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Within the framework of the instanton approach, we present analytical results for the following model problems:
(i) particle penetration through a parabolic potential barrier, where the instanton solution practically coincides
with the exact (quantum) one; (ii) descriptions of highly excited states in anharmonic potentials of two types:
double-well X* and decay X?. For the former potential, the instanton method accurately reproduces not only
single-well and double-well quantization, but also a crossover region (in contrast to the standard WKB approach
that fails to describe the crossover behavior); for the latter potential, the instanton method allows studying the
resonance broadening and collapse phenomena. We also investigate resonance tunneling that plays a relevant
role in many semiconducting devices. We show that the instanton approach gives exact (quantum) results in
a broad range of energies. Applications of the method and of the results are applicable to various systems in
physics, chemistry, and biology exhibiting double-level behavior and resonance tunneling.

PACS: 05.45.-a, 05.45.Gg

1. INTRODUCTION

Semiclassical mechanics has a long history. Sur-
prisingly, however, some long-standing problems still
exist in the theory. One of them — the description of
states near a potential barrier top with a sufficient ac-
curacy — is the subject of this paper. It is known
that the commonly used WKB method (phase inte-
gral approach) [1,2] amounts to matching the wave
functions for the classically allowed and forbidden re-
gions. Technically, the procedure works for linear (or
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first-order) turning points and can be relatively sim-
ply performed only in one-dimensional problems. But
one-dimensional problems are not of great physical im-
portance, not only because the reduced dimensional-
ity does not allow modelling many relevant experi-
mental situations, but also (at least partially) because
one-dimensional quantum mechanical problems can be
rather easily solved numerically. Unfortunately, effi-
ciency and accuracy of direct numerical methods in
quantum mechanics rapidly degrade for multidimen-
sional systems possessing many degrees of freedom be-
cause of an extraordinary amount of computational
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work required for calculations. Furthermore, an exten-
tion of the WKB procedure to multidimensional sys-
tems encounters fundamental difficulties because of the
still unsolved matching problem for multidimensional
WIKB solutions, which become singular on caustic lines
separating manifolds in phase space with real and imag-
inary momenta for each among N coordinates. Because
the number of these domains increases as N!, it is a
tremendous task for N > 2. After several decades of
efforts, a complete and unifying descriptions of multi-
dimensional WKB solutions is still unavailable.

The problem was first addressed long ago, and some
attempts to overcome the difficulties of the WKB ap-
proach and to improve the accuracy of the method have
been performed quite successfully. We note, e.g., [3],
where the authors additionally included trajectories of
a special type on the complex phase plane into the
standard WKB method; the semiclassical motion along
these trajectories is described by the Weber functions
(also see [4]). But the choice of these additional special
trajectories (which must be included in order to im-
prove the accuracy of the WKB method near the bar-
rier top) depends on the detailed form of the potential
far from the top, and in each particular case, a nonuni-
versal procedure must therefore be performed from the
very beginning (also see more recent publications [5],
where the authors use some distortion of Stokes dia-
grams, or [6], where time-dependent quantum mechan-
ical calculations for anharmonic and double-well oscil-
lators have been performed).

Evidently, therefore, there is some need for a semi-
classical approach different from the WKB method.
One of the alternatives to the WKB semiclassical for-
malism, the so-called extreme tunneling trajectory, or
instanton [7-9], could be very effective in calculating
a globally uniform wave function of the ground state
(i.e., a wave function without singularities). It allows
finding semiclassical wave functions for a very broad
class of potentials with arbitrary combinations of the
first- and the second-order turning points. The method
was recently adapted for the description of low-energy
excited states [10, 11]. One of the main advantages
of the instanton approach is that it can be readily ex-
tended to multidimensional systems using perturbative
techniques (see [12] and references therein).

But before investigating multidimensional prob-
lems, we must study one-dimensional potentials and
one-dimensional problems that cannot be accurately
solved by the standard WKB method. These problems
are the subject of this paper. The generalization of
the instanton procedure to highly excited states is not
straightforward at all, and required additional analy-
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We consider only few relatively simple examples,
but this analysis is useful for gaining insight into more
complex systems for which even approximate theoreti-
cal results are not available.

sis.

In many interesting physical problems, high-accura-
cy calculations are out of reach of the standard WKB
method, but as we see in what follows, the instanton
approach offers a solution to the difficulties inherent to
the WKB procedure. Since this fact was largely unno-
ticed in the previous studies, we found it worthwhile to
present the investigation of several simple examples in
a short and explicit form and to point out practical us-
ability of the instanton approach. Apart from the aim
to illustrate the efficiency of the instanton approach,
our study is a prerequisite for an explanation and suc-
cessful description of many relevant physical phenom-
ena (for example, low-temperature quantum kinetics of
phase transitions, see, e.g., [13]) where an active (reac-
tion) path is effectively confined to one dimension.

All examples considered in this paper are related to
the fundamental problems of chemical dynamics and
molecular spectroscopy (see, e.g., [9] and references
therein). Symmetric or slightly asymmetric double-well
potentials are characteristic of molecules and Van der
Waals complexes with more than one stable configura-
tions [14-17]. The states of such systems close to the
barrier top (theoretically described by the instanton ap-
proach in this paper) are most relevant for radiationless
evolution of highly excited states. These states have a
double (localized—delocalized) nature, which manifests
itself in the wave functions that simultaneously contain
both components, the localized component in one of
the wells and the delocalized component between the
two wells. The states close to the barrier top of de-
cay potentials govern thermally activated over-barrier
transition amplitudes. For low-energy states, the main
reduction factor is the tunneling exponent, while the
contribution of highly excited states is limited by the
Boltzmann factor. Our instanton calculations demon-
strate that there is no sharp boundary between qua-
sistationary and delocalized states. Two of us (V. B.
and E. K.) recently investigated [18] the eigenstates of
a highly asymmetric double-well potential. We have
shown that quantum irreversibility phenomena occur
when the spacing between neighboring levels of the
deeper well becomes smaller than the typical transi-
tion matrix element. Obviously, this criterion can also
be applied to the states near the barrier top. We note
that for low-energy states, the asymmetry leading to
irreversible behavior must be very large, whereas for
states near the barrier top, the condition of the ergodic
behavior is not very severe, and it is sufficient for the
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asymmetry of the potential to be comparable to the
barrier height.

This paper is organized as follows. Section 2 con-
tains the basic equations of the instanton method that
are necessary for our investigation. As an illustration
of the method, we consider a touchstone quantum me-
chanical problem — penetration of a particle through
a parabolic potential barrier. The instanton solutions
that are the asymptotic forms of the Weber equation
are then exact. Section 3 is devoted to the investiga-
tion of highly excited states in a double-well potential.
For concreteness and simplicity, we study the quartic
anharmonic potential X*. The instanton approach al-
lows us to accurately reproduce not only the asymp-
totic behavior but also the crossover region from the
single-well to the double-well quantization. In Sec. 4,
a similar problem for the X? anharmonic potential is
studied. Section 5 is devoted to the so-called resonance
tunneling phenomena, which are not only interesting
in their own right but also they play a relevant role
in many semiconducting double-barrier structures. In
Sec. 6, we discuss the results. In the Appendix, we com-
pute the so-called connection matrices that provide a
very efficient method of finding semiclassical solutions
to the Schrodinger equation in potentials having sev-
eral turning points. Knowing the connection matrices
is also important and significant for developing a good
analytical approximation. The readers not interested
in the mathematical derivation can skip the Appendix
and find all the results in the main body of the paper.

