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ow Region, RussiaSubmitted 30 May 2002Within the framework of the instanton approa
h, we present analyti
al results for the following model problems:(i) parti
le penetration through a paraboli
 potential barrier, where the instanton solution pra
ti
ally 
oin
ideswith the exa
t (quantum) one; (ii) des
riptions of highly ex
ited states in anharmoni
 potentials of two types:double-well X4 and de
ay X3. For the former potential, the instanton method a

urately reprodu
es not onlysingle-well and double-well quantization, but also a 
rossover region (in 
ontrast to the standard WKB approa
hthat fails to des
ribe the 
rossover behavior); for the latter potential, the instanton method allows studying theresonan
e broadening and 
ollapse phenomena. We also investigate resonan
e tunneling that plays a relevantrole in many semi
ondu
ting devi
es. We show that the instanton approa
h gives exa
t (quantum) results ina broad range of energies. Appli
ations of the method and of the results are appli
able to various systems inphysi
s, 
hemistry, and biology exhibiting double-level behavior and resonan
e tunneling.PACS: 05.45.-a, 05.45.Gg1. INTRODUCTIONSemi
lassi
al me
hani
s has a long history. Sur-prisingly, however, some long-standing problems stillexist in the theory. One of them � the des
ription ofstates near a potential barrier top with a su�
ient a
-
ura
y � is the subje
t of this paper. It is knownthat the 
ommonly used WKB method (phase inte-gral approa
h) [1; 2℄ amounts to mat
hing the wavefun
tions for the 
lassi
ally allowed and forbidden re-gions. Te
hni
ally, the pro
edure works for linear (or*E-mail: kats�ill.fr

�rst-order) turning points and 
an be relatively sim-ply performed only in one-dimensional problems. Butone-dimensional problems are not of great physi
al im-portan
e, not only be
ause the redu
ed dimensional-ity does not allow modelling many relevant experi-mental situations, but also (at least partially) be
auseone-dimensional quantum me
hani
al problems 
an berather easily solved numeri
ally. Unfortunately, e�-
ien
y and a

ura
y of dire
t numeri
al methods inquantum me
hani
s rapidly degrade for multidimen-sional systems possessing many degrees of freedom be-
ause of an extraordinary amount of 
omputational746
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lassi
al approa
h to states : : :work required for 
al
ulations. Furthermore, an exten-tion of the WKB pro
edure to multidimensional sys-tems en
ounters fundamental di�
ulties be
ause of thestill unsolved mat
hing problem for multidimensionalWKB solutions, whi
h be
ome singular on 
austi
 linesseparating manifolds in phase spa
e with real and imag-inary momenta for ea
h amongN 
oordinates. Be
ausethe number of these domains in
reases as N !, it is atremendous task for N > 2. After several de
ades ofe�orts, a 
omplete and unifying des
riptions of multi-dimensional WKB solutions is still unavailable.The problem was �rst addressed long ago, and someattempts to over
ome the di�
ulties of the WKB ap-proa
h and to improve the a

ura
y of the method havebeen performed quite su

essfully. We note, e.g., [3℄,where the authors additionally in
luded traje
tories ofa spe
ial type on the 
omplex phase plane into thestandard WKB method; the semi
lassi
al motion alongthese traje
tories is des
ribed by the Weber fun
tions(also see [4℄). But the 
hoi
e of these additional spe
ialtraje
tories (whi
h must be in
luded in order to im-prove the a

ura
y of the WKB method near the bar-rier top) depends on the detailed form of the potentialfar from the top, and in ea
h parti
ular 
ase, a nonuni-versal pro
edure must therefore be performed from thevery beginning (also see more re
ent publi
ations [5℄,where the authors use some distortion of Stokes dia-grams, or [6℄, where time-dependent quantum me
han-i
al 
al
ulations for anharmoni
 and double-well os
il-lators have been performed).Evidently, therefore, there is some need for a semi-
lassi
al approa
h di�erent from the WKB method.One of the alternatives to the WKB semi
lassi
al for-malism, the so-
alled extreme tunneling traje
tory, orinstanton [7�9℄, 
ould be very e�e
tive in 
al
ulatinga globally uniform wave fun
tion of the ground state(i.e., a wave fun
tion without singularities). It allows�nding semi
lassi
al wave fun
tions for a very broad
lass of potentials with arbitrary 
ombinations of the�rst- and the se
ond-order turning points. The methodwas re
ently adapted for the des
ription of low-energyex
ited states [10, 11℄. One of the main advantagesof the instanton approa
h is that it 
an be readily ex-tended to multidimensional systems using perturbativete
hniques (see [12℄ and referen
es therein).But before investigating multidimensional prob-lems, we must study one-dimensional potentials andone-dimensional problems that 
annot be a

uratelysolved by the standard WKB method. These problemsare the subje
t of this paper. The generalization ofthe instanton pro
edure to highly ex
ited states is notstraightforward at all, and required additional analy-

sis. We 
onsider only few relatively simple examples,but this analysis is useful for gaining insight into more
omplex systems for whi
h even approximate theoreti-
al results are not available.In many interesting physi
al problems, high-a

ura-
y 
al
ulations are out of rea
h of the standard WKBmethod, but as we see in what follows, the instantonapproa
h o�ers a solution to the di�
ulties inherent tothe WKB pro
edure. Sin
e this fa
t was largely unno-ti
ed in the previous studies, we found it worthwhile topresent the investigation of several simple examples ina short and expli
it form and to point out pra
ti
al us-ability of the instanton approa
h. Apart from the aimto illustrate the e�
ien
y of the instanton approa
h,our study is a prerequisite for an explanation and su
-
essful des
ription of many relevant physi
al phenom-ena (for example, low-temperature quantum kineti
s ofphase transitions, see, e.g., [13℄) where an a
tive (rea
-tion) path is e�e
tively 
on�ned to one dimension.All examples 
onsidered in this paper are related tothe fundamental problems of 
hemi
al dynami
s andmole
ular spe
tros
opy (see, e.g., [9℄ and referen
estherein). Symmetri
 or slightly asymmetri
 double-wellpotentials are 
hara
teristi
 of mole
ules and Van derWaals 
omplexes with more than one stable 
on�gura-tions [14�17℄. The states of su
h systems 
lose to thebarrier top (theoreti
ally des
ribed by the instanton ap-proa
h in this paper) are most relevant for radiationlessevolution of highly ex
ited states. These states have adouble (lo
alized�delo
alized) nature, whi
h manifestsitself in the wave fun
tions that simultaneously 
ontainboth 
omponents, the lo
alized 
omponent in one ofthe wells and the delo
alized 
omponent between thetwo wells. The states 
lose to the barrier top of de-
ay potentials govern thermally a
tivated over-barriertransition amplitudes. For low-energy states, the mainredu
tion fa
tor is the tunneling exponent, while the
ontribution of highly ex
ited states is limited by theBoltzmann fa
tor. Our instanton 
al
ulations demon-strate that there is no sharp boundary between qua-sistationary and delo
alized states. Two of us (V. B.and E. K.) re
ently investigated [18℄ the eigenstates ofa highly asymmetri
 double-well potential. We haveshown that quantum irreversibility phenomena o

urwhen the spa
ing between neighboring levels of thedeeper well be
omes smaller than the typi
al transi-tion matrix element. Obviously, this 
riterion 
an alsobe applied to the states near the barrier top. We notethat for low-energy states, the asymmetry leading toirreversible behavior must be very large, whereas forstates near the barrier top, the 
ondition of the ergodi
behavior is not very severe, and it is su�
ient for the747
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omparable to thebarrier height.This paper is organized as follows. Se
tion 2 
on-tains the basi
 equations of the instanton method thatare ne
essary for our investigation. As an illustrationof the method, we 
onsider a tou
hstone quantum me-
hani
al problem � penetration of a parti
le througha paraboli
 potential barrier. The instanton solutionsthat are the asymptoti
 forms of the Weber equationare then exa
t. Se
tion 3 is devoted to the investiga-tion of highly ex
ited states in a double-well potential.For 
on
reteness and simpli
ity, we study the quarti
anharmoni
 potential X4. The instanton approa
h al-lows us to a

