equations#00 + 1R#0 � 1 +m2R2 #� 2Q0sR2 � ++ (1� 3Q20)# = � 1R�RQ0�;�00 + 1R�0 � m2R2 � + 2Q0 ��sm2R2 #+ �RQ0�0� == �2 ��00 + 1� 2sR �0 � m2R2 �� ;that generalize the expressions given in Ref. [7℄.

The dynami equations with the omplex order pa-rameter demonstrate that for all � , the boundary on-ditions for Eqs. (2.4)�(2.6) experiene no signi�anthanges on the ore. The peuliarity of extremely small� leading to the nonslipping ondition onsists in a slowgrowth of r
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