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SEMICLASSICAL APPROACH TO STATES NEARTHE POTENTIAL BARRIER TOPV. A. BenderskiiInstitute for Problems of Chemial Physis, Russian Aademy of Sienes142432, Mosow Region, Chernogolovka, RussiaLab. Spetrometrie Physique, UJFBP 87, St. Martin d'Heres, Cedex, FraneE. V. VetoshkinInstitute for Problems of Chemial Physis, Russian Aademy of Sienes142432, Mosow Region, Chernogolovka, RussiaE. I. Kats *Institute Laue-LangevinF-38042, Grenoble, FraneLandau Institute for Theoretial Physis, Russian Aademy of Sienes142432, Chernogolovka, Mosow Region, RussiaSubmitted 30 May 2002Within the framework of the instanton approah, we present analytial results for the following model problems:(i) partile penetration through a paraboli potential barrier, where the instanton solution pratially oinideswith the exat (quantum) one; (ii) desriptions of highly exited states in anharmoni potentials of two types:double-well X4 and deay X3. For the former potential, the instanton method aurately reprodues not onlysingle-well and double-well quantization, but also a rossover region (in ontrast to the standard WKB approahthat fails to desribe the rossover behavior); for the latter potential, the instanton method allows studying theresonane broadening and ollapse phenomena. We also investigate resonane tunneling that plays a relevantrole in many semionduting devies. We show that the instanton approah gives exat (quantum) results ina broad range of energies. Appliations of the method and of the results are appliable to various systems inphysis, hemistry, and biology exhibiting double-level behavior and resonane tunneling.PACS: 05.45.-a, 05.45.Gg1. INTRODUCTIONSemilassial mehanis has a long history. Sur-prisingly, however, some long-standing problems stillexist in the theory. One of them � the desription ofstates near a potential barrier top with a su�ient a-uray � is the subjet of this paper. It is knownthat the ommonly used WKB method (phase inte-gral approah) [1; 2℄ amounts to mathing the wavefuntions for the lassially allowed and forbidden re-gions. Tehnially, the proedure works for linear (or*E-mail: kats�ill.fr

�rst-order) turning points and an be relatively sim-ply performed only in one-dimensional problems. Butone-dimensional problems are not of great physial im-portane, not only beause the redued dimensional-ity does not allow modelling many relevant experi-mental situations, but also (at least partially) beauseone-dimensional quantum mehanial problems an berather easily solved numerially. Unfortunately, e�-ieny and auray of diret numerial methods inquantum mehanis rapidly degrade for multidimen-sional systems possessing many degrees of freedom be-ause of an extraordinary amount of omputational746



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Semilassial approah to states : : :work required for alulations. Furthermore, an exten-tion of the WKB proedure to multidimensional sys-tems enounters fundamental di�ulties beause of thestill unsolved mathing problem for multidimensionalWKB solutions, whih beome singular on austi linesseparating manifolds in phase spae with real and imag-inary momenta for eah amongN oordinates. Beausethe number of these domains inreases as N !, it is atremendous task for N > 2. After several deades ofe�orts, a omplete and unifying desriptions of multi-dimensional WKB solutions is still unavailable.The problem was �rst addressed long ago, and someattempts to overome the di�ulties of the WKB ap-proah and to improve the auray of the method havebeen performed quite suessfully. We note, e.g., [3℄,where the authors additionally inluded trajetories ofa speial type on the omplex phase plane into thestandard WKB method; the semilassial motion alongthese trajetories is desribed by the Weber funtions(also see [4℄). But the hoie of these additional speialtrajetories (whih must be inluded in order to im-prove the auray of the WKB method near the bar-rier top) depends on the detailed form of the potentialfar from the top, and in eah partiular ase, a nonuni-versal proedure must therefore be performed from thevery beginning (also see more reent publiations [5℄,where the authors use some distortion of Stokes dia-grams, or [6℄, where time-dependent quantum mehan-ial alulations for anharmoni and double-well osil-lators have been performed).Evidently, therefore, there is some need for a semi-lassial approah di�erent from the WKB method.One of the alternatives to the WKB semilassial for-malism, the so-alled extreme tunneling trajetory, orinstanton [7�9℄, ould be very e�etive in alulatinga globally uniform wave funtion of the ground state(i.e., a wave funtion without singularities). It allows�nding semilassial wave funtions for a very broadlass of potentials with arbitrary ombinations of the�rst- and the seond-order turning points. The methodwas reently adapted for the desription of low-energyexited states [10, 11℄. One of the main advantagesof the instanton approah is that it an be readily ex-tended to multidimensional systems using perturbativetehniques (see [12℄ and referenes therein).But before investigating multidimensional prob-lems, we must study one-dimensional potentials andone-dimensional problems that annot be auratelysolved by the standard WKB method. These problemsare the subjet of this paper. The generalization ofthe instanton proedure to highly exited states is notstraightforward at all, and required additional analy-

sis. We onsider only few relatively simple examples,but this analysis is useful for gaining insight into moreomplex systems for whih even approximate theoreti-al results are not available.In many interesting physial problems, high-aura-y alulations are out of reah of the standard WKBmethod, but as we see in what follows, the instantonapproah o�ers a solution to the di�ulties inherent tothe WKB proedure. Sine this fat was largely unno-tied in the previous studies, we found it worthwhile topresent the investigation of several simple examples ina short and expliit form and to point out pratial us-ability of the instanton approah. Apart from the aimto illustrate the e�ieny of the instanton approah,our study is a prerequisite for an explanation and su-essful desription of many relevant physial phenom-ena (for example, low-temperature quantum kinetis ofphase transitions, see, e.g., [13℄) where an ative (rea-tion) path is e�etively on�ned to one dimension.All examples onsidered in this paper are related tothe fundamental problems of hemial dynamis andmoleular spetrosopy (see, e.g., [9℄ and referenestherein). Symmetri or slightly asymmetri double-wellpotentials are harateristi of moleules and Van derWaals omplexes with more than one stable on�gura-tions [14�17℄. The states of suh systems lose to thebarrier top (theoretially desribed by the instanton ap-proah in this paper) are most relevant for radiationlessevolution of highly exited states. These states have adouble (loalized�deloalized) nature, whih manifestsitself in the wave funtions that simultaneously ontainboth omponents, the loalized omponent in one ofthe wells and the deloalized omponent between thetwo wells. The states lose to the barrier top of de-ay potentials govern thermally ativated over-barriertransition amplitudes. For low-energy states, the mainredution fator is the tunneling exponent, while theontribution of highly exited states is limited by theBoltzmann fator. Our instanton alulations demon-strate that there is no sharp boundary between qua-sistationary and deloalized states. Two of us (V. B.and E. K.) reently investigated [18℄ the eigenstates ofa highly asymmetri double-well potential. We haveshown that quantum irreversibility phenomena ourwhen the spaing between neighboring levels of thedeeper well beomes smaller than the typial transi-tion matrix element. Obviously, this riterion an alsobe applied to the states near the barrier top. We notethat for low-energy states, the asymmetry leading toirreversible behavior must be very large, whereas forstates near the barrier top, the ondition of the ergodibehavior is not very severe, and it is su�ient for the747