urately reprodu
e not only the asymp-toti
 behavior but also the 
rossover region from thesingle-well to the double-well quantization. In Se
. 4,a similar problem for the X3 anharmoni
 potential isstudied. Se
tion 5 is devoted to the so-
alled resonan
etunneling phenomena, whi
h are not only interestingin their own right but also they play a relevant rolein many semi
ondu
ting double-barrier stru
tures. InSe
. 6, we dis
uss the results. In the Appendix, we 
om-pute the so-
alled 
onne
tion matri
es that provide avery e�
ient method of �nding semi
lassi
al solutionsto the S
hrödinger equation in potentials having sev-eral turning points. Knowing the 
onne
tion matri
esis also important and signi�
ant for developing a goodanalyti
al approximation. The readers not interestedin the mathemati
al derivation 
an skip the Appendixand �nd all the results in the main body of the paper.2. PENETRATION THROUGH THEPARABOLIC POTENTIAL BARRIER2.1. Instanton approa
hFor 
onvenien
e, we re
all the main ideas of the in-stanton approa
h. The �rst step of the approa
h in [7℄and [8℄ is the so-
alled Wi
k rotation of phase spa
e
orresponding to the transformation to imaginary timet ! �it. The potential and the kineti
 energy 
hangetheir signs after the transformation and the Lagrangianis repla
ed by the Hamiltonian in the 
lassi
al equationof motion. By this Wi
k rotation, the standard os
il-lating WKB wave fun
tions are transformed into expo-nentially de
aying fun
tions that vanish as X ! �1.Following [10; 11℄, we use a slightly di�erent formula-tion of the instanton method, assuming exponentiallyde
aying real-valued wave fun
tions from the very be-ginning. Taking into a

ount that the wave fun
tionsof bound states 
an be 
hosen as real quantities, we 
an

fherefore seek a solution to the S
hrödinger equation inthe form 	 = exp (�
�(X)) ; (2.1)where 
 is the semi
lassi
al parameter that is assumedto be su�
iently large (
 � m
0a20=~, where m isthe mass of a parti
le, a0 is a 
hara
teristi
 length inthe problem, e.g., the tunneling distan
e, and 
0 is a
hara
teristi
 frequen
y, e.g., the os
illation frequen
yaround the potential minimum; in what follows, we set~ = 1, measuring energies in the units of frequen
y)and � 
an be 
alled the a
tion; this fun
tion must sa-tisfy the �rst-order di�erential equation of the Ri
attitype,
2 "�12 � d�dX�2+V (X)#+
 �12 d2�dX2��� = 0; (2.2)where V (X) is the potential and � gives parti
le eigen-states (energies). Here and in what follows, we usedimensionless variables (� = E=
0 for the energy,V = U=

0 for the potential, and X = x=a0 for the
oordinate, where E and U are the 
orresponding di-mensional values of the energy and potential). We be-lieve that 
 � 1, and �(X) 
an therefore be expandedin the asymptoti
 series�(X) =W (X)+
�1W1(X)+
�2W2(X)+ : : : (2.3)The �rst- and the se
ond-order terms in 
�1 be
omeidenti
ally zero if the time-independent Hamilton�Ja
obi equation (HJE) and the so-
alled transportequation (TE) are satis�ed,12 �dWdX �2 = V (X); (2.4)and dWdX dAdX + 12 d2WdX2 A = �A; (2.5)where A(X) � exp(�W1(X)): (2.6)An essential advantage of the instanton method in 
om-parison to the standard WKB is that in the former ap-proa
h, the HJE is solved at E = 0, and the 
lassi
allyallowed regions therefore disappear. The pri
e to bepaid for this is the appearan
e of se
ond-order turn-ing points (in 
ontrast to the WKB method, where allturning points are linear).748
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lassi
al approa
h to states : : :It is well known that the WKB wave fun
tionsare singular at the turning points, and therefore, dif-ferent approximations represent the same wave fun
-tion in di�erent domains. The famous Stokes phe-nomenon [2℄ is related to the distribution of the turn-ing points; Stokes and anti-Stokes lines emanate fromea
h turning point. By de�nition, Stokes lines are thelines where the dominan
e of the dominant exponen-tial semi
lassi
al solution to the S
hrödinger equationbe
omes strongest, and anti-Stokes lines are the lineson whi
h the dominan
e and subdominan
e of the solu-tions inter
hange. Evidently, the WKB approximationdoes not work and must be re�ned near Stokes and anti-Stokes lines [2℄. On the 
ontrary, be
ause 
lassi
ally a
-
essible regions do not exist in the instanton formalism,the Stokes lines 
ontinuously pass through se
ond-orderturning points, and globally uniform real solutions tothe S
hrödinger equation 
an be 
onstru
ted using theasymptoti
ally smooth transformation of the instantonwave fun
tions into the Weber fun
tions. This globaluniformity is the prin
ipal advantage of the instantonmethod.A 
learer idea of the instanton approa
h is obtainedby the derivation of the well-known [1℄ quantizationrules for the harmoni
 os
illator (V (X) = X2=2). Fora given energy �, any solution of the S
hrödinger equa-tion 
an be represented as a linear 
ombination of thesolutions of the Weber equation [19℄d2	dz2 +�� + 12 � z24 �	(z) = 0; (2.7)where z � Xp
 and � = � � 1=2. The basi
 solu-tions of (2.7) are the paraboli
 
ylinder fun
tions [19℄,and only the fun
tion D�(�z) vanishes as z ! 1 forarg z = 0. For arg z = �, the asymptoti
 behavior ofthis fun
tion as z !1 is given by [19℄D�(�z) = exp(i��)z� exp��z24 ��� p2��(��)z���1 exp�z24 � : (2.8)It 
an vanish as z !1 only at the poles of �(��), andthis vanishing 
ondition gives the exa
t eigenvalues ofthe harmoni
 os
illator� = n+ 12 :Moreover, be
ause D�(�z) 
oin
ide with the knownharmoni
 os
illator eigenfun
tions for positive integer� [1℄, the instanton approa
h to the harmoni
 os
illatoris exa
t.

2.2. Tunneling through the harmoni
 barrierAs a less trivial illustration of the instanton ap-proa
h e�
ien
y, we apply the method to the prob-lem of quantum me
hani
al tunneling through theparaboli
 potentialU(x) = U0 � m
202 x2; (2.9)where m is the mass of the tunneling parti
le and 
0is a 
hara
teristi
 frequen
y (the 
urvature of the po-tential). The potential involves an additional 
hara
-teristi
 spa
e s
ale a0. Using 
0 and a0 to set the
orresponding s
ales, we 
an rewrite paraboli
 poten-tial (2.9) in the dimensionless formV (X) = V0 � 12X2: (2.10)In these variables, the S
hrödinger equation is given byd2	dX2 + (
2X2 � �
)	(X) = 0; (2.11)where � = 2U0 �E
0 ; (2.12)and 
 � 1 semi
lassi
al parameter introdu
ed above.S
hrödinger equation (2.11) 
an be transformedinto the Weber equation [19℄ by a �=4-rotation in the
omplex plane, X = 1p2
 z exp� i�4 � ;and the solution of (2.11) 
an therefore be representedas a linear 
ombination of the paraboli
 
ylinder fun
-tions D� [19℄,	�(z) = 
1D�(z) + 
2D�(�z); (2.13)where � = �1=2� i�=2.As X ! 1, only the transmitted wave exists withthe amplitude (the transmission 
oe�
ient) T ,	 � T exp i
X22 : (2.14)As X ! �1, both the in
ident wave(/ exp(�i
X2=2)) and the re�e
ted wave proportionalto R exp(i
X2=2) exist. By a standard quantumme
hani
al pro
edure [1℄, the transmission 
oe�
ientT and the re�e
tion 
oe�
ient R 
an be found usingthe known asymptoti
 form of the paraboli
 
