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A liquid-liquid phase transition is discovered in a system of collapsing hard spheres using the thermodynamic
perturbation theory. This is the first evidence in favor of the existence of that kind of phase transitions in
systems with purely repulsive and isotropic interactions.

PACS: 61.20.Ja, 64.70.Ja

It has been known for many years that the system
of hard spheres experiences the only phase transition at
a high density, when o &~ [, where o is the hard sphere
diameter and [ = (V/N)'/3 is the average interparticle
distance (V is the system volume and N is the number
of particles). This transition corresponds to the order-
ing of the centers of gravity of the particles and can
be called an order—disorder transition, or crystalliza-
tion. In case of hard particles of different shapes such
as hard rods, ellipses, discs, etc., a number of orienta-
tional phase transitions can occur in accordance with
a hierarchy of characteristic lengths defined by particle
shapes. A new situation arises when an extra inter-
action of a finite amplitude ¢ is added to the system
of hard particles. As known from the van der Waals
theory, a negative value of ¢ inevitably causes an insta-
bility of the system in a certain range of densities and
generally leads to a first-order phase transition with no
symmetry change (the order parameter characterizing
this transition is simply the density difference of the co-
existing phases, Ap = p; —ps). This situation is almost
universal and independent of the interaction length.

Much less is known about the case where the inter-
action parameter £ has a positive value. The simplest
example of an interaction of that kind is the so-called
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repulsive step potential (Fig. 1):

x, r<oao,
¢(T) = g, 0-<T§0-17 (1)
0, r>o.

In what follows, the system of particles interacting via
potential (1) is called the system of «collapsing» hard
spheres [1]. Systems of this type are studied in relation
to anomalous melting curves, isostructural phase tran-
sitions, transformations in colloid systems, etc. (see,
e.g., [2-5]). A general conclusion derived from numer-
ous studies of the system is that the repulsive inter-
action of finite amplitude and length results in the
melting curve anomaly and the isostructural solid—solid
phase transition. The latter is a first-order phase tran-
sition and can end in a critical point, because there is
no symmetry change across the phase transition line.
The existence of a phase transition of that type is a
direct consequence of the form of the interparticle in-
teraction and we see no particular reason why it cannot
occur in a fluid phase.

Despite the growing interest in the possible poly-
morphic phase transitions in liquids and glasses (see,
e.g., for [6] recent reviews), the nature of different
phases that can be found in dense (and possibly
metastable) liquids is still puzzling. In recent years,
experimental evidence of such features of the phase di-
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Fig.1. o) The hard-sphere potential with the hard-

sphere diameter o. b) The repulsive step potential; &

is the hard-core diameter, o is the soft-core diameter,
and ¢ is the height of the repulsive step

agram as ligiud-liquid transitions, polymorphism, etc.
appeared for a wide range of systems including water,
Si, I, Se, S, C, P, etc. [6]. The complexity of the phase
diagrams in these substances may result from complex
interactions depending on the intermolecular orienta-
tions. At the same time, exploring the possibility that
simple fluids interacting through isotropic potentials
may exhibit a similar behavior represent a serious chal-
lenge for theorists.

The possibility of the existence of a liquid-liquid
phase transition drastically depends on the shape of
the interparticle potential. After the pioneering work
by Hemmer and Stell [2], much attention has been paid
to investigating the properties of the systems with the
so-called core-softened potentials — the potentials that
have a negative curvature region in their repulsive core.
It has been shown that depending on the parameters
of the potentials, waterlike thermodynamic anomalies
and the second critical point can be observed in this
system [6-10]. Tt is widely believed, however (see,
e.g., [7, 8]), that the existence of a fluid-fluid transition
must be related to the attractive part of the potential.

821

In this paper, we show that the purely repulsive step
potential in Eq. (1) is sufficient to explain a liquid—
liquid phase transition and the anomalous behavior of
the thermal expansion coefficient.

We apply the second-order thermodynamic pertur-
bation theory for fluids to this problem. The soft core
of potential (1) (Fig. 1b) is treated as a perturbation
with respect to the hard sphere potential (Fig. 1a). In
this case, the free energy of the system can be written
as [11, 12]:

F — Fpys

1
NkpT 595/U1(T)9Hs(r)dr -

),

- ipﬂ? |:kBT <—
< [t Ponstrde, @

oP

where p V/N is the mean number density,
B 1/kgT, wi(r) is the perturbation part of the
potential uy(r) = ®(r) — ®ps(r), Pus(r) is the hard
sphere singular potential, and ggg(r) is the hard
sphere radial distribution function, which is taken in
the Percus—Yevick approximation [13]. In the same
approximation, the compressibility can be written

as [12]
4
kBT< ) _ d=n
o (1+2n)?

We note that the actual small parameter in expan-
sion (2) is the ratio e/(kpT), and therefore, the per-
turbation scheme used in this paper works very well
at high temperatures and gives quantitative agreement
with computer simulations for intermediate tempera-
tures and sufficiently high densities [11, 12]. We believe
that in the range of temperatures and densities consid-
ered in this paper, Eq. (2) gives correct results at least
qualitatively.

