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APPROXIMATE ANALYTICAL SOLUTIONS OF THE BABYSKYRME MODELT. A. Ioannidou a*, V. B. Kopeliovi
h b**, W. J. Zakrzewski 
***a Institute of Mathemati
s, University of KentCanterbury CT2 7NF, UKb Institute for Nu
lear Resear
h of Russian A
ademy of S
ien
es117312, Mos
ow, Russia
 Department of Mathemati
al S
ien
es, University of DurhamDurham DH1 3LE, UKSubmitted 1 Mar
h 2002We show that many properties of the baby skyrmions, whi
h have been determined numeri
ally, 
an be under-stood in terms of an analyti
 approximation. In parti
ular, we show that the approximation 
aptures propertiesof the multiskyrmion solutions (derived numeri
ally) su
h as their stability towards de
ay into various 
hannels,and that it is more a

urate for the �new baby Skyrme model� des
ribing anisotropi
 physi
al systems in termsof multiskyrmion �elds with axial symmetry. Some universal 
hara
teristi
s of 
on�gurations of this kind aredemonstrated that are independent of their topologi
al number.PACS: 12.39.D
, 13.75.Cs, 14.65.-q1. INTRODUCTIONIt is known that the two-dimensional O(3) �-mo-del [1℄ possesses metastable states that 
an shrink orspread out under perturbation be
ause of the 
onfor-mal (s
ale) invarian
e of the model [2�4℄. This im-plies that the metastable states 
an be of any size, andtherefore, a term of the fourth order in derivatives, theso-
alled Skyrme term, must be added to break thes
ale invarian
e of the model. But the resulting energyfun
tional has no minima, and a further extra term isneeded to stabilize the size of the 
orresponding soli-tons; this term 
ontains no derivatives of the �eld andis often 
alled the potential (or mass) term. The �eld
an then be viewed as the magnetization ve
tor of atwo-dimensional ferromagneti
 substan
e [1℄, and thepotential term des
ribes the 
oupling of the magne-tization ve
tor to a 
onstant external magneti
 �eld.Be
ause the extra terms 
ontribute to the masses ofthe solitons, their dependen
e deviates from a simplelaw in whi
h the skyrmion mass is proportional to the*E-mail: T.Ioannidou�uk
.a
.uk**E-mail: kopelio�al20.inr.troitsk.ru, kopelio�
p
.inr.a
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skyrmion (topologi
al) number and the two-skyrmion
on�guration be
omes stable, showing that the modelpossesses bound states [5℄.In this paper, we demonstrate that the simple an-alyti
al method used for the des
ription of the three-dimensional Skyrme model presented in [6℄ 
an alsobe used to study various properties of the low-energystates of the 
orresponding two-dimensional �-modelwhen the parameters that determine the 
ontributionsof the Skyrme and the potential terms are not large.More pre
isely, it was possible to des
ribe the basi
properties of the three-dimensional skyrmions for largebaryon numbers analyti
ally [6℄, and it is thereforeworthwhile to derive su
h a des
ription for the two-dimensional O(3) �-model as well. In general, su
hanalyti
al dis
ussions of soliton models are useful be-
ause they lead to a better understanding of the soli-ton properties. The two-dimensional O(3) �-model iswidely used to des
ribe ferromagneti
 systems, high-temperature super
ondu
tivity, et
., and the resultsobtained here 
an therefore be useful for the under-standing of these phenomena.Our method is based on the ansatz introdu
ed in [6℄and is a

urate for the so-
alled �new baby Skyrme660
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al solutions : : :model� [7℄ that des
ribes anisotropi
 physi
al systems.Its a

