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Short laser pulses can be significantly amplified in the process of Raman backscattering in plasma inside an
oversized dielectric capillary. A dielectric capillary allows obtaining high intensities of the output radiation by
sustaining efficient amplification on large distances compared to the diffraction length. The efficiency of the in-
teraction between the pump wave and the amplified pulse is shown to be not critically sensitive to the transverse
structure of the wave fields. For a quasi-single-mode initial seed pulse and a low pump intensity, the ampli-
fied pulse tends to preserve its transverse structure due to nonlinear competition of the capillary eigenmodes.
At a high power of the pump wave, multi-mode amplification always takes place but the growth of the front
peak of the pulse still follows the one-dimensional model. The Raman-backscattering instability of the pump
wave resulting in the noise amplification can be suppressed in detuned interaction by chirping the pump wave
or arranging an inhomogeneous plasma density profile along the trace of amplification. The efficiency of the
desired pulse amplification does not significantly depend on detuning in the case of a smooth detuning profile.
Density inhomogeneities are shown to exert less influence on the amplification within a capillary than in the
one-dimensional problem. Parameters of a future experiment on the Raman amplification of a short laser pulse
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inside a capillary are proposed.
PACS: 52.35.Mw, 52.38.Bv

1. INTRODUCTION

Laser intensities inside conventional amplifiers are
limited to gigawatts (GW=10° W) per c¢m?, above
which a nonlinear modification of the material refrac-
tion index causes unacceptable distortions of the laser
pulses [1]. The chirp pulse amplification technique al-
lows increasing the output intensities by means of the
longitudinal compression of laser pulses after their am-
plification [2]. The compression is usually performed
by means of metallic diffraction gratings, which can
survive intensities not larger than tens of TW /cm?
(TW=10'2 W) [1]. One of the most promising ways for
further increasing the output intensities consists in us-
ing the advantages of plasma technology [3]. Replacing
all the major elements of the amplification—compression
scheme by one element containing fully ionized plasma
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capable of acting as the stretcher, the nonlinear ampli-
fication medium, and the compressor simultaneously, is
cheaper and more adequate compared to the extensive
development of traditional solid-state devices.

Currently, significant attention is attracted to the
problem of generating ultraintense laser pulses in plas-
mas by means of the Raman backscattering process [3].
In this process, the seed pulse amplification follows the
resonant excitation of a plasma wave provided by the
beating of the seed pulse and the counter-propagating
pump wave. The pump wave energy is primarily in
compression of the latter. By means of the resonant
mechanism discussed in this paper, the amplified pulse
duration can be decreased to the period of Langmuir
oscillations. In what follows, we term such pulses as
short, which corresponds to a femtosecond laser pulse
duration for realistic experimental conditions. (As
shown in Ref. [4], amplification of even shorter pulses
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is possible via Compton backscattering, which remains
out of the scope of our study, although represents a pro-
cess complementary to the Raman interaction of laser
waves.)

Compared to its solid-state analogues or plasma
amplifiers utilizing the interaction of co-propagating
pulses, the scheme allows faster amplification, higher
maximum output wave intensities, higher thresholds
for developing plasma instabilities, and better limits
for the nonlinear pulse compression. Because of a rela-
tive simplicity of the experimental implementation, the
Raman-backscattering pulse amplification in plasmas
can successfully compete with more complicated tech-
niques of generating femtosecond laser pulses [2].

Conventionally, the problem of short laser pulse
amplification in the Raman backscattering process in
plasmas is considered in the framework of a one-
dimensional (1D) problem, and the transverse struc-
ture of the pulse is neglected [1, 3, 5]. But the transverse
effects can become important in the experimental im-
plementation of the amplification scheme and further
practical applications. The study of the transverse ef-
fects was recently started for the pulse interaction in
vacuum [6], where the amplification efficiency is sig-
nificantly limited by the transverse diffraction of the
amplified pulse. An efficient interaction in a boundless
medium is only possible on distances small compared
to the diffraction (Rayleigh) length zr ~ kR?, where
k = 27/X is a characteristic wavenumber of the seed
pulse and R is its characteristic transverse scale. Af-
ter the amplified pulse passes the distance z > zg,
diffraction increases the transverse scale of the pulse,
and therefore, lowers its intensity, which results in a
decrease of the interaction efficiency.

In order to maintain high interaction efficiency at
large spatial scales compared to zg, additional laser
pulse focusing must be applied. Because of the high
intensities of the amplified radiation, conventional di-
electric lenses cannot adequately focuse the amplified
pulse. The problems of the refraction index distortion
or even the dielectric medium breakdown, which might
occur, can be eliminated using the channelling proper-
ties of a dielectric capillary that plays the role of an
optical waveguide for both the pump wave and the am-
plified pulse. (A similar technique is often used in other
Raman media for pulse amplification with significantly
lower wave intensities [7,8].) In oversized (R > \)
dielectric capillaries, the field amplitude decreases to
the edges of the transverse waveguide cross-section and
almost equals zero on the inner wall of the tube [9].
Therefore, it is possible to have a field amplitude higher
than critical (with respect to the breakdown of the di-
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electric material of the waveguide walls) in the center
of the capillary without damaging its walls. These and
other properties of channelling laser pulses in the pro-
cess of the Raman backscattering amplification within
a dielectric capillary are the main subject of this paper.

The paper is organized as follows. In Sec. 2, we
give the basic equations describing Raman backscat-
tering in plasmas. In Sec. 3, we revise some aspects of
the 1D Raman amplification problem. We consider the
capillary problem in Sec. 4, where we develop a mode
approach allowing quantitative and simple qualitative
understanding of some phenomena occuring during the
laser pulse interaction inside a capillary. We also gen-
eralize the conventional 1D linear theory of pulse am-
plification by considering the interaction between the
capillary modes of the amplified pulse and discuss some
aspects of selective mode discrimination in capillaries.
Single- and multi-mode amplification regimes are dis-
cussed in Sec. 5 in detail. In Sec. 6, we discuss the
problem of detuned amplification. Some numerical es-
timates and the summary of the main ideas are given
in Sec. 7. Specific features of the cylindric dielectric
capillary are discussed in the Appendix.

