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We show that many properties of the baby skyrmions, which have been determined numerically, can be under-
stood in terms of an analytic approximation. In particular, we show that the approximation captures properties
of the multiskyrmion solutions (derived numerically) such as their stability towards decay into various channels,
and that it is more accurate for the «new baby Skyrme model» describing anisotropic physical systems in terms
of multiskyrmion fields with axial symmetry. Some universal characteristics of configurations of this kind are
demonstrated that are independent of their topological number.
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1. INTRODUCTION

It is known that the two-dimensional O(3) o-mo-
del [1] possesses metastable states that can shrink or
spread out under perturbation because of the confor-
mal (scale) invariance of the model [2-4]. This im-
plies that the metastable states can be of any size, and
therefore, a term of the fourth order in derivatives, the
so-called Skyrme term, must be added to break the
scale invariance of the model. But the resulting energy
functional has no minima, and a further extra term is
needed to stabilize the size of the corresponding soli-
tons; this term contains no derivatives of the field and
is often called the potential (or mass) term. The field
can then be viewed as the magnetization vector of a
two-dimensional ferromagnetic substance [1], and the
potential term describes the coupling of the magne-
tization vector to a constant external magnetic field.
Because the extra terms contribute to the masses of
the solitons, their dependence deviates from a simple
law in which the skyrmion mass is proportional to the
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skyrmion (topological) number and the two-skyrmion
configuration becomes stable, showing that the model
possesses bound states [5].

In this paper, we demonstrate that the simple an-
alytical method used for the description of the three-
dimensional Skyrme model presented in [6] can also
be used to study various properties of the low-energy
states of the corresponding two-dimensional o-model
when the parameters that determine the contributions
of the Skyrme and the potential terms are not large.
More precisely, it was possible to describe the basic
properties of the three-dimensional skyrmions for large
baryon numbers analytically [6], and it is therefore
worthwhile to derive such a description for the two-
dimensional O(3) o-model as well. In general, such
analytical discussions of soliton models are useful be-
cause they lead to a better understanding of the soli-
ton properties. The two-dimensional O(3) o-model is
widely used to describe ferromagnetic systems, high-
temperature superconductivity, etc., and the results
obtained here can therefore be useful for the under-
standing of these phenomena.

Our method is based on the ansatz introduced in [6]
and is accurate for the so-called «new baby Skyrme
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model» [7] that describes anisotropic physical systems.
Its accuracy actually increases as the skyrmion number
n increases, and this method allows predicting some
universal properties of the ring-like configurations for
large n, independently of its particular value. Although
such models are not integrable, the «new baby Skyrme
model» appears to have the properties of an integrable
system in the case where n is large.

2. NEAR THE NONLINEAR O(3) c-MODEL

The Lagrangian density of the O(3) o-model with
the additional terms introduced and discussed in
[5, 7, 8] isY)

9

£:2

1
(0an)® ~ 13 [am, o — V. (1)
Here, 0, = 0/0z%; ®, a = 0,1,2, refer to both time
and spatial components of (¢,z,y), and the field n is
a scalar field with three components n,, a = 1,2, 3,
satisfying the condition

1’12

=ni+nj+n;=1

The constants g and e are free parameters, with g¢>
having the dimension of energy. It is useful to think
of g? and 1/ge as natural units of energy and length
respectively. The first term in (1) is familiar from o-
models, the second term, which is of the fourth order
in derivatives, is the analogue of the Skyrme term, and
the last term is the potential term. The respective
potentials for the «old baby Skyrme modely (OBM)
and the «new baby Skyrme model» (NBM) describing
anisotropic systems are given by

Vosm = pu? (1 —n3),

(1-nd). Y
were 1 has the dimension of energy, and 1/u therefore
determines a second length scale in our model. Evi-
dently, VNpy < Vopar at a fixed value of p.