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002asymmetry of the potential to be omparable to thebarrier height.This paper is organized as follows. Setion 2 on-tains the basi equations of the instanton method thatare neessary for our investigation. As an illustrationof the method, we onsider a touhstone quantum me-hanial problem � penetration of a partile througha paraboli potential barrier. The instanton solutionsthat are the asymptoti forms of the Weber equationare then exat. Setion 3 is devoted to the investiga-tion of highly exited states in a double-well potential.For onreteness and simpliity, we study the quartianharmoni potential X4. The instanton approah al-lows us to aurately reprodue not only the asymp-toti behavior but also the rossover region from thesingle-well to the double-well quantization. In Se. 4,a similar problem for the X3 anharmoni potential isstudied. Setion 5 is devoted to the so-alled resonanetunneling phenomena, whih are not only interestingin their own right but also they play a relevant rolein many semionduting double-barrier strutures. InSe. 6, we disuss the results. In the Appendix, we om-pute the so-alled onnetion matries that provide avery e�ient method of �nding semilassial solutionsto the Shrödinger equation in potentials having sev-eral turning points. Knowing the onnetion matriesis also important and signi�ant for developing a goodanalytial approximation. The readers not interestedin the mathematial derivation an skip the Appendixand �nd all the results in the main body of the paper.2. PENETRATION THROUGH THEPARABOLIC POTENTIAL BARRIER2.1. Instanton approahFor onveniene, we reall the main ideas of the in-stanton approah. The �rst step of the approah in [7℄and [8℄ is the so-alled Wik rotation of phase spaeorresponding to the transformation to imaginary timet ! �it. The potential and the kineti energy hangetheir signs after the transformation and the Lagrangianis replaed by the Hamiltonian in the lassial equationof motion. By this Wik rotation, the standard osil-lating WKB wave funtions are transformed into expo-nentially deaying funtions that vanish as X ! �1.Following [10; 11℄, we use a slightly di�erent formula-tion of the instanton method, assuming exponentiallydeaying real-valued wave funtions from the very be-ginning. Taking into aount that the wave funtionsof bound states an be hosen as real quantities, we an

fherefore seek a solution to the Shrödinger equation inthe form 	 = exp (��(X)) ; (2.1)where  is the semilassial parameter that is assumedto be su�iently large ( � m
0a20=~, where m isthe mass of a partile, a0 is a harateristi length inthe problem, e.g., the tunneling distane, and 
0 is aharateristi frequeny, e.g., the osillation frequenyaround the potential minimum; in what follows, we set~ = 1, measuring energies in the units of frequeny)and � an be alled the ation; this funtion must sa-tisfy the �rst-order di�erential equation of the Riattitype,2 "�12 � d�dX�2+V (X)#+ �12 d2�dX2��� = 0; (2.2)where V (X) is the potential and � gives partile eigen-states (energies). Here and in what follows, we usedimensionless variables (� = E=
0 for the energy,V = U=
0 for the potential, and X = x=a0 for theoordinate, where E and U are the orresponding di-mensional values of the energy and potential). We be-lieve that  � 1, and �(X) an therefore be expandedin the asymptoti series�(X) =W (X)+�1W1(X)+�2W2(X)+ : : : (2.3)The �rst- and the seond-order terms in �1 beomeidentially zero if the time-independent Hamilton�Jaobi equation (HJE) and the so-alled transportequation (TE) are satis�ed,12 �dWdX �2 = V (X); (2.4)and dWdX dAdX + 12 d2WdX2 A = �A; (2.5)where A(X) � exp(�W1(X)): (2.6)An essential advantage of the instanton method in om-parison to the standard WKB is that in the former ap-proah, the HJE is solved at E = 0, and the lassiallyallowed regions therefore disappear. The prie to bepaid for this is the appearane of seond-order turn-ing points (in ontrast to the WKB method, where allturning points are linear).748



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Semilassial approah to states : : :It is well known that the WKB wave funtionsare singular at the turning points, and therefore, dif-ferent approximations represent the same wave fun-tion in di�erent domains. The famous Stokes phe-nomenon [2℄ is related to the distribution of the turn-ing points; Stokes and anti-Stokes lines emanate fromeah turning point. By de�nition, Stokes lines are thelines where the dominane of the dominant exponen-tial semilassial solution to the Shrödinger equationbeomes strongest, and anti-Stokes lines are the lineson whih the dominane and subdominane of the solu-tions interhange. Evidently, the WKB approximationdoes not work and must be re�ned near Stokes and anti-Stokes lines [2℄. On the ontrary, beause lassially a-essible regions do not exist in the instanton formalism,the Stokes lines ontinuously pass through seond-orderturning points, and globally uniform real solutions tothe Shrödinger equation an be onstruted using theasymptotially smooth transformation of the instantonwave funtions into the Weber funtions. This globaluniformity is the prinipal advantage of the instantonmethod.A learer idea of the instanton approah is obtainedby the derivation of the well-known [1℄ quantizationrules for the harmoni osillator (V (X) = X2=2). Fora given energy �, any solution of the Shrödinger equa-tion an be represented as a linear ombination of thesolutions of the Weber equation [19℄d2	dz2 +�� + 12 � z24 �	(z) = 0; (2.7)where z � Xp and � = � � 1=2. The basi solu-tions of (2.7) are the paraboli ylinder funtions [19℄,and only the funtion D�(�z) vanishes as z ! 1 forarg z = 0. For arg z = �, the asymptoti behavior ofthis funtion as z !1 is given by [19℄D�(�z) = exp(i��)z� exp��z24 ��� p2��(��)z���1 exp�z24 � : (2.8)It an vanish as z !1 only at the poles of �(��), andthis vanishing ondition gives the exat eigenvalues ofthe harmoni osillator� = n+ 12 :Moreover, beause D�(�z) oinide with the knownharmoni osillator eigenfuntions for positive integer� [1℄, the instanton approah to the harmoni osillatoris exat.