2. BASIC EQUATIONS

Equations for vector electric fields describing parax-
ial propagation of laser pulses along the z axis can be
written as (see, e.g., Refs. [10,11])

(1)

.
Oja + cd.a — %Vﬁ_a =wpbf,

. 2
@b—wﬁ—%%vﬂFDW@ﬁ, (2)

@f+wwf=—§bﬁa, (3)

where the vectors a and b represent the slowly chang-
ing amplitudes of the respective electric fields

MeCWq

a =

E {iaexp(ikqz — iwgt) + c.c.},

(4)

M CWy

E, = {ibexp(ikyz — iwpt) + c.c.}

e
of the pump and the seed pulse, and f is the normalized
potential of the plasma wave electric field

(0) Mme pr

E; =k; T{f exp(ikyz —iwyst) + c.c.},

(5)
where

3

K =Ky /ky, &y =2 (ke = k)
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W =Wq — Wh = Wy — 0w.
Here,
4mn,e?

w =
p Me

is the plasma frequency, n. is the electron density,
and e and m, are the electron charge and mass re-
spectively. We assume the rare plasma conditions
(wp € wq & wp = w) and kgAp < 1, and therefore,
kab & wqp/c and the dispersion of plasma waves can
be neglected (Orwy =~ 0). In terms of the dimensionless
amplitude a, the pump intensity is

I, = me(mec?/e)?|al? /N2 =
=2.736-10'8|a|*/\? [um] W /cm?,

see Ref. [6].
It is useful to introduce the dimensionless equations

Ora+d.a—i(l1+0)Via=hf,
;b —09.b—iVib=—af*

O.f +idwf =—bla,

where

W —Wp Wy

o= < 1,

Wy w

the time 7 is measured in the units o = \/2/wwp, the
longitudinal coordinate z is measured in the units ctq, f
is measured in y/w/2w,, the transverse coordinate p is
measured in the units ¢(2w,w?®)~'/4, and the detuning
dw is measured in the units ¢, .

For further analysis, it is convenient to introduce
the coordinate ( = 7 + z (in what follows, this change
of variables is called the shift to the reference frame
moving together with the amplified pulse at the speed
of light). To describe the strongly nonlinear regime of
the amplification of a compressed pulse, it suffices to
keep only the (-derivatives of a and f (the so-called
quasistatic approximation [1,3]); the basic equations
then become

20ca —i(1+0)Via=bf, 9)

;b —iV3b = —af*, (10)

dcf +idwf=—bl.a (11)

In the case of zero detuning, the basic equations are
invariant under the transformation

a— Ca, b— Cb,
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f=Cf, T=71/C, (=¢/C, p—p/VC.

Therefore, the specific value of the pump amplitude
ag = a(z — —o0) is in fact not important in the sense
that the field dynamics for another value of ag can be
obtained by a simple rescaling.

3. THE ONE-DIMENSIONAL PROBLEM

For better understanding of the qualitative phenom-
ena to be discussed in relation to the Raman backscat-
tering inside a capillary, it is useful to revise the ba-
sic aspects of the conventional 1D problem first (see
Refs. [1,3] for a detailed discussion). During the lin-
ear stage of amplification, when the pump depletion is
negligible, a ~ ag = const, the solution of Eqs. (6)—(8)
can be obtained by the Laplace transformation and is
given by [1]

=

(¢ 2) = a% / G(C— ¢!, 2)b(C', 0)dC",
G(C,Z) = 10(2\/5)7

n= _aggza

(12)

where we assume zero detuning (a constant detuning
can be removed from the evolution equations; the case
of the linear detuning 0.0w = const is considered in
Refs. [1,5] in detail). We note that the spatial coordi-
nate —z plays the role of time in Eqs. (12) measuring
the interval between the initial and the current posi-
tions of the amplified pulse propagating along the z
axis with a fixed velocity equal to the speed of light.
For n > 1, we have

G =~ exp(2+/n)/24/ 7/
In the original variables,
0= awwy(t +2/0)(~2)/2c,

and the maximum of G is therefore reached at
z —ct/2; it increases with the peak growth rate

¥ = agy/wwy/2 as exp(yt).

Linear approximation (12) is valid until

/b(z,r)dz

remains small compared to unity; a nonlinear solution
is formed for larger e. Because of the pump depletion,
only the front part of the seed pulse is then ampli-
fied, which leads to the effective compression of the
pulse. Eventually, as the pulse becomes sufficiently
short, the quasistatic approximation (Eqgs. (9)-(11))

e(7)
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becomes valid, and for the real constant pump, the so-
lution is therefore given by

a = agcos(U/2)

3

f=—V2a0sin(U/2), (13)
b=0:U/V2,
where U satisfies the sine-Gordon equation
8,2.CU = aZsinU. (14)

Equation (14) has a family of self-similar solutions
(Fig. 1) U(7,¢) = U(n) that satisfy the equations

nUyy + Uy, =sinU, (15)

or

Uke +U5/§ =sinlU, &= 2\/17,

where we equate 1 with a27( because of the quasistatic
approximation. It is convenient to consider the solution
of Eq. (16) in the plane (U,Ug), which can approxi-
mately be treated as the phase plane of a nonlinear
oscillator with the effective dissipation determined by
the term U /¢ (Fig. 1). The absolute maximum of the
self-similar solution grows in time as

(16)

bnas ~ aaT(1 4+ 1In(4V21/€0)) ™", € = €(0) < 1,

and the locations of the pulse maxima change as
Cmaz ~ l/bmaz~

The self-similar solution U(n) in Egs. (15), (16) cor-
responds to the initial conditions

b(z, 7 =0) = bo(2) = €0d(2), (17)
which imply that
U(f = 0+) = €o, Ul(g = 0+) = 07

and which are therefore applicable for all  to the left of
the initial location of the seed pulse in the frame mov-
ing together with the amplified pulse. We now consider
what happens when the spatial scale of the amplified
pulse A(7) becomes comparable to its initial spatial
scale Ag = A(0) and the delta-approximation for ini-
tial conditions (17) therefore becomes invalid. In this

case,
+oo
€0 = /bo(z')dz'
—c

does not determine the solution, and new initial condi-
tions for a self-similar profile must then be applied. The
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front pulse faces the unperturbed profile of the pump
wave. Qualitatively, pump depletion becomes signifi-
cant (da/ag ~ 1) starting only with ¢ = (., where (. is
determined by the condition €({, (7)) ~ 1, with

(18)

(To make a rough estimate, we can equate (. to the
location of the first maximum of b((, 7) at a current in-
stant 7.) Therefore, linear solution (12) remains valid
for ( < (.. In the case where the spatial scale of the
Green’s function G is large compared to the spatial
scale of the initial pulse, Eq. (12) can be written as

U =e(Q)Gn).