2. PENETRATION THROUGH THE
PARABOLIC POTENTIAL BARRIER

2.1. Instanton approach

For convenience, we recall the main ideas of the in-
stanton approach. The first step of the approach in [7]
and [8] is the so-called Wick rotation of phase space
corresponding to the transformation to imaginary time
t — —it. The potential and the kinetic energy change
their signs after the transformation and the Lagrangian
is replaced by the Hamiltonian in the classical equation
of motion. By this Wick rotation, the standard oscil-
lating WKB wave functions are transformed into expo-
nentially decaying functions that vanish as X — +oo.
Following [10, 11], we use a slightly different formula-
tion of the instanton method, assuming exponentially
decaying real-valued wave functions from the very be-
ginning. Taking into account that the wave functions
of bound states can be chosen as real quantities, we can
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therefore seek a solution to the Schrodinger equation in
the form

¥ = exp (—70(X)), (2.1)
where 7 is the semiclassical parameter that is assumed
to be sufficiently large (y = mQoa3/h, where m is
the mass of a particle, ag is a characteristic length in
the problem, e.g., the tunneling distance, and Qg is a
characteristic frequency, e.g., the oscillation frequency
around the potential minimum; in what follows, we set
h = 1, measuring energies in the units of frequency)
and o can be called the action; this function must sa-
tisfy the first-order differential equation of the Ricatti

type,
7 [ <

where V(X)) is the potential and e gives particle eigen-
states (energies). Here and in what follows, we use
dimensionless variables (e E/Qq for the energy,
V = U/~vQp for the potential, and X = z/ag for the
coordinate, where F and U are the corresponding di-
mensional values of the energy and potential). We be-
lieve that v > 1, and o(X) can therefore be expanded
in the asymptotic series

1 do
3 dX?

1
2

do

d—X>2+V(X)

+v { e} =0, (2.2)

o(X)

W(X)+y "W (X)+y 2Wa(X)+... (2.3)

The first- and the second-order terms in 7~! become
identically zero if the time-independent Hamilton—
Jacobi equation (HJE) and the so-called transport
equation (TE) are satisfied,

1 /dw\?
and
aw dA 1 &PW
IX ax T2 axzA A (2:5)
where
A(X) = exp(—Wi(X)). (2.6)

An essential advantage of the instanton method in com-
parison to the standard WKB is that in the former ap-
proach, the HJE is solved at E = 0, and the classically
allowed regions therefore disappear. The price to be
paid for this is the appearance of second-order turn-
ing points (in contrast to the WKB method, where all
turning points are linear).
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It is well known that the WKB wave functions
are singular at the turning points, and therefore, dif-
ferent approximations represent the same wave func-
tion in different domains. The famous Stokes phe-
nomenon [2] is related to the distribution of the turn-
ing points; Stokes and anti-Stokes lines emanate from
each turning point. By definition, Stokes lines are the
lines where the dominance of the dominant exponen-
tial semiclassical solution to the Schrédinger equation
becomes strongest, and anti-Stokes lines are the lines
on which the dominance and subdominance of the solu-
tions interchange. Evidently, the WKB approximation
does not work and must be refined near Stokes and anti-
Stokes lines [2]. On the contrary, because classically ac-
cessible regions do not exist in the instanton formalism,
the Stokes lines continuously pass through second-order
turning points, and globally uniform real solutions to
the Schrédinger equation can be constructed using the
asymptotically smooth transformation of the instanton
wave functions into the Weber functions. This global
uniformity is the principal advantage of the instanton
method.

A clearer idea of the instanton approach is obtained
by the derivation of the well-known [1] quantization
rules for the harmonic oscillator (V(X) = X?2/2). For
a given energy €, any solution of the Schriodinger equa-
tion can be represented as a linear combination of the
solutions of the Weber equation [19]

+( &

where z = X,/ and v = € — 1/2. The basic solu-
tions of (2.7) are the parabolic cylinder functions [19],
and only the function D,(—z) vanishes as z — oo for
argz = 0. For argz = 7, the asymptotic behavior of
this function as z — oc is given by [19]

1 22

Ry

>
dz?

0, (2.7)

2
D,(—z) = exp(inv)z" exp <—ZZ> -

— ﬁz_’/_l ex i

T(—v) P\ 3

) . (2.8)

It can vanish as z — oo only at the poles of I'(—v), and
this vanishing condition gives the exact eigenvalues of
the harmonic oscillator

E=n+ —.
2
Moreover, because D,(—z) coincide with the known
harmonic oscillator eigenfunctions for positive integer
v [1], the instanton approach to the harmonic oscillator
is exact.
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2.2. Tunneling through the harmonic barrier

As a less trivial illustration of the instanton ap-
proach efficiency, we apply the method to the prob-
lem of quantum mechanical tunneling through the
parabolic potential

mQ32
0_2
5

U(l‘) = UO — (29)
where m is the mass of the tunneling particle and g
is a characteristic frequency (the curvature of the po-
tential). The potential involves an additional charac-
teristic space scale ag. Using Qg and ag to set the
corresponding scales, we can rewrite parabolic poten-
tial (2.9) in the dimensionless form

1
V(X)=Vp - =X~

> (2.10)

In these variables, the Schrédinger equation is given by

d*v
dXx?

+ (X2 —ay)¥(X) =0, (2.11)

where

- F
aZQL

0 (2.12)

and v > 1 semiclassical parameter introduced above.
Schrodinger equation (2.11) can be transformed
into the Weber equation [19] by a 7 /4-rotation in the
X=—

complex plane,
zexp ( ) |
V2y

and the solution of (2.11) can therefore be represented
as a linear combination of the parabolic cylinder func-
tions D, [19],

1 i

4

U,(2) =c1D,(2) + caD,(—2) (2.13)

3

where v = —1/2 —ia/2.
As X — 00, only the transmitted wave exists with
the amplitude (the transmission coefficient) T,

. X2
U~ Texp 172 .

(2.14)

As X — —oo, both the incident wave
(x exp(—iyX?/2)) and the reflected wave proportional
to Rexp(iyX?/2) exist. By a standard quantum
mechanical procedure [1], the transmission coefficient
T and the reflection coefficient R can be found using
the known asymptotic form of the parabolic cylinder
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functions [19] at the fixed energy (i.e., at fixed a).
This leads to the well known expression [1]

1

TP? = ———m——.
7l 1+ exp(ra)

(2.15)
We note that solutions (2.13) are the exact solutions to
the Schrodinger equation in parabolic potential (2.10).
We now apply the instanton approach described above
to the same problem. The solutions of HJE (2.4) and
TE (2.5), which are milestones of the method, can eas-
ily be found as

X2
W=+it
22,

(2.16)
A=Ay X~'/? exp <:|:ialn %) ,

where the integration constant Ay determines energy-
dependent phases of the wave functions. Compar-
ing (2.16) and (2.13), we can see that the instan-
ton wave functions are the asymptotic forms of the
parabolic cylinder functions, and therefore, because the
transmission (7') and reflection (R) coefficients are de-
termined only by the asymptotic behavior, the values
of T and R found in the framework of the instanton
approach coincide with the exact quantum mechanical
ones at any value of the energy (of the parameter «).
We recall that the instanton and the exact quantum
mechanical solutions for the harmonic oscillator also
coincide for any energy.