2.2. Tunneling through the harmoni barrierAs a less trivial illustration of the instanton ap-proah e�ieny, we apply the method to the prob-lem of quantum mehanial tunneling through theparaboli potentialU(x) = U0 � m
202 x2; (2.9)where m is the mass of the tunneling partile and 
0is a harateristi frequeny (the urvature of the po-tential). The potential involves an additional hara-teristi spae sale a0. Using 
0 and a0 to set theorresponding sales, we an rewrite paraboli poten-tial (2.9) in the dimensionless formV (X) = V0 � 12X2: (2.10)In these variables, the Shrödinger equation is given byd2	dX2 + (2X2 � �)	(X) = 0; (2.11)where � = 2U0 �E
0 ; (2.12)and  � 1 semilassial parameter introdued above.Shrödinger equation (2.11) an be transformedinto the Weber equation [19℄ by a �=4-rotation in theomplex plane, X = 1p2 z exp� i�4 � ;and the solution of (2.11) an therefore be representedas a linear ombination of the paraboli ylinder fun-tions D� [19℄,	�(z) = 1D�(z) + 2D�(�z); (2.13)where � = �1=2� i�=2.As X ! 1, only the transmitted wave exists withthe amplitude (the transmission oe�ient) T ,	 � T exp iX22 : (2.14)As X ! �1, both the inident wave(/ exp(�iX2=2)) and the re�eted wave proportionalto R exp(iX2=2) exist. By a standard quantummehanial proedure [1℄, the transmission oe�ientT and the re�etion oe�ient R an be found usingthe known asymptoti form of the paraboli ylinder749



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002funtions [19℄ at the �xed energy (i.e., at �xed �).This leads to the well known expression [1℄jT j2 = 11 + exp(��) : (2.15)We note that solutions (2.13) are the exat solutions tothe Shrödinger equation in paraboli potential (2.10).We now apply the instanton approah desribed aboveto the same problem. The solutions of HJE (2.4) andTE (2.5), whih are milestones of the method, an eas-ily be found asW = �iX22 ;A = A0X�1=2 exp��i� ln X2 � ; (2.16)where the integration onstant A0 determines energy-dependent phases of the wave funtions. Compar-ing (2.16) and (2.13), we an see that the instan-ton wave funtions are the asymptoti forms of theparaboli ylinder funtions, and therefore, beause thetransmission (T ) and re�etion (R) oe�ients are de-termined only by the asymptoti behavior, the valuesof T and R found in the framework of the instantonapproah oinide with the exat quantum mehanialones at any value of the energy (of the parameter �).We reall that the instanton and the exat quantummehanial solutions for the harmoni osillator alsooinide for any energy.To �nish this subsetion, we mention for the skepti-al reader that the WKB wave funtions oinide withthe exat solutions only at � � �1. In the regionwhere j�j � 1, i.e., where the harateristi size of theforbidden region beomes omparable to the partilewave length, spei� interferene phenomena betweenthe transmitted and re�eted waves our, and phe-nomena of this kind annot be reprodued in the stan-dard WKB approah assuming that all turning pointsare independent.As an illustration, in Fig. 1, we show the energy(�) dependene of the phase for the wave funtion re-�eted by the paraboli potential. The exat quantummehanial and the instanton solutions (�0 in Fig. 1)are indistinguishable over a broad region of energies,while the WKB solution (�WKB0 in Fig. 1) deviatesfrom both of them.2.3. Connetion matriesOur analysis an be reast into a more elegant formby introduing the so-alled onnetion matries. In
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ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Semilassial approah to states : : :
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V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002whih an be reliable (with the auray exp(�2�j�j))only for j�j � 1. As in the ase where � > 0, theauray an be improved by taking into aount theontribution of the path surrounding both imaginaryturning points (this fat was notied by Pokrovskii andKhalatnikov long ago [3℄).At the isolated linear imaginary turning point iX1,the onnetion matrix is found from (A.4),~M+1 =  1 i exp(��j�j=2)0 1 ! : (2.22)Similarly, the Hermitian onjugate matrix ~M�1 omesfrom the ontribution of the losed path surrounding�iX1. These ontours provide only the amplitude ofthe dominant (exponentially inreasing) wave. But theauray is insu�ient for �nding the amplitude of theorresponding subdominant solution (the exponentiallydeaying wave funtion), and we obtain the inorrettransmission oe�ient T = 1. To improve the a-uray and to �nd T orretly, we must inlude theonnetion matrix for the isolated seond-order turn-ing point in the proedure (in this partiular example,this turning point is the maximum of the potential).Using (A.9), we an expliitly �nd this matrix as~M2 ==  [1+ exp(��j�j)℄1=2 i exp(��j�j=2)�i exp(��j�j=2) [1+exp(��j�j)℄1=2 ! :(2.23)In priniple, similar alulations an be performedin the adiabati perturbation theory (whih in fatemploys the Plank onstant smallness equivalent to � 1). We note that in [20℄, the ontributions ofthe ontours surrounding turning points (analogous tothose presented above) were taken into aount. Itseems very plausible that following this way, it will bepossible to ombine the instanton approah and theadiabati perturbation theory, but this issue is beyondthe sope of this paper and will be disussed elsewhere.3. HIGHLY EXCITED STATES IN THEDOUBLE-WELL POTENTIALLiterally, the instanton approah desribed in theprevious setion is valid for states with harateristienergies that are small ompared to the barrier height.But as we show in this setion, the instanton methodworks su�iently well for the energy states near the

barrier top V0. As an illustration, we onsider the sym-metri double-well potential (quarti anharmoni X4potential) V0 � V (X) = 12X2(1�X2): (3.1)The Shrödinger equation with potential (3.1) an berewritten in dimensionless variables in the formd2	dX2 + [22(V0 � V (X))� �℄	(X) = 0; (3.2)that is most onvenient in appliations of the instantonapproah. The HJE and TE then beome12 �dWdX �2 = V0 � V (X); (3.3)and dWdX dAdX + 12 �d2WdX2 + i��A = 0: (3.4)Formal solutions to the set of equations (3.3), (3.4) arethe even and odd instanton wave funtions	�I = A�(X) exp(iW�(X)); (3.5)where the ation W� (a solution of the HJE) is to bedetermined fromdW�dX = �p2(V0 � V (X)); (3.6)and the amplitude (prefator) is given byA� = ����dW�dX �����1=2 �� exp"�i� Z �dW�dX ��1 dX# : (3.7)The quantization rules [1℄ are related to ontinuousmathing of the solutions at the turning points (theseond-order turning point X = 0 and the linear turn-ing points X = �1 for � > 0 and X = �i for � < 0).A ruial advantage of instanton solutions (3.5) is thatthese funtions have no singularities inside the barrier,beause the orresponding exponents are pure imag-inary in the lassially aessible regions (unlike theWKB solutions). In addition, the general form of theinstanton wave funtions does not notieably dependon whether E < V0 or E > V0. This advantage allowsus to inlude the instanton wave funtions into the basisof globally uniform funtions diagonalizing the Hamil-tonian even for highly exited states.752



