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APPROXIMATE ANALYTICAL SOLUTIONS OF THE BABYSKYRME MODELT. A. Ioannidou a*, V. B. Kopeliovih b**, W. J. Zakrzewski ***a Institute of Mathematis, University of KentCanterbury CT2 7NF, UKb Institute for Nulear Researh of Russian Aademy of Sienes117312, Mosow, Russia Department of Mathematial Sienes, University of DurhamDurham DH1 3LE, UKSubmitted 1 Marh 2002We show that many properties of the baby skyrmions, whih have been determined numerially, an be under-stood in terms of an analyti approximation. In partiular, we show that the approximation aptures propertiesof the multiskyrmion solutions (derived numerially) suh as their stability towards deay into various hannels,and that it is more aurate for the �new baby Skyrme model� desribing anisotropi physial systems in termsof multiskyrmion �elds with axial symmetry. Some universal harateristis of on�gurations of this kind aredemonstrated that are independent of their topologial number.PACS: 12.39.D, 13.75.Cs, 14.65.-q1. INTRODUCTIONIt is known that the two-dimensional O(3) �-mo-del [1℄ possesses metastable states that an shrink orspread out under perturbation beause of the onfor-mal (sale) invariane of the model [2�4℄. This im-plies that the metastable states an be of any size, andtherefore, a term of the fourth order in derivatives, theso-alled Skyrme term, must be added to break thesale invariane of the model. But the resulting energyfuntional has no minima, and a further extra term isneeded to stabilize the size of the orresponding soli-tons; this term ontains no derivatives of the �eld andis often alled the potential (or mass) term. The �eldan then be viewed as the magnetization vetor of atwo-dimensional ferromagneti substane [1℄, and thepotential term desribes the oupling of the magne-tization vetor to a onstant external magneti �eld.Beause the extra terms ontribute to the masses ofthe solitons, their dependene deviates from a simplelaw in whih the skyrmion mass is proportional to the*E-mail: T.Ioannidou�uk.a.uk**E-mail: kopelio�al20.inr.troitsk.ru, kopelio�p.inr.a.ru***E-mail: W.J.Zakrzewski�durham.a.uk

skyrmion (topologial) number and the two-skyrmionon�guration beomes stable, showing that the modelpossesses bound states [5℄.In this paper, we demonstrate that the simple an-alytial method used for the desription of the three-dimensional Skyrme model presented in [6℄ an alsobe used to study various properties of the low-energystates of the orresponding two-dimensional �-modelwhen the parameters that determine the ontributionsof the Skyrme and the potential terms are not large.More preisely, it was possible to desribe the basiproperties of the three-dimensional skyrmions for largebaryon numbers analytially [6℄, and it is thereforeworthwhile to derive suh a desription for the two-dimensional O(3) �-model as well. In general, suhanalytial disussions of soliton models are useful be-ause they lead to a better understanding of the soli-ton properties. The two-dimensional O(3) �-model iswidely used to desribe ferromagneti systems, high-temperature superondutivity, et., and the resultsobtained here an therefore be useful for the under-standing of these phenomena.Our method is based on the ansatz introdued in [6℄and is aurate for the so-alled �new baby Skyrme660



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Approximate analytial solutions : : :model� [7℄ that desribes anisotropi physial systems.Its auray atually inreases as the skyrmion numbern inreases, and this method allows prediting someuniversal properties of the ring-like on�gurations forlarge n, independently of its partiular value. Althoughsuh models are not integrable, the �new baby Skyrmemodel� appears to have the properties of an integrablesystem in the ase where n is large.2. NEAR THE NONLINEAR O(3) �-MODELThe Lagrangian density of the O(3) �-model withthe additional terms introdued and disussed in[5, 7, 8℄ is1)L = g22 (��n)2 � 14e2 [��n; ��n℄2 � g2V: (1)Here, �� = �=�x�; x�, � = 0; 1; 2, refer to both timeand spatial omponents of (t; x; y), and the �eld n isa salar �eld with three omponents na, a = 1; 2; 3,satisfying the onditionn2 = n21 + n22 + n23 = 1:The onstants g and e are free parameters, with g2having the dimension of energy. It is useful to thinkof g2 and 1=ge as natural units of energy and lengthrespetively. The �rst term in (1) is familiar from �-models, the seond term, whih is of the fourth orderin derivatives, is the analogue of the Skyrme term, andthe last term is the potential term. The respetivepotentials for the �old baby Skyrme model� (OBM)and the �new baby Skyrme model� (NBM) desribinganisotropi systems are given byVOBM = �2 (1� n3) ;VNBM = 12 �2 �1� n23� ; (2)were � has the dimension of energy, and 1=� thereforedetermines a seond length sale in our model. Evi-dently, VNBM � VOBM at a �xed value of �.In three spatial dimensions, the Skyrme term is ne-essary for the existene of soliton solutions, but theinlusion of a potential is optional from the mathemat-ial standpoint. Physially, however, a potential of aertain form is required in order to give the pions amass [9℄. By ontrast, in two dimensions, a potentialterm must be inluded in the above Lagrangian in order1) The �rst several paragraphs of this setion follow Refs. [5, 8℄very losely and are inluded to make the paper more selfon-tained.