ura
y a
tually in
reases as the skyrmion numbern in
reases, and this method allows predi
ting someuniversal properties of the ring-like 
on�gurations forlarge n, independently of its parti
ular value. Althoughsu
h models are not integrable, the �new baby Skyrmemodel� appears to have the properties of an integrablesystem in the 
ase where n is large.2. NEAR THE NONLINEAR O(3) �-MODELThe Lagrangian density of the O(3) �-model withthe additional terms introdu
ed and dis
ussed in[5, 7, 8℄ is1)L = g22 (��n)2 � 14e2 [��n; ��n℄2 � g2V: (1)Here, �� = �=�x�; x�, � = 0; 1; 2, refer to both timeand spatial 
omponents of (t; x; y), and the �eld n isa s
alar �eld with three 
omponents na, a = 1; 2; 3,satisfying the 
onditionn2 = n21 + n22 + n23 = 1:The 
onstants g and e are free parameters, with g2having the dimension of energy. It is useful to thinkof g2 and 1=ge as natural units of energy and lengthrespe
tively. The �rst term in (1) is familiar from �-models, the se
ond term, whi
h is of the fourth orderin derivatives, is the analogue of the Skyrme term, andthe last term is the potential term. The respe
tivepotentials for the �old baby Skyrme model� (OBM)and the �new baby Skyrme model� (NBM) des
ribinganisotropi
 systems are given byVOBM = �2 (1� n3) ;VNBM = 12 �2 �1� n23� ; (2)were � has the dimension of energy, and 1=� thereforedetermines a se
ond length s
ale in our model. Evi-dently, VNBM � VOBM at a �xed value of �.In three spatial dimensions, the Skyrme term is ne
-essary for the existen
e of soliton solutions, but thein
lusion of a potential is optional from the mathemat-i
al standpoint. Physi
ally, however, a potential of a
ertain form is required in order to give the pions amass [9℄. By 
ontrast, in two dimensions, a potentialterm must be in
luded in the above Lagrangian in order1) The �rst several paragraphs of this se
tion follow Refs. [5, 8℄very 
losely and are in
luded to make the paper more self
on-tained.

for soliton solutions to exist. As shown in [10℄, the dif-ferent potential terms give quite di�erent properties tothe multiskyrmion 
on�gurations when the skyrmionnumber is large. Our analyti
al treatment here sup-ports this 
on
lusion, as shown in Se
ts. 3�5.We are only interested in 
on�gurations with �niteenergy, and we therefore de�ne the 
on�guration spa
eto be the spa
e of all maps n: R2 ! S2 that tend to the
onstant �eld (0; 0; 1) (the so-
alled va
uum) at spatialin�nity, limjxj!1n(x) = (0; 0; 1): (3)Every 
on�guration n 
an thus be regarded as a rep-resentative of a homotopy 
lass in �2(S2) = Z and hasthe 
orresponding integer degree given bydeg [n℄ = 18� Z d2x �b
 n (�bn� �
n) : (4)The va
uum �eld is invariant under the symmetrygroup G = E2 � SO(2)iso � P;where E2 is the Eu
lidean group of two-dimensionaltranslations and rotations, a
ting on �elds via pull-ba
k. The SO(2)iso subgroup of the three-dimensionalrotation group a
ting on S2 is the subgroup that leavesthe va
uum invariant (we 
all its elements iso-rotationsto distinguish them from rotations in physi
al spa
e).Finally, P is a 
ombined re�e
tion in both spa
e andthe target spa
e S2.We are interested in stationary points of deg[n℄ 6= 0;the maximal subgroups of G under whi
h su
h �elds
an be invariant are labelled by a nonzero integer n and
onsist of spatial rotations by some angle � 2 [0; 2�℄and simultaneous iso-rotation by �n�. Fields that areinvariant under su
h a group are of the formn1 = sin f(~r) 
os(n�); n2 = sin f(~r) sin(n�);n3 = 
os f(~r); (5)where (~r; �) are polar 
oordinates and f(~r) is the pro�lefun
tion. Su
h �elds are the analogues and generaliza-tions of the hedgehog �elds in the Skyrme model. Inthis parametrization, whi
h involves azimuthal symme-try of the �elds, it is assumed that all the skyrmionssit on top of ea
h other in forming the multiskyrmion
on�guration.It is easy to show that the degree of �eld (5),deg [n℄ = n; (6)is equal to the azimuthal winding number n.661
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h, W. J. Zakrzewski ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002The respe
tive stati
 energy fun
tionals related toLagrangian (1) for the OBM and the NBM are given byE
l(n)OBM = g22 Z r dr�f 02 + n2 sin2 fr2 ++ a�n2f 02 sin f2r2 + 2 (1� 
os f)�� ; (7)E
l(n)NBM = g22 Z r dr�f 02 + n2 sin2 fr2 ++ a�n2f 02 sin f2r2 + �1� 
os2 f��� : (8)In (7) and (8), the length (pge�)�1 is absorbed su
hthat the s
ale size of the lo
alized stru
tures is a fun
-tion of the dimensionless spatial 
oordinate r = pge� ~rand the dimensionless parameter a = �=ge be
omes theonly nontrivial parameter of the model. Finiteness ofthe energy fun
tional requires that the pro�le fun
tionmust satisfy the boundary 
onditions f(0) = � andf(1) = 0.Setting � = 
os f in (7), we rewrite the energy fun
-tional asE
l(n)OBM = g22 Z r dr �021� �2 + n2 �1� �2�r2 ++ a �n2�02r2 + 2 (1� �)�� (9)and similarly for E
l(n)NBM . We next parameterizethe �eld � using the ansatz introdu
ed in [6℄ for thedes
ription of the three-dimensional skyrmions,� = 
os f = (r=rn)p � 1(r=rn)p + 1 ; �0 = p2r (1� �2): (10)After the integration with respe
t to r, this leads to theanalyti
 expressions for the energyE
l(n)OBM = �g2�4n2p + p++ 4a�p sin(2�=p) �n2(p2 � 4)3r2np + r2n�� ; (11)E
l(n)NBM = �g2�4n2p ++ p+ 4a�p sin(2�=p) �n2(p2 � 4)3r2np + 2pr2n�� : (12)Here, p and rn are parameters whi
h still must be de-termined by minimizing the energy. In fa
t, rn 
or-responds to the radius of the n-soliton 
on�guration.