ylinder749
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tions [19℄ at the �xed energy (i.e., at �xed �).This leads to the well known expression [1℄jT j2 = 11 + exp(��) : (2.15)We note that solutions (2.13) are the exa
t solutions tothe S
hrödinger equation in paraboli
 potential (2.10).We now apply the instanton approa
h des
ribed aboveto the same problem. The solutions of HJE (2.4) andTE (2.5), whi
h are milestones of the method, 
an eas-ily be found asW = �iX22 ;A = A0X�1=2 exp��i� ln X2 � ; (2.16)where the integration 
onstant A0 determines energy-dependent phases of the wave fun
tions. Compar-ing (2.16) and (2.13), we 
an see that the instan-ton wave fun
tions are the asymptoti
 forms of theparaboli
 
ylinder fun
tions, and therefore, be
ause thetransmission (T ) and re�e
tion (R) 
oe�
ients are de-termined only by the asymptoti
 behavior, the valuesof T and R found in the framework of the instantonapproa
h 
oin
ide with the exa
t quantum me
hani
alones at any value of the energy (of the parameter �).We re
all that the instanton and the exa
t quantumme
hani
al solutions for the harmoni
 os
illator also
oin
ide for any energy.To �nish this subse
tion, we mention for the skepti-
al reader that the WKB wave fun
tions 
oin
ide withthe exa
t solutions only at � � �1. In the regionwhere j�j � 1, i.e., where the 
hara
teristi
 size of theforbidden region be
omes 
omparable to the parti
lewave length, spe
i�
 interferen
e phenomena betweenthe transmitted and re�e
ted waves o

ur, and phe-nomena of this kind 
annot be reprodu
ed in the stan-dard WKB approa
h assuming that all turning pointsare independent.As an illustration, in Fig. 1, we show the energy(�) dependen
e of the phase for the wave fun
tion re-�e
ted by the paraboli
 potential. The exa
t quantumme
hani
al and the instanton solutions (�0 in Fig. 1)are indistinguishable over a broad region of energies,while the WKB solution (�WKB0 in Fig. 1) deviatesfrom both of them.2.3. Conne
tion matri
esOur analysis 
an be re
ast into a more elegant formby introdu
ing the so-
alled 
onne
tion matri
es. In

2

21

1
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0.5

−0.5

0.2

−0.1

0

0.1

−1.0 −0.2Fig. 1. The phase of the wave re�e
ted from theparaboli
 barrier: 1 � the exa
t quantum and instan-ton solutions �0; 2 � the WKB solution �WKB0 ; thedashed line is the di�eren
e �0 � �WKB0the instanton approa
h (as in any semi
lassi
al treat-ment of the s
attering or transition pro
esses), we dealwith only the asymptoti
 solutions and their 
onne
-tions on the 
omplex 
oordinate plane. It is thereforeimportant to know the 
onne
tion matri
es. These 
on-ne
tion matri
es provide a very e�
ient method of �nd-ing semi
lassi
al solutions to the S
hrödinger equationin potentials with several turning points. This is also arelevant starting point for developing a good analyti
alapproximation.It is 
onvenient to formulate the general pro
edurefor 
al
ulating the 
onne
tion matri
es for an arbi-trary 
ombinations of the �rst- and se
ond-order turn-ing points. The pro
edure 
an then be applied to anyparti
ular problem under investigation. Te
hni
ally,this requires extending the pro
edure known for lin-ear turning points [2℄. All the ne
essary details of thegeneralization are given in the Appendix, and we herepresent only the main de�nitions and results. In thesemi
lassi
al limit 
 � 1, the Stokes and anti-Stokeslines for the equationd2	dz2 + 
2q(z)	(z) = 0 (2.17)are determined by the respe
tive 
onditionsReW (z) = 0 (2.18)750
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al approa
h to states : : :
I I

′

II

X2 X1

3 2
14

5

Fig. 2. The Stokes (solid) and anti-Stokes (dashed)lines for the two real-valued turning points X1;2 withthe surrounding 
ontours I and I0. On 
ontour II,the Stokes lines for the Airy equation asymptoti
allymat
hes the lines for the Weber equation. The 
ut isdepi
ted by the wavy lineand ImW (z) = 0; (2.19)where W (z) = zZz0 pq(z)dz (2.20)and z0 is the turning point under 
onsideration.For the harmoni
 potential, there are only lin-ear turning points for real (� > 0) and imaginary(� < 0) energies. In the Appendix, we 
al
ulate allthe 
onne
tion matri
es that we need. To fully ana-lyze the problem for the entire range of parameters,we must therefore know only the distributions of turn-ing points and the Stokes and anti-Stokes lines on the
omplex plane. At real turning points (� > 0) whereX1;2 = �(�=
)1=2, there are four Stokes and four anti-Stokes lines and two 
uts in the 
omplex plane (seeFig. 2).For � � 1, the 
onne
tion matrix 
an be easily
al
ulated as the dire
t produ
t of the 
onne
tion ma-tri
es found in the Appendix (M̂� in Eq. (A.4) andthe Hermitian 
onjugate matrix M̂+) and the diagonalshift matrix exp(��=2) 00 exp(���=2) ! : (2.21)

I

I
′

II

iX1

iX2

84 7 623 51

Fig. 3. The same as Fig. 2 for the 
ase of two purelyimaginary turning points iX1;2This leads to the transmission 
oe�
ient T �� exp(���=2), whi
h 
oin
ides with (2.15) with theexponential a

ura
y in the limit � � 1. To improvethe a

ura
y at smaller values of �, we must 
al
ulatethe 
onne
tion matri
es taking into a

ount not onlythe 
ontributions of the 
ontours en
ompassing theturning points, but also the additional 
ontribution tothe a
tion of the 
losed path (with a radius � jX1;2j)en
ompassing both points X1 and X2 (see Fig. 2).The pro
edure 
hanges the Stokes 
onstant T3 (onthe dashed line separating regions 3 and 4 in Fig. 2),whi
h be
omesjT3j = [1 + exp(���)℄1=2:This �nally leads to the 
orre
t transmission 
oe�
ientT = iT�13 exp����2 � ;whi
h is identi
al to (2.15).In the 
ase where � < 0, the entire pi
ture (seeFig. 3) of the Stokes and of the anti-Stokes lines andturning points is rotated by the angle �=2 with respe
tto the pi
ture in Fig. 2. If we bluntly take the pointX = 0 as the low integration limit for the a
tion W �in Eq. (A.11), we obtain the transmission 
oe�
ientT = 1� 12 exp(��j�j);751
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h 
an be reliable (with the a

ura
y exp(�2�j�j))only for j�j � 1. As in the 
ase where � > 0, thea

ura
y 
an be improved by taking into a

ount the
ontribution of the path surrounding both imaginaryturning points (this fa
t was noti
ed by Pokrovskii andKhalatnikov long ago [3℄).At the isolated linear imaginary turning point iX1,the 
onne
tion matrix is found from (A.4),~M+1 =  1 i exp(��j�j=2)0 1 ! : (2.22)Similarly, the Hermitian 
onjugate matrix ~M�1 
omesfrom the 
ontribution of the 
losed path surrounding�iX1. These 
ontours provide only the amplitude ofthe dominant (exponentially in
reasing) wave. But thea

ura
y is insu�
ient for �nding the amplitude of the
orresponding subdominant solution (the exponentiallyde
aying wave fun
tion), and we obtain the in
orre
ttransmission 
oe�
ient T = 1. To improve the a
-
ura
y and to �nd T 
orre
tly, we must in
lude the
onne
tion matrix for the isolated se
ond-order turn-ing point in the pro
edure (in this parti
ular example,this turning point is the maximum of the potential).Using (A.9), we 
an expli
itly �nd this matrix as~M2 ==  [1+ exp(��j�j)℄1=2 i exp(��j�j=2)�i exp(��j�j=2) [1+exp(��j�j)℄1=2 ! :(2.23)In prin
iple, similar 
al
ulations 
an be performedin the adiabati
 perturbation theory (whi
h in fa
temploys the Plan
k 
onstant smallness equivalent to
 � 1). We note that in [20℄, the 
ontributions ofthe 
ontours surrounding turning points (analogous tothose presented above) were taken into a