To finish this subsection, we mention for the skepti-
cal reader that the WKB wave functions coincide with
the exact solutions only at a < —1. In the region
where |a| < 1, i.e., where the characteristic size of the
forbidden region becomes comparable to the particle
wave length, specific interference phenomena between
the transmitted and reflected waves occur, and phe-
nomena of this kind cannot be reproduced in the stan-
dard WKB approach assuming that all turning points
are independent.

As an illustration, in Fig. 1, we show the energy
(a) dependence of the phase for the wave function re-
flected by the parabolic potential. The exact quantum
mechanical and the instanton solutions (¢ in Fig. 1)
are indistinguishable over a broad region of energies,
while the WKB solution (oY X8 in Fig. 1) deviates
from both of them.

2.3. Connection matrices

Our analysis can be recast into a more elegant form
by introducing the so-called connection matrices. In
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Fig.1. The phase of the wave reflected from the
parabolic barrier: 1 — the exact quantum and instan-
ton solutions ¢o; 2 — the WKB solution ¢y X Z: the

0 ;
dashed line is the difference ¢o — ¢y X P

the instanton approach (as in any semiclassical treat-
ment of the scattering or transition processes), we deal
with only the asymptotic solutions and their connec-
tions on the complex coordinate plane. It is therefore
important to know the connection matrices. These con-
nection matrices provide a very efficient method of find-
ing semiclassical solutions to the Schrédinger equation
in potentials with several turning points. This is also a
relevant starting point for developing a good analytical
approximation.

It is convenient to formulate the general procedure
for calculating the connection matrices for an arbi-
trary combinations of the first- and second-order turn-
ing points. The procedure can then be applied to any
particular problem under investigation. Technically,
this requires extending the procedure known for lin-
ear turning points [2]. All the necessary details of the
generalization are given in the Appendix, and we here
present only the main definitions and results. In the
semiclassical limit v > 1, the Stokes and anti-Stokes
lines for the equation

d*v .
— +77a(2)¥(z) =0 (2.17)
dz
are determined by the respective conditions
ReW(z)=0 (2.18)
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Fig. 2.

The Stokes (solid) and anti-Stokes (dashed)
lines for the two real-valued turning points X2 with

the surrounding contours | and I'. On contour I,

the Stokes lines for the Airy equation asymptotically

matches the lines for the Weber equation. The cut is
depicted by the wavy line

and
ImW(z) =0, (2.19)
where
W(z) =/\/q(z)dz (2.20)

and zg is the turning point under consideration.

For the harmonic potential, there are only lin-
ear turning points for real (o > 0) and imaginary
(a < 0) energies. In the Appendix, we calculate all
the connection matrices that we need. To fully ana-
lyze the problem for the entire range of parameters,
we must therefore know only the distributions of turn-
ing points and the Stokes and anti-Stokes lines on the
complex plane. At real turning points (a > 0) where
X5 = +(a/y)"?, there are four Stokes and four anti-
Stokes lines and two cuts in the complex plane (see
Fig. 2).

For a > 1, the connection matrix can be easily
calculated as the direct product of the connection ma-
trices found in the Appendix (M~ in Eq. (A.4) and
the Hermitian conjugate matrix M"') and the diagonal
shift matrix

[

0
exp(—ma/2)

exp(ma/2)

. (2.21)
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Fig.3. The same as Fig. 2 for the case of two purely
imaginary turning points i X1 2

~
~

This leads to the transmission coefficient T
exp(—ma/2), which coincides with (2.15) with the
exponential accuracy in the limit a > 1. To improve
the accuracy at smaller values of a, we must calculate
the connection matrices taking into account not only
the contributions of the contours encompassing the
turning points, but also the additional contribution to
the action of the closed path (with a radius > | X o|)
encompassing both points X; and X, (see Fig. 2).
The procedure changes the Stokes constant T3 (on
the dashed line separating regions 3 and 4 in Fig. 2)
which becomes

~

3

Ts| = [1 + exp(—ma)]/2.

This finally leads to the correct transmission coefficient

which is identical to (2.15).

In the case where a < 0, the entire picture (see
Fig. 3) of the Stokes and of the anti-Stokes lines and
turning points is rotated by the angle 7/2 with respect
to the picture in Fig. 2. If we bluntly take the point
X = 0 as the low integration limit for the action W*
in Eq. (A.11), we obtain the transmission coefficient

iyey

T =iT; ' exp ( 5

1
Tr=1- 5 exp(—ﬂ'|a|),
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which can be reliable (with the accuracy exp(—2n|al))
only for || > 1. As in the case where a > 0, the
accuracy can be improved by taking into account the
contribution of the path surrounding both imaginary
turning points (this fact was noticed by Pokrovskii and
Khalatnikov long ago [3]).

At the isolated linear imaginary turning point X7,
the connection matrix is found from (A.4),

) |

Similarly, the Hermitian conjugate matrix Ml_ comes
from the contribution of the closed path surrounding
—iX1. These contours provide only the amplitude of
the dominant (exponentially increasing) wave. But the
accuracy is insufficient for finding the amplitude of the
corresponding subdominant solution (the exponentially
decaying wave function), and we obtain the incorrect
transmission coefficient 7" = 1. To improve the ac-
curacy and to find T correctly, we must include the
connection matrix for the isolated second-order turn-

i exp(~lal/2)

X (2.22)

ing point in the procedure (in this particular example,
this turning point is the maximum of the potential).
Using (A.9), we can explicitly find this matrix as

M,

(

In principle, similar calculations can be performed
in the adiabatic perturbation theory (which in fact
employs the Planck constant smallness equivalent to
v > 1). We note that in [20], the contributions of
the contours surrounding turning points (analogous to
those presented above) were taken into account. It
seems very plausible that following this way, it will be
possible to combine the instanton approach and the
adiabatic perturbation theory, but this issue is beyond
the scope of this paper and will be discussed elsewhere.

[1+exp(=7a])]'/?
—iexp(—7lal/2)

i exp(—lal/2)
[1+exp(—la|)]'/?

(2.23)

3. HIGHLY EXCITED STATES IN THE
DOUBLE-WELL POTENTIAL

Literally, the instanton approach described in the
previous section is valid for states with characteristic
energies that are small compared to the barrier height.
But as we show in this section, the instanton method
works sufficiently well for the energy states near the
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barrier top Vy. As an illustration, we consider the sym-
metric double-well potential (quartic anharmonic X*
potential)
1o 2
VO—V(X)=§X (1—-X7). (3.1)

The Schrédinger equation with potential (3.1) can be
rewritten in dimensionless variables in the form

d*v

m + [2'}/2(‘/0 - V(X)) - (J{’y]\IJ(X) =0,

(3.2)

that is most convenient in applications of the instanton
approach. The HJE and TE then become

1 /dw\?
56Y>_%—wm, (3.3)
and
dW dA 1 /dPW .
d—Xd—X+§<dX2+ZOé>A—O. (34)

Formal solutions to the set of equations (3.3), (3.4) are

the even and odd instanton wave functions

UE = AL (X)exp(inWa(X),  (35)

where the action Wy (a solution of the HJE) is to be
determined from

dWy

- — =4

dx Q(VO_V(X))a

(3.6)

and the amplitude (prefactor) is given by

—-1/2

- [ /( )‘uX] @

The quantization rules [1] are related to continuous
matching of the solutions at the turning points (the
second-order turning point X = 0 and the linear turn-
ing points X = £1 for a > 0 and X = +i for a < 0).
A crucial advantage of instanton solutions (3.5) is that
these functions have no singularities inside the barrier,
because the corresponding exponents are pure imag-
inary in the classically accessible regions (unlike the
WKB solutions). In addition, the general form of the
instanton wave functions does not noticeably depend
on whether £ < Vj or E > V4. This advantage allows
us to include the instanton wave functions into the basis
of globally uniform functions diagonalizing the Hamil-
tonian even for highly excited states.