On the other hand, because the self-similar solution
represents an attractor, its formation still occurs start-
ing from the end of the linear stage, where its profile
can be obtained from linearized Eq. (15) and is given by

(19)

U = e G1), (20)

where €.f7 is some constant. At the location where the
linear stage ends and the self-similar solution starts,
ie., at ¢ = (i(7), the two solutions in Eqs. (19) and
(20) must match, which defines e.rs(7),

eeff (T) = €(Ca(T))-
As long as A(7) > Ag, we have

(21)

€eff R €9 = const.

But when the nonlinear compression makes A(7) com-
parable to or less than Ay, e.¢r can become significantly
smaller than eq. If e.rr (1) is changing sufficiently slowly,
such that the self-similar profile has enough time to set
up on the entire length of the pulse, the entire solu-
tion remains close to the self-similar one with the only
change that it is now parameterized by time-dependent
quantity (21) (Fig. 2). But if e, (7) is changing fast,
the self-similar solution may not be able to form, and
therefore, does not represent an attractor. Stochastic
behavior of the amplified pulse structure is observed in
this case.

In the approximation of geometric optics, when the
pulse propagation is considered at small distances com-
pared to the Rayleigh length zz ~ kR2, the diffraction-
caused distortion of the transverse structure of laser
pulses can be neglected. In this case, 1D quasi-self-
similar solutions are formed on geometric rays consti-
tuting the field of the amplified pulse. The spatial pro-
files of the amplified pulse that are then formed have a
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Fig.1. Self-similar profiles of |a(¢)|/ao (dotted decay), |f(£)|/ao (dotted growth), |b(¢)|/Tad (solid line) for €o = 0.01 and
the behavior of the self-similar solution on the (U,U;) plane (dashed line represents the solution without the «friction» term

Ue/€); € = 2(abwuwy(t + 2/c)(—2)/2¢)"/*

20 40 60 80 ~t
Fig.2. The amplitude of the amplified 1D pulse
maximum normalized to the amplitude of the pump
wave (bmaz/|ao|) as a function of ¢ |ao|T for
bo(z) = epexp(—22/28)/\/T20: a delta-shaped ini-
tial pulse (20 — 0, self-similar profile with fixed
€0 = 1.3-1072, dashed line) and a finite-width initial
pulse (20 = v/5, quasi-self-similar profile with ez (7),
solid line)

shape similar to nested horseshoes. But for pulse traces
z > zp, the diffraction terms in Eqs. (6)—(11) become
significant and must therefore be taken into account
(see Sec. 5).

4. THE MODE APPROACH TO THE
NON-ONE-DIMENSIONAL PROBLEM

We consider the pump wave a and the amplified
pulse b given by a series in the normalized eigenmodes

Y5, (Ym|¥n) = Omn,
a = Rzan(zaT)¢n(rJ-)7

b = RZ bm(277)¢n(ri-)v
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where R is the radius of the capillary, which we include
as a normalization factor to make the amplitudes a,
and by, dimensionless (see the Appendix for the explicit
form of 4, for a dielectric capillary). By definition, the
eigenfunctions ) satisfy the equation

vi"/’s + X§¢n =0,

where Y is the transverse wavenumber of the s-th
eigenmode. From Eqs. (6)—(8), we obtain the equations
for the amplitudes a,, and b,y,,

(23)

(0r + 0. + i5Q£za))an = Z Jnmbm, (24)
(07 — 8- +i6QM)by = = anfi,, (25
where
0O = xn(L+0), 000 =x3,
(or sQIEY = (eXn)?/2wa,p in dimensional variables)
and

are dimensionless transverse moments of the plasma
wave profile satisfying

(87 + l(sw)fnm = - Z anlmalbz-,
kol

(26)

with constant dimensionless coefficients given by

Coktm = R* (@t} - h1|tm)
e / Pr o (] )WL ). (27)

The eigenmode approach can be useful only in the
case where the modes are coupled weakly, which cor-
responds to the case of a strong waveguide disper-
sion. Otherwise, the number of modes to be taken
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If the character-
istic trace zo of the pulse evolution is large compared
to the Rayleigh length zg, Eq. (26) can be reduced to

(67- + 25w)fnm = —m

into consideration becomes infinite.

anb’ + a,,b"),
(ol i),

where we assume the eigenfunctions to contain com-
plexity in polarization factors at most, but not in the
functional dependence of the transverse coordinates
(for simplicity, below we ignore the fact that C,,, can
be equal to zero for modes of the opposite polarization).
Equations (24), (25), and (28) represent a completely
defined Lagrangian set of equations that can be used
for obtaining the amplitudes of resonantly interacting
modes of the three waves a, b, and f in the case of
weak coupling (see below).

The important conclusion following from Eqs. (24),
(25), and (28) is that for every pair of modes of the
pump and the seed, a, and b,,, the resonant plasma
wave harmonic f,, can be generated to provide cou-
pling of the two electromagnetic waves. This is a spe-
cific feature of light scattering on a cold plasma wave
for which the spatial resonance condition

kazkb—l-kf

is satisfied automatically because the wavevector k re-
mains arbitrary for the given frequency wy ~ w,. For
the scattering on any other low-frequency wave f for
which the wavevector depends on its frequency wy, the
multiple mode interaction on the quadratic nonlinear-
ity is impossible.

The presence of the a,, b}, term in Eq. (28) is respon-
sible for a possible parasitic resonance, which can be ex-
plained as follows. We consider the interaction between
the n-th mode of the pump a,, and the m-th mode of
the seed pulse b, generating the resonant plasma wave
fnm with the longitudinal wavenumber

B = ka — ky — 00 — 501

For very small 0 ~ w,/wy (namely, for o < zg/zo,
where zq is the characteristic spatial scale of the pulse
evolution), we have hpm & hpn, where hpy,, is the
wavenumber of the plasma wave f,,, resonant to the
beating wave of the modes a,, and b,,, which provides
an additional coupling of these two pairs of electromag-
netic waves. For example, in the case where the pump
contains the modes a; and as and the seed pulse con-
tains only by, the second seed harmonic by = O(a%a;by)
is generated. This effect can already become important
at the linear stage of the interaction in a multi-mode
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pump, because it alters the increments of the linear
Raman amplification.