We remark that in deriving (11) and (12) we used theEuler-type integrals (see also [6℄)1Z0 2r dr1 + (r=rn)p = 2�r2np sin(2�=p) ; p > 2;1Z0 dr (r=rn)pr [1 + (r=rn)p℄2 = 1p ; p > 0;1Z0 dr (r=rn)2pr3 [1 + (r=rn)p℄4 = � �p2 � 4�3r2n p4 sin(2�=p) ;p > 1;1Z0 2r dr[1 + (r=rn)p℄2 = �1� 2p� 2�r2np sin(2�=p) ;p > 1:
(13)

It 
an be easily proved that the minimization of theenergies in Eqs. (11) and (12) implies that(rminn )2OBM = np3sp2 � 4p ;(rminn )2NBM = nrp2 � 46 ; (14)i.e., (rminn )2NBM = pp=2 (rminn )2OBM , and the mini-mum energy values are therefore equal toE
l(n)OBM == 4�g2 "n2p + p4 + 2an�p3p sin(2�=p) pp2 � 4pp # ; (15)E
l(n)NBM == 4�g2 "n2p + p4 + 2p2an�p3 sin(2�=p) pp2 � 4p2 # : (16)It is obvious that the energy 
ontributions of theSkyrme and the potential terms are equal due to (14),whi
h is in agreement with the result obtained fromDerri
k's theorem. Equations (15) and (16) provide anupper bound for the energies of baby skyrmions for anyvalue of p. To obtain the lowest upper bound, we mustminimize the right-hand sides of (15) and (16) withrespe
t to the parameter p. In what follows, we inves-tigate various 
ases that 
orrespond to di�erent valuesof the only nontrivial parameter of the model, a.We �rst 
onsider the 
ase where a � 1, i.e., themodel parameter is very small. We observe that fora = 0, ansatz (10) is a solution of the model for p = 2n,662



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Approximate analyti
al solutions : : :whi
h implies that p ! 2n as a ! 0. In a

ordan
ewith (14), the radius of the multiskyrmion 
on�gura-tion then in
reases with n,(rminn )2OBM / n3=2; (rminn )2NBM / n2:Moreover, the 
on�guration 
onsists of a ring of thethi
kness Æ � 4rn=p, and thereforeÆOBM / 2n�1=4; ÆNBM / 
onst:We remark that the ring thi
kness is determined as thedi�eren
e of the values of � inside (whi
h is equal to�1) and outside (whi
h is equal to +1) the ring (i.e.,d� = 2) divided by its derivative at r = rn, where�(rn) = 0; as a 
onsequen
e of (10) �0(rn) = p=2rn.Magneti
 solitons of this type have been observedin [11, 12℄ as solutions of the Landau�Lifshitz equationsde�ning the dynami
s of ferromagnets. (We note thatthe stati
 solutions of the baby Skyrme model and theLandau�Lifshitz equations are related.) In general, �given by (10) for p = 2n is a low-energy approximationof multiskyrmion 
on�gurations (for n > 1), be
ausethe 
orresponding energies given by (15) and (16) arein�nite for n = 1. Indeed, it is a matter of simplealgebra to show thatE
l(n = 2)OBM = 4�g2 (2 + a�) ;E
l(n = 2)NBM = 4�g2�2 + a�p2� ;E
l(n = 3)OBM = 4�g2�3 + a� 83p3� ;E
l(n = 3)NBM = 4�g2�3 + a� 89� ;E
l(n = 4)OBM = 4�g2 �4 + a�p5� ;E
l(n = 4)NBM = 4�g2 4 + a�p52 ! :
(17)

For large n, the energies take the asymptoti
 valuesE
l(n)OBM = 4�ng2 1 +r2n3 a! ;E
l(n)NBM = 4�ng2 1 +r23a! : (18)We note that the energy of the OBM per unit skyrmionnumber in
reases as n in
reases, while the energy of theNBM per skyrmion de
reases as n in
reases and be-
omes 
onstant for large n. In fa
t, the energies givenby (17) are the upper bounds of the multiskyrmion en-ergies be
ause the exa
t pro�le fun
tion 
orrespondingto the minimum of the energy di�ers from that givenby (10).