AWy
dX

Aiz‘

AW
dX
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The above general procedure for searching instan-
ton solutions to the Schrodinger equation with model
potential (3.1) has a subtle point, which motivates gi-
ving the explicit searching procedure in some detail;
new results follow from our investigation. The proce-
dure includes several steps.

1. Near the second order turning point, exact so-
lution (2.14) to the Schrédinger equation can be used
with ¢; = +¢y for the even and odd solutions respec-
tively. For |X| > 1, it follows from (2.14) and from
the known asymptotic forms of the parabolic cylinder
functions [19] that

exp(if(X)) | exp(—if(X))
[ (1—ia)/4 T T((1 +m)/4)} - (38)
where
=2y
YT UT((3 +ia)/4)
X exp (—%) 9~ia/t(2~)71/4  (3.9)
and
f(X):zXQ—glnX—gln”y—E. (3.10)

2 2 4 8

To obtain the correct even and odd linear combinations
conforming to (3.5), we set

_ exp(xifi)
& TN (1 tia/v2)/4) (38.11)
where |
-t

2. Near the linear turning point X = =1, the
Schrodinger equation reduces to the Airy equation [19]
d2

—— —y¥(y) =0,

o (3.12)

where

y =7 (3.13)

X+1+2
S

for X < 0. The solution that vanishes as y — oo is
given by [19]

T(y) = |y|~"/*sin <§y|3/2 + %) :

Continuing this solution to the regions (X £1),/2y > 1
and sewing there with (3.8), we obtain

(3.14)

3
&= exp <—i27W* + z%) ) (3.15)

C_

6 ZKDT®, Bem. 4 (10)
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0.4
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0.1
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o

Fig. 4. The dimensionless tunneling splitting A/Qq for

the anharmonic X* potential near the barrier top: 1 —

exact quantum and instanton calculations, 2 — the
WKB result

where W* is the energy-dependent action on the inter-
val [X =0, X =1].
3. Comparing (3.15) and (3.11), we find the quan-
tization rules
['((1+ia)/4)
T'((1-ia)/4)
for the even states and
['((3+ia)/4)
L ((3—ia)/4)
for the odd states.
4. From (3.16) and (3.17), we finally obtain the
quantization rule that can be written in the single form
for both the even and odd states as

3
= exp <—2mW* - z§> (3.16)

= exp (—2iyW* —im) (3.17)

29W* 4+ 2¢(a) =

%T + 27mn — arctg (th (%))

%Tﬂ- + 27n — 2arctg (th (%))

Relation (3.18) is the sought quantization rule that
now allows us to use the advantages of the instanton
method. For highly excited states (i.e., for a <« —1), it

follows from (3.18) that
1
2)°

(3.18)

29" + 2¢(a)
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where n is an integer. For low-energy states (o > 1)
Eq. (3.18) reproduces the known quantization rule

where W7 is the action in the classically admissible re-
gion between the linear turning point in the left well,

3

iyey

L1
— ex
P77

7W£=7r<n+— 5

)

2

YW =~4yW* + ¢(a). (3.19)

We note an essential advantage of instanton quanti-
zation rule (3.18) compared to the traditional WKB
formalism, where the quantization rules are totally dif-
ferent [1] in the tunneling and over-barrier regions. The
instanton approach gives a single quantization rule,
Eq. (3.18), which is valid in both regions and in addi-
tion, quite accurately describes the crossover behavior
near the barrier top, where periodic orbits localized at
separate wells transform into a common figure-eight or-
bit enclosing both wells.

We illustrate the results of this section in Fig. 4,
where we plot the universal dependence of the eigen-
values in symmetric double-well potential (3.1) on a.
For comparison, we show in the same figure the eigen-
values found by the conventional WKB procedure and
by the exact quantum mechanical computation. It is
clear from the figure that the WKB method errors are
maximal in the region of small ||, because the oscilla-
tion period logarithmically diverges in this region (the
particle spends infinitely long time near the second-
order turning point). On the contrary, the errors of
the instanton approach are minimal near the barrier
top (small |a]).

As mentioned at the beginning of this section, the
instanton approach is also very accurate near the po-
tential minimum. Generally speaking, the instanton
solutions are always correct when the deviation from
the corresponding extremum is of the order of characte-

ristic zero-point amplitudes. Mathematically, the accu-
racy of the instanton approach is based on the transfor-
mation of the semiclassical solutions into the harmonic
oscillator eigenfunctions (which also ensures the correct
normalization of the instanton wave functions). It is
therefore natural to expect that the instanton method
is very accurate near the barrier top and near the po-
tential minimum. On the contrary, in the intermediate
region, where the anharmonic shape of the potential is
relevant, we should expect poor accuracy of the instan-
ton method. Fortunately, it turns out that the math-
ematical nature of the problem is on our side, and the
instanton approach has a reasonable accuracy (of the
order of the accuracy of the WKB method) even in
this region. The fact is that the instanton wave func-
tions are exact not only in zero but also in the first
order with respect to anharmonic corrections to the
potential approximation. This can be shown using the
anharmonic perturbative procedure that was proposed
by Avilov and ITordanskii for the WKB functions [21]
and was generalized for the instanton wave functions
in [22].

For practical computations, it is also relevant that
the instanton wave functions (unlike the WKB ones)
are continuous near their «own» minimum. Numerical
estimate shows that in the intermediate energy region,
the instanton wave functions reproduce exact quantum
results with the accuracy about 5-10 %.

To finish the section, we present the connection
matrices needed to find semiclassical solutions to the
Schrédinger equation in the double-well potential. Sim-
ilarly to the results in Sec. 2, the connection matrix
for the instanton solutions is the product of connection
matrices (A.4) for the linear turning points and the
connection matrix for the second-order turning point,
which is the maximum of the double-well potential in
the case under consideration. Using (A.9), we can find
this latter connection matrix as

2 [exp (%) + (1 4 exp(ma))'/? cos(27W*)] —(1 + exp(ma))'/? sin(2yW*)

(1 + exp(ra))/? sin(2yW*)

2

\
It is worth noting that the reflected wave acquires

a nontrivial phase factor near the barrier top. This
phenomenon is related to the interference of the inci-
dent, reflected, and transmitted waves, and the phase
therefore has some geometrical meaning, similarly to
the famous Berry phase [23]. The geometrical origin

1 Ta
[— exp (

(3.20)

5 ) + (1 + exp(ra))'/? cos(2yW*)
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of the phase manifests itself more clearly if we recall
that the semiclassical phase factor is determined by the
probability density flow through the barrier,

dv

J=iv 2
ux
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We can consider this phase factor from a slightly dif-
ferent standpoint, because tunneling results in a phase
shift related to the change of the eigenvalues. Quanti-
zation rules (3.18) and (3.19) can be rewritten as

€n =N+ 1 + Xn
2

which is the definition of the eigenvalues €,, and where n
is integer labeling the eigenvalues and y,, is determined
by the exponentially small phase shift due to the exis-
tence of the barrier between the two wells. The phase
shift v, has the same functional form (and physical
meaning) as the geometrical phase factor (appearing
because of the interference phenomena) acquired by a
quantum mechanical wave function upon a cyclic evo-
lution [23-25].