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Semilassial approah to states : : :The above general proedure for searhing instan-ton solutions to the Shrödinger equation with modelpotential (3.1) has a subtle point, whih motivates gi-ving the expliit searhing proedure in some detail;new results follow from our investigation. The proe-dure inludes several steps.1. Near the seond order turning point, exat so-lution (2.14) to the Shrödinger equation an be usedwith 1 = �2 for the even and odd solutions respe-tively. For jX j � 1, it follows from (2.14) and fromthe known asymptoti forms of the paraboli ylinderfuntions [19℄ that	(X) = 1pX �� � exp(if(X))�((1� i�)=4) + exp(�if(X))�((1 + i�)=4)� ; (3.8)where1 = � 2��((3 + i�)=4) �� exp����8 � 2�i�=4(2)�1=4; (3.9)and f(X) = 2X2 � �2 lnX � �4 ln  � �8 : (3.10)To obtain the orret even and odd linear ombinationsonforming to (3.5), we set� = 1 exp(�if1)�((1� i�=p2)=4) ; (3.11)where f1 = � ln 4 + �8 :2. Near the linear turning point X = �1, theShrödinger equation redues to the Airy equation [19℄d2	dy2 � y	(y) = 0; (3.12)where y = 2=3 ����X + 1 + � ���� (3.13)for X < 0. The solution that vanishes as y ! 1 isgiven by [19℄	(y) = jyj�1=4 sin�23 jyj3=2 + �4� : (3.14)Continuing this solution to the regions (X�1)p2 � 1and sewing there with (3.8), we obtain+� = exp��i2W � + i3�2 � ; (3.15)
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Fig. 4. The dimensionless tunneling splitting �=
0 forthe anharmoni X4 potential near the barrier top: 1 �exat quantum and instanton alulations, 2 � theWKB resultwhere W � is the energy-dependent ation on the inter-val [X = 0; X = 1℄.3. Comparing (3.15) and (3.11), we �nd the quan-tization rules� ((1 + i�)=4)� ((1� i�)=4) = exp��2iW � � i3�2 � (3.16)for the even states and� ((3 + i�)=4)� ((3� i�)=4) = exp (�2iW � � i�) (3.17)for the odd states.4. From (3.16) and (3.17), we �nally obtain thequantization rule that an be written in the single formfor both the even and odd states as2W � + 2�(�) �� 0BB� 5�4 + 2�n� artg�th���4 ��3�4 + 2�n� 2 artg�th���4 �� 1CCA : (3.18)Relation (3.18) is the sought quantization rule thatnow allows us to use the advantages of the instantonmethod. For highly exited states (i.e., for �� �1), itfollows from (3.18) that2W � + 2�(�) = ��n+ 12� ;6 ÆÝÒÔ, âûï. 4 (10) 753



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002where n is an integer. For low-energy states (� � 1),Eq. (3.18) reprodues the known quantization ruleW �L = ��n+ 12�� 12 exp����2 � ;where W �L is the ation in the lassially admissible re-gion between the linear turning point in the left well,W �L = W � + �(�): (3.19)We note an essential advantage of instanton quanti-zation rule (3.18) ompared to the traditional WKBformalism, where the quantization rules are totally dif-ferent [1℄ in the tunneling and over-barrier regions. Theinstanton approah gives a single quantization rule,Eq. (3.18), whih is valid in both regions and in addi-tion, quite aurately desribes the rossover behaviornear the barrier top, where periodi orbits loalized atseparate wells transform into a ommon �gure-eight or-bit enlosing both wells.We illustrate the results of this setion in Fig. 4,where we plot the universal dependene of the eigen-values in symmetri double-well potential (3.1) on �.For omparison, we show in the same �gure the eigen-values found by the onventional WKB proedure andby the exat quantum mehanial omputation. It islear from the �gure that the WKB method errors aremaximal in the region of small j�j, beause the osilla-tion period logarithmially diverges in this region (thepartile spends in�nitely long time near the seond-order turning point). On the ontrary, the errors ofthe instanton approah are minimal near the barriertop (small j�j).As mentioned at the beginning of this setion, theinstanton approah is also very aurate near the po-tential minimum. Generally speaking, the instantonsolutions are always orret when the deviation fromthe orresponding extremum is of the order of harate-

risti zero-point amplitudes. Mathematially, the au-ray of the instanton approah is based on the transfor-mation of the semilassial solutions into the harmoniosillator eigenfuntions (whih also ensures the orretnormalization of the instanton wave funtions). It istherefore natural to expet that the instanton methodis very aurate near the barrier top and near the po-tential minimum. On the ontrary, in the intermediateregion, where the anharmoni shape of the potential isrelevant, we should expet poor auray of the instan-ton method. Fortunately, it turns out that the math-ematial nature of the problem is on our side, and theinstanton approah has a reasonable auray (of theorder of the auray of the WKB method) even inthis region. The fat is that the instanton wave fun-tions are exat not only in zero but also in the �rstorder with respet to anharmoni orretions to thepotential approximation. This an be shown using theanharmoni perturbative proedure that was proposedby Avilov and Iordanskii for the WKB funtions [21℄and was generalized for the instanton wave funtionsin [22℄.For pratial omputations, it is also relevant thatthe instanton wave funtions (unlike the WKB ones)are ontinuous near their �own� minimum. Numerialestimate shows that in the intermediate energy region,the instanton wave funtions reprodue exat quantumresults with the auray about 5�10%.To �nish the setion, we present the onnetionmatries needed to �nd semilassial solutions to theShrödinger equation in the double-well potential. Sim-ilarly to the results in Se. 2, the onnetion matrixfor the instanton solutions is the produt of onnetionmatries (A.4) for the linear turning points and theonnetion matrix for the seond-order turning point,whih is the maximum of the double-well potential inthe ase under onsideration. Using (A.9), we an �ndthis latter onnetion matrix as0B� 2 hexp���2 �+ (1 + exp(��))1=2 os(2W �)i �(1 + exp(��))1=2 sin(2W �)(1 + exp(��))1=2 sin(2W �) 12 h� exp���2 �+ (1 + exp(��))1=2 os(2W �)i 1CA : (3.20)It is worth noting that the re�eted wave aquiresa nontrivial phase fator near the barrier top. Thisphenomenon is related to the interferene of the ini-dent, re�eted, and transmitted waves, and the phasetherefore has some geometrial meaning, similarly tothe famous Berry phase [23℄. The geometrial origin
of the phase manifests itself more learly if we reallthat the semilassial phase fator is determined by theprobability density �ow through the barrier,J = i	� d	dX :754