3. PERTURBATION THEORY FOR THEMODEL PARAMETERIn this se
tion, we obtain energy 
orre
tions up tothe se
ond or higher orders with respe
t to the modelparameter a. The 
orresponding energies for the OMBand NBM 
an be written asE
l(n) = 4�g2[f(p) + a h(p)℄; (19)where f(p) and h(p) 
an be evaluated from (15)and (16), respe
tively. Letting p = 2n+ � and expand-ing energies (15) and (16) up to the se
ond order in �,we obtain f(p) = n+ �2=8n, h(p) = h0 + �h1, whereh1 = (2n)�1�h0:In fa
t, the 
orresponding fun
tions for the OBM andthe NBM are given byh0OBMn =r2n3 �n sin(�=n)p1� 1=n2;�OBM = �n 
tg(�=n)� 12 + 1n2 � 1 ; (20)h0NBMn =r23 �n sin(�=n)p1� 1=n2;�NBM = �n 
tg(�=n)� 1 + 1n2 � 1 : (21)Minimization of (19) with respe
t to � implies that�min = �4anh1 = �2a�h0:At large values of n, the parameters � and p = 2n+ �take the values�(n)OBM � �anr2n3 ;�(n)NBM � 2ar23 �2=3� 1n ; (22)
p(n)OBM � 2n� anr2n3 ;p(n)NBM � 2n+ 2ar23 �2=3� 1n : (23)For any a, the e�e
tive power p(n)OBM be
omes neg-ative as n in
reases and the approa
h based on theassumption that �OBM is small is not self-
onsistent(also see the next se
tion). On the 
ontrary, for theNBM, p(n)NBM � 2n as n in
reases, whi
h impliesthat our 
onsideration is self-
onsistent in this 
ase. In663



T. A. Ioannidou, V. B. Kopeliovi
h, W. J. Zakrzewski ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002terms of (19)�(21), the energy per skyrmion of the n-skyrmion 
on�guration takes the valueE
l(n)4�g2n = 1 + ah0n � a2h20�22n2 ; (24)whi
h givesE
l(2)OBM4�g22 = 1 + 1:5708a� 0:034 a2;E
l(2)NBM4�g22 = 1 + 1:1107 a� 0:2741 a2;E
l(3)OBM4�g23 = 1 + 1:6120 a� 0:068 a2;E
l(3)NBM4�g23 = 1 + 0:9308 a� 0:0317 a2;E
l(4)OBM4�g24 = 1 + 1:7562 a� 0:191 a2;E
l(4)NBM4�g24 = 1 + 0:8781 a� 0:0084 a2;E
l(5)OBM4�g25 = 1 + 1:9122 a� 0:302 a2;E
l(5)NBM4�g25 = 1 + 0:8552 a� 0:0032 a2;E
l(6)OBM4�g26 = 1 + 2:0649 a� 0:404 a2;E
l(6)NBM4�g26 = 1 + 0:8430 a� 0:0015 a2:
(25)

For large n, the energies in Eq. (24) take the asymp-toti
 valuesE
l(n)OBM4�g2n =  1 + ar2n3 � a2 n12! ;E
l(n)NBM4�g2n =  1 + ar23 � a2 (�2=3� 1)23n4 ! : (26)We note that the energies of the two models behavedi�erently when we 
onsider terms of the se
ond or-der in the model parameter, i.e., the terms � a2. In-deed, for the OBM, the 
ontribution to the energy islinearly proportional to the skyrmion number n, whilefor the NBM, the 
ontribution de
reases rapidly as theskyrmion number in
reases. This implies that the lin-ear approximation in a is a

urate for the NBM be-
ause the quadrati
 term be
omes negligible for largen. Numeri
al results obtained for di�erent values of afor the OBM and NBM are presented in Tables 1 and2, respe
tively.As we have noted previously, our method 
annotdes
ribe the one-skyrmion 
on�guration be
ause the
orresponding energies be
ome in�nite. But setting