ount. Itseems very plausible that following this way, it will bepossible to 
ombine the instanton approa
h and theadiabati
 perturbation theory, but this issue is beyondthe s
ope of this paper and will be dis
ussed elsewhere.3. HIGHLY EXCITED STATES IN THEDOUBLE-WELL POTENTIALLiterally, the instanton approa
h des
ribed in theprevious se
tion is valid for states with 
hara
teristi
energies that are small 
ompared to the barrier height.But as we show in this se
tion, the instanton methodworks su�
iently well for the energy states near the

barrier top V0. As an illustration, we 
onsider the sym-metri
 double-well potential (quarti
 anharmoni
 X4potential) V0 � V (X) = 12X2(1�X2): (3.1)The S
hrödinger equation with potential (3.1) 
an berewritten in dimensionless variables in the formd2	dX2 + [2
2(V0 � V (X))� �
℄	(X) = 0; (3.2)that is most 
onvenient in appli
ations of the instantonapproa
h. The HJE and TE then be
ome12 �dWdX �2 = V0 � V (X); (3.3)and dWdX dAdX + 12 �d2WdX2 + i��A = 0: (3.4)Formal solutions to the set of equations (3.3), (3.4) arethe even and odd instanton wave fun
tions	�I = A�(X) exp(i
W�(X)); (3.5)where the a
tion W� (a solution of the HJE) is to bedetermined fromdW�dX = �p2(V0 � V (X)); (3.6)and the amplitude (prefa
tor) is given byA� = ����dW�dX �����1=2 �� exp"�i� Z �dW�dX ��1 dX# : (3.7)The quantization rules [1℄ are related to 
ontinuousmat
hing of the solutions at the turning points (these
ond-order turning point X = 0 and the linear turn-ing points X = �1 for � > 0 and X = �i for � < 0).A 
ru
ial advantage of instanton solutions (3.5) is thatthese fun
tions have no singularities inside the barrier,be
ause the 
orresponding exponents are pure imag-inary in the 
lassi
ally a

essible regions (unlike theWKB solutions). In addition, the general form of theinstanton wave fun
tions does not noti
eably dependon whether E < V0 or E > V0. This advantage allowsus to in
lude the instanton wave fun
tions into the basisof globally uniform fun
tions diagonalizing the Hamil-tonian even for highly ex
ited states.752
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lassi
al approa
h to states : : :The above general pro
edure for sear
hing instan-ton solutions to the S
hrödinger equation with modelpotential (3.1) has a subtle point, whi
h motivates gi-ving the expli
it sear
hing pro
edure in some detail;new results follow from our investigation. The pro
e-dure in
ludes several steps.1. Near the se
ond order turning point, exa
t so-lution (2.14) to the S
hrödinger equation 
an be usedwith 
1 = �
2 for the even and odd solutions respe
-tively. For jX j � 1, it follows from (2.14) and fromthe known asymptoti
 forms of the paraboli
 
ylinderfun
tions [19℄ that	(X) = 
1pX �� � exp(if(X))�((1� i�)=4) + exp(�if(X))�((1 + i�)=4)� ; (3.8)where
1 = � 2��((3 + i�)=4) �� exp����8 � 2�i�=4(2
)�1=4; (3.9)and f(X) = 
2X2 � �2 lnX � �4 ln 
 � �8 : (3.10)To obtain the 
orre
t even and odd linear 
ombinations
onforming to (3.5), we set
� = 
1 exp(�if1)�((1� i�=p2)=4) ; (3.11)where f1 = � ln 
4 + �8 :2. Near the linear turning point X = �1, theS
hrödinger equation redu
es to the Airy equation [19℄d2	dy2 � y	(y) = 0; (3.12)where y = 
2=3 ����X + 1 + �
 ���� (3.13)for X < 0. The solution that vanishes as y ! 1 isgiven by [19℄	(y) = jyj�1=4 sin�23 jyj3=2 + �4� : (3.14)Continuing this solution to the regions (X�1)p2
 � 1and sewing there with (3.8), we obtain
+
� = exp��i2
W � + i3�2 � ; (3.15)
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Fig. 4. The dimensionless tunneling splitting �=
0 forthe anharmoni
 X4 potential near the barrier top: 1 �exa
t quantum and instanton 
al
ulations, 2 � theWKB resultwhere W � is the energy-dependent a
tion on the inter-val [X = 0; X = 1℄.3. Comparing (3.15) and (3.11), we �nd the quan-tization rules� ((1 + i�)=4)� ((1� i�)=4) = exp��2i
W � � i3�2 � (3.16)for the even states and� ((3 + i�)=4)� ((3� i�)=4) = exp (�2i
W � � i�) (3.17)for the odd states.4. From (3.16) and (3.17), we �nally obtain thequantization rule that 
an be written in the single formfor both the even and odd states as2
W � + 2�(�) �� 0BB� 5�4 + 2�n� ar
tg�th���4 ��3�4 + 2�n� 2 ar
tg�th���4 �� 1CCA : (3.18)Relation (3.18) is the sought quantization rule thatnow allows us to use the advantages of the instantonmethod. For highly ex
ited states (i.e., for �� �1), itfollows from (3.18) that2
W � + 2�(�) = ��n+ 12� ;6 ÆÝÒÔ, âûï. 4 (10) 753
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es the known quantization rule
W �L = ��n+ 12�� 12 exp����2 � ;where W �L is the a
tion in the 
lassi
ally admissible re-gion between the linear turning point in the left well,
W �L = 
W � + �(�): (3.19)We note an essential advantage of instanton quanti-zation rule (3.18) 
ompared to the traditional WKBformalism, where the quantization rules are totally dif-ferent [1℄ in the tunneling and over-barrier regions. Theinstanton approa
h gives a single quantization rule,Eq. (3.18), whi
h is valid in both regions and in addi-tion, quite a

urately des
ribes the 
rossover behaviornear the barrier top, where periodi
 orbits lo
alized atseparate wells transform into a 
ommon �gure-eight or-bit en
losing both wells.We illustrate the results of this se
tion in Fig. 4,where we plot the universal dependen
e of the eigen-values in symmetri
 double-well potential (3.1) on �.For 
omparison, we show in the same �gure the eigen-values found by the 
onventional WKB pro
edure andby the exa
t quantum me
hani
al 
omputation. It is
lear from the �gure that the WKB method errors aremaximal in the region of small j�j, be
ause the os
illa-tion period logarithmi
ally diverges in this region (theparti
le spends in�nitely long time near the se
ond-order turning point). On the 
ontrary, the errors ofthe instanton approa
h are minimal near the barriertop (small j�j).As mentioned at the beginning of this se
tion, theinstanton approa
h is also very a

urate near the po-tential minimum. Generally speaking, the instantonsolutions are always 
orre
t when the deviation fromthe 
orresponding extremum is of the order of 
hara
te-

risti
 zero-point amplitudes. Mathemati
ally, the a

u-ra
y of the instanton approa
h is based on the transfor-mation of the semi
lassi
al solutions into the harmoni
os
illator eigenfun
tions (whi
h also ensures the 
orre
tnormalization of the instanton wave fun
tions). It istherefore natural to expe
t that the instanton methodis very a

urate near the barrier top and near the po-tential minimum. On the 
ontrary, in the intermediateregion, where the anharmoni
 shape of the potential isrelevant, we should expe
t poor a

ura
y of the instan-ton method. Fortunately, it turns out that the math-emati
al nature of the problem is on our side, and theinstanton approa
h has a reasonable a

ura
y (of theorder of the a

ura
y of the WKB method) even inthis region. The fa
t is that the instanton wave fun
-tions are exa
t not only in zero but also in the �rstorder with respe
t to anharmoni
 