We now use the developed mode approach to con-
sider the linear stage of the pulse amplification inside
a capillary in terms of the equation

9-(0; — 8. —iV2)b =a(al - b) (29)
which directly follows from Eqs. (7) and (8) with zero
detuning dw and with a constant pump a. The right-
hand side of Eq. (29) can be considered as the result of

applying the linear operator A = aal to the vector b,
and therefore, Eq. (29) can be rewritten as

0,(0; — 0. +i6Ql)) — 'yfn] I .

nm (30)

A = (P | A1),

where ¥, = v/A,.m represents the increment of the lin-
ear amplification of the m-th partial waveguide mode.
In an arbitrary waveguide, for a single-mode pump,
an = Onsa, the matrix elements A,,, are of the order
of a® forn,m ~ 1 and A,,, = A(Jm —n]) for n,m > 1,
where the function A(k) ~ a® for k ~ 1 and decays as
its argument grows.

The eigenmodes of the empty waveguide are cou-
pled via the pump inhomogeneity. Only for the uniform
pump, the matrix A,,, is diagonal and the right-hand
side of Eq. (30) is therefore zero. For a nonuniform
pump, which is only possible inside a capillary, the ef-
fect of mode coupling always occurs. In the case of
a weak interaction (v, < 5(2572)), the eigenwaves of
system (30) are close to its partial waves, and the in-
crements of the eigenwaves are approximately given by
Ym, m = 1,2 ... 00 (here, we neglect the effect of the
parasitic resonance discussed above). For the single-
mode pump, a, = dnpsa, all the increments are of the
order of @ and are independent of m for m > s. Specif-
ically, for pulse amplification on the lowest mode of the
pump in a dielectric capillary, s = 1, we have

Im Z 7 .16

T

Hence, the increments of amplication of all the wave-
guide modes are close to each other at the linear stage
of interaction.

Variations of the pump transverse structure do not
change the interaction efficiency significantly. For ex-
ample, without the possible parasitic resonance taken
into account, the amplification increment of the m-th
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partial mode (equal to the increment of the m-th eigen-
mode in the case of weak interaction) is given by

Tm = chm|an|25
\/ n

which implies that each mode of the pump amplifies
each mode of the seed, because C,,, > 0 for all n and
m. The higher modes of the pump amplify the seed
with approximately the same efficiency as the lower
ones, because

(31)

Cnm/Cmm ~ const ~ 1 for n>m.

This effect originates in the fact that the wave interac-
tion inside a capillary is not a three-wave but a multi-
wave process, where the effective energy exchange be-
tween every pair of the pump and the seed modes is
possible.

Because the increments of the linear amplification
are approximately the same for all waveguide modes,
the linear stage of pulse amplification cannot provide
significant enhancement of the signal-to-noise ratio.
This is true, however, only if the energy losses (which
have not been taken into account yet) are negligible at
the distance of pulse propagation, which might not be
the case in real experiments. In an oversized cylindrical
dielectric capillary, the energy losses are mostly radia-
tive and can be incorporated into the model by intro-
ducing the spatial decrements of individual modes [9],

2 )\2

amn ~ (%32) R

(see the Appendix for the notation). The spatial scale
of the exponential decay a; ! decreases with the mode
number s roughly as s~ 2, and for v % a1, only the
lowest mode can be amplified and the amplification
of the higher modes is suppressed. This implies that
the radiative energy losses essentially result in a selec-
tive mode discrimination, which can provide the single-
mode operation regime.

Additional mode discrimination can occur in rel-

Hm, n

2

(32)

atively narrow waveguides, where the group velocity
substantially differs from mode to mode. After the am-
plified pulse passes the distance z 2> Lpuse (kR)?, where
Luise is the length of the pulse, the wave envelope cor-
responding to the lowest mode leaves the envelopes of
the higher modes behind. The front envelope then has
a preferential opportunity of absorbing the energy from
the pump wave. Because the pump is significantly de-
pleted by the lowest mode, the higher ones are left with
less energy to absorb, which also maintains the single-
mode amplification regime.
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5. SINGLE- AND MULTI-MODE
AMPLIFICATION

The condition of a weak interaction (or the condi-
tion of a strong waveguide dispersion)

v < 600

a K Gerity,  Gerit = \/ Q/WWP(CX)Q/ZU’ X = ﬂ-/Ra

can be treated as follows. The increment of the pulse
amplification v ~ a,/ww, determines the spread of the
amplified pulse spectrum 6h ~ 7/c. As long as dh re-
mains small compared to the spectral gap between the
individual modes,

Ah ~ 600 /e ~ 1/ER?,

the waveguide eigenmodes do not overlap, and hence,
represent a good basis for developing the mode ap-
proach in the linear theory. In this case, the eigen-
modes of coupled system (30) remain close to the par-
tial waves of the empty waveguide. This implies that
an initially single-mode seed pulse remains single-mode
on the entire duration of the linear stage.

The next question is what happens after the linear
stage, when nonlinear compression comes into play pro-
viding its own spectrum broadening. We consider the
single-mode initial conditions for the seed pulse, e.g.,
b,(g) = bgo)éml. Until the end of the linear stage, the
higher mode amplitudes remain small compared to b;.
Then, it is the mode b; that passes from the linear to
the nonlinear regime first, because its amplitude is the
largest. (Here, by the nonlinear regime of an individ-
ual mode, we mean the ability of this particular mode
to deplete the pump, which might have already been
distorted by other modes at the moment.) In the labo-
ratory frame, the maximum of the wave envelope moves
approximately with the speed of light in the nonlinear
regime, but in the linear one, the effective pulse veloc-
ity is sufficiently lower. For example, as follows from
the linear theory of pulse propagation in a constant
pump (Sec. 3), the maximum travels with the speed
equal to half the speed of light. The higher mode en-
velopes (remaining in the linear regime) are therefore
left behind the envelope of the first mode. The effec-
tive amplitude of the pump a.yr < ag determining the
increments of the higher modes is decreased by the first
mode. Because the first mode suppresses the growth of
the higher modes, the waveguide dispersion effectively
results in a nonlinear competition of the modes tend-
ing to sustain the single-mode operation. We call this
effect the mode elasticity, because the strongest mode
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Fig.3. Evolution of |b1(¢)|/|ao| (solid line) and |b3(¢)|/|ao| (dotted line); the planar-waveguide scalar problem;

b = 0.1a00m1, al® = agdpr, R = 7/\/ao; ba = 0 because of symmetry; the shots correspond to vt = |ao|T = 0, 5, 15, 50.