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Semilassial approah to states : : :We an onsider this phase fator from a slightly dif-ferent standpoint, beause tunneling results in a phaseshift related to the hange of the eigenvalues. Quanti-zation rules (3.18) and (3.19) an be rewritten as�n = n+ 12 + �n;whih is the de�nition of the eigenvalues �n and where nis integer labeling the eigenvalues and �n is determinedby the exponentially small phase shift due to the exis-tene of the barrier between the two wells. The phaseshift �n has the same funtional form (and physialmeaning) as the geometrial phase fator (appearingbeause of the interferene phenomena) aquired by aquantum mehanial wave funtion upon a yli evo-lution [23�25℄.4. THE DECAY POTENTIALIn this setion, we study highly exited states in adeay potential, whih we hoose as the anharmoni

X3 potential for de�niteness,V (X) = 12X2(1�X): (4.1)As a �rst (but ompulsory) step, we investigate thelow-lying tunneling states.4.1. Tunneling deay of metastable statesWe start from this simple ase to pik low-hangingfruits �rst, i.e., to desribe the states under the ondi-tions V0 � �n � V (X !1); (4.2)whih imply that a loal minimum is separated fromthe ontinuum spetrum by a high energetial barrier,and the quasistationary states �n are therefore hara-terized by �good� quantum numbers n. We note that ageneri deay potential shown in Fig. 5 is determined bythe positions of the barrier top X0 and the three turn-ing points �X1; X = 0, and +X2; near these points,we have
V (X) = 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

V0�� dVdX�X=�X1 (X+X1); jX+X1j ! 0;12X2; jX j ! 0;V0 � 12(X �X0)2; jX �X0j ! 0;�� dVdX�X=X2 (X�X2); jX�X2j ! 0: (4.3)
Potential (4.1) is a partiular example of the generideay potential in Eq. (4.3) (with X1 = 1=3, X0 = 2=3,X2 = 1, and V0 = 2=27); we use it only as an ex-pliit illustration, and in order to be spei�, while allthe results given below are equally valid for the generipotential. As a note of aution, we also remark thatin the instanton approah to this problem, we must al-ways deal with only two turning points. For low-energystates, the points are X2 and the potential minimumX = 0, and for high-energy states, the points are �X1and the potential maximum X0.In aordane with (4.1), there are no turning pointsat X > X2; at X � X2, the potential an be on-sidered as a onstant, and therefore the wave fun-

tions must therefore asymptotially oinide with planewaves for X � X2. Furthermore, near the linear turn-ing point X = 1, the Shrödinger equation with theX3 anharmoni potential (4.1) is redued to Airy equa-tion (3.12), whose solutions are linear ombinations ofthe Bessel funtions with the indies �1=3 at real (forX < 1) and imaginary (for X > 1) values of the argu-ments,	(u) = pu�� �B+I1=3�2u3=23 �+ B�I�1=3�2u3=23 �� ; (4.4)and755 6*
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Fig. 5. The X3 anharmoni deay potential

	(�) =p� �� ��B+J1=3�2�3=23 �+B�J�1=3�2�3=23 �� ; (4.5)where u = (2)2=3 �1�X � � + 1=2 � (4.6)for X < 1 and� = (2)2=3 �X � 1 + � + 1=2 � ; (4.7)for X > 1 (we reall that � = �n � 1=2 here).The oe�ients B� must be hosen suh thatEq. (4.5) gives plane waves for � � 1; using the knownasymptoti forms of the Bessel funtions [19℄, we thusobtain B+ = B� exp��i�3� :In the lassially forbidden region u � 1, the instan-ton solutions of HJE (2.4) and TE (2.5) that ontinu-ously math the quantum mehanial solutions of theShrödinger equation near the turning points are givenby 	� = A� exp(�W ); (4.8)whereA� = X�1=2(1�X)�1=4�1�p1�X1 +p1�X �n�n (4.9)

and W = 815 � 43(1�X)3=2 + 45(1�X)5=2: (4.10)The sought wave funtions of the quasistationary statesare linear ombinations of instanton solutions (4.8),with the oe�ients in the linear ombinations deter-mined from the ondition of asymptotially mathingthe paraboli ylinder funtions in Eq. (2.13) and theAiry funtions. This leads to the following equation foromplex eigenvalues �:� p2��(��) exp�1615� = i�+(1=2)26�+3: (4.11)Beause the funtion �(z) has a simple pole at z = �n,we an easily �nd the leading ontribution to the deayrate �n of the quasistationary state �n,�n
0 =r 2� �+1=226�+3n! exp��1615� : (4.12)We note that for the ground state, with n = 0,Eq. (4.12) oinides with the result found by Caldeiraand Legget [26℄. On the other hand, the deay rate isrelated to the urrent �ow [1℄ as X ! +1, providingthe onstant amplitude of the outgoing wave,�n
0 = �2ip Z j	j2dX��1 ����	� d	dX +	d	�dX � : (4.13)Inserting the expliit forms of the wave funtions inEqs. (4.5), (4.6), and (4.7) in (4.13), we obtain�n
0 = 98 1=621=3 jB+j2: (4.14)In aordane with (4.14), the deay rate dependsonly on the normalization of the instanton wave fun-tion and on the amplitude of the outgoing wave. Bothharateristis are determined essentially by the behav-ior of the instanton wave funtion in the viinity of theturning points only. We note, however, that in thisapproximation, the instanton omputation of deayrate (4.13) or (4.14) is satisfatory only for the groundstate, beause orretions of the order �1 rapidly in-rease with the quantum number n. The method anbe improved by taking theX3 anharmoni ontributionto the potential into aount as a perturbation,�n
0 =r 2� �+1=226�+3n! exp��1615����1� 1576 (164n3+246n2+1216n+567)� : (4.15)756