In three spatial dimensions, the Skyrme term is nec-
essary for the existence of soliton solutions, but the
inclusion of a potential is optional from the mathemat-
ical standpoint. Physically, however, a potential of a
certain form is required in order to give the pions a
mass [9]. By contrast, in two dimensions, a potential
term must be included in the above Lagrangian in order

1
VBMm = 3 s

1) The first several paragraphs of this section follow Refs. [5, 8]
very closely and are included to make the paper more selfcon-
tained.
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for soliton solutions to exist. As shown in [10], the dif-
ferent potential terms give quite different properties to
the multiskyrmion configurations when the skyrmion
number is large. Our analytical treatment here sup-
ports this conclusion, as shown in Sects. 3-5.

We are only interested in configurations with finite
energy, and we therefore define the configuration space
to be the space of all maps n: B> — S? that tend to the
constant field (0,0, 1) (the so-called vacuum) at spatial
infinity,

lim n(x) = (0,0,1).

|z]— o0

(3)

Every configuration n can thus be regarded as a rep-
resentative of a homotopy class in m5(S?) = Z and has
the corresponding integer degree given by

1 /d2a/: ¢ n (9pn x 9.n).

deg[n] = o—

(4)

The vacuum field is invariant under the symmetry

group
G = E3 x SO(2);50 X P,

where F» is the Euclidean group of two-dimensional
translations and rotations, acting on fields via pull-
back. The SO(2);s, subgroup of the three-dimensional
rotation group acting on S2 is the subgroup that leaves
the vacuum invariant (we call its elements iso-rotations
to distinguish them from rotations in physical space).
Finally, P is a combined reflection in both space and
the target space S2.

We are interested in stationary points of deg[n] # 0;
the maximal subgroups of G under which such fields
can be invariant are labelled by a nonzero integer n and
consist of spatial rotations by some angle o € [0, 27]
and simultaneous iso-rotation by —na. Fields that are
invariant under such a group are of the form

ny = sin f(F) cos(ng), ny = sin f(F) sin(ng),
N (5)
ng = COs f(r)a

where (7, ¢) are polar coordinates and f(7) is the profile
function. Such fields are the analogues and generaliza-
tions of the hedgehog fields in the Skyrme model. In
this parametrization, which involves azimuthal symme-
try of the fields, it is assumed that all the skyrmions
sit on top of each other in forming the multiskyrmion
configuration.

It is easy to show that the degree of field (5),

deg [n] = n, (6)

is equal to the azimuthal winding number n.
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The respective static energy functionals related to
Lagrangian (1) for the OBM and the NBM are given by

2
Eq(n)opm = g/Tdr <fl2+%+
+a{w+2(l—cosf)}>v (7)

2 52
n”sin” f
2

r2

2
Eq(n)NBym = %/rdr <f

2 412 o 2
s
+a{7nf in f

r2
In (7) and (8), the length (,/gef)~" is absorbed such
that the scale size of the localized structures is a func-
tion of the dimensionless spatial coordinate r = |/geu
and the dimensionless parameter a = 11/ ge becomes the
only nontrivial parameter of the model. Finiteness of
the energy functional requires that the profile function
must satisfy the boundary conditions f(0) = 7 and

+ (1 — cos® f)D . (8)

f(c) = 0.
Setting ¢ = cos f in (7), we rewrite the energy func-
tional as
2 12 2 2
g ¢ n® (1-¢°)
Ecl(n)OBM=?/TdT<1_¢2 + St
2¢12

+a{ +2(1—¢)}) (9)
and similarly for E.(n)ypym. We next parameterize
the field ¢ using the ansatz introduced in [6] for the
description of the three-dimensional skyrmions,

(r/rn)? =1

o=cosf= T 6 = g8 (10

2

After the integration with respect to r, this leads to the
analytic expressions for the energy

2

n
Ecl(n)OBM = 71'92 <7 +p+

4 2(p? — 4
. arm n?(p )+Ti o an
pen@ D) | 3
4n?
Ea(n)npym = 79 <7+

darm n?(p>—4) 2,
— . 12
2 e | sz Tpmn)) 12

Here, p and r, are parameters which still must be de-
termined by minimizing the energy. In fact, r, cor-
responds to the radius of the n-soliton configuration.
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We remark that in deriving (11) and (12) we used the
Euler-type integrals (see also [6])

[

2
n

= psm(r/p)’