orre
tions to thepotential approximation. This 
an be shown using theanharmoni
 perturbative pro
edure that was proposedby Avilov and Iordanskii for the WKB fun
tions [21℄and was generalized for the instanton wave fun
tionsin [22℄.For pra
ti
al 
omputations, it is also relevant thatthe instanton wave fun
tions (unlike the WKB ones)are 
ontinuous near their �own� minimum. Numeri
alestimate shows that in the intermediate energy region,the instanton wave fun
tions reprodu
e exa
t quantumresults with the a

ura
y about 5�10%.To �nish the se
tion, we present the 
onne
tionmatri
es needed to �nd semi
lassi
al solutions to theS
hrödinger equation in the double-well potential. Sim-ilarly to the results in Se
. 2, the 
onne
tion matrixfor the instanton solutions is the produ
t of 
onne
tionmatri
es (A.4) for the linear turning points and the
onne
tion matrix for the se
ond-order turning point,whi
h is the maximum of the double-well potential inthe 
ase under 
onsideration. Using (A.9), we 
an �ndthis latter 
onne
tion matrix as0B� 2 hexp���2 �+ (1 + exp(��))1=2 
os(2
W �)i �(1 + exp(��))1=2 sin(2
W �)(1 + exp(��))1=2 sin(2
W �) 12 h� exp���2 �+ (1 + exp(��))1=2 
os(2
W �)i 1CA : (3.20)It is worth noting that the re�e
ted wave a
quiresa nontrivial phase fa
tor near the barrier top. Thisphenomenon is related to the interferen
e of the in
i-dent, re�e
ted, and transmitted waves, and the phasetherefore has some geometri
al meaning, similarly tothe famous Berry phase [23℄. The geometri
al origin
of the phase manifests itself more 
learly if we re
allthat the semi
lassi
al phase fa
tor is determined by theprobability density �ow through the barrier,J = i	� d	dX :754
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lassi
al approa
h to states : : :We 
an 
onsider this phase fa
tor from a slightly dif-ferent standpoint, be
ause tunneling results in a phaseshift related to the 
hange of the eigenvalues. Quanti-zation rules (3.18) and (3.19) 
an be rewritten as�n = n+ 12 + �n;whi
h is the de�nition of the eigenvalues �n and where nis integer labeling the eigenvalues and �n is determinedby the exponentially small phase shift due to the exis-ten
e of the barrier between the two wells. The phaseshift �n has the same fun
tional form (and physi
almeaning) as the geometri
al phase fa
tor (appearingbe
ause of the interferen
e phenomena) a
quired by aquantum me
hani
al wave fun
tion upon a 
y
li
 evo-lution [23�25℄.4. THE DECAY POTENTIALIn this se
tion, we study highly ex
ited states in ade
ay potential, whi
h we 
hoose as the anharmoni


X3 potential for de�niteness,V (X) = 12X2(1�X): (4.1)As a �rst (but 
ompulsory) step, we investigate thelow-lying tunneling states.4.1. Tunneling de
ay of metastable statesWe start from this simple 
ase to pi
k low-hangingfruits �rst, i.e., to des
ribe the states under the 
ondi-tions V0 � �n � V (X !1); (4.2)whi
h imply that a lo
al minimum is separated fromthe 
ontinuum spe
trum by a high energeti
al barrier,and the quasistationary states �n are therefore 
hara
-terized by �good� quantum numbers n. We note that ageneri
 de
ay potential shown in Fig. 5 is determined bythe positions of the barrier top X0 and the three turn-ing points �X1; X = 0, and +X2; near these points,we have
V (X) = 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

V0�� dVdX�X=�X1 (X+X1); jX+X1j ! 0;12X2; jX j ! 0;V0 � 12(X �X0)2; jX �X0j ! 0;�� dVdX�X=X2 (X�X2); jX�X2j ! 0: (4.3)
Potential (4.1) is a parti
ular example of the generi
de
ay potential in Eq. (4.3) (with X1 = 1=3, X0 = 2=3,X2 = 1, and V0 = 2=27); we use it only as an ex-pli
it illustration, and in order to be spe
i�
, while allthe results given below are equally valid for the generi
potential. As a note of 
aution, we also remark thatin the instanton approa
h to this problem, we must al-ways deal with only two turning points. For low-energystates, the points are X2 and the potential minimumX = 0, and for high-energy states, the points are �X1and the potential maximum X0.In a

ordan
e with (4.1), there are no turning pointsat X > X2; at X � X2, the potential 
an be 
on-sidered as a 
onstant, and therefore the wave fun
-

tions must therefore asymptoti
ally 
oin
ide with planewaves for X � X2. Furthermore, near the linear turn-ing point X = 1, the S
hrödinger equation with theX3 anharmoni
 potential (4.1) is redu
ed to Airy equa-tion (3.12), whose solutions are linear 
ombinations ofthe Bessel fun
tions with the indi
es �1=3 at real (forX < 1) and imaginary (for X > 1) values of the argu-ments,	(u) = pu�� �B+I1=3�2u3=23 �+ B�I�1=3�2u3=23 �� ; (4.4)and755 6*
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Fig. 5. The X3 anharmoni
 de
ay potential

	(�) =p� �� ��B+J1=3�2�3=23 �+B�J�1=3�2�3=23 �� ; (4.5)where u = (2
)2=3 �1�X � � + 1=2
 � (4.6)for X < 1 and� = (2
)2=3 �X � 1 + � + 1=2
 � ; (4.7)for X > 1 (we re
all that � = �n � 1=2 here).The 
oe�
ients B� must be 
hosen su
h thatEq. (4.5) gives plane waves for � � 1; using the knownasymptoti
 forms of the Bessel fun
tions [19℄, we thusobtain B+ = B� exp��i�3� :In the 
lassi
ally forbidden region u � 1, the instan-ton solutions of HJE (2.4) and TE (2.5) that 
ontinu-ously mat
h the quantum me
hani
al solutions of theS
hrödinger equation near the turning points are givenby 	� = A� exp(�
W ); (4.8)whereA� = X�1=2(1�X)�1=4�1�p1�X1 +p1�X �n�n (4.9)

and W = 815 � 43(1�X)3=2 + 45(1�X)5=2: (4.10)The sought wave fun
tions of the quasistationary statesare linear 
ombinations of instanton solutions (4.8),with the 
oe�
ients in the linear 
ombinations deter-mined from the 
ondition of asymptoti
ally mat
hingthe paraboli
 
ylinder fun
tions in Eq. (2.13) and theAiry fun
tions. This leads to the following equation for
omplex eigenvalues �:� p2��(��) exp�1615
� = i
�+(1=2)26�+3: (4.11)Be
ause the fun
tion �(z) has a simple pole at z = �n,we 
an easily �nd the leading 
ontribution to the de
ayrate �n of the quasistationary state �n,�n
0 =r 2� 
�+1=226�+3n! exp��1615
� : (4.12)We note that for the ground state, with n = 0,Eq. (4.12) 
oin
ides with the result found by Caldeiraand Legget [26℄. On the other hand, the de
ay rate isrelated to the 
urrent �ow [1℄ as X ! +1, providingthe 
onstant amplitude of the outgoing wave,�n
0 = �2ip
 Z j	j2dX��1 ����	� d	dX +	d	�dX � : (4.13)Inserting the expli
it forms of the wave fun
tions inEqs. (4.5), (4.6), and (4.7) in (4.13), we obtain�n
0 = 98 
1=621=3 jB+j2: (4.14)In a

ordan
e with (4.14), the de
ay rate dependsonly on the normalization of the instanton wave fun
-tion and on the amplitude of the outgoing wave. Both
hara
teristi
s are determined essentially by the behav-ior of the instanton wave fun
tion in the vi
inity of theturning points only. We note, however, that in thisapproximation, the instanton 
omputation of de
ayrate (4.13) or (4.14) is satisfa
tory only for the groundstate, be
ause 
orre
tions of the order 
�1 rapidly in-
rease with the quantum number n. The method 
anbe improved by taking theX3 anharmoni
 