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Semilassial approah to states : : :The deay rate alulated in aordane with (4.15) isof the same auray level as the WKB and the exatquantum mehanial omputations for  � 5. Outsidethe regime of interest, the instanton theory loses allpretene of preditability.4.2. Highly exited states for the anharmoniX3 potentialIn Se. 4.1, we alulated the deay rate of low-energy metastable states. In this ase (where the states�n an be haraterized by the good quantum numbern), the period of osillations in the well is smaller thanthe inverse deay rate (�n � �n=
0) and �n is deter-mined by the probability urrent density �owing fromthe well into the lassially admissible region (X > X0for a given energy �n, see Fig. 5) under the ondition ofthe vanishing bak-�ow from this region to the barrier.Evidently, the method does not work for highly exitedstates with �n � �n
0. In this Setion, we go one stepfurther with respet to Subse. 4.1 in extending the in-stanton approah to the deay of highly exited states.First, it is worth noting that the wave funtionsmust vanish as X ! �1, and moreover, an alwaysbe hosen as real-valued quantities as X ! +1. Fromthese two onditions, we an �nd the relations betweenthe instanton wave funtions in the regions X < �X1and X > X0 (see the notation in Fig. 5), and on-sequently, alulate the phase Æ(�) (ounted from thebarrier top) of the standing wave in the regionX > X0.It is given byexp(i2Æ) = �i exp(�i2W �)��(1 + p2� exp(���=4) exp(i2W �)�(1� i�=2) )��(1 + p2� exp(���=4) exp(�i2W �)�(1 + i�=2) )�1 : (4.16)Aording to the standard quantum mehanis [1℄,phase (4.16) determines the sattering amplitude. Wean therefore �nd the sattering amplitude deep inthe lassially forbidden region from (4.16), and hene,ompute the eigenvalues in this region. For the alula-tion, we must know the terms of the order exp(��j�j)in the expansion of the � funtions (these terms arebeyond the standard Stirling formula) [19℄,��1� i�2 � � p2� exp����4 � i���� �1� 12 exp(��j�j)� ; (4.17)

where �(�) � �2 �ln j�j2 � 1� : (4.18)Finally, taking Eqs. (4.17) and (4.18) into aount we�nd the poles of the sattering amplitude from (4.16)(with the required exponential auray) as2W �L = 2W � + �(�) = �(2n+ 1)�� i ��4 (j�j � �) + 12 exp(��j�j)� : (4.19)Expliitly solving (4.19), we �nd the omplex eigenva-lues, and in partiular, the deay rate for highly exitedstates in the anharmoni deay potential.In the same way as for low-energy tunneling states,the real part of the eigenvalues �n for highly exitedstates (i.e., for j�j � 1) is determined by the ationalong losed trajetories in the well, whereas the imag-inary part (i.e., the deay rate �n) is related to theprobability urrent density �ow from the well to thebarrier.Using the instanton approah proedure desribedin Ses. 2 and 3 (see [10; 11℄ for the details), we an �ndnot only the eigenvalues but also the eigenstates. Thereal-valued instanton wave funtions are determined bythe ation W (X1; X), whih is ounted from the linearturning point X1,	(X) = A(�)jX �X1j�1=4 �� sin�W (X1; X) + �4� ; (4.20)where the amplitude A(�) of the wave funtion aquiresmaximum values at the poles of (4.16) with the widthsproportional to �n. We plot the funtions jA(�)j2 inFig. 6. 5. RESONANCE TUNNELINGThe phenomenon of the eletron resonane tunnel-ing is familiar [27℄ and was observed (see, e.g., [28℄ andalso [29℄ for more reent referenes) in semiondutingheterostrutures possessing the so-alled double-barrierpotentials (see Fig. 7). This phenomenon manifests it-self as peaks in the tunneling urrent at voltages nearthe quasistationary states of the potential well. Thephysial mehanism of the resonane tunneling an beunderstood as a onstrutive interferene between thewave re�eted from the left barrier and the wave out-going to the left of the well.In the instanton method, the total transmission o-e�ient T is determined by the seond-order turning757
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Fig. 7. The model two-barrier potential struture forthe resonane tunnelingpoints of the double-barrier potential (i.e., the maximaof the potential); in aordane with the proedure de-sribed in the Se. 2, T is given byjT j2 = �2�L�R �h1�p(1 + ��L)(1 + ��R)i2++ 4p(1 + ��L)(1 + ��R) os2(W �R)o�1 ; (5.1)where we use the notation