for soliton solutions to exist. As shown in [10℄, the dif-ferent potential terms give quite di�erent properties tothe multiskyrmion on�gurations when the skyrmionnumber is large. Our analytial treatment here sup-ports this onlusion, as shown in Sets. 3�5.We are only interested in on�gurations with �niteenergy, and we therefore de�ne the on�guration spaeto be the spae of all maps n: R2 ! S2 that tend to theonstant �eld (0; 0; 1) (the so-alled vauum) at spatialin�nity, limjxj!1n(x) = (0; 0; 1): (3)Every on�guration n an thus be regarded as a rep-resentative of a homotopy lass in �2(S2) = Z and hasthe orresponding integer degree given bydeg [n℄ = 18� Z d2x �b n (�bn� �n) : (4)The vauum �eld is invariant under the symmetrygroup G = E2 � SO(2)iso � P;where E2 is the Eulidean group of two-dimensionaltranslations and rotations, ating on �elds via pull-bak. The SO(2)iso subgroup of the three-dimensionalrotation group ating on S2 is the subgroup that leavesthe vauum invariant (we all its elements iso-rotationsto distinguish them from rotations in physial spae).Finally, P is a ombined re�etion in both spae andthe target spae S2.We are interested in stationary points of deg[n℄ 6= 0;the maximal subgroups of G under whih suh �eldsan be invariant are labelled by a nonzero integer n andonsist of spatial rotations by some angle � 2 [0; 2�℄and simultaneous iso-rotation by �n�. Fields that areinvariant under suh a group are of the formn1 = sin f(~r) os(n�); n2 = sin f(~r) sin(n�);n3 = os f(~r); (5)where (~r; �) are polar oordinates and f(~r) is the pro�lefuntion. Suh �elds are the analogues and generaliza-tions of the hedgehog �elds in the Skyrme model. Inthis parametrization, whih involves azimuthal symme-try of the �elds, it is assumed that all the skyrmionssit on top of eah other in forming the multiskyrmionon�guration.It is easy to show that the degree of �eld (5),deg [n℄ = n; (6)is equal to the azimuthal winding number n.661



T. A. Ioannidou, V. B. Kopeliovih, W. J. Zakrzewski ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002The respetive stati energy funtionals related toLagrangian (1) for the OBM and the NBM are given byEl(n)OBM = g22 Z r dr�f 02 + n2 sin2 fr2 ++ a�n2f 02 sin f2r2 + 2 (1� os f)�� ; (7)El(n)NBM = g22 Z r dr�f 02 + n2 sin2 fr2 ++ a�n2f 02 sin f2r2 + �1� os2 f��� : (8)In (7) and (8), the length (pge�)�1 is absorbed suhthat the sale size of the loalized strutures is a fun-tion of the dimensionless spatial oordinate r = pge� ~rand the dimensionless parameter a = �=ge beomes theonly nontrivial parameter of the model. Finiteness ofthe energy funtional requires that the pro�le funtionmust satisfy the boundary onditions f(0) = � andf(1) = 0.Setting � = os f in (7), we rewrite the energy fun-tional asEl(n)OBM = g22 Z r dr �021� �2 + n2 �1� �2�r2 ++ a �n2�02r2 + 2 (1� �)�� (9)and similarly for El(n)NBM . We next parameterizethe �eld � using the ansatz introdued in [6℄ for thedesription of the three-dimensional skyrmions,� = os f = (r=rn)p � 1(r=rn)p + 1 ; �0 = p2r (1� �2): (10)After the integration with respet to r, this leads to theanalyti expressions for the energyEl(n)OBM = �g2�4n2p + p++ 4a�p sin(2�=p) �n2(p2 � 4)3r2np + r2n�� ; (11)El(n)NBM = �g2�4n2p ++ p+ 4a�p sin(2�=p) �n2(p2 � 4)3r2np + 2pr2n�� : (12)Here, p and rn are parameters whih still must be de-termined by minimizing the energy. In fat, rn or-responds to the radius of the n-soliton on�guration.