Strong waveguide dispersion provides nonlinear competition of the modes in the nonlinear regime of amplification. Although

the small amplitude b3 appears at the linear stage, it is left behind the wave envelope b; later. Amplification of b3 is then
slowed down by the pump depletion provided by b

tends to dominate in the nonlinear stage of amplifica-
tion, thereby preserving the transverse structure of the
pulse.

The evolution of the two lowest modes having the
highest amplitudes is shown in Fig. 3. (To show the ro-
bustness of the mode competition mechanism, numeri-
cal calculations demonstrating the single-mode ampli-
fication were performed for a ~ acpi¢.) In this case, the
single-mode amplification also continues in the nonlin-
ear regime, ensuring that the problem remains essen-
tially one-dimensional. We can see the formation of
the self-similar profile, which represents the attractor
of the single-mode operation, similarly to the 1D prob-
lem. The energy distribution inside the amplified pulse
(which determines the effective pulse length) averaged
over the capillary cross-section is given in Fig. 4.

The qualitative arguments given above lead to the
conclusion that the formation of the single-mode opera-
tion regime in the case of a strong waveguide dispersion
is stable with respect to fluctuations of the seed pulse.
Neither the fluctuations of the pump transverse struc-
ture can influence the single-mode operation because
all the modes of the pump wave provide approximately
equal efficiencies of the energy transfer into the ampli-
fied pulse, as discussed in Sec. 4.

The nonlinear competition of the modes constitut-

<E>
1

0.8F
0.6F
0.4F

0.2F

0 2 4 6 8 10
lao|¢

Fig.4. The normalized energy integral distribution
within a quasi-single-mode amplified pulse (averaged
over the capillary cross-section): up to 50% of the
pulse total energy is contained within the first peak;
the parameters are the same as in Fig. 3, v¢ = 40

ing the amplified pulse remains efficient only until the
higher modes enter the nonlinear stage of amplifica-
tion. After that, their envelopes catch up with the
wave envelope of the first mode and ruin the tail of
the single-mode structure (Fig. 5). But the front of the
amplified pulse always remains in the linear regime (see
also Sec. 3), which provides its single-mode structure.
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Fig.5. Characteristic spatial profiles of the amplified
pulse |b(¢, p)| in the case of a strong waveguide dis-
persion (planar waveguide). At the first stage of the
nonlinear amplification, the waveguide dispersion leads
to the competition of modes, which supports the single-
mode amplification. Later, the higher modes also enter
the nonlinear regime, catch up with the wave envelope
of the first mode, and ruin the structure of its tail. The
front of the pulse always remains single-mode, however,
because it always stays in the linear regime, where the
growth of the higher modes is suppressed by a strong
waveguide dispersion

In the other limiting case, where the interaction
between the pump and the amplified pulse is strong
(v > Q™ or a > ac,i), the pulse is significantly am-
plified on a small distance compared to zg, i.e., before
the diffraction effects come into play. The waveguide
walls cannot then influence the formation of the pulse
structure at the first stage of amplification, and a so-
lution close to those formed in boundless vacuum is
produced. Vacuum solutions [6] are shaped as nested
horseshoe structures resulting from the transverse in-
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Fig.6. Quasi-vacuum (horseshoe) nonlinear solu-
tions for |b(¢,p)| in the case of the strong pump
(@ > acrit); the planar-waveguide scalar prob-
lem: upper — R = 107, ao(p) sin(mp/R),
bo(C, p) = 0.1sin(wp/R) exp(—(¢ — 4)2/0.5), T = 20;

lower — R = 1007w, ao(p) = 2sin(wp/R),
bo(C.p) = 0.1sin(2mp/R)exp(=(¢ — 4)*/0.5),
=10

homogeneity of the pulse and the pump (Fig. 6). On
every geometric ray, a self-similar profile is formed with
its own €o(p) (or eqpr(p)), which determines the longi-
tudinal spatial structure of the pulse at given p. At the
edges of the amplified pulse, the amplitudes of both a
and b are smaller than in the center of the system, and
the longitudinal spatial scales are larger correspond-
ingly.

In the frame moving together with the front of the
amplified pulse (at the speed of light), the longitudi-
nal locations of the pulse maxima (4. (p) are bounded
by the position of the front of the seed pulse (;. On
the other hand, the nonlinear compression provided by
the preferential amplification of the front of the pulse
«pushes» the tail of the pulse from behind to { = (o,
which implies that (o represents the limit of (paz(p)
for all p. The front of the horseshoe structure therefore
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Fig. 7. Deterioration of the horseshoe solution |b(¢, p)|

as 7 — oo and flattening of the front of the

amplified pulse (the planar-waveguide scalar prob-

lem, R 10m/v/ao, ao(p) apsin(mp/R),

bo(C.p) = O.laosin(mp/R)exp(—(¢ — 4)2/0.5)):

vt = aor = 20, 90 correspondingly; dark regions cor-
respond to larger |b|

tends to flatten as 7 — oo.

Although stable on small distances compared to zg
and robust with respect to the structure of the seed (see
also Ref. [6]), the horseshoe solution deteriorates inside
the waveguide at z 2> zg, where the diffraction be-
comes significant (Fig. 7). The very front of the horse-
shoe, however, always remains in the linear regime, and
therefore maintains its regular shape. In the center of
the waveguide, the front peak of the amplified pulse
grows similarly to the self-similar solution of 1D prob-
lem (16) (Fig. 8), which allows using the 1D model
for estimating the maximum amplitude of the ampli-
fied pulse. The energy distribution inside the amplified
pulse (which determines the effective pulse length) av-
eraged over the capillary cross-section is given in Fig. 9.
At large t, the averaged energy longitudinal distribu-
tion becomes a smooth function (cf. Fig. 4), and it is
therefore difficult to distinguish the individual peaks of
the amplified pulse. On average, the energy becomes
distributed over a length that is significantly larger
than the length of the first peak.
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[6(C, p)Imax/lao]
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0 20 40 60 80 4

Fig.8. The maximum amplitude of a horseshoe-type
pulse normalized one the amplitude of the pump wave
(|6(¢, p)|maz/lac]) as a function of time vt = |ao|T
(solid line). The dotted line represents a 1D solution
with e.pr(7) for bo(¢, R/2) (the same initial conditions
as in Fig. 7). The front peak of the amplified pulse
grows similarly to the one of the 1D self-similar profile
with decreasing e.ff