p = 2 + " in (15) and (16) and expanding all termsup to the third order in "� 1, we obtainE
l(n = 1) == 4�g2 1+"28 � "316 + 2ar 23"(1� 
")! ; (27)where 
 takes di�erent value for ea
h of the two models,
OBM = 18 ; 
NBM = 38 : (28)We note that with the terms of only up to the se
-ond order in " 
onsidered, the 
orresponding energy inEq. (27) simpli�es toE
l = 4�g2 1 + "28 + 2ar 23" ! ;and the minimum o

urs at"1 = 2� ap3�2=5 :Finally, the minimum of (27) o

urs at"min = 2� ap3�2=5 "1+45 � ap3�2=5�
+34�# (29)and 
orresponds to a shift of "1 be
ause higher-order
orre
tions in " were 
onsidered in (27). The energy ofthe one-skyrmion 
on�guration isE
l(n = 1)4�g2 == (1 + 52 � ap3�4=5 "1� 15 � ap3�2=5 (8
 + 1)#) �� h1 + 1:611 a4=5 �1� 0:1605a2=5 (8
 + 1)�i : (30)Equation (30) implies that for a single skyrmion, theenergy expansion in a is proportional to a power of ainstead of being linearly proportional to a (whi
h is the
ase for the multiskyrmion 
on�gurations with n � 2),while its 
onvergen
e is worse than for multiskyrmions,espe
ially for the NBM. In fa
t, for a = 0:4213, the �rsttwo terms in (30) are equal to 1:807, and the next-orderterm de
reases this value to 1:44, whi
h gives an errorof 7% 
ompared to the exa
t value 1:564 obtained fromnumeri
al simulations. We note that our one-skyrmionparameterization gives the same energy for both mod-els if only the expansions up to the lowest order in aare 
onsidered: the di�eren
e appears only in the term� a
p" in (27).664



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Approximate analyti
al solutions : : :It is 
lear from the results in Tables 1 and 2 thatour approximate method gives the energy values thatare very 
lose to the exa
t values obtained by numeri-
al simulations, espe
ially for the NBM. In parti
ular,the di�eren
e between the exa
t and the approximateenergies for a = 0:4213 is less than 0.5% for n � 6.For smaller values of a, the agreement between ana-lyti
al and numeri
al results is even better. In evidentagreement with (2), the energies of the NBM skyrmionsgiven in Table 2 are smaller than those of the OBMskyrmions (see Table 1) at the same values of the modelparameters.We note that for the OBM (when a is small), theenergy per skyrmion of a multiskyrmion 
on�gurationwith n � 2 is smaller 
ompared to the single skyrmionenergy, and therefore, these 
on�gurations are boundstates, stable with respe
t to the de
ay into n indi-vidual skyrmions. On the 
ontrary, the ring-like OBMmultiskyrmions with even n (where n � 4) are unstablewith respe
t to the de
ay into two-skyrmion 
on�gura-tions, while 
on�gurations with odd n (where n � 5)are unstable with respe
t to the breakup into two- andthree-skyrmion 
on�gurations. In addition, Table 1and Eq. (30) show that for any n 6= 1, there is an upperlimit for the model parameter, a � a
r(n), above whi
hthe ring-like n-skyrmion 
on�guration 
an de
ay into nindividual skyrmions.We now 
onsider the 
ase where n = 3 in more de-tail. As 
an be observed from the energies in Eqs. (17)and (30), the ring-like three-skyrmion 
on�guration isstable with respe
t to the de
ay into a single and atwo-skyrmion 
on�guartion for a � 0:77 be
auseE1 +E2 �E3 � 1:611 a4=5 � a�� 83p3 � 1� ; (31)and its di�eren
e be
omes positive if and only ifa �  3p3 1:611� �8� 3p3�!5 � 0:77: (32)For the skyrmion 
on�gurations with n = 1; 2; 3, 
or-re
tions to the energy of the higher order in a lead tosmaller 
riti
al values a
r(n).Be
ause our �elds with axial symmetry (5) and (10)
orrespond to ring-like solutions of the Euler�Lagrangeequations [1℄ for a = 0, they must also be solutionsof the 
orresponding equations as a ! 0, i.e., when atakes values in a small region 
lose to zero. (In fa
t,this region a
tually be
omes narrower as n in
reasesbe
ause the expansion in a be
omes less 
onvergent inthis limit.) On the other hand, the latti
e-like 
on�g-urations (tripole for n = 3, quadrupole for n = 4, et
.)