2r dr

+ (r/rp)P

2mr

2
1+ D> 2

J e+ (r/ra)?]> P’ ’
/°° dr(rfra)” 70 —4) (13)
/ P31+ (r/rp)?]t  3r3p* sin(2n/p)’
p>1,
2rdr 2 2mr2
[1 + (r/rn)P]2 <1 B 1_7> p sin(27/p)’
p> 1

It can be easily proved that the minimization of the
energies in Eqs. (11) and (12) implies that

min n p2 —4
(rn"" oM = ﬁ
! (14)
. 2 _ 4
(rn™)NBM =1 b )
6
e, (rmm™ gy = Vp/2 (M™%, and the mini-

mum energy values are therefore equal to

Eq(n)oBm =
2 2
P 2ant p?—4
=drg® | —+ 5 + , (15
4 /3psin(2n/p) /P ] (18)
Ea(n)npm =
2 22 \p?—4
Cgpg |2 22nm p 1. @)
4 3sin(2r/p) P

It is obvious that the energy contributions of the
Skyrme and the potential terms are equal due to (14),
which is in agreement with the result obtained from
Derrick’s theorem. Equations (15) and (16) provide an
upper bound for the energies of baby skyrmions for any
value of p. To obtain the lowest upper bound, we must
minimize the right-hand sides of (15) and (16) with
respect to the parameter p. In what follows, we inves-
tigate various cases that correspond to different values
of the only nontrivial parameter of the model, a.

We first consider the case where a < 1, i.e., the
model parameter is very small. We observe that for
a = 0, ansatz (10) is a solution of the model for p = 2n,
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which implies that p — 2n as @ — 0. In accordance
with (14), the radius of the multiskyrmion configura-
tion then increases with n,

min\2

min) 2 (ra™ ) NBM X n’.

(rn"™)oBm < n3/2,

Moreover, the configuration consists of a ring of the
thickness § & 4r,, /p, and therefore

0OBM X 2n*1/4, ONBM O const.

We remark that the ring thickness is determined as the
difference of the values of ¢ inside (which is equal to
—1) and outside (which is equal to +1) the ring (i.e.,
d¢ = 2) divided by its derivative at r = r,, where
¢(rn) = 0; as a consequence of (10) ¢'(ry,) = p/2ry.

Magnetic solitons of this type have been observed
in [11, 12] as solutions of the Landau-Lifshitz equations
defining the dynamics of ferromagnets. (We note that
the static solutions of the baby Skyrme model and the
Landau—Lifshitz equations are related.) In general, ¢
given by (10) for p = 2n is a low-energy approximation
of multiskyrmion configurations (for n > 1), because
the corresponding energies given by (15) and (16) are
infinite for n = 1. Indeed, it is a matter of simple
algebra to show that

Eq(n =2)opm = 41g* (2 + an),
Eu(n=2)Nypum = 4ng? <2 + —> ;

8
33

)
8)7

Eu(n=3)Nypm = 4ng? <3 +an—
Eq(n=4)opm = 4ng’ (4 + aﬂ\/g) ;

E.(n=3)opm = 4ng’ (3 +ar——=

(17)
9

5
Ey(n=4)npm = 47g° (4 + an%) )

For large n, the energies take the asymptotic values

2
Eq(n)opm = 4mng® (1 +1/ £a> )
9 2
Eqn)nvpym =4mng” | 1+ ga .

We note that the energy of the OBM per unit skyrmion
number increases as n increases, while the energy of the
NBM per skyrmion decreases as n increases and be-
comes constant for large n. In fact, the energies given
by (17) are the upper bounds of the multiskyrmion en-
ergies because the exact profile function corresponding
to the minimum of the energy differs from that given
by (10).

(18)
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3. PERTURBATION THEORY FOR THE
MODEL PARAMETER

In this section, we obtain energy corrections up to
the second or higher orders with respect to the model
parameter a. The corresponding energies for the OMB
and NBM can be written as

Eu(n) = 47g*[f(p) + a h(p)],

where f(p) and h(p) can be evaluated from (15)
and (16), respectively. Letting p = 2n + € and expand-
ing energies (15) and (16) up to the second order in e,
we obtain f(p) = n + €2/8n, h(p) = ho + €h1, where

)~ Bhe.