4. THE DECAY POTENTIAL

In this section, we study highly excited states in a
decay potential, which we choose as the anharmonic

dX

1
-x?2
2 b)

Potential (4.1) is a particular example of the generic‘
decay potential in Eq. (4.3) (with X; =1/3, X¢ = 2/3,
Xy = 1, and Vy = 2/27); we use it only as an ex-
plicit illustration, and in order to be specific, while all
the results given below are equally valid for the generic
potential. As a note of caution, we also remark that
in the instanton approach to this problem, we must al-
ways deal with only two turning points. For low-energy
states, the points are X, and the potential minimum
X =0, and for high-energy states, the points are — X}
and the potential maximum Xj.

In accordance with (4.1), there are no turning points
at X > Xs; at X > Xy, the potential can be con-
sidered as a constant, and therefore the wave func-

1
Vo — 5(X = Xo)%,

dV)
7% (X—X5),
()

X3 potential for definiteness,

1
INX):EX%I—Xy (4.1)
As a first (but compulsory) step, we investigate the
low-lying tunneling states.

4.1. Tunneling decay of metastable states

We start from this simple case to pick low-hanging
fruits first, i.e., to describe the states under the condi-
tions

Vo> en > V(X = 00), (4.2)

which imply that a local minimum is separated from
the continuum spectrum by a high energetical barrier,
and the quasistationary states €, are therefore charac-
terized by «good» quantum numbers n. We note that a
generic decay potential shown in Fig. 5 is determined by
the positions of the barrier top Xy and the three turn-
ing points — X7, X = 0, and +X5; near these points,
we have

dVv
V()— <—> (X+X1), ‘X+X1| —)0,
X==X

X[ -0,
(4.3)
X — Xo| =0,

‘X—X2| — 0.

tions must therefore asymptotically coincide with plane
waves for X > X,. Furthermore, near the linear turn-
ing point X = 1, the Schrodinger equation with the
X*?# anharmonic potential (4.1) is reduced to Airy equa-
tion (3.12), whose solutions are linear combinations of
the Bessel functions with the indices £1/3 at real (for
X < 1) and imaginary (for X > 1) values of the argu-
ments,

755 6*
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Vo The sought wave functions of the quasistationary states

Fig.5. The X3 anharmonic decay potential

T(¢) =/ x

s (K)om0 (2], s
where
u = (2y)%/3 {1 —x-Z :1/2} (4.6)
for X <1 and
C=(29)23 [X 142 +71/2} ., (4.7)

for X > 1 (we recall that v = ¢, — 1/2 here).

The coefficients B+ must be chosen such that
Eq. (4.5) gives plane waves for ¢ > 1; using the known
asymptotic forms of the Bessel functions [19], we thus
obtain

B, = B_exp (—zg) .

In the classically forbidden region u > 1, the instan-
ton solutions of HJE (2.4) and TE (2.5) that continu-
ously match the quantum mechanical solutions of the
Schrédinger equation near the turning points are given
by

Uy = Ay exp(yW), (4.8)
where
Ay = X-12(1 - x)-1/ (1—7 Vl_X) (4.9)
1+V1-X
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are linear combinations of instanton solutions (4.8),
with the coefficients in the linear combinations deter-
mined from the condition of asymptotically matching
the parabolic cylinder functions in Eq. (2.13) and the
Airy functions. This leads to the following equation for
complex eigenvalues v:

vV 271' 16 +(1/2)
o B — =" 206v+3 4.11
() P (157> iy (4.11)

Because the function I'(2) has a simple pole at z = —n,
we can easily find the leading contribution to the decay
rate '), of the quasistationary state €,

16 >

0 exp (—1—57

We note that for the ground state, with n = 0,
Eq. (4.12) coincides with the result found by Caldeira
and Legget [26]. On the other hand, the decay rate is
related to the current flow [1] as X — +o00, providing
the constant amplitude of the outgoing wave,

g—’; = <2iﬁ/w2dX> B X
X < v ) (4.13)

. dv
VTV
Inserting the explicit forms of the wave functions in
Eqs. (4.5), (4.6), and (4.7) in (4.13), we obtain

Fn 2 ,\yv+1/226v+3

- (4.12)

n!

*

ry 9 71/6

B.|?.
0 | B+ |

T 8213

In accordance with (4.14), the decay rate depends
only on the normalization of the instanton wave func-
tion and on the amplitude of the outgoing wave. Both
characteristics are determined essentially by the behav-
ior of the instanton wave function in the vicinity of the
turning points only. We note, however, that in this
approximation, the instanton computation of decay
rate (4.13) or (4.14) is satisfactory only for the ground
state, because corrections of the order y~! rapidly in-
crease with the quantum number n. The method can
be improved by taking the X3 anharmonic contribution
to the potential into account as a perturbation,

(4.14)

T, 9 ,\yv+1/226u+3 16
=2 e (—3) ¢
1
1———(164n°+246n>+1216n+567)| . (4.15
x[ 5767( n’+246n°+ n+ )} ( )
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The decay rate calculated in accordance with (4.15) is
of the same accuracy level as the WKB and the exact
quantum mechanical computations for v > 5. Outside
the regime of interest, the instanton theory loses all
pretence of predictability.

4.2. Highly excited states for the anharmonic
X3 potential

In Sec. 4.1, we calculated the decay rate of low-
energy metastable states. In this case (where the states
€, can be characterized by the good quantum number
n), the period of oscillations in the well is smaller than
the inverse decay rate (e, > 'y /Q) and T';, is deter-
mined by the probability current density flowing from
the well into the classically admissible region (X > X
for a given energy €,, see Fig. 5) under the condition of
the vanishing back-flow from this region to the barrier.
Evidently, the method does not work for highly excited
states with T'), > €,Q¢. In this Section, we go one step
further with respect to Subsec. 4.1 in extending the in-
stanton approach to the decay of highly excited states.

First, it is worth noting that the wave functions
must vanish as X — —oo, and moreover, can always
be chosen as real-valued quantities as X — +o00. From
these two conditions, we can find the relations between
the instanton wave functions in the regions X < —X;
and X > Xj (see the notation in Fig. 5), and con-
sequently, calculate the phase d(a) (counted from the
barrier top) of the standing wave in the region X > Xj.

It is given by
exp(i20) = —iexp(—i2yW™) x
S \/2wexp(—ﬂa/4) exp(i2yW*) "
I(1—-ia/2)
-1
W14 V2m exp(—ﬂ'a/4? exp(—i2yW*) (4.16)
I'(l+ia/2)

According to the standard quantum mechanics [1],
phase (4.16) determines the scattering amplitude. We
can therefore find the scattering amplitude deep in
the classically forbidden region from (4.16), and hence,
compute the eigenvalues in this region. For the calcula-
tion, we must know the terms of the order exp(—m|a|)

in the expansion of the I' functions (these terms are
beyond the standard Stirling formula) [19],

"

1+ia

) ~ V21 exp (—% iz’¢) X

x [1 - %exp(—ﬂ|a|)] . (4.17)
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where
«

2

lof

o(a) = 5 (4.18)

[ln } .
Finally, taking Eqs. (4.17) and (4.18) into account we
find the poles of the scattering amplitude from (4.16)
(with the required exponential accuracy) as

29Wr =29W* + ¢(a) =m(2n+1) —
-1 %(|a| —a)+ %exp(—ﬂ|a|) . (4.19)

Explicitly solving (4.19), we find the complex eigenva-
lues, and in particular, the decay rate for highly excited
states in the anharmonic decay potential.