We remark that in deriving (11) and (12) we used theEuler-type integrals (see also [6℄)1Z0 2r dr1 + (r=rn)p = 2�r2np sin(2�=p) ; p > 2;1Z0 dr (r=rn)pr [1 + (r=rn)p℄2 = 1p ; p > 0;1Z0 dr (r=rn)2pr3 [1 + (r=rn)p℄4 = � �p2 � 4�3r2n p4 sin(2�=p) ;p > 1;1Z0 2r dr[1 + (r=rn)p℄2 = �1� 2p� 2�r2np sin(2�=p) ;p > 1:
(13)

It an be easily proved that the minimization of theenergies in Eqs. (11) and (12) implies that(rminn )2OBM = np3sp2 � 4p ;(rminn )2NBM = nrp2 � 46 ; (14)i.e., (rminn )2NBM = pp=2 (rminn )2OBM , and the mini-mum energy values are therefore equal toEl(n)OBM == 4�g2 "n2p + p4 + 2an�p3p sin(2�=p) pp2 � 4pp # ; (15)El(n)NBM == 4�g2 "n2p + p4 + 2p2an�p3 sin(2�=p) pp2 � 4p2 # : (16)It is obvious that the energy ontributions of theSkyrme and the potential terms are equal due to (14),whih is in agreement with the result obtained fromDerrik's theorem. Equations (15) and (16) provide anupper bound for the energies of baby skyrmions for anyvalue of p. To obtain the lowest upper bound, we mustminimize the right-hand sides of (15) and (16) withrespet to the parameter p. In what follows, we inves-tigate various ases that orrespond to di�erent valuesof the only nontrivial parameter of the model, a.We �rst onsider the ase where a � 1, i.e., themodel parameter is very small. We observe that fora = 0, ansatz (10) is a solution of the model for p = 2n,662



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Approximate analytial solutions : : :whih implies that p ! 2n as a ! 0. In aordanewith (14), the radius of the multiskyrmion on�gura-tion then inreases with n,(rminn )2OBM / n3=2; (rminn )2NBM / n2:Moreover, the on�guration onsists of a ring of thethikness Æ � 4rn=p, and thereforeÆOBM / 2n�1=4; ÆNBM / onst:We remark that the ring thikness is determined as thedi�erene of the values of � inside (whih is equal to�1) and outside (whih is equal to +1) the ring (i.e.,d� = 2) divided by its derivative at r = rn, where�(rn) = 0; as a onsequene of (10) �0(rn) = p=2rn.Magneti solitons of this type have been observedin [11, 12℄ as solutions of the Landau�Lifshitz equationsde�ning the dynamis of ferromagnets. (We note thatthe stati solutions of the baby Skyrme model and theLandau�Lifshitz equations are related.) In general, �given by (10) for p = 2n is a low-energy approximationof multiskyrmion on�gurations (for n > 1), beausethe orresponding energies given by (15) and (16) arein�nite for n = 1. Indeed, it is a matter of simplealgebra to show thatEl(n = 2)OBM = 4�g2 (2 + a�) ;El(n = 2)NBM = 4�g2�2 + a�p2� ;El(n = 3)OBM = 4�g2�3 + a� 83p3� ;El(n = 3)NBM = 4�g2�3 + a� 89� ;El(n = 4)OBM = 4�g2 �4 + a�p5� ;El(n = 4)NBM = 4�g2 4 + a�p52 ! :
(17)

For large n, the energies take the asymptoti valuesEl(n)OBM = 4�ng2 1 +r2n3 a! ;El(n)NBM = 4�ng2 1 +r23a! : (18)We note that the energy of the OBM per unit skyrmionnumber inreases as n inreases, while the energy of theNBM per skyrmion dereases as n inreases and be-omes onstant for large n. In fat, the energies givenby (17) are the upper bounds of the multiskyrmion en-ergies beause the exat pro�le funtion orrespondingto the minimum of the energy di�ers from that givenby (10).