0.8
0.6
0.4

0.2

10
|aol¢

Fig.9. The normalized energy integral distribution
within a horseshoe-type amplified pulse (averaged over
the capillary cross-section): ~¢ = |ao|r = 20 (solid
line) and ¢ = 90 (dashed line); the same parameters
as in Fig. 7. For larger ~t, the averaged energy distri-
bution becomes a smooth function (cf. Fig. 4), and it
is therefore difficult to distinguish the individual peaks
of the amplified pulse. On average, the energy is dis-
tributed over a length that is significantly larger than
the length of the first peak

6. SUPPRESSING NOISE AMPLIFICATION IN
DETUNED INTERACTION

Because of the extreme efficiency of the Raman
backscattering, which makes the fast compression pos-
sible, delivering the pump wave energy to the seed pulse
through the amplifying plasma layer represents a signif-
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icant challenge. As the pump traverses the plasma layer
towards the seed pulse, the fast Raman backscattering
of the pump by thermal Langmuir waves or electromag-
netic fluctuations existing inside the plasma layer or
coming from outside can lead to a premature pump de-
pletion. The problem is aggravated by the fact that the
linear Raman backscattering instability of the pump
(responsible for the unwanted noise amplification) has
a larger growth rate than its nonlinear counterpart (re-
sponsible for the useful amplification of the seed laser
pulse).

To see how significantly the thermal fluctuations
can limit the maximum amplification gain of the seed
pulse, we consider the amplification at the identically
zero detuning of the three-wave interaction. After a
certain period of time ¢,,, the amplification gain

Gm

D,, ~e Gm = Ytm,

becomes sufficient for thermal fluctuations to deplete
the pump wave substantially, and further amplification
of the seed pulse is then suppressed. The dimensionless
quantity G,, depends on the plasma temperature and
does not depend on the amplitude of the pump wave.
The maximum amplification of the desired signal with
respect to ag is then given by

max 2 m 2
bmaa ,_ 2G 4*[ (33)
w4 <—\/27r>
€0

and is independent of the amplitude of the pump. For
G =~ 20, the electromagnetic wavelength A = 1um,
the initial pulse duration 50 fs, and the initial pulse
power density P = 10! W/em?, we obtain that the
maximum amplification that can be achieved in a pump
of an arbitrary intensity before the noise is amplified to
the level of suppressing the pump is by0./ao = 6.
Nevertheless, through a nonlinear filtering mecha-
nism identified in Ref. [5], it is possible to suppress the
unwanted instability of the pump wave without sup-
pressing the desirable seed pulse amplification. The
filtering effect occurs because the pumped pulse dura-
tion decreases inversely proportional to the pulse am-
plitude in the nonlinear regime. The pulse frequency
bandwidth increases with the pulse amplitude, and
the growing nonlinear instability can therefore tolerate
larger and larger external detuning from the backscat-
tering resonance. Because the linear instability, i.e.,
the exponential growth of thermal fluctuations, has a
narrower bandwidth, filtering the desired signal can be
achieved by arranging for an appropriate combination
of the detuning and nonlinear effects. A slight fre-
quency detuning can be equivalently provided either by
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the pump chirping or by inhomogeneity of the plasma
density along the trace of the pulse amplification re-
sulting in variations of the plasma frequency involved
in the three-wave resonance condition.

While the exact solution for a delta-pulse amplifi-
cation problem obtained in Ref. [5] precisely deals with
the linear profile of frequency detuning, we use an ap-
proximate analysis in this section to describe how the
pulse amplification develops in the case of an arbitrary
detuning profile. For this, we first consider the linear
stage of amplification of a weak pulse b governed by the
equation

(0; —i6w)(dr — 8.)b = |ag|?b (34)
(without the loss of generality, we temporarily neglect
the transverse structure and the polarization of the
amplified pulse for qualitative conclusions). Using the
quasistatic approximation and assuming the detuning
to change slowly along the trace of the pulse propaga-
tion, we can treat dw as a slow function of time 7 [5].
We perform the Fourier transformation of Eq. (34),

bz/bAk exp(iAkz)dAk,

and take

T

bar(T) = (1) exp z/ wdr' ,  (35)

0

to transform the equation for the amplitude of the pulse
spatial harmonic ¢ to the form

2

[dT + wQ(T)] =0,

w? =iQ,

(36)

—lao)?, Q= (6w— Ak)/2.

In accordance with the assumption of a smooth de-
tuning profile, we take

ow,

< 1.

Outside the regions where Q2 is close to |ag|?, the ef-
fective «frequency» w can be estimated as

Q)
w=+2 |ag] + ———
[aol 2/Q2 — |ag?

and the amplification gain is given by

(37)

D ~ %, G%/Imwdr
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in the WKB approximation. At Q2 > |ag|?, G depends
on the length of the trace of the pulse propagation loga-
rithmically, and the amplification gain is therefore neg-
ligible in the adopted approximation. Thus, the total
amplification gain is given by

Vo — Q2(7) dr.

G

~
~

(38)
Q2<ag|?
For the detuning monotonically changing along the

trace of the pulse propagation, Eq. (38) can be writ-
ten as

2
G~ — / 1
ag|

Q2 <|aol?

0 de _
[aol* 1g() = [gmin|’

™

(39)

where |¢min| stands for the minimum rate of the de-
tuning evolution on the trace of amplification. As can
be seen from Eq. (39), the upper limit of the total am-
plification gain on the entire trace of the pulse prop-
agation is independent of Ak (included in the defini-
tion of Q over which the integration is performed). For
q = const, we have

D ~ exp(r/|a]),

as obtained in Ref. [5], and therefore, D itself is inde-
pendent of Ak.

We can also generalize Eqs. (38), (39) to the case of
oblique propagation of the pulses, describing the ampli-
fication of the electromagnetic noise coming from out-
side the system. The only difference is then that the
group velocity of the amplified harmonic differs from
the speed of light, which results only in a redefinition
of Ak and does not affect the form of the final result in
Eqs. (38) and (39) if ¢(7) is calculated relative to the
actual trajectory of the amplified pulse.