In the same way as for low-energy tunneling states,
the real part of the eigenvalues €, for highly excited
states (i.e., for |a| > 1) is determined by the action
along closed trajectories in the well, whereas the imag-
inary part (i.e., the decay rate T')) is related to the
probability current density flow from the well to the
barrier.

Using the instanton approach procedure described
in Secs. 2 and 3 (see [10, 11] for the details), we can find
not only the eigenvalues but also the eigenstates. The
real-valued instanton wave functions are determined by
the action W (X4, X), which is counted from the linear
turning point Xy,

U(X) = A(a)| X — X, |71/ x
X sin (7W(X1,X) + %) . (4.20)

where the amplitude A(a) of the wave function acquires
maximum values at the poles of (4.16) with the widths
proportional to I',,. We plot the functions |A(a)|? in
Fig. 6.

5. RESONANCE TUNNELING

The phenomenon of the electron resonance tunnel-
ing is familiar [27] and was observed (see, e.g., [28] and
also [29] for more recent references) in semiconducting
heterostructures possessing the so-called double-barrier
potentials (see Fig. 7). This phenomenon manifests it-
self as peaks in the tunneling current at voltages near
the quasistationary states of the potential well. The
physical mechanism of the resonance tunneling can be
understood as a constructive interference between the
wave reflected from the left barrier and the wave out-
going to the left of the well.

In the instanton method, the total transmission co-
efficient T is determined by the second-order turning
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C ] I'tr= = exp(—mayr Rr) (5.2)
- 3 and similarly to (2.12),
6 .
C ] U -F
C ] aL,R:2&. (53)
- . Qo(r,r)
- . Similarly to (3.19), the action in the classically admis-
4 o B sible region, is given by
- . TWr =W" = é(ar) — d(ar). (5.4)
9 :_ _: In the resonance region, where
C ] . 1
C ] Wi =m|n+ 3
0 C — E in accordance with the stationary quantization rule, the
-1 0 1 E-U transmission coefficient in (5.1) is given by
Qo

Fig.6. The amplitude of the wave function localized
in the potential shown in Fig. 5 (the dashed line is a
nonresonant part of the amplitude and v = 101)

Fig.7. The model two-barrier potential structure for
the resonance tunneling

points of the double-barrier potential (i.e., the maxima
of the potential); in accordance with the procedure de-
scribed in the Sec. 2, T is given by

IT|> = n°TrTr { [1 — VA +7l) (1 + ﬁrR)r +

+ 4y/(1 + 7)1 + nTR) cosz(wWﬁ)}il . (5.1)

where we use the notation

AT TR
2
= -, 5.5
Far from the resonance, it is given by
;T
T2 = _"L'R 5.6
7] 4 cos?(vW}) (5.6)

We thus found the resonance amplification of the
transmission. For the symmetric case at the resonance,

il
1 TTTTTTIT

1071 -

1072

1073

107 - —

1075 —

-6 IIIIIIIII|IIIIIIIII|IIIIIIIIIIIIIIIIIII|IIIIIIIII|IIIIIIIII
—-0.75 —0.50 —0.25 0 0.25 0.50 0.75
E—-U

Qo

Fig.8. The transmission coefficient for the potential
shown in Fig. 7 (y = 54)
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T =1, and the interference completely suppresses the
reflection. In the opposite case of strongly asymmet-
ric barriers, T in (5.1) is almost coincident with the
transmission coefficient for the highest barrier, and the
influence of the lower barrier is suppressed by the inter-
ference. In Fig. 8, we show the energy dependence of
T for the symmetric structure of the barriers. The res-
onances become broader as the energy approaches the
potential barriers top, and disappear at higher ener-

gies (above the top). It is worthwhile to stress that the
1+ iaL

arp + «

1

instanton solution of the resonance tunneling problem
allows us to study the phenomenon in a very broad en-
ergy region, including the states near the barriers tops.

We finally present the connection matrices for the
instanton solutions found above. The corresponding
matrix can be found as the product of two connection
matrices connecting instanton solutions near the sec-
ond order turning points (see (A.9) and (3.20)) and
diagonal shift matrix (A.6)

3

+ iR ar + apr

21 exp <7r

R) exp(iyW™*) [r < 5 ) r
) Fxpuymn>r—l<

4

—iV 2T exp <3ﬂw

aptar
Ir—
R

o e (152

Here, W* denotes the action between the turning
points (in this case, between the second-order turning
points).

1V 2T exp <

1+iar
2

ar+ap
4

27 exp (71'

6. CONCLUSIONS

This paper could be considered as a formal one,
in the sense that we asked theoretical questions that
most of solid-state or chemical physics experimental-
ists would not think to ask. But answering these very
basic questions can be illuminating.

We first summarize the results of the paper. Within
the framework of the instanton approach, we derived
accurate analytical solutions for a number of one-
dimensional semiclassical problems and checked the re-
sults numerically. As an illustration of the method,
we considered a simple quantum mechanical problem,
penetration of a particle through the parabolic poten-
tial barrier. In this case, the instanton solutions (which
are asymptotic solutions of the Weber equation) are
exact. We also considered the description of highly ex-
cited states in a double-well potential. For definiteness
and simplicity, we studied the quartic anharmonic X*
potential. The instanton approach enables us to accu-
rately reproduce not only the asymptotic behavior but
also the crossover region from the single-well to the

(

1+1iagr
2

) [exp(i’yW*)Fl <1+%> + exp(—iyW*) DL <

"
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)]_1+exp<7r

) + exp(—iyW*)I'~1 <

) exp(—iyW™)

)

2 2

1—iaL
2

+ exp (w@) exp(iyW*)

l—iaR
2

(5.7)

1+iagr -t

2

)

double-well quantization (in contrast to the standard
WKB approach, which fails to describe the crossover
behavior). A similar problem for the X® anharmonic
potential was also studied, and the instanton method
has allowed us to study the resonance broadening and
collapse phenomena. In addition, we investigated the
so-called resonance tunneling phenomena, not only in-
teresting in their own right but also playing a relevant
role in many semiconducting double-barrier structures.
We also computed the connection matrices that pro-
vide a very efficient method of finding semiclassical so-
lutions to the Schrédinger equation in potentials with
several turning points (they are also useful in develop-
ing a good analytical approximation).

All the examples selected to illustrate the efficiency
of the instanton approach belong to the fundamental
problems in chemical dynamics and molecular spec-
troscopy (see, e.g., [9] and references therein). Sym-
metric or slightly asymmetric double-well potentials
are characteristic of molecules and Van der Waals com-
plexes with more than one stable configurations [14—
17]. The states of such systems that are close to the
barrier top (theoretically described by the instanton
approach in our paper) are not easy to investigate ex-
perimentally, because optical transitions between these
states and the localized ones are typically inactive. But
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pecisely these states are most relevant for radiationless
evolution of highly excited states. In a certain sense,
these states have a double (localized—delocalized) na-
ture that manifests itself in the form of wave functions
that simultaneously contain both components, the one
localized in one of the wells and the other delocalized
between the two wells. Consequently, any initially pre-
pared localized state evolves via formation and decay of
these states. Our calculations are intended to pave the
way to the investigation of this class of problems us-
ing the wave functions computed within the instanton
approach.