are solutions of the equations when a � a
r(n) for givenn [5, 10, 13℄. But the transition from the ring-like 
on-�guration to any other minimum energy 
on�gurationis a phenomenon that has not been studied in mu
hdetail and deserves further investigation.Finally it should be stressed that in 
ontrast tothe linear approximation, the quadrati
 approximationgiven by (25) does not provide an upper bound for theenergy.4. AWAY FROM THE NONLINEAR O(3)�-MODELIn the general 
ase, for arbitrary values of the pa-rameter a and the skyrmion number n, soliton solutions
an be obtained by numeri
ally minimizing the energyin Eqs. (15) and (16) with respe
t to the variable p.This leads to an upper bound for the 
orrespondingenergies be
ause the pro�le fun
tion is given by (10).For large a at �xed n (or for large n at �xed a),expansion (20) is not self-
onsistent for the OBM. Butsome analyti
al results 
an also be obtained in this 
asebe
ause for large a, Eq. (15) 
an be approximated byE
l(n)OBM � 4�g2 2an�p3p sin(2�=p) pp2 � 4pp : (33)The expansion of (33) up to se
ond-order terms withrespe
t to p givesE
l(n)OBM � 4�g2 anppp3 �1 + 
2p2 � ; (34)where 
2 = 2(�2=3� 1);its minimization implies thatpmin � p3
2 = 3:71and the 
orresponding energy is therefore given byE
l(n)OBM4�g2 � 43an�
23 �1=4 = 1:48 an: (35)We note that in 
ontrast with the results obtained nearthe nonlinear �-model, the parameter p is independentof the skyrmion number n for large a. For a � n, theskyrmion radius is proportional to the square root ofthe skyrmion number, rn / n1=2, the skyrmion thi
k-ness is given by Æ / rn=p / n1=2;665



T. A. Ioannidou, V. B. Kopeliovi
h, W. J. Zakrzewski ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002Table 1. Energy per unit skyrmion number (in 4�g2) for di�erent values of the parameter a for the OBM withse
ond-order 
orre
tions in a taken into a

ountn = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 8a = 0:001 1:0063 1:00157 1:0016 1:0017 1:0019 1:0021 1:0023a = 0:01 1:0384 1:0157 1:0161 1:0176 1:0191 1:0206 1:0234a = 0:0316 1:0933 1:0496 1:0508 1:0553 1:0601 1:0649 1:0737a = 0:1 1:2227 1:1567 1:1605 1:1737 1:1882 1:2025 1:2291a = 0:316 1:5113 1:4930 1:5026 1:5358 1:5638 1:6126 1:6835ahed = 0:316 (num) 1:5647 1:4681 1:4901 1:5284 1:5692 1:6092 1:6832a = 0:316 (num) 1:564 1:468 1:460 1:450 1:456 1:449 �The last two lines 
ontain the exa
t results obtained from the numeri
al simulations of the respe
tive multi-skyrmions with ring-like shapes (n � 2) and with shapes other than ring-like (n � 3) [10℄. In the �rst 
ase, wehave numeri
ally solved the equations using the hedgehog ansatz (5).Table 2. Energy per unit skyrmion number for di�erent values of the parameter a for the NBMn = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 8 n = 12 n = 16a = 0:01 1:0363 1:0111 1:0093 1:0088 1:0085 1:0084 1:0083 1:0082 1:0082a = 0:0316 1:0851 1:0348 1:0294 1:0277 1:0270 1:0266 1:0262 1:0260 1:0259a = 0:1 1:1887 1:1083 1:0928 1:0877 1:0855 1:0843 1:0831 1:0823 1:0820a = 0:316 1:3814 1:3238 1:2912 1:2768 1:2699 1:2662 1:2626 1:2602 1:2593a = 0:4213 1:44 1:4193 1:3865 1:3684 1:3597 1:3549 1:3501 1:3467 1:3455a = 0:4213 (num) 1:564 1:405 1:371 1:358 1:352 1:349 1:3447 1:3407 1:3385The last line 
ontains the exa
t results determined by the numeri
al simulations [10℄ of multiskyrmions withring-like shapes for a = 0:4213, whi
h 
oin
ide with ours for n � 6.and therefore, the ring-like stru
ture of the 
on�gura-tion is not very pronoun
ed. Dire
t numeri
al mini-mization of (33) with respe
t to p gives pmin = 4:5 andthe 
orresponding value of the energy isE
l(n)OBM4�g2 = 1:55 an: (36)The energy obtained by solving the Euler�Lagrangeequation numeri
ally is [8℄E
l(n)4�g2 = 1:333 an:The pro�le fun
tion 
orresponding to this solution isgiven by
os f = r28n2 (r2n � r2) + 2 r2r2n � 1 for r � rnand f = 0 for r > rn:

This solution is quite di�erent from our parameteriza-tion (10), and the 16% di�eren
e between the exa
tand the approximate solutions is therefore understand-able.To 
on
lude, we re
all that for the NBM, parame-terization (10) works well for arbitrarily large n and itsa

ura
y in
reases with in
reasing n, as illustrated inTable 2.5. PROPERTIES OF THE SKYRMIONS: MEANSQUARE RADII, ENERGY DENSITY, ANDMOMENT OF INERTIAMany properties of multiskyrmions 
an be deter-mined using ansatz (10). For example, the mean squareradius of the n-skyrmion 
on�guration takes the simple666
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al solutions : : :form hr2in = 12 Z dr r2�0 = 2�r2np sin(2�=p) ; (37)where rn is given by (14) for the OBM and NBM. Forsmall a, it was shown in Se
. 2 that p = 2n, implyingthat the mean square radius be
omeshr2inOBM � �p2(n2 � 1)sin(�=n)p3n;hr2inNBM � �p2(n2 � 1)n sin(�=n)p3 ; (38)whi
h takes the respe
tive values �; 8�=3p3; �p5; : : :and p2�; 8�=3; 2�p5; : : : for n = 2; 3; 4; : : :For the NBM, even for a su�
iently large valueof the parameter a, analyti
al formula (14) with thepower p taken from (23) gives the values of hr2inNBMin a remarkably good agreement with those obtainedin numeri
al 
al
ulations. For example, the analyti
alresult for n = 3 is phr2i3 = 2:987, in natural units ofthe model 1=ge�, to be 
ompared with 2:872 obtainednumeri
ally. This agreement improves with in
reasingn, and we have phr2i12 � 10:92 for n = 12, to be
ompared with 10:85 determined numeri
ally. A simi-lar agreement between analyti
al and numeri
al resultstakes pla
e for the mean square radius of the energydistribution of multiskyrmions (the 3D 
ase was 
on-sidered in detail in [6℄).We note that the one-skyrmion 
on�guration is(still) a singular 
ase be
ause (37) is unde�ned forn = 1. But as we have shown earlier, by express-ing p = 2 + " and expanding (14) in ", we obtainr2n=1 =p2"=3, whi
h leads tohr2i1 = 2r 23"min (39)for "min given by (29). Our approximate method there-fore shows that as the model parameter tends to zero,the mean square radius of the one-skyrmion �eld tendsto in�nity be
ause hr2i1 � a�1=5;on the other hand, be
ausehr2iNBM (n) = pnhr2iOBM (n);the mean square radius is given by (39) for both modelsin this 
ase.The average energy density per unit surfa
e elementis de�ned as �E = E
l(n)2�rnÆ (40)

with Æ � 2rn=n, see dis
ussion after (16). For theNBM, when n is large, (40) takes the 
onstant value�ENBM � e� g3 r32 + a! ; (41)i.e., is independent of n. Equation (41) therefore rep-resents the fundamental property of multiskyrmions ofthis type. On the 
ontrary, for the OBM with ring-like
on�gurations (whi
h do not 
orrespond to the min-imum of the energy [5, 10℄) taken into a

ount, theenergy density in
reases with n as pn for small valuesof a.Another quantity of physi
al signi�
an
e determin-ing the quantum 
orre
tions to the energy of skyrmionsis the moment of inertia; it has been 
onsidered fortwo-dimensional models in [13℄. To obtain the energyquantum 
orre
tion of the soliton, due to its rotationaround the axis perpendi
ular to the plane in whi
h thesoliton is lo
ated, we must take the t-dependent ansatzof the form n1 = sin f(~r) 
os[n(�� !t)℄;n2 = sin f(~r) sin[n(�� !t)℄;n3 = 
os f(~r): (42)The ! dependen
e of the energy is then given by thesimple formula: Erot = �J2 !2; (43)where �J , the so-
alled moment of inertia, is givenby [13℄�J(n) = g2n2 Z d2r sin2 f �1 + af 02� : (44)Using (10) and the relations14 Z (1� �2)r dr = 1Z0 (r=rn)p r dr[1 + (r=rn)p℄2 == 2� r2np2 sin(2�=p) ; p > 2;116 Z (1� �2)2 drr = 1Z0 (r=rn)2p dr[1 + (r=rn)p℄4 r == 16p ; p > 0; (45)
we �nd that at large values of n, the moment of inertiasimpli�es to�J(n) � 4�g2nr2n�2np + anp3r2n � ; (46)667