Equations (38) and (39) predict that each harmonic
of a given frequency and a wavenumber is amplified
only inside the region where the three-wave resonance
conditions are satisfied in the sense that Q® < |ag|? (or,
in dimensional variables, (dw — cAk)?/4 < +%). The
idea of the approach given here is similar to the one
proposed by Rosenbluth and Pilia (see, e.g., Ref. [12]),
who estimated the total linear amplification gain for
stationary waves in an inhomogeneous medium with
the wavenumber detuning but with the temporal res-
onance condition satisfied exactly. The difference be-
tween the two cases is that instead of the wavenumber
detuning, the frequency detuning is important for the
Raman pulse amplification in inhomogeneous plasmas.
For the Raman backscattering in a cold plasma, the
wavenumber resonance condition is satisfied automati-
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cally, because a plasma wave is allowed to have an ar-
bitrary wavenumber, although it oscillates at a certain
frequency wp.

The conclusion that follows from the obtained result
is that the detuning profile along the pulse amplifica-
tion trace can be chosen such that the noise amplifica-
tion is suppressed above a certain level determined by
Eq. (38). Monotonically changing the detuning allows
a stronger suppression, because there exists only one
region for a given harmonic where the amplification oc-
curs. In this case, the requirement for the characteristic
lg| to ensure that the noise is not amplified up to the
transition to the nonlinear stage but the desired signal
is ([ b(z)dz 2 1, see Refs. [1,3]) can be formulated as

™ s

< < ; 40
g <l < (10)
€0
_ ¢ Obw 104
1= 32 9. T Iap
1 1 1
11 dwy 8%’ (41)
Ls w, 0z  2wpc Ot

where the characteristic spatial scale Lg of the detun-
ing evolution due to the plasma inhomogeneity (the
first term in Eq. (41)) and the pump chirping (the sec-
ond term) is measured in ¢cm, the wavelength A is mea-
sured in microns, and the pump power is measured in
W /em?.

The next problem is how the frequency detuning
influences the desired signal amplification in the non-
linear regime. We now show that it does not as long as
these variations remain sufficiently smooth. To prove
this, we consider the change of variables

a=a,
b = bexp(idw(r + 2)),
f = fexp(—idw(r + 2)),
leading to the following 1D form of Eqs. (6)—(8):
drd+ 0.a=>0f,
d:b— 0.0 — i(T + 2)qadb = —af*,
o, f = —ab*.

(42)

(43)

These equations are equivalent to Eqs. (6)—(8) with zero
detuning if ¢ = 0. The physical meaning of the formal
change of variables (42) is as follows. The carrier fre-
quencies of the seed pulse and the plasma wave are
chosen such that the three-wave resonance condition is
satisfied locally,

Ba — @1(2) = 4 (2), (44)



MITP, Tom 122, B 4 (10), 2002

3

Amplification of short laser pulses ...

~
=
I
%

200
T

50

100 150
Fig.10. Pulse-detuned nonlinear amplification byq.(7)
at different frequency detuning profiles dw(7)
= 2(14th((7—100)/710)): ¢ = 2/(a3m0) = 0.22, 0.44,
0.74, 1.1; ap = 0.3. (The larger ¢ is, the lower the
graph goes at 7 > 100.) For ¢ ~ 1, the amplification
efficiency decreases in the region where the detuning
evolves relatively fast (100 < 7 < 150), while at small
q (e.g., for ¢ = 0.22), the amplification proceeds ex-
actly as in the case of zero detuning for all 7

where

Bo(2) = wy + 6w(2),  Bp(2) = wp(2)

are functions of space, and the carrier frequency of the
pump wave @0, = w, is left unchanged. It is only the
gradient of the detuning that enters Eqs. (43), and the
constant part of dw enters the initial conditions for the
seed pulse only.

In the frame moving together with the seed pulse
(¢ = z + 1), in the quasistatic approximation [3], the
basic equations can be written as

20ca =1bf,
d-b—iCqalb = —af* (45)
dcf = —ab*,

which implies that the term corresponding to the de-
tuning is negligible compared to the nonlinear drive
when the overfall of the detuning A(dw) on the length
of the pulse is small compared to 1/7. Because

A((Sw) ~ qaggpulsm

where the characteristic length of the pulse is (puise ~
~ 1/a}t at the nonlinear stage of interaction [3], the
condition of negligible detuning becomes

g < 1. (46)

The obtained condition for efficient amplification of
short pulses was tested numerically. It can be seen
from Fig. 10 that for ¢ ~ 1, the amplification efficiency
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decreases in the region where the detuning evolves rel-
atively fast, while at small ¢ (e.g., for ¢ = 0.22), the
amplification proceeds exactly as in the case of zero de-
tuning for all 7, exactly as predicted by the qualitative
arguments given above.

The obtained results imply that for short pulses,
amplification can be efficient on the entire trace of the
interaction with the pump wave. The integral varia-
tion of dw (or the maximum frequency detuning am-
plitude experienced by the pulse on its trace of ampli-
fication) does not significantly influence the amplifica-
tion efficiency if the detuning evolves smoothly along
the trace of amplification. Condition (46) only requires
the bandwidth of the wave envelope Awy, to grow due to
the nonlinear compression sufficiently fast for the local-
resonance frequency w, —wp(z) to lie within the ampli-
fication line. For growing |¢| that approaches unity, the
interaction becomes nonresonant, and the pulse ampli-
fication ceases. If ¢ decreases, the pulse amplification
develops similarly to the solution with a constant de-
tuning. The degenerate case where ¢ = const and
the amplification efficiency depends on the amplitude
of the initial pulse logarithmically is discussed in detail
in Refs. [1, 5].

In a real experiment, transverse plasma inhomo-
geneities must be taken into account in addition to the
detuning provided by pump chirping and longitudinal
variations of the plasma density. It is important that
the dependence of dw on the transverse location low-
ers the sensitivity of the interaction efficiency to the
average detuning (over the cross-section). In the 1D
problem, as shown above, the pulse amplification can
be entirely suppressed by large gradients of the plasma
density. But in the case where the plasma density also
changes in the transverse direction, a radial position
ps such that dw(p.) = 0 exists at every cross-section of
the pulse trajectory. The pulse can extract energy from
the pump wave in the vicinity of p = p,, although the
interaction remains inefficient far from this point. This
local pulse amplification cannot be entirely suppressed
by large detuning that might exist at other radial posi-
tions. This fact determines a higher robustness of the
pulse amplification in inhomogeneous plasmas in 2D
or 3D systems than in the 1D case. In the case where
the amplification occurs inside a capillary, the pulse
energy is mixed in the transverse direction because of
the reflection of electromagnetic waves from the walls
of the waveguide, which eventually results in a nonlocal
amplification of the waveguide eigenmodes, i.e., in the
amplification of the entire pulse.
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Sample parameters for the Raman amplification inside
an oversize dielectric capillary