The states that are close to the barrier top of de-
cay potentials govern thermally activated over-barrier
transition amplitudes. For low-energy states, the main
reduction factor is the tunneling exponent, while the
contribution of highly excited states is limited by the
Boltzmann factor. The energy width of the region dom-
inating in the total transition rate is traditionally pos-
tulated in the transition rate theory [30] to be of the or-
der of the temperature 7. But our results in Sec. 3 pre-
dict another estimate. Instanton calculations demon-
strate that the intermediate region between the quasis-
tationary (' < Q) and the delocalized states could be
much larger than T, namely of the order 2. This im-
plies that no sharp boundary exists between the qua-
sistationary and the delocalized states and all of the
states within the interval V* — Q, V* + T equally con-
tribute to the total rate constant for the penetration
through the barrier.

One more point should be emphasised. It was re-
cently shown in [18] that quantum irreversibility phe-
nomena occur when the spacing between neighboring
levels of the deeper well becomes smaller than the typ-
ical transition matrix element. Obviously, this crite-
rion can also be applied to the states near the barrier
top. We note that for low-energy states, the asymmetry
providing the irreversible behavior must be very large,
whereas for states near the barrier top, the condition of
the ergodic behavior is not very severe, it suffices that
the asymmetry of the potential is comparable to the
barrier height.

The method and the results can also be applied
to various systems in physics, chemistry, and biology
exhibiting double-level behavior and resonance tunnel-
ing. Literally speaking, we dealt with the microscopic
Hamiltonians in this paper. But because of rapid de-
velopment of electronics and cryogenic technologies, it
has become possible to apply the same Hamiltonians
to study cases where the corresponding variables are
macroscopic (e.g., the magnetic flux through a SQUID
ring, or charge or spin density wave phase in certain
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one-dimensional solids). In this paper, we studied the
example of a tunneling processes in which the system
penetrates into a classically forbidden region (a poten-
tial barrier). It is an intrinsically quantum effect with
no classical counterpart, but it can nevertheless occur
for macroscopic systems, and the tunneling of a macro-
scopic variable of the macroscopic system (e.g., spin or
charge tunneling in atomic condensates trapped in a
double-well potential [31]) can also be investigated by
our method.

With this background in mind, our results are also
intended to clarify different subtle aspects of tunnel-
ing phenomena. An example was given at the end
of Sec. 3, where we found the geometrical phase ac-
quired by a particle tunneling through a potential bar-
rier. This phase can be tuned by the particle energy
and by the barrier shape, and specific interference phe-
nomena might occur. The observation of oscillations
related to this geometrical phase in real systems has
proved challenging. FEvidently, because the forms of
the model potentials that we used are rather special
(and in addition, only one-dimensional), we cannot dis-
cuss the behavior for general cases with full confidence.
Nevertheless, we believe that the instanton approach
employed in this work should also be useful in deriving
valuable results for the general and multidimensional
potentials.

It is essential that in the instanton method dis-
cussed in this paper, a mere observating of several clas-
sical trajectories suffices to develop a qualitative insight
for the quantum behavior. Although the semiclassical
instanton approach is reliable in this context (as we
illustrated in a number of particular examples), it is
much more than a qualitative picture. As an approxi-
mation, the instanton method can be surprisingly pre-
cise. We also note that the results presented here are
not only interested in their own right (at least in our
opinion) but may also be directly tested experimen-
tally, because there are many systems where the model
investigated in the paper is a reasonable model of the
reality.

The theory presented in our paper could be ex-
tended in several directions. One very interesting ques-
tion is how our quantum mechanical instanton formu-
las (e.g., Eqs. (4.12)—(4.14) for the tunneling rate in
the anharmonic X? decay potential) are modified by
interactions with the surrounding media (see, e.g., [32],
where the WKB approach was used to study the time
evolution of quantum tunneling in a thermally fluctu-
ating medium). Theoretical modeling of this case is
hampered by the absence of detailed knowledge of the
medium and of the interaction with it. A more specific
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study might become appropriate once suitable exper-
imental results become available. A simple criterion
for the strength of the interaction with the environ-
ment (in other words, for the effective temperature)
for the crossover from the thermally activated classical
to quantum mechanical decay can easily be found by
equating the corresponding Arrhenius factor and the
characteristic frequency «oscillations» inside the bar-
rier Q. (see (A.10)).

All of the potentials investigated in this paper
can be considered in a number of realistic cases as
effectively resulting from avoiding the adiabatic level
crossing in the situation where the adiabatic splitting
is so large that any influence of the upper adiabatic
states on the lower states can be neglected. Certainly,
in the general case of an arbitrary coupling strength,
this interaction of higher and lower adiabatic states
must be taken into account, and the tunneling matrix
elements must be accompanied by the corresponding
Franck—Condon factors arising because of the violation
of the Born—Oppenheimer approximation. We defer
these problems to the future, although there is no
doubt that the instanton approach is also useful in
problems of this kind.

The research described in this publication was made
possible in part by the RFBR (grants 00-03-32938 and
00-02-11785).

APPENDIX

Following [2], we introduce short notations for the
standard basic WKB solutions,

(0,2) = (a(2))™/* exp(irW (=), (A1)

and

(z,0) = (a(2)7/* exp(=iy W (2)). (A.2)

The position of the turning point is denoted by o and is
inessential if we seek solutions in the region |z| > 1. In
accordance with definitions (2.18), and (2.19), we must
add the dominant solution times a certain constant (the
Stokes constant) to the subdominant (decaying) solu-
tion on the Stokes lines; the dominant and the subdom-
inant solutions are exchanged on the anti-Stokes lines.
To find the Stokes constant, we must match both solu-
tions by encompassing the turning point and taking the
cut on the complex z plane into account (see Fig. 9).
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Fig.9. The Stokes (solid) and anti-Stokes (dashed)

lines in the vicinity of the linear turning point
V(X) X. The cut is depicted by the wavy line,
and the Stokes constant are 7', T2, and T3

We first consider the linear turning point

q(z) = —2, (A.3)

with the classically admissible region corresponding to
X > 0. In this case, we have three Stokes lines, three
anti-Stokes lines, one cut, and therefore, seven different
regions on the complex z-plane where functions (A.1)
and (A.2) must be matched; as a result, three Stokes
constant must be determined. After not very sophisti-
cated but rather tedious algebraic calculations, we find
all the three Stokes constants

T

and the connection matrix

M~ = exp (—z%) X
exp(ir/4  (1/2)exp(—in/4)
% (A.4)
exp(—im/4) (1/2)exp(in/4)

relating the coefficients of the linear combinations of
basic solutions (A.1) and (A.2) in the classically for-
bidden region (A, As) and in the classically admissible

region (As, By) as
(5)-(5)

As
B,

Ay
B,

(A.5)
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Fig.10. The Stokes and anti-Stokes lines in the vici-

nity of the second-order turning points (with the same

notation as in Fig. 9); a — V(X) = (1/2)X?, b —
V(X)=—(1/2)X*

For the other linear turning point ¢(z) = +z, the con-
nection matrix M+ is Hermitian conjugate to M ~. The
variation of the coefficients in the region between the
two independent linear turning points z; and z» is de-
termined by the diagonal matrix

> , (A.6)

(

0
exp(iyW™)

N

i —  ep=Wr)

0

where

wW* = ]2\/@@.