(19)

hl = (271

In fact, the corresponding functions for the OBM and
the NBM are given by

hOOBM 2n ™
Dopw — JZL T A /2,
n 3 n sin(mw/n) /m*

(20)
Somr = = ctgln/n) = 3+ —
OBM = GBI/ = 5 T e 1
hol\’ﬂz\/gé /1—1/n2
n 3 n sin(w/n) ' (21)
™ 1
ﬂNBMZECtg(ﬂ'/n)—l-}—nQ_l.

Minimization of (19) with respect to e implies that

€™ = _4anh; = —2afho.

At large values of n, the parameters € and p = 2n + ¢
take the values

2n
e(n)opm ~ —an 3
2 (22)
2m/3—-1
e(n)nBm ~ 20\/;/T7
2n
p( )OBM~2n_an 3,
(23)

71'2/3—1
n

2
p( )NBM ~ 2n+2a\/;

For any a, the effective power p(n)opy becomes neg-
ative as n increases and the approach based on the
assumption that epgpys is small is not self-consistent
(also see the next section). On the contrary, for the
NBM, p(n)npm & 2n as n increases, which implies
that our consideration is self-consistent in this case. In
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terms of (19)—(21), the energy per skyrmion of the n-
skyrmion configuration takes the value

E(n) ho _ 2hgh”
drg’n o T 2
which gives

Ea(2

Ea2)osM _ 1 41 57084 — 0,034 42,
4?2

Ea@INBM _ 4\ {11070 — 0.2741 a2,
47 g22

EaBoBM _ 1 |1 61204 - 0.068 a2,
47g23

E,

EaBINM _ | 93084 — 0.0317 a2,
47g23

Eo(4

Ea@om _ 14 4 75694 — 0.191 a2,
4 g24 (25)

Eo(4

LJQVBM —1+0.8781a — 0.0084 a2,
drg?4

Ea)osM _ 1191994 0.30202,
47?5

E

Ea(GINM _ 4 | ss590— 0.003242,
47 g25

E,

Ea(6)om _ 4 9 06494 040402,
4726

E,

EalO)npM _ 1 084304 — 0.0015 a2,
47926

For large n, the energies in Eq. (24) take the asymp-
totic values

Eco(n)osm 2n 4, n
Le\t)oBM _ [ 4 2
drg®n toyg )
(26)
Ea(n)Nym _ 1+a\/§_a2(72/3—1)2
dmg3n 3 3nt ’

We note that the energies of the two models behave
differently when we consider terms of the second or-
der in the model parameter, i.e., the terms ~ a?. In-
deed, for the OBM, the contribution to the energy is
linearly proportional to the skyrmion number n, while
for the NBM, the contribution decreases rapidly as the
skyrmion number increases. This implies that the lin-
ear approximation in a is accurate for the NBM be-
cause the quadratic term becomes negligible for large
n. Numerical results obtained for different values of a
for the OBM and NBM are presented in Tables 1 and
2, respectively.

As we have noted previously, our method cannot
describe the one-skyrmion configuration because the
corresponding energies become infinite. But setting
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p = 2+ ¢ in (15) and (16) and expanding all terms
up to the third order in ¢ <« 1, we obtain
Ed(n = 1) =

= 4mg? ( + 2a\/g(1 - 75)) ,  (27)

where 7 takes different value for each of the two models,

3

YNBM = 3

2 &8
1=
+ 8 16

1
JoBM = 3 (28)

We note that with the terms of only up to the sec-
ond order in € considered, the corresponding energy in

Eq. (27) simplifies to
g2
3 )’
and the minimum occurs at
2/5
g1 =2 — .
=2(3%)

Finally, the minimum of (27) occurs at
a a

() [ (3

4
and corresponds to a shift of ¢; because higher-order
corrections in ¢ were considered in (27). The energy of
the one-skyrmion configuration is

2

B = drg? (1 + % +2a

a

4

I+ (29)

Ecl(nz 1) o
drg?
() ) o))

~ [1 +1.6114%/ (1 — 0.1605a%/3 (8 + 1))] . (30)