�L;R = 1� exp(���L;R) (5.2)and similarly to (2.12),�L;R = 2U0(L;R) �E
0(L;R) : (5.3)Similarly to (3.19), the ation in the lassially admis-sible region, is given byW �R = W � � �(�L)� �(�R): (5.4)In the resonane region, whereW �R = ��n+ 12�in aordane with the stationary quantization rule, thetransmission oe�ient in (5.1) is given byjT j2 = 4�L�R(�L + �R)2 : (5.5)Far from the resonane, it is given byjT j2 = �2�L�R4 os2(W �R) : (5.6)We thus found the resonane ampli�ation of thetransmission. For the symmetri ase at the resonane,1
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ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Semilassial approah to states : : :T = 1, and the interferene ompletely suppresses there�etion. In the opposite ase of strongly asymmet-ri barriers, T in (5.1) is almost oinident with thetransmission oe�ient for the highest barrier, and thein�uene of the lower barrier is suppressed by the inter-ferene. In Fig. 8, we show the energy dependene ofT for the symmetri struture of the barriers. The res-onanes beome broader as the energy approahes thepotential barriers top, and disappear at higher ener-gies (above the top). It is worthwhile to stress that the
instanton solution of the resonane tunneling problemallows us to study the phenomenon in a very broad en-ergy region, inluding the states near the barriers tops.We �nally present the onnetion matries for theinstanton solutions found above. The orrespondingmatrix an be found as the produt of two onnetionmatries onneting instanton solutions near the se-ond order turning points (see (A.9) and (3.20)) anddiagonal shift matrix (A.6),0BBB� 2� exp���L + �R4 � exp(iW �) ���1 + i�L2 ���1 + i�R2 ���1 + exp���L + �R2 � exp(�iW �)�ip2� exp�3��R + �L8 ��exp(iW �)��1�1 + i�R2 �+ exp(�iW �)��1�1� i�L2 ��ip2� exp�3��R+�L8 ��exp(iW �)��1�1+i�L2 �+exp(�iW �)��1�1�i�R2 ��2� exp���L+�R4 � exp(�iW �) ���1+i�L2 ���1+i�R2 ���1+exp���L+�R2 � exp(iW �) 1CCCA : (5.7)Here, W � denotes the ation between the turningpoints (in this ase, between the seond-order turningpoints). 6. CONCLUSIONSThis paper ould be onsidered as a formal one,in the sense that we asked theoretial questions thatmost of solid-state or hemial physis experimental-ists would not think to ask. But answering these verybasi questions an be illuminating.We �rst summarize the results of the paper. Withinthe framework of the instanton approah, we derivedaurate analytial solutions for a number of one-dimensional semilassial problems and heked the re-sults numerially. As an illustration of the method,we onsidered a simple quantum mehanial problem,penetration of a partile through the paraboli poten-tial barrier. In this ase, the instanton solutions (whihare asymptoti solutions of the Weber equation) areexat. We also onsidered the desription of highly ex-ited states in a double-well potential. For de�nitenessand simpliity, we studied the quarti anharmoni X4potential. The instanton approah enables us to au-rately reprodue not only the asymptoti behavior butalso the rossover region from the single-well to the

double-well quantization (in ontrast to the standardWKB approah, whih fails to desribe the rossoverbehavior). A similar problem for the X3 anharmonipotential was also studied, and the instanton methodhas allowed us to study the resonane broadening andollapse phenomena. In addition, we investigated theso-alled resonane tunneling phenomena, not only in-teresting in their own right but also playing a relevantrole in many semionduting double-barrier strutures.We also omputed the onnetion matries that pro-vide a very e�ient method of �nding semilassial so-lutions to the Shrödinger equation in potentials withseveral turning points (they are also useful in develop-ing a good analytial approximation).All the examples seleted to illustrate the e�ienyof the instanton approah belong to the fundamentalproblems in hemial dynamis and moleular spe-trosopy (see, e.g., [9℄ and referenes therein). Sym-metri or slightly asymmetri double-well potentialsare harateristi of moleules and Van der Waals om-plexes with more than one stable on�gurations [14�17℄. The states of suh systems that are lose to thebarrier top (theoretially desribed by the instantonapproah in our paper) are not easy to investigate ex-perimentally, beause optial transitions between thesestates and the loalized ones are typially inative. But759



V. A. Benderskii, E. V. Vetoshkin, E. I. Kats ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002peisely these states are most relevant for radiationlessevolution of highly exited states. In a ertain sense,these states have a double (loalized�deloalized) na-ture that manifests itself in the form of wave funtionsthat simultaneously ontain both omponents, the oneloalized in one of the wells and the other deloalizedbetween the two wells. Consequently, any initially pre-pared loalized state evolves via formation and deay ofthese states. Our alulations are intended to pave theway to the investigation of this lass of problems us-ing the wave funtions omputed within the instantonapproah.The states that are lose to the barrier top of de-ay potentials govern thermally ativated over-barriertransition amplitudes. For low-energy states, the mainredution fator is the tunneling exponent, while theontribution of highly exited states is limited by theBoltzmann fator. The energy width of the region dom-inating in the total transition rate is traditionally pos-tulated in the transition rate theory [30℄ to be of the or-der of the temperature T . But our results in Se. 3 pre-dit another estimate. Instanton alulations demon-strate that the intermediate region between the quasis-tationary (� � 
) and the deloalized states ould bemuh larger than T , namely of the order 
. This im-plies that no sharp boundary exists between the qua-sistationary and the deloalized states and all of thestates within the interval V � �
; V � + T equally on-tribute to the total rate onstant for the penetrationthrough the barrier.One more point should be emphasised. It was re-ently shown in [18℄ that quantum irreversibility phe-nomena our when the spaing between neighboringlevels of the deeper well beomes smaller than the typ-ial transition matrix element. Obviously, this rite-rion an also be applied to the states near the barriertop. We note that for low-energy states, the asymmetryproviding the irreversible behavior must be very large,whereas for states near the barrier top, the ondition ofthe ergodi behavior is not very severe, it su�es thatthe asymmetry of the potential is omparable to thebarrier height.The method and the results an also be appliedto various systems in physis, hemistry, and biologyexhibiting double-level behavior and resonane tunnel-ing. Literally speaking, we dealt with the mirosopiHamiltonians in this paper. But beause of rapid de-velopment of eletronis and ryogeni tehnologies, ithas beome possible to apply the same Hamiltoniansto study ases where the orresponding variables aremarosopi (e.g., the magneti �ux through a SQUIDring, or harge or spin density wave phase in ertain

one-dimensional solids). In this paper, we studied theexample of a tunneling proesses in whih the systempenetrates into a lassially forbidden region (a poten-tial barrier). It is an intrinsially quantum e�et withno lassial ounterpart, but it an nevertheless ourfor marosopi systems, and the tunneling of a maro-sopi variable of the marosopi system (e.g., spin orharge tunneling in atomi ondensates trapped in adouble-well potential [31℄) an also be investigated byour method.With this bakground in mind, our results are alsointended to larify di�erent subtle aspets of tunnel-ing phenomena. An example was given at the endof Se. 3, where we found the geometrial phase a-quired by a partile tunneling through a potential bar-rier. This phase an be tuned by the partile energyand by the barrier shape, and spei� interferene phe-nomena might our. The observation of osillationsrelated to this geometrial phase in real systems hasproved hallenging. Evidently, beause the forms ofthe model potentials that we used are rather speial(and in addition, only one-dimensional), we annot dis-uss the behavior for general ases with full on�dene.Nevertheless, we believe that the instanton approahemployed in this work should also be useful in derivingvaluable results for the general and multidimensionalpotentials.It is essential that in the instanton method dis-ussed in this paper, a mere observating of several las-sial trajetories su�es to develop a qualitative insightfor the quantum behavior. Although the semilassialinstanton approah is reliable in this ontext (as weillustrated in a number of partiular examples), it ismuh more than a qualitative piture. As an approxi-mation, the instanton method an be surprisingly pre-ise. We also note that the results presented here arenot only interested in their own right (at least in ouropinion) but may also be diretly tested experimen-tally, beause there are many systems where the modelinvestigated in the paper is a reasonable model of thereality.The theory presented in our paper ould be ex-tended in several diretions. One very interesting ques-tion is how our quantum mehanial instanton formu-las (e.g., Eqs. (4.12)�(4.14) for the tunneling rate inthe anharmoni X3 deay potential) are modi�ed byinterations with the surrounding media (see, e.g., [32℄,where the WKB approah was used to study the timeevolution of quantum tunneling in a thermally �utu-ating medium). Theoretial modeling of this ase ishampered by the absene of detailed knowledge of themedium and of the interation with it. A more spei�760