Finally, for the solutions in the classically forbidden re-
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gions X < X; and X > X», the connection matrix is
the direct matrix product of the above matrices,

M=M*tLM".
To generalize the procedure to second-order turning

points, we must find the connection matrices relating
the basic solutions to the Weber equation, namely

(0,2) = ()" exp (-%) ., (A7)
and
(2,0) = (2)""" exp (%) . (A.8)

In this case, we have four Stokes lines, four anti-Stokes
lines, and one cut, and therefore, nine different regions
where the solutions must be matched (see Fig. 10a as
an illustration). Four Stokes constants are given by

T, =Ty '[exp(i2nv) — 1], Ty =Ty,

3

Ty T exp(—i2mv).

From the known asymptotic form of the parabolic cylin-
der functions, we can obtain the remaining Stokes con-

stant
V2
T(-v)
The connection matrix for an isolated second-order
turning point can therefore be represented as

T =

T cos(mv)
cos(mv) _Ln;m}) (A.9)

This matrix depending on the energy e determines, e.g.,
the instanton semiclassical solutions for the harmonic
oscillator, e = v+ 1/2. It can be verified by explicit cal-
culations that for the harmonic oscillator, the connec-
tion matrix also has the same form (A.9) in the WKB
approach. The difference could appear only from an-
harmonic terms in the potential. But for low-energy
states with e/ < 1, the anharmonic corrections are
small and the instanton and WKB connection matri-
ces coincide up to the second order in these correction
terms.

For the symmetric double-well potential, the con-
nection matrix describing the variation of the coeffi-
cients at the basic solutions in Eqs. (A.7) and (A.8)
between the two second-order turning points X9 and
X9 is given by
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n! [Q —vHl/2 .
\/—2—71_ < QM> exp(YWg)

where the instanton action is

X3
Wi =X/O J2v(X) - ~ax (A.11)

and €2, is the characteristic «oscillation» frequency in

al \1/2 /e —(1/2w+1/2)
<—> <°7> exp(YW5)

0 (

All the above matrices allow us to find any other con-
nection matrix that we need in the particular exam-
ples considered in the main text of the paper. Any
of them can be constructed as a corresponding prod-
uct of the matrices in (A.4), (A.5), (A.6), (A.9), (A.10),
and (A.12). It is worth noting a general property of the
connection matrices that the connection matrix is real-
valued for all bound states, and off-diagonal elements
of the connection matrix are complex for continuum
spectrum states.

Similarly to the problem of tunneling through the
potential barrier V(X) = —(1/2)X?2, all the Stokes
and anti-Stokes lines are rotated by the angle 7/4 (see
Fig. 10b) with respect to the corresponding lines for
the parabolic well (V(X) = (1/2)X? considered above,
see Fig. 10a). The connection matrix for the tunneling
through the barrier is given by

S1 —iexp (%)

iexp (%) St

(A.13)
(exp(ra) + 1)

where o = i(2v 4+ 1) and S} is the Stokes constant on
the first quadrant bisectrix (see Fig. 10b). To find the
Stokes constant Sy, we must match the sum of the in-
cident and of the reflected waves to the solutions of the
Weber equation at X — —oo and to the transmitted

0

\/ﬂ 0 v+1/2 .
T <QL7> exp(—7Wg)

, (A.10)

1/2
\/ﬁ>/ <%><1/2><u+1/2>

the barrier (i.e., in the classically forbidden region).
The connection matrix in Eq. (A.10) must be compared
with a similar matrix in Eq. (A.6) for two linear turn-
ing points. For the asymmetric double-well potential
in the region between the second-order and the linear
turning points, the matrix analogous to (A.10) is

(A.12)

exp(—7Wg)

n! Q.

wave as X — oo. This gives

V2 (m).

T i T

REFERENCES

1. L. D. Landau and E. M. Lifshits, Quantum Mechanics
(non-relativistic theory), Pergamon Press, New York
(1965).

2. J. Heading, An Introduction to Phase-Integral Meth-
ods, Wiley-Interscience, London (1962).

3. V. L. Pokrovskii and I. M. Khalatnikov, JETP 13, 1207
(1961).

4. N. T. Maintra and E. J. Heller, Phys. Rev. A 54, 4763
(1996).

5. C. S. Park and M. C. Jeong, Phys. Rev. A 58, 3443
(1998).

6. A. K. Roy, N. Gupta, and D. M. Deb, Phys. Rev. A
65, 012109 (2002).

7. A. M. Polyakov, Nucl. Phys. B 129, 429 (1977).

8. S. Coleman, Aspects of Symmetry, Cambridge Univ.
Press, Cambridge (1985).

9. V. A. Benderskii, D. E. Makarov, and C. A. Wight,
Chemical Dynamics at Low Temperatures, Willey-
Interscience, New York (1994).

763



V. A. Benderskii, E. V. Vetoshkin, E. |. Kats MKIOT®, Tom 122, Boin. 4 (10), 2002
10. V. A. Benderskii, E. V. Vetoshkin, and H. P. Tromms- 22. A. Erdelyi, W. Magnus, F. Oberhettinger, and
dorf, Chem. Phys. 244, 273 (1999). F. G. Tricomi, Higher Transcendental Functions,
McGraw Hill, New York (1953), Vol. 1-3.
11. V. A. Benderskii and E. V. Vetoshkin, Chem. Phys.
257, 203 (2000). 23. M. Berry, Proc. Roy. Soc. London, ser. A 392, 45
12. V. A. Benderskii, E. V. Vetoshkin, L. S. Irgebaeva, and (1984).
H. P. Trommsdorff, Chem. Phys. 262, 369 (2000). 24. M. Wilkinson, J. Phys. A 17, 3459 (1984).
13. I M. Lifhsits and Yu. Kagan, JETP 35, 206 (1972). 25. H. Karatsuji, Progr. Theor. Phys. 74, 439 (1985).
14. M. Grifoni and P. Hanggi, Phys. Rep. 304, 229 (1998).
26. A. O. Caldeira and A. J. Legget, Ann. Phys. 149, 374
15. J. E. Avron and E. Gordon, Phys. Rev. A 62, 062504 (1983).
(2000).
27. D. Bohm, Quantum Theory, Englewood Clifs, New Jer-
16. J. Ankerhold and H. Grabert, Europhys. Lett. 47, 285 sey (1951).
(1999).
28. L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett.
17. Y. Kaganuma and Y. Mizumoto, Phys. Rev. A 62, 24, 593 (1974).
061401(R) (2000).
18. V. A. Benderskii and E. I. Kats, Phys. Rev. E 65, 2> 1‘]);61:' E;Stins’;zlnl’ 411'91\2'19;);;%“ and K. W. West, Phys.
036217 (2002). ’ Y '
19. V. V. Avilov and S. V. Tordanskii, JETP 69, 1338 30. Sh. Matsumoto and M. Yoshimura, Phys. Rev. A 63,
(1075). 012104 (2000).
20. V. A. Benderskii, E. V. Vetoshkin, L. von Laue, and 31. M. Baer, Phys. Rep. 358, 75 (2002).
H. P. Trommsdorff, Chem. Phys. 219, 143 (1997).
32. H. Pu, W. Zhang, and P. Meystre, Phys. Rev. Lett.
21. A. M. Dykhne, JETP 14, 941 (1961). 87, 140405 (2001).

764