ontributionto the potential into a

ount as a perturbation,�n
0 =r 2� 
�+1=226�+3n! exp��1615
����1� 1576
 (164n3+246n2+1216n+567)� : (4.15)756
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lassi
al approa
h to states : : :The de
ay rate 
al
ulated in a

ordan
e with (4.15) isof the same a

ura
y level as the WKB and the exa
tquantum me
hani
al 
omputations for 
 � 5. Outsidethe regime of interest, the instanton theory loses allpreten
e of predi
tability.4.2. Highly ex
ited states for the anharmoni
X3 potentialIn Se
. 4.1, we 
al
ulated the de
ay rate of low-energy metastable states. In this 
ase (where the states�n 
an be 
hara
terized by the good quantum numbern), the period of os
illations in the well is smaller thanthe inverse de
ay rate (�n � �n=
0) and �n is deter-mined by the probability 
urrent density �owing fromthe well into the 
lassi
ally admissible region (X > X0for a given energy �n, see Fig. 5) under the 
ondition ofthe vanishing ba
k-�ow from this region to the barrier.Evidently, the method does not work for highly ex
itedstates with �n � �n
0. In this Se
tion, we go one stepfurther with respe
t to Subse
. 4.1 in extending the in-stanton approa
h to the de
ay of highly ex
ited states.First, it is worth noting that the wave fun
tionsmust vanish as X ! �1, and moreover, 
an alwaysbe 
hosen as real-valued quantities as X ! +1. Fromthese two 
onditions, we 
an �nd the relations betweenthe instanton wave fun
tions in the regions X < �X1and X > X0 (see the notation in Fig. 5), and 
on-sequently, 
al
ulate the phase Æ(�) (
ounted from thebarrier top) of the standing wave in the regionX > X0.It is given byexp(i2Æ) = �i exp(�i2
W �)��(1 + p2� exp(���=4) exp(i2
W �)�(1� i�=2) )��(1 + p2� exp(���=4) exp(�i2
W �)�(1 + i�=2) )�1 : (4.16)A

ording to the standard quantum me
hani
s [1℄,phase (4.16) determines the s
attering amplitude. We
an therefore �nd the s
attering amplitude deep inthe 
lassi
ally forbidden region from (4.16), and hen
e,
ompute the eigenvalues in this region. For the 
al
ula-tion, we must know the terms of the order exp(��j�j)in the expansion of the � fun
tions (these terms arebeyond the standard Stirling formula) [19℄,��1� i�2 � � p2� exp����4 � i���� �1� 12 exp(��j�j)� ; (4.17)

where �(�) � �2 �ln j�j2 � 1� : (4.18)Finally, taking Eqs. (4.17) and (4.18) into a

ount we�nd the poles of the s
attering amplitude from (4.16)(with the required exponential a

ura
y) as2
W �L = 2
W � + �(�) = �(2n+ 1)�� i ��4 (j�j � �) + 12 exp(��j�j)� : (4.19)Expli
itly solving (4.19), we �nd the 
omplex eigenva-lues, and in parti
ular, the de
ay rate for highly ex
itedstates in the anharmoni
 de
ay potential.In the same way as for low-energy tunneling states,the real part of the eigenvalues �n for highly ex
itedstates (i.e., for j�j � 1) is determined by the a
tionalong 
losed traje
tories in the well, whereas the imag-inary part (i.e., the de
ay rate �n) is related to theprobability 
urrent density �ow from the well to thebarrier.Using the instanton approa
h pro
edure des
ribedin Se
s. 2 and 3 (see [10; 11℄ for the details), we 
an �ndnot only the eigenvalues but also the eigenstates. Thereal-valued instanton wave fun
tions are determined bythe a
tion W (X1; X), whi
h is 
ounted from the linearturning point X1,	(X) = A(�)jX �X1j�1=4 �� sin�
W (X1; X) + �4� ; (4.20)where the amplitude A(�) of the wave fun
tion a
quiresmaximum values at the poles of (4.16) with the widthsproportional to �n. We plot the fun
tions jA(�)j2 inFig. 6. 5. RESONANCE TUNNELINGThe phenomenon of the ele
tron resonan
e tunnel-ing is familiar [27℄ and was observed (see, e.g., [28℄ andalso [29℄ for more re
ent referen
es) in semi
ondu
tingheterostru
tures possessing the so-
alled double-barrierpotentials (see Fig. 7). This phenomenon manifests it-self as peaks in the tunneling 
urrent at voltages nearthe quasistationary states of the potential well. Thephysi
al me
hanism of the resonan
e tunneling 
an beunderstood as a 
onstru
tive interferen
e between thewave re�e
ted from the left barrier and the wave out-going to the left of the well.In the instanton method, the total transmission 
o-e�
ient T is determined by the se
ond-order turning757
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jAj2

E � U0
0Fig. 6. The amplitude of the wave fun
tion lo
alizedin the potential shown in Fig. 5 (the dashed line is anonresonant part of the amplitude and 
 = 101)

L R X
�R2


V0(L)V0(R)V�L2
 "

Fig. 7. The model two-barrier potential stru
ture forthe resonan
e tunnelingpoints of the double-barrier potential (i.e., the maximaof the potential); in a

ordan
e with the pro
edure de-s
ribed in the Se
. 2, T is given byjT j2 = �2�L�R �h1�p(1 + ��L)(1 + ��R)i2++ 4p(1 + ��L)(1 + ��R) 
os2(
W �R)o�1 ; (5.1)where we use the notation

�L;R = 1� exp(���L;R) (5.2)and similarly to (2.12),�L;R = 2U0(L;R) �E
0(L;R) : (5.3)Similarly to (3.19), the a
tion in the 
lassi
ally admis-sible region, is given by
W �R = 
W � � �(�L)� �(�R): (5.4)In the resonan
e region, where
W �R = ��n+ 12�in a

ordan
e with the stationary quantization rule, thetransmission 
oe�
ient in (5.1) is given byjT j2 = 4�L�R(�L + �R)2 : (5.5)Far from the resonan
e, it is given byjT j2 = �2�L�R4 
os2(
W �R) : (5.6)We thus found the resonan
e ampli�
ation of thetransmission. For the symmetri
 
ase at the resonan
e,1

10�610�510�410�310�210�1

�0:25 0 0:25 0:50 0:75�0:75 �0:50

jT j2

E � U0
0Fig. 8. The transmission 
oe�
ient for the potentialshown in Fig. 7 (
 = 54)758
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lassi
al approa
h to states : : :T = 1, and the interferen
e 
ompletely suppresses there�e
tion. In the opposite 
ase of strongly asymmet-ri
 barriers, T in (5.1) is almost 
oin
ident with thetransmission 
oe�
ient for the highest barrier, and thein�uen
e of the lower barrier is suppressed by the inter-feren
e. In Fig. 8, we show the energy dependen
e ofT for the symmetri
 stru
ture of the barriers. The res-onan
es be
ome broader as the energy approa
hes thepotential barriers top, and disappear at higher ener-gies (above the top). It is worthwhile to stress that the
instanton solution of the resonan
e tunneling problemallows us to study the phenomenon in a very broad en-ergy region, in
luding the states near the barriers tops.We �nally present the 
onne
tion matri
es for theinstanton solutions found above. The 
orrespondingmatrix 
an be found as the produ
t of two 
onne
tionmatri
es 
onne
ting instanton solutions near the se
-ond order turning points (see (A.9) and (3.20)) anddiagonal shift matrix (A.6),0BBB� 2� exp���L + �R4 � exp(i
W �) ���1 + i�L2 ���1 + i�R2 ���1 + exp���L + �R2 � exp(�i
W �)�ip2� exp�3��R + �L8 ��exp(i
W �)��1�1 + i�R2 �+ exp(�i
W �)��1�1� i�L2 ��ip2� exp�3��R+�L8 ��exp(i
W �)��1�1+i�L2 �+exp(�i
W �)��1�1�i�R2 ��2� exp���L+�R4 � exp(�i
W �) ���1+i�L2 ���1+i�R2 ���1+exp���L+�R2 � exp(i
W �) 1CCCA : (5.7)Here, W � denotes the a
tion between the turningpoints (in this 
ase, between the se
ond-order turningpoints). 6. CONCLUSIONSThis paper 
ould be 
onsidered as a formal one,in the sense that we asked theoreti
al questions thatmost of solid-state or 
hemi
al physi
s experimental-ists would not think to ask. But answering these verybasi
 questions 
an be illuminating.We �rst summarize the results of the paper. Withinthe framework of the instanton approa
h, we deriveda