ÆÝÒÔ, òîì 122, âûï. 4 (10), 2002 Semilassial approah to states : : :study might beome appropriate one suitable exper-imental results beome available. A simple riterionfor the strength of the interation with the environ-ment (in other words, for the e�etive temperature)for the rossover from the thermally ativated lassialto quantum mehanial deay an easily be found byequating the orresponding Arrhenius fator and theharateristi frequeny �osillations� inside the bar-rier 
� (see (A.10)).All of the potentials investigated in this paperan be onsidered in a number of realisti ases ase�etively resulting from avoiding the adiabati levelrossing in the situation where the adiabati splittingis so large that any in�uene of the upper adiabatistates on the lower states an be negleted. Certainly,in the general ase of an arbitrary oupling strength,this interation of higher and lower adiabati statesmust be taken into aount, and the tunneling matrixelements must be aompanied by the orrespondingFrank�Condon fators arising beause of the violationof the Born�Oppenheimer approximation. We deferthese problems to the future, although there is nodoubt that the instanton approah is also useful inproblems of this kind.The researh desribed in this publiation was madepossible in part by the RFBR (grants 00-03-32938 and00-02-11785). APPENDIXFollowing [2℄, we introdue short notations for thestandard basi WKB solutions,(Æ; z) � (q(z))�1=4 exp(iW (z)); (A.1)and (z; Æ) � (q(z))�1=4 exp(�iW (z)): (A.2)The position of the turning point is denoted by Æ and isinessential if we seek solutions in the region jzj � 1. Inaordane with de�nitions (2.18), and (2.19), we mustadd the dominant solution times a ertain onstant (theStokes onstant) to the subdominant (deaying) solu-tion on the Stokes lines; the dominant and the subdom-inant solutions are exhanged on the anti-Stokes lines.To �nd the Stokes onstant, we must math both solu-tions by enompassing the turning point and taking theut on the omplex z plane into aount (see Fig. 9).
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gions X < X1 and X > X2, the onnetion matrix isthe diret matrix produt of the above matries,M̂ = M̂+L̂M̂�:To generalize the proedure to seond-order turningpoints, we must �nd the onnetion matries relatingthe basi solutions to the Weber equation, namely(Æ; z) � (z)� exp��z24 � ; (A.7)and (z; Æ) � (z)���1 exp�z24 � : (A.8)In this ase, we have four Stokes lines, four anti-Stokeslines, and one ut, and therefore, nine di�erent regionswhere the solutions must be mathed (see Fig. 10a asan illustration). Four Stokes onstants are given by~T1 = ~T�12 [exp(i2��)� 1℄; ~T3 = ~T �1 ;~T4 = � ~T2 exp(�i2��):From the known asymptoti form of the paraboli ylin-der funtions, we an obtain the remaining Stokes on-stant ~T2 = p2��(��) :The onnetion matrix for an isolated seond-orderturning point an therefore be represented as0B� � ~T2 os(��)os(��) � sin2(��)~T2 1CA : (A.9)This matrix depending on the energy � determines, e.g.,the instanton semilassial solutions for the harmoniosillator, � = �+1=2. It an be veri�ed by expliit al-ulations that for the harmoni osillator, the onne-tion matrix also has the same form (A.9) in the WKBapproah. The di�erene ould appear only from an-harmoni terms in the potential. But for low-energystates with �= � 1, the anharmoni orretions aresmall and the instanton and WKB onnetion matri-es oinide up to the seond order in these orretionterms.For the symmetri double-well potential, the on-netion matrix desribing the variation of the oe�-ients at the basi solutions in Eqs. (A.7) and (A.8)between the two seond-order turning points X02 andX03 is given by762
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0
� ���+1=2 exp(W �E) 00 p2�n! �
0
� ��+1=2 exp(�W �E) 1CCCCA ; (A.10)where the instanton ation isW �E = X03ZX02 r2(V (X)� � dX (A.11)and 
� is the harateristi �osillation� frequeny in
the barrier (i.e., in the lassially forbidden region).The onnetion matrix in Eq. (A.10) must be omparedwith a similar matrix in Eq. (A.6) for two linear turn-ing points. For the asymmetri double-well potentialin the region between the seond-order and the linearturning points, the matrix analogous to (A.10) is0BBBBB� � n!p2��1=2�
0
� ��(1=2)(�+1=2) exp(W �E) 00  p2�n! !1=2 �
0
� �(1=2)(�+1=2) exp(�W �E) 1CCCCCA : (A.12)

All the above matries allow us to �nd any other on-netion matrix that we need in the partiular exam-ples onsidered in the main text of the paper. Anyof them an be onstruted as a orresponding prod-ut of the matries in (A.4), (A.5), (A.6), (A.9), (A.10),and (A.12). It is worth noting a general property of theonnetion matries that the onnetion matrix is real-valued for all bound states, and o�-diagonal elementsof the onnetion matrix are omplex for ontinuumspetrum states.Similarly to the problem of tunneling through thepotential barrier V (X) = �(1=2)X2, all the Stokesand anti-Stokes lines are rotated by the angle �=4 (seeFig. 10b) with respet to the orresponding lines forthe paraboli well (V (X) = (1=2)X2 onsidered above,see Fig. 10a). The onnetion matrix for the tunnelingthrough the barrier is given by0B� S1 �i exp���2 �i exp���2 � S�11 (exp(��) + 1) 1CA ; (A.13)where � = i(2� + 1) and S1 is the Stokes onstant onthe �rst quadrant bisetrix (see Fig. 10b). To �nd theStokes onstant S1, we must math the sum of the in-ident and of the re�eted waves to the solutions of theWeber equation at X ! �1 and to the transmitted
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