To calculate Fgg, we can use, e.g., the approximate
equation [12]:

dp

5P (3)

4n — 3n?
(1—mn)?’

where A\ = h/(2rmkgT)"/? and 1 = 7npo® /6. In what
follows, we use the reduced quantities P = Po3 /e, and
V =V/No® =1/p, T = kgT/e, omitting the tildas.
The results of the calculations are demonstrated in
Figs. 2 and 3. In Fig. 2, a family of pressure isotherms
is shown for the system with oy /0 = 1.5. The van der
Waals loops in the isotherms are clearly seen at low
temperatures, indicating the existence of a first-order

Fps
kT N

=3nA—-1+Inp+ (4)
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Fig.2. Compression isotherms of the collapsing sphere
system at various temperatures

liquid-liquid phase transition. A critical point is found
at T. ~ 0.21 and V. ~ 1.015.

An interesting and unusual feature of the isotherms
in Fig. 2 is their intersection in the low-density region.
This behavior implies negative value of the thermal ex-
pansion coefficient in the certain region of density and
temperature. Most liquids contract upon cooling. But
this is not the case for the most important liquid on
Earth, water. It is well known that the specific vol-
ume of water increases when cooled below T = 4C.
The existence of this anomaly can be related to the hy-
pothetical liquid-liquid phase transition in supercooled
water [14, 15]. This anomaly is not restricted to water
but is also present in other liquids [16].

In Fig. 3, the thermal expansion coefficient ap
= V=1 (0V/dT)p is shown as a function of the tem-
perature for two values of specific volume V; = 0.85
and V5, = 1.25, corresponding to the high-density and
low-density liquids respectively. We can see that for the
low-density liquid, there is a range of negative values
of ap below the critical temperature. The appearance
of the negative thermal expansion coefficient can easily
be understood for repulsive step potential (1). At low
temperatures and densities, the particles do not pene-
trate the soft core of the potential. As the temperature
increases, the particles can penetrate the soft core, and
the average distance between particles can therefore de-
crease, resulting in the anomalous behavior of ap. At
high densities, this process is less pronounced because
most of the particles are inside the soft core due to the
external contraction. It must be noted that Stillinger
and collaborators also found a negative thermal expan-
sion coefficient ap < 0 for a purely repulsive Gaussian
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Fig.3. The thermal expansion coefficient ap as a func-
tion of temperature for two values of specific volume
Vi=085and 2 =125 Vi1 < V. < Vs
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Fig.4. Phase diagram of the liquid-liquid phase tran-
sition for different values of o1 /0

potential [17, 18] , but without a liquid-liquid transi-
tion.

Using the Maxwell construction, we were able to
calculate the equilibrium lines of the liquid-liquid
phase transitions at different values of o1 /0 (Fig. 4).
We cannot extend the transition lines to zero tempera-
ture because of the limitations of the perturbative ap-
proach. We can see from Fig. 4 that the critical tem-
perature decreases as the ratio o1 /o increases and the
slope of the transition curves drastically changes with
changes of the ratio o1/c and the temperature. The
decrease of the critical temperature may suggest that
the transition ceases to exist at high values of the ra-
tio o1/0o. This is not surprising because for a long-
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range interaction, perturbation energy can be treated
in the mean-field approximation. The perturbation en-
ergy is then a positive monotonic function of the vol-
ume (0F o 1/V) and cannot provide any ground for
the existence of a phase transition. In accordance with
the Clausius—Clapeyron equation dT/dP = AV/AS
(where AV and AS are the variations of volume and
entropy at the transition), the change of the slope of
the transition line implies that the entropy jump at
the transition changes its sign for different values of
the ratio o1/0 and the temperature. This behavior
of the entropy change can possibly be understood in
the terms of the entropy of mixing, implying that two
states of particles in the system can be considered as
two different species.

The liquid-liquid transition line found most proba-
bly lies below the melting curve and can be observed
only in the metastable liquid state, as was discovered
in supercooled water [14, 15]. On the other hand,
the liquid-liquid transition can be observed in stable
liquids in some cases [6, 19, 20]. It must be noted
that computer simulations also show [8] that for some
choices of the parameters of the potential (and in the
presence of the attractive part of the potential), a
liquid-liquid phase transition can occur in the stable
range of the phase diagram.

We note that a second phase transition correspon-
ding to the liquid—gas transformation can be expected
when an attractive tail is appended to the repulsive
step potential, as was observed in the molecular dy-
namic simulations [9, 10]. We performed the corre-
sponding calculations using the second-order perturba-
tion scheme with the parameters of the core-softened
potential proposed by Stanley and coauthors [9, 10] and
found a second phase transition and a second critical
point. That may be viewed as some sort of justification
of our approach to phase transformations in liquids.

Finally, for the first time we found essential evi-
dence for a first-order phase transition in the liquid
state of the system of collapsing hard spheres.

We thank V. V. Brazhkin, A. G. Lyapin, and
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