3. PERTURBATION THEORY FOR THEMODEL PARAMETERIn this setion, we obtain energy orretions up tothe seond or higher orders with respet to the modelparameter a. The orresponding energies for the OMBand NBM an be written asEl(n) = 4�g2[f(p) + a h(p)℄; (19)where f(p) and h(p) an be evaluated from (15)and (16), respetively. Letting p = 2n+ � and expand-ing energies (15) and (16) up to the seond order in �,we obtain f(p) = n+ �2=8n, h(p) = h0 + �h1, whereh1 = (2n)�1�h0:In fat, the orresponding funtions for the OBM andthe NBM are given byh0OBMn =r2n3 �n sin(�=n)p1� 1=n2;�OBM = �n tg(�=n)� 12 + 1n2 � 1 ; (20)h0NBMn =r23 �n sin(�=n)p1� 1=n2;�NBM = �n tg(�=n)� 1 + 1n2 � 1 : (21)Minimization of (19) with respet to � implies that�min = �4anh1 = �2a�h0:At large values of n, the parameters � and p = 2n+ �take the values�(n)OBM � �anr2n3 ;�(n)NBM � 2ar23 �2=3� 1n ; (22)
p(n)OBM � 2n� anr2n3 ;p(n)NBM � 2n+ 2ar23 �2=3� 1n : (23)For any a, the e�etive power p(n)OBM beomes neg-ative as n inreases and the approah based on theassumption that �OBM is small is not self-onsistent(also see the next setion). On the ontrary, for theNBM, p(n)NBM � 2n as n inreases, whih impliesthat our onsideration is self-onsistent in this ase. In663



T. A. Ioannidou, V. B. Kopeliovih, W. J. Zakrzewski ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002terms of (19)�(21), the energy per skyrmion of the n-skyrmion on�guration takes the valueEl(n)4�g2n = 1 + ah0n � a2h20�22n2 ; (24)whih givesEl(2)OBM4�g22 = 1 + 1:5708a� 0:034 a2;El(2)NBM4�g22 = 1 + 1:1107 a� 0:2741 a2;El(3)OBM4�g23 = 1 + 1:6120 a� 0:068 a2;El(3)NBM4�g23 = 1 + 0:9308 a� 0:0317 a2;El(4)OBM4�g24 = 1 + 1:7562 a� 0:191 a2;El(4)NBM4�g24 = 1 + 0:8781 a� 0:0084 a2;El(5)OBM4�g25 = 1 + 1:9122 a� 0:302 a2;El(5)NBM4�g25 = 1 + 0:8552 a� 0:0032 a2;El(6)OBM4�g26 = 1 + 2:0649 a� 0:404 a2;El(6)NBM4�g26 = 1 + 0:8430 a� 0:0015 a2:
(25)

For large n, the energies in Eq. (24) take the asymp-toti valuesEl(n)OBM4�g2n =  1 + ar2n3 � a2 n12! ;El(n)NBM4�g2n =  1 + ar23 � a2 (�2=3� 1)23n4 ! : (26)We note that the energies of the two models behavedi�erently when we onsider terms of the seond or-der in the model parameter, i.e., the terms � a2. In-deed, for the OBM, the ontribution to the energy islinearly proportional to the skyrmion number n, whilefor the NBM, the ontribution dereases rapidly as theskyrmion number inreases. This implies that the lin-ear approximation in a is aurate for the NBM be-ause the quadrati term beomes negligible for largen. Numerial results obtained for di�erent values of afor the OBM and NBM are presented in Tables 1 and2, respetively.As we have noted previously, our method annotdesribe the one-skyrmion on�guration beause theorresponding energies beome in�nite. But setting