Equation (30) implies that for a single skyrmion, the
energy expansion in ¢ is proportional to a power of a
instead of being linearly proportional to a (which is the
case for the multiskyrmion configurations with n > 2),
while its convergence is worse than for multiskyrmions,
especially for the NBM. In fact, for a = 0.4213, the first
two terms in (30) are equal to 1.807, and the next-order
term decreases this value to 1.44, which gives an error
of 7% compared to the exact value 1.564 obtained from
numerical simulations. We note that our one-skyrmion
parameterization gives the same energy for both mod-
els if only the expansions up to the lowest order in a
are considered: the difference appears only in the term

~ ayy/e in (27).
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It is clear from the results in Tables 1 and 2 that
our approximate method gives the energy values that
are very close to the exact values obtained by numeri-
cal simulations, especially for the NBM. In particular,
the difference between the exact and the approximate
energies for a = 0.4213 is less than 0.5% for n > 6.
For smaller values of a, the agreement between ana-
lytical and numerical results is even better. In evident
agreement with (2), the energies of the NBM skyrmions
given in Table 2 are smaller than those of the OBM
skyrmions (see Table 1) at the same values of the model
parameters.

We note that for the OBM (when a is small), the
energy per skyrmion of a multiskyrmion configuration
with n > 2 is smaller compared to the single skyrmion
energy, and therefore, these configurations are bound
states, stable with respect to the decay into n indi-
vidual skyrmions. On the contrary, the ring-like OBM
multiskyrmions with even n (where n > 4) are unstable
with respect to the decay into two-skyrmion configura-
tions, while configurations with odd n (where n > 5)
are unstable with respect to the breakup into two- and
three-skyrmion configurations. In addition, Table 1
and Eq. (30) show that for any n # 1, there is an upper
limit for the model parameter, a < a.(n), above which
the ring-like n-skyrmion configuration can decay into n
individual skyrmions.

We now consider the case where n = 3 in more de-
tail. As can be observed from the energies in Eqs. (17)
and (30), the ring-like three-skyrmion configuration is
stable with respect to the decay into a single and a
two-skyrmion configuartion for @ < 0.77 because

8
Ei + By, — B3 ~ 1.611a"5 —ax (ﬁ - 1) ., (31)

and its difference becomes positive if and only if
3v/31.611

a< (w(8—3\/§)> ~ 0.77.

For the skyrmion configurations with n = 1,2, 3, cor-
rections to the energy of the higher order in a lead to
smaller critical values ac,(n).

Because our fields with axial symmetry (5) and (10)
correspond to ring-like solutions of the Euler-Lagrange
equations [1] for a = 0, they must also be solutions
of the corresponding equations as a — 0, i.e., when a
takes values in a small region close to zero. (In fact,
this region actually becomes narrower as n increases
because the expansion in a becomes less convergent in
this limit.) On the other hand, the lattice-like config-
urations (tripole for n = 3, quadrupole for n = 4, etc.)

(32)
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are solutions of the equations when a > a.,(n) for given
n [5, 10, 13]. But the transition from the ring-like con-
figuration to any other minimum energy configuration
is a phenomenon that has not been studied in much
detail and deserves further investigation.

Finally it should be stressed that in contrast to
the linear approximation, the quadratic approximation
given by (25) does not provide an upper bound for the
energy.

4. AWAY FROM THE NONLINEAR O(3)
o-MODEL

In the general case, for arbitrary values of the pa-
rameter a and the skyrmion number n, soliton solutions
can be obtained by numerically minimizing the energy
in Egs. (15) and (16) with respect to the variable p.
This leads to an upper bound for the corresponding
energies because the profile function is given by (10).

For large a at fixed n (or for large n at fixed a),
expansion (20) is not self-consistent for the OBM. But
some analytical results can also be obtained in this case
because for large a, Eq. (15) can be approximated by

N
—

The expansion of (33) up to second-order terms with
respect to p gives

2anm
sin(2m/p)

Ea(n)opum = 4rg’ (33)
‘ V3p

where
co = 2(m?)3 —1);

its minimization implies that

Pmin