Wavelength A 1 pm
Electron density n. 109 em 3
w/wp 10
Radius of capillary R 50\
Diffraction length zp 0.16 cm
Inverse decay rates a,, 60/40 cm
Trace of amplification 1.2 cm
Pulse duration 40 ps
agp 0.006
Pump intensity 10" W/em?
Pump power 4-10°W
Amplification length ¢/ 0.12 mm
Seed pulse duration 100 fs
Seed pulse intensity 10" W/em?
€0 0.25
Amplification factor byq./ag 20
Amplified pulse intensity 3.5-10% W/cm?
Amplified pulse power 1.4-10"2 W

The refraction index of capillary walls is taken n 1.5;
the pump wave intensity corresponding to a = acrit iS
1.4 - 10" W/cm?, and the amplified pulse is therefore of
the horseshoe type; the inverse spatial decay rates a,}, are
calculated for the two most slowly decaying modes.

7. DISCUSSION

Characteristic parameters of the proposed Raman-
backscattering pulse amplification experiment are given
in the Table. For the wavelength A ~ 1um and the ra-
dius of the capillary sufficiently large for the radiation
energy losses to be negligible, the single-mode oper-
ation can only be provided by low pump intensities,
which do not allow significant amplification on a rea-
sonable (centimeter size) interaction length. At pump
intensities higher than the critical one, multi-mode so-
lutions are formed.

The parameters given in the Table correspond to
the maximum possible amplification gain at the given
wavelength and the electron density limited by such ef-
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fect as the Langmuir wave breaking and the forward
Raman scattering instability [1, 3], which remained out
of the scope of our study and represent the field of
further research in the context of the 3D Raman scat-
tering problem. As regards the modulation instability,
it is expected to be suppressed for the proposed pa-
rameters because the critical power of the amplified
pulse self-focusing P..i; = 17(w/wp)? GW [3] is equal
to 1.7 - 10'> W, which is less than the power of the
amplified pulse.

In summary, using a dielectric capillary for chan-
neling laser radiation in a Raman amplifier provides a
significant advantage as regards maintaining high in-
teraction efficiency at distances larger than the diffrac-
tion length, which allows obtaining higher intensities of
the output radiation. In addition, various mechanisms
of selective mode discrimination and nonlinear compe-
tition of capillary modes are provided by the trans-
verse waveguide dispersion, but cannot be achieved in
boundless vacuum. Although the presence of the cap-
illary walls can influence the structure of the pulse, it
does not alter the amplification of the front peak of the
pulse, which carries a significant amount of the total
energy of the pulse.

We find that depending on the intensity of the
pump, two possible regimes of operation can be real-
ized within a capillary, namely, the single-mode and
the multi-mode pulse amplification. For a low pump
wave intensity, when the single-mode operation is pos-
sible, the problem admits the resonant mode approach
that we develop in this paper. We also develop the lin-
ear theory of pulse amplification inside a capillary by
generalizing the 1D linear problem. Contrary to the
intuitive expectations, we show that the pulse amplifi-
cation efficiency is not critically sensitive to the trans-
verse structure of the pump wave, and therefore, both
lower and higher modes of the pump provide approxi-
mately the same amplification rates of the seed pulse.

We generalize the mechanism of avoiding the pump
wave instability (resulting in the noise amplification)
by chirping the pump wave or inhomogeneous plasma
profile along the trace of the pulse propagation [5] in
the case of an arbitrary smooth detuning profile. We
show that as the noise amplification can be suppressed
by detuning, the latter does not alter the amplifi-
cation of the desired pulse as long as the detuning
profile remains sufficiently smooth. We conclude that
guiding laser pulses through the capillary provides an
additional robustness of the interaction efficiency with
respect to transverse inhomogeneities of the plasma
density.
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APPENDIX

Waveguide modes of a dielectric capillary

The waves channelled by a dielectric capillary can
be separated into the surface and the waveguide-type
waves [13]. A slow surface wave propagates without
dissipation inside the dielectric walls of the tube with
the wavenumber

h = +/€ek? + K2,

where € is the dielectric permittivity, k. ~ 1/d is the
wave transverse wavenumber, and d is the width of
the capillary wall. Outside the dielectric, the field of
the surface wave decays exponentially with the spatial
decrement

ko =Vh?—k2=\/(e— k2 — K2 ~ k

for kd > 1. Therefore, at the distance of several wave-
lengths from the wall, the surface wave field essentially
equals zero, and as regards the interaction of pulses in-
side the capillary, the impact of the surface wave field
can be neglected.

Waveguide-type waves propagate inside the cap-
illary, with the channeling provided by reflection of
waves from the inner surface of the capillary dielectric
wall. For paraxial propagation (k > 1/R), the reflec-
tion coefficients of most of the waveguide-type waves
are close to unity. The only exception is given by sev-
eral waves with transverse wavenumbers close to the
resonant ones, for which the dielectric walls of the given
width are transparent. Unless the capillary transverse
sizes are maintained with high precision, which is not
usually the case for the applications similar to the Ra-
man amplifier, these resonances disappear because of
the random corrugation of the wall surface. In this case,
all the waveguide-type waves can therefore be treated
as slowly decaying ones.

In the first-order approximation, the boundary con-
ditions for the electric and magnetic fields on the inner
wall of the dielectric capillary (under the assumption
of the negligible decay rate) are given by

E.(R) = H,(R) =0

(see [13]). The transverse structure of the electric field
is then given by
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P+1 Jm+1 (H’mil, nT/R)

m,n = = exp(imb N 47
Y = B S L) e i), (47
where
0 +ir(®  (y© £ ix(0)) exp(+ih)
P+1 = =

V2 V2

are unit polarization vectors and i, 41, are the roots
of the Bessel functions (Jy41(ftm+1,n) = 0). Eigen-
modes (47) are normalized such that

(48)

<¢m1,n1,j1 ‘¢m2,n2,j2> = 6m1’m26n1,n26j1’j27

where my 5 stand for the azimuthal indices, ny » stand
for the radial indices, and j; » determine the polariza-
tion of the modes. The decay rate a,, for the n-th mode
can be obtained in the second order of the perturbation
theory under the assumption of the known transverse
structure of the mode. Explicit expressions for a,, are
given in Ref. [9] (see also Sec. 4).
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