p = 2 + " in (15) and (16) and expanding all termsup to the third order in "� 1, we obtainEl(n = 1) == 4�g2 1+"28 � "316 + 2ar 23"(1� ")! ; (27)where  takes di�erent value for eah of the two models,OBM = 18 ; NBM = 38 : (28)We note that with the terms of only up to the se-ond order in " onsidered, the orresponding energy inEq. (27) simpli�es toEl = 4�g2 1 + "28 + 2ar 23" ! ;and the minimum ours at"1 = 2� ap3�2=5 :Finally, the minimum of (27) ours at"min = 2� ap3�2=5 "1+45 � ap3�2=5�+34�# (29)and orresponds to a shift of "1 beause higher-orderorretions in " were onsidered in (27). The energy ofthe one-skyrmion on�guration isEl(n = 1)4�g2 == (1 + 52 � ap3�4=5 "1� 15 � ap3�2=5 (8 + 1)#) �� h1 + 1:611 a4=5 �1� 0:1605a2=5 (8 + 1)�i : (30)Equation (30) implies that for a single skyrmion, theenergy expansion in a is proportional to a power of ainstead of being linearly proportional to a (whih is thease for the multiskyrmion on�gurations with n � 2),while its onvergene is worse than for multiskyrmions,espeially for the NBM. In fat, for a = 0:4213, the �rsttwo terms in (30) are equal to 1:807, and the next-orderterm dereases this value to 1:44, whih gives an errorof 7% ompared to the exat value 1:564 obtained fromnumerial simulations. We note that our one-skyrmionparameterization gives the same energy for both mod-els if only the expansions up to the lowest order in aare onsidered: the di�erene appears only in the term� ap" in (27).664



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Approximate analytial solutions : : :It is lear from the results in Tables 1 and 2 thatour approximate method gives the energy values thatare very lose to the exat values obtained by numeri-al simulations, espeially for the NBM. In partiular,the di�erene between the exat and the approximateenergies for a = 0:4213 is less than 0.5% for n � 6.For smaller values of a, the agreement between ana-lytial and numerial results is even better. In evidentagreement with (2), the energies of the NBM skyrmionsgiven in Table 2 are smaller than those of the OBMskyrmions (see Table 1) at the same values of the modelparameters.We note that for the OBM (when a is small), theenergy per skyrmion of a multiskyrmion on�gurationwith n � 2 is smaller ompared to the single skyrmionenergy, and therefore, these on�gurations are boundstates, stable with respet to the deay into n indi-vidual skyrmions. On the ontrary, the ring-like OBMmultiskyrmions with even n (where n � 4) are unstablewith respet to the deay into two-skyrmion on�gura-tions, while on�gurations with odd n (where n � 5)are unstable with respet to the breakup into two- andthree-skyrmion on�gurations. In addition, Table 1and Eq. (30) show that for any n 6= 1, there is an upperlimit for the model parameter, a � ar(n), above whihthe ring-like n-skyrmion on�guration an deay into nindividual skyrmions.We now onsider the ase where n = 3 in more de-tail. As an be observed from the energies in Eqs. (17)and (30), the ring-like three-skyrmion on�guration isstable with respet to the deay into a single and atwo-skyrmion on�guartion for a � 0:77 beauseE1 +E2 �E3 � 1:611 a4=5 � a�� 83p3 � 1� ; (31)and its di�erene beomes positive if and only ifa �  3p3 1:611� �8� 3p3�!5 � 0:77: (32)For the skyrmion on�gurations with n = 1; 2; 3, or-retions to the energy of the higher order in a lead tosmaller ritial values ar(n).Beause our �elds with axial symmetry (5) and (10)orrespond to ring-like solutions of the Euler�Lagrangeequations [1℄ for a = 0, they must also be solutionsof the orresponding equations as a ! 0, i.e., when atakes values in a small region lose to zero. (In fat,this region atually beomes narrower as n inreasesbeause the expansion in a beomes less onvergent inthis limit.) On the other hand, the lattie-like on�g-urations (tripole for n = 3, quadrupole for n = 4, et.)