urate analyti
al solutions for a number of one-dimensional semi
lassi
al problems and 
he
ked the re-sults numeri
ally. As an illustration of the method,we 
onsidered a simple quantum me
hani
al problem,penetration of a parti
le through the paraboli
 poten-tial barrier. In this 
ase, the instanton solutions (whi
hare asymptoti
 solutions of the Weber equation) areexa
t. We also 
onsidered the des
ription of highly ex-
ited states in a double-well potential. For de�nitenessand simpli
ity, we studied the quarti
 anharmoni
 X4potential. The instanton approa
h enables us to a

u-rately reprodu
e not only the asymptoti
 behavior butalso the 
rossover region from the single-well to the

double-well quantization (in 
ontrast to the standardWKB approa
h, whi
h fails to des
ribe the 
rossoverbehavior). A similar problem for the X3 anharmoni
potential was also studied, and the instanton methodhas allowed us to study the resonan
e broadening and
ollapse phenomena. In addition, we investigated theso-
alled resonan
e tunneling phenomena, not only in-teresting in their own right but also playing a relevantrole in many semi
ondu
ting double-barrier stru
tures.We also 
omputed the 
onne
tion matri
es that pro-vide a very e�
ient method of �nding semi
lassi
al so-lutions to the S
hrödinger equation in potentials withseveral turning points (they are also useful in develop-ing a good analyti
al approximation).All the examples sele
ted to illustrate the e�
ien
yof the instanton approa
h belong to the fundamentalproblems in 
hemi
al dynami
s and mole
ular spe
-tros
opy (see, e.g., [9℄ and referen
es therein). Sym-metri
 or slightly asymmetri
 double-well potentialsare 
hara
teristi
 of mole
ules and Van der Waals 
om-plexes with more than one stable 
on�gurations [14�17℄. The states of su
h systems that are 
lose to thebarrier top (theoreti
ally des
ribed by the instantonapproa
h in our paper) are not easy to investigate ex-perimentally, be
ause opti
al transitions between thesestates and the lo
alized ones are typi
ally ina
tive. But759
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isely these states are most relevant for radiationlessevolution of highly ex
ited states. In a 
ertain sense,these states have a double (lo
alized�delo
alized) na-ture that manifests itself in the form of wave fun
tionsthat simultaneously 
ontain both 
omponents, the onelo
alized in one of the wells and the other delo
alizedbetween the two wells. Consequently, any initially pre-pared lo
alized state evolves via formation and de
ay ofthese states. Our 
al
ulations are intended to pave theway to the investigation of this 
lass of problems us-ing the wave fun
tions 
omputed within the instantonapproa
h.The states that are 
lose to the barrier top of de-
ay potentials govern thermally a
tivated over-barriertransition amplitudes. For low-energy states, the mainredu
tion fa
tor is the tunneling exponent, while the
ontribution of highly ex
ited states is limited by theBoltzmann fa
tor. The energy width of the region dom-inating in the total transition rate is traditionally pos-tulated in the transition rate theory [30℄ to be of the or-der of the temperature T . But our results in Se
. 3 pre-di
t another estimate. Instanton 
al
ulations demon-strate that the intermediate region between the quasis-tationary (� � 
) and the delo
alized states 
ould bemu
h larger than T , namely of the order 
. This im-plies that no sharp boundary exists between the qua-sistationary and the delo
alized states and all of thestates within the interval V � �
; V � + T equally 
on-tribute to the total rate 
onstant for the penetrationthrough the barrier.One more point should be emphasised. It was re-
ently shown in [18℄ that quantum irreversibility phe-nomena o

ur when the spa
ing between neighboringlevels of the deeper well be
omes smaller than the typ-i
al transition matrix element. Obviously, this 
rite-rion 
an also be applied to the states near the barriertop. We note that for low-energy states, the asymmetryproviding the irreversible behavior must be very large,whereas for states near the barrier top, the 
ondition ofthe ergodi
 behavior is not very severe, it su�
es thatthe asymmetry of the potential is 
omparable to thebarrier height.The method and the results 
an also be appliedto various systems in physi
s, 
hemistry, and biologyexhibiting double-level behavior and resonan
e tunnel-ing. Literally speaking, we dealt with the mi
ros
opi
Hamiltonians in this paper. But be
ause of rapid de-velopment of ele
troni
s and 
ryogeni
 te
hnologies, ithas be
ome possible to apply the same Hamiltoniansto study 
ases where the 
orresponding variables arema
ros
opi
 (e.g., the magneti
 �ux through a SQUIDring, or 
harge or spin density wave phase in 
ertain

one-dimensional solids). In this paper, we studied theexample of a tunneling pro
esses in whi
h the systempenetrates into a 
lassi
ally forbidden region (a poten-tial barrier). It is an intrinsi
ally quantum e�e
t withno 
lassi
al 
ounterpart, but it 
an nevertheless o

urfor ma
ros
opi
 systems, and the tunneling of a ma
ro-s
opi
 variable of the ma
ros
opi
 system (e.g., spin or
harge tunneling in atomi
 
ondensates trapped in adouble-well potential [31℄) 
an also be investigated byour method.With this ba
kground in mind, our results are alsointended to 
larify di�erent subtle aspe
ts of tunnel-ing phenomena. An example was given at the endof Se
. 3, where we found the geometri
al phase a
-quired by a parti
le tunneling through a potential bar-rier. This phase 
an be tuned by the parti
le energyand by the barrier shape, and spe
i�
 interferen
e phe-nomena might o

ur. The observation of os
illationsrelated to this geometri
al phase in real systems hasproved 
hallenging. Evidently, be
ause the forms ofthe model potentials that we used are rather spe
ial(and in addition, only one-dimensional), we 
annot dis-
uss the behavior for general 
ases with full 
on�den
e.Nevertheless, we believe that the instanton approa
hemployed in this work should also be useful in derivingvaluable results for the general and multidimensionalpotentials.It is essential that in the instanton method dis-
ussed in this paper, a mere observating of several 
las-si
al traje
tories su�
es to develop a qualitative insightfor the quantum behavior. Although the semi
lassi
alinstanton approa
h is reliable in this 
ontext (as weillustrated in a number of parti
ular examples), it ismu
h more than a qualitative pi
ture. As an approxi-mation, the instanton method 
an be surprisingly pre-
ise. We also note that the results presented here arenot only interested in their own right (at least in ouropinion) but may also be dire
tly tested experimen-tally, be
ause there are many systems where the modelinvestigated in the paper is a reasonable model of thereality.The theory presented in our paper 
ould be ex-tended in several dire
tions. One very interesting ques-tion is how our quantum me
hani
al instanton formu-las (e.g., Eqs. (4.12)�(4.14) for the tunneling rate inthe anharmoni
 X3 de
ay potential) are modi�ed byintera
tions with the surrounding media (see, e.g., [32℄,where the WKB approa
h was used to study the timeevolution of quantum tunneling in a thermally �u
tu-ating medium). Theoreti
al modeling of this 
ase ishampered by the absen
e of detailed knowledge of themedium and of the intera
tion with it. A more spe
i�
760