T. A. Ioannidou, V. B. Kopeliovi
h, W. J. Zakrzewski ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002whi
h holds for any multiskyrmion 
on�guration de-s
ribed by ansatz (10), for both models. For small val-ues of a, letting p = 2n and taking r2n given by (14),we �nd that�J(n)OBM � 4�g2n r2n 1 + ar2n3 ! ;�J(n)NBM � 4�g2n r2n 1 + ar23 ! ; (47)whi
h implies that for large n, the moment of inertia is�J(n) � E
l(n) r2n; (48)in agreement with simple semi
lassi
al arguments forthe thin massive ring. Similar semi
lassi
al for-mulas have been obtained for the three-dimensionalskyrmions (see, e.g., Refs. [6, 14℄) and the moment ofinertia was shown to be given by�J = 2MBr2B=3for large baryon numbers; this expression is valid for a
lassi
al spheri
al bubble with the mass 
on
entratedin its shell. 6. CONCLUSIONSWe have presented an analyti
al approa
h for deriv-ing approximate expressions of skyrmion solutions inthe two-dimensional O(3) �-model. These approxima-tions are very a

urate for small values of the parametera that determines the weight of the Skyrme term andthe potential term in the Lagrangian. For other val-ues of the model parameter, we have performed somenumeri
al 
al
ulations and then 
ombined them withfurther analyti
al work to investigate the binding andother properties of multiskyrmion states.Two models have been studied: the �old babySkyrme model� and the �new baby Skyrme model�,whi
h di�er from ea
h other in the form of poten-tials (2). For both models, the a dependen
e of theenergy of a single skyrmion di�ers from the 
ases wheretopologi
al number n � 2. For the OBM, when ais small, the n = 3 skyrmion 
on�guration is stablewith respe
t to the de
ay into a single skyrmion and atwo-skyrmion 
on�guration, while the ring-like multi-skyrmion 
on�gurations with n � 4 are unstable withrespe
t to the breakup into two- and three-skyrmion
on�gurations. For the NBM, on the other hand,

the hedgehog multiskyrmion 
on�gurations 
onsideredin [10℄ and here des
ribe bound states, be
ause the en-ergy per skyrmion de
reases as the skyrmion numberin
reases. We note that the results obtained for theNBM are similar to the ones obtained for the three-dimensional model studied in [6℄. In both 
ases, theenergy per skyrmion de
reases as the skyrmion numberin
reases. The three-dimensional skyrmions obtainedusing the rational map ansatz [15℄ for large n have theform of a bubble with the energy and the baryon num-ber 
on
entrated in the shell. The thi
kness and theenergy density of the shell (whi
h is analogous to thethi
kness of the ring in the two-dimensional 
ase) areindependent of the skyrmion number [6℄. Similarly, inthis paper we have shown that for large n, the two-dimensional baby skyrmions of the NBM 
orrespondto ring-like 
on�gurations with a 
onstant thi
knessand a 
onstant energy density per unit surfa
e of thering. The building material for these obje
ts is a bandof matter with a 
onstant thi
kness and the averageenergy density per unit surfa
e. The baby skyrmions
an therefore be obtained as dimensional redu
tions ofthe three-dimensional skyrmions at large n; the three-dimensional skyrmions 
an be derived from the two-dimensional baby skyrmions as dimensional extensions.It was 
on
luded in [8℄ that the Casimir energy,or quantum loop 
orre
tions, 
an destroy the bindingproperties of the two-skyrmion bound states. The va-lidity of this argument for the two- and three-skyrmionbound states of the NBM would be worth investigating.Another interesting problem is to determine to what ex-tent the region of su�
iently small a is of importan
efrom the standpoint of physi
s. For large a, the methodoverestimates the skyrmion masses for the OBM but isa

urate for the NBM, espe
ially for large n.The existen
e of bound states of the three-di-mensional skyrmions has ri
h phenomenologi
al
onsequen
es in elementary parti
les and nu
learphysi
s. It suggests possible existen
e of multibaryonswith nontrivial �avor, strangeness, 
harm, or beauty;more details are given in [14℄ and referen
es therein.Similarly, the existen
e of bound states of two-dimen-sional baby skyrmions with universal properties inthe NBM, whi
h des
ribes anisotropi
 systems, 
analso have some 
onsequen
es for the 
ondensed statephysi
s, whi
h would be worth investigating in detail.V. B. K. is indebted to G. Holzwarth for drawing hisattention to the paper [8℄; his work is supported by theRFBR (grant 01-02-16615). T. I. thanks the Nu�eldFoundation for a newly appointed le
turer award.668
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