are solutions of the equations when a � ar(n) for givenn [5, 10, 13℄. But the transition from the ring-like on-�guration to any other minimum energy on�gurationis a phenomenon that has not been studied in muhdetail and deserves further investigation.Finally it should be stressed that in ontrast tothe linear approximation, the quadrati approximationgiven by (25) does not provide an upper bound for theenergy.4. AWAY FROM THE NONLINEAR O(3)�-MODELIn the general ase, for arbitrary values of the pa-rameter a and the skyrmion number n, soliton solutionsan be obtained by numerially minimizing the energyin Eqs. (15) and (16) with respet to the variable p.This leads to an upper bound for the orrespondingenergies beause the pro�le funtion is given by (10).For large a at �xed n (or for large n at �xed a),expansion (20) is not self-onsistent for the OBM. Butsome analytial results an also be obtained in this asebeause for large a, Eq. (15) an be approximated byEl(n)OBM � 4�g2 2an�p3p sin(2�=p) pp2 � 4pp : (33)The expansion of (33) up to seond-order terms withrespet to p givesEl(n)OBM � 4�g2 anppp3 �1 + 2p2 � ; (34)where 2 = 2(�2=3� 1);its minimization implies thatpmin � p32 = 3:71and the orresponding energy is therefore given byEl(n)OBM4�g2 � 43an�23 �1=4 = 1:48 an: (35)We note that in ontrast with the results obtained nearthe nonlinear �-model, the parameter p is independentof the skyrmion number n for large a. For a � n, theskyrmion radius is proportional to the square root ofthe skyrmion number, rn / n1=2, the skyrmion thik-ness is given by Æ / rn=p / n1=2;665



T. A. Ioannidou, V. B. Kopeliovih, W. J. Zakrzewski ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002Table 1. Energy per unit skyrmion number (in 4�g2) for di�erent values of the parameter a for the OBM withseond-order orretions in a taken into aountn = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 8a = 0:001 1:0063 1:00157 1:0016 1:0017 1:0019 1:0021 1:0023a = 0:01 1:0384 1:0157 1:0161 1:0176 1:0191 1:0206 1:0234a = 0:0316 1:0933 1:0496 1:0508 1:0553 1:0601 1:0649 1:0737a = 0:1 1:2227 1:1567 1:1605 1:1737 1:1882 1:2025 1:2291a = 0:316 1:5113 1:4930 1:5026 1:5358 1:5638 1:6126 1:6835ahed = 0:316 (num) 1:5647 1:4681 1:4901 1:5284 1:5692 1:6092 1:6832a = 0:316 (num) 1:564 1:468 1:460 1:450 1:456 1:449 �The last two lines ontain the exat results obtained from the numerial simulations of the respetive multi-skyrmions with ring-like shapes (n � 2) and with shapes other than ring-like (n � 3) [10℄. In the �rst ase, wehave numerially solved the equations using the hedgehog ansatz (5).Table 2. Energy per unit skyrmion number for di�erent values of the parameter a for the NBMn = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 8 n = 12 n = 16a = 0:01 1:0363 1:0111 1:0093 1:0088 1:0085 1:0084 1:0083 1:0082 1:0082a = 0:0316 1:0851 1:0348 1:0294 1:0277 1:0270 1:0266 1:0262 1:0260 1:0259a = 0:1 1:1887 1:1083 1:0928 1:0877 1:0855 1:0843 1:0831 1:0823 1:0820a = 0:316 1:3814 1:3238 1:2912 1:2768 1:2699 1:2662 1:2626 1:2602 1:2593a = 0:4213 1:44 1:4193 1:3865 1:3684 1:3597 1:3549 1:3501 1:3467 1:3455a = 0:4213 (num) 1:564 1:405 1:371 1:358 1:352 1:349 1:3447 1:3407 1:3385The last line ontains the exat results determined by the numerial simulations [10℄ of multiskyrmions withring-like shapes for a = 0:4213, whih oinide with ours for n � 6.and therefore, the ring-like struture of the on�gura-tion is not very pronouned. Diret numerial mini-mization of (33) with respet to p gives pmin = 4:5 andthe orresponding value of the energy isEl(n)OBM4�g2 = 1:55 an: (36)The energy obtained by solving the Euler�Lagrangeequation numerially is [8℄El(n)4�g2 = 1:333 an:The pro�le funtion orresponding to this solution isgiven byos f = r28n2 (r2n � r2) + 2 r2r2n � 1 for r � rnand f = 0 for r > rn:

This solution is quite di�erent from our parameteriza-tion (10), and the 16% di�erene between the exatand the approximate solutions is therefore understand-able.To onlude, we reall that for the NBM, parame-terization (10) works well for arbitrarily large n and itsauray inreases with inreasing n, as illustrated inTable 2.5. PROPERTIES OF THE SKYRMIONS: MEANSQUARE RADII, ENERGY DENSITY, ANDMOMENT OF INERTIAMany properties of multiskyrmions an be deter-mined using ansatz (10). For example, the mean squareradius of the n-skyrmion on�guration takes the simple666



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Approximate analytial solutions : : :form hr2in = 12 Z dr r2�0 = 2�r2np sin(2�=p) ; (37)where rn is given by (14) for the OBM and NBM. Forsmall a, it was shown in Se. 2 that p = 2n, implyingthat the mean square radius beomeshr2inOBM � �p2(n2 � 1)sin(�=n)p3n;hr2inNBM � �p2(n2 � 1)n sin(�=n)p3 ; (38)whih takes the respetive values �; 8�=3p3; �p5; : : :and p2�; 8�=3; 2�p5; : : : for n = 2; 3; 4; : : :For the NBM, even for a su�iently large valueof the parameter a, analytial formula (14) with thepower p taken from (23) gives the values of hr2inNBMin a remarkably good agreement with those obtainedin numerial alulations. For example, the analytialresult for n = 3 is phr2i3 = 2:987, in natural units ofthe model 1=ge�, to be ompared with 2:872 obtainednumerially. This agreement improves with inreasingn, and we have phr2i12 � 10:92 for n = 12, to beompared with 10:85 determined numerially. A simi-lar agreement between analytial and numerial resultstakes plae for the mean square radius of the energydistribution of multiskyrmions (the 3D ase was on-sidered in detail in [6℄).We note that the one-skyrmion on�guration is(still) a singular ase beause (37) is unde�ned forn = 1. But as we have shown earlier, by express-ing p = 2 + " and expanding (14) in ", we obtainr2n=1 =p2"=3, whih leads tohr2i1 = 2r 23"min (39)for "min given by (29). Our approximate method there-fore shows that as the model parameter tends to zero,the mean square radius of the one-skyrmion �eld tendsto in�nity beause hr2i1 � a�1=5;on the other hand, beausehr2iNBM (n) = pnhr2iOBM (n);the mean square radius is given by (39) for both modelsin this ase.The average energy density per unit surfae elementis de�ned as �E = El(n)2�rnÆ (40)

with Æ � 2rn=n, see disussion after (16). For theNBM, when n is large, (40) takes the onstant value�ENBM � e� g3 r32 + a! ; (41)i.e., is independent of n. Equation (41) therefore rep-resents the fundamental property of multiskyrmions ofthis type. On the ontrary, for the OBM with ring-likeon�gurations (whih do not orrespond to the min-imum of the energy [5, 10℄) taken into aount, theenergy density inreases with n as pn for small valuesof a.Another quantity of physial signi�ane determin-ing the quantum orretions to the energy of skyrmionsis the moment of inertia; it has been onsidered fortwo-dimensional models in [13℄. To obtain the energyquantum orretion of the soliton, due to its rotationaround the axis perpendiular to the plane in whih thesoliton is loated, we must take the t-dependent ansatzof the form n1 = sin f(~r) os[n(�� !t)℄;n2 = sin f(~r) sin[n(�� !t)℄;n3 = os f(~r): (42)The ! dependene of the energy is then given by thesimple formula: Erot = �J2 !2; (43)where �J , the so-alled moment of inertia, is givenby [13℄�J(n) = g2n2 Z d2r sin2 f �1 + af 02� : (44)Using (10) and the relations14 Z (1� �2)r dr = 1Z0 (r=rn)p r dr[1 + (r=rn)p℄2 == 2� r2np2 sin(2�=p) ; p > 2;116 Z (1� �2)2 drr = 1Z0 (r=rn)2p dr[1 + (r=rn)p℄4 r == 16p ; p > 0; (45)
we �nd that at large values of n, the moment of inertiasimpli�es to�J(n) � 4�g2nr2n�2np + anp3r2n � ; (46)667



T. A. Ioannidou, V. B. Kopeliovih, W. J. Zakrzewski ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002whih holds for any multiskyrmion on�guration de-sribed by ansatz (10), for both models. For small val-ues of a, letting p = 2n and taking r2n given by (14),we �nd that�J(n)OBM � 4�g2n r2n 1 + ar2n3 ! ;�J(n)NBM � 4�g2n r2n 1 + ar23 ! ; (47)whih implies that for large n, the moment of inertia is�J(n) � El(n) r2n; (48)in agreement with simple semilassial arguments forthe thin massive ring. Similar semilassial for-mulas have been obtained for the three-dimensionalskyrmions (see, e.g., Refs. [6, 14℄) and the moment ofinertia was shown to be given by�J = 2MBr2B=3for large baryon numbers; this expression is valid for alassial spherial bubble with the mass onentratedin its shell. 6. CONCLUSIONSWe have presented an analytial approah for deriv-ing approximate expressions of skyrmion solutions inthe two-dimensional O(3) �-model. These approxima-tions are very aurate for small values of the parametera that determines the weight of the Skyrme term andthe potential term in the Lagrangian. For other val-ues of the model parameter, we have performed somenumerial alulations and then ombined them withfurther analytial work to investigate the binding andother properties of multiskyrmion states.Two models have been studied: the �old babySkyrme model� and the �new baby Skyrme model�,whih di�er from eah other in the form of poten-tials (2). For both models, the a dependene of theenergy of a single skyrmion di�ers from the ases wheretopologial number n � 2. For the OBM, when ais small, the n = 3 skyrmion on�guration is stablewith respet to the deay into a single skyrmion and atwo-skyrmion on�guration, while the ring-like multi-skyrmion on�gurations with n � 4 are unstable withrespet to the breakup into two- and three-skyrmionon�gurations. For the NBM, on the other hand,

the hedgehog multiskyrmion on�gurations onsideredin [10℄ and here desribe bound states, beause the en-ergy per skyrmion dereases as the skyrmion numberinreases. We note that the results obtained for theNBM are similar to the ones obtained for the three-dimensional model studied in [6℄. In both ases, theenergy per skyrmion dereases as the skyrmion numberinreases. The three-dimensional skyrmions obtainedusing the rational map ansatz [15℄ for large n have theform of a bubble with the energy and the baryon num-ber onentrated in the shell. The thikness and theenergy density of the shell (whih is analogous to thethikness of the ring in the two-dimensional ase) areindependent of the skyrmion number [6℄. Similarly, inthis paper we have shown that for large n, the two-dimensional baby skyrmions of the NBM orrespondto ring-like on�gurations with a onstant thiknessand a onstant energy density per unit surfae of thering. The building material for these objets is a bandof matter with a onstant thikness and the averageenergy density per unit surfae. The baby skyrmionsan therefore be obtained as dimensional redutions ofthe three-dimensional skyrmions at large n; the three-dimensional skyrmions an be derived from the two-dimensional baby skyrmions as dimensional extensions.It was onluded in [8℄ that the Casimir energy,or quantum loop orretions, an destroy the bindingproperties of the two-skyrmion bound states. The va-lidity of this argument for the two- and three-skyrmionbound states of the NBM would be worth investigating.Another interesting problem is to determine to what ex-tent the region of su�iently small a is of importanefrom the standpoint of physis. For large a, the methodoverestimates the skyrmion masses for the OBM but isaurate for the NBM, espeially for large n.The existene of bound states of the three-di-mensional skyrmions has rih phenomenologialonsequenes in elementary partiles and nulearphysis. It suggests possible existene of multibaryonswith nontrivial �avor, strangeness, harm, or beauty;more details are given in [14℄ and referenes therein.Similarly, the existene of bound states of two-dimen-sional baby skyrmions with universal properties inthe NBM, whih desribes anisotropi systems, analso have some onsequenes for the ondensed statephysis, whih would be worth investigating in detail.V. B. K. is indebted to G. Holzwarth for drawing hisattention to the paper [8℄; his work is supported by theRFBR (grant 01-02-16615). T. I. thanks the Nu�eldFoundation for a newly appointed leturer award.668
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