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Semi
lassi
al approa
h to states : : :study might be
ome appropriate on
e suitable exper-imental results be
ome available. A simple 
riterionfor the strength of the intera
tion with the environ-ment (in other words, for the e�e
tive temperature)for the 
rossover from the thermally a
tivated 
lassi
alto quantum me
hani
al de
ay 
an easily be found byequating the 
orresponding Arrhenius fa
tor and the
hara
teristi
 frequen
y �os
illations� inside the bar-rier 
� (see (A.10)).All of the potentials investigated in this paper
an be 
onsidered in a number of realisti
 
ases ase�e
tively resulting from avoiding the adiabati
 level
rossing in the situation where the adiabati
 splittingis so large that any in�uen
e of the upper adiabati
states on the lower states 
an be negle
ted. Certainly,in the general 
ase of an arbitrary 
oupling strength,this intera
tion of higher and lower adiabati
 statesmust be taken into a

ount, and the tunneling matrixelements must be a

ompanied by the 
orrespondingFran
k�Condon fa
tors arising be
ause of the violationof the Born�Oppenheimer approximation. We deferthese problems to the future, although there is nodoubt that the instanton approa
h is also useful inproblems of this kind.The resear
h des
ribed in this publi
ation was madepossible in part by the RFBR (grants 00-03-32938 and00-02-11785). APPENDIXFollowing [2℄, we introdu
e short notations for thestandard basi
 WKB solutions,(Æ; z) � (q(z))�1=4 exp(i
W (z)); (A.1)and (z; Æ) � (q(z))�1=4 exp(�i
W (z)): (A.2)The position of the turning point is denoted by Æ and isinessential if we seek solutions in the region jzj � 1. Ina

ordan
e with de�nitions (2.18), and (2.19), we mustadd the dominant solution times a 
ertain 
onstant (theStokes 
onstant) to the subdominant (de
aying) solu-tion on the Stokes lines; the dominant and the subdom-inant solutions are ex
hanged on the anti-Stokes lines.To �nd the Stokes 
onstant, we must mat
h both solu-tions by en
ompassing the turning point and taking the
ut on the 
omplex z plane into a

ount (see Fig. 9).

T1

T3

1
764

3
2

5
T2

Fig. 9. The Stokes (solid) and anti-Stokes (dashed)lines in the vi
inity of the linear turning pointV (X) = �X. The 
ut is depi
ted by the wavy line,and the Stokes 
onstant are T1, T2, and T3We �rst 
onsider the linear turning pointq(z) = �z; (A.3)with the 
lassi
ally admissible region 
orresponding toX > 0. In this 
ase, we have three Stokes lines, threeanti-Stokes lines, one 
ut, and therefore, seven di�erentregions on the 
omplex z-plane where fun
tions (A.1)and (A.2) must be mat
hed; as a result, three Stokes
onstant must be determined. After not very sophisti-
ated but rather tedious algebrai
 
al
ulations, we �ndall the three Stokes 
onstantsT1 = T2 = T3 = i;and the 
onne
tion matrixM̂� = exp��i�4���0B� exp(i�=4 (1=2) exp(�i�=4)exp(�i�=4) (1=2) exp(i�=4) 1CA (A.4)relating the 
oe�
ients of the linear 
ombinations ofbasi
 solutions (A.1) and (A.2) in the 
lassi
ally for-bidden region (A1; A2) and in the 
lassi
ally admissibleregion (A2; B2) as A2B2 ! = M̂� A1B1 ! : (A.5)761
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Fig. 10. The Stokes and anti-Stokes lines in the vi
i-nity of the se
ond-order turning points (with the samenotation as in Fig. 9); a � V (X) = (1=2)X2, b �V (X) = �(1=2)X2For the other linear turning point q(z) = +z, the 
on-ne
tion matrix M̂+ is Hermitian 
onjugate to M̂�. Thevariation of the 
oe�
ients in the region between thetwo independent linear turning points z1 and z2 is de-termined by the diagonal matrixL̂ =  exp(�i
W �) 00 exp(i
W �) ! ; (A.6)where W � = z2Zz1 pq(z)dz:Finally, for the solutions in the 
lassi
ally forbidden re-

gions X < X1 and X > X2, the 
onne
tion matrix isthe dire
t matrix produ
t of the above matri
es,M̂ = M̂+L̂M̂�:To generalize the pro
edure to se
ond-order turningpoints, we must �nd the 
onne
tion matri
es relatingthe basi
 solutions to the Weber equation, namely(Æ; z) � (z)� exp��z24 � ; (A.7)and (z; Æ) � (z)���1 exp�z24 � : (A.8)In this 
ase, we have four Stokes lines, four anti-Stokeslines, and one 
ut, and therefore, nine di�erent regionswhere the solutions must be mat
hed (see Fig. 10a asan illustration). Four Stokes 
onstants are given by~T1 = ~T�12 [exp(i2��)� 1℄; ~T3 = ~T �1 ;~T4 = � ~T2 exp(�i2��):From the known asymptoti
 form of the paraboli
 
ylin-der fun
tions, we 
an obtain the remaining Stokes 
on-stant ~T2 = p2��(��) :The 
onne
tion matrix for an isolated se
ond-orderturning point 
an therefore be represented as0B� � ~T2 
os(��)
os(��) � sin2(��)~T2 1CA : (A.9)This matrix depending on the energy � determines, e.g.,the instanton semi
lassi
al solutions for the harmoni
os
illator, � = �+1=2. It 
an be veri�ed by expli
it 
al-
ulations that for the harmoni
 os
illator, the 
onne
-tion matrix also has the same form (A.9) in the WKBapproa
h. The di�eren
e 
ould appear only from an-harmoni
 terms in the potential. But for low-energystates with �=
 � 1, the anharmoni
 
orre
tions aresmall and the instanton and WKB 
onne
tion matri-
es 
oin
ide up to the se
ond order in these 
orre
tionterms.For the symmetri
 double-well potential, the 
on-ne
tion matrix des
ribing the variation of the 
oe�-
ients at the basi
 solutions in Eqs. (A.7) and (A.8)between the two se
ond-order turning points X02 andX03 is given by762
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lassi
al approa
h to states : : :0BBBB� n!p2� �
0

� ���+1=2 exp(
W �E) 00 p2�n! �
0

� ��+1=2 exp(�
W �E) 1CCCCA ; (A.10)where the instanton a
tion isW �E = X03ZX02 r2(V (X)� �
 dX (A.11)and 
� is the 
hara
teristi
 �os
illation� frequen
y in
the barrier (i.e., in the 
lassi
ally forbidden region).The 
onne
tion matrix in Eq. (A.10) must be 
omparedwith a similar matrix in Eq. (A.6) for two linear turn-ing points. For the asymmetri
 double-well potentialin the region between the se
ond-order and the linearturning points, the matrix analogous to (A.10) is0BBBBB� � n!p2��1=2�
0

� ��(1=2)(�+1=2) exp(
W �E) 00  p2�n! !1=2 �
0

� �(1=2)(�+1=2) exp(�
W �E) 1CCCCCA : (A.12)

All the above matri
es allow us to �nd any other 
on-ne
tion matrix that we need in the parti
ular exam-ples 
onsidered in the main text of the paper. Anyof them 
an be 
onstru
ted as a 
orresponding prod-u
t of the matri
es in (A.4), (A.5), (A.6), (A.9), (A.10),and (A.12). It is worth noting a general property of the
onne
tion matri
es that the 
onne
tion matrix is real-valued for all bound states, and o�-diagonal elementsof the 
onne
tion matrix are 
omplex for 
ontinuumspe
trum states.Similarly to the problem of tunneling through thepotential barrier V (X) = �(1=2)X2, all the Stokesand anti-Stokes lines are rotated by the angle �=4 (seeFig. 10b) with respe
t to the 
orresponding lines forthe paraboli
 well (V (X) = (1=2)X2 
onsidered above,see Fig. 10a). The 
onne
tion matrix for the tunnelingthrough the barrier is given by0B� S1 �i exp���2 �i exp���2 � S�11 (exp(��) + 1) 1CA ; (A.13)where � = i(2� + 1) and S1 is the Stokes 
onstant onthe �rst quadrant bise
trix (see Fig. 10b). To �nd theStokes 
onstant S1, we must mat
h the sum of the in-
ident and of the re�e
ted waves to the solutions of theWeber equation at X ! �1 and to the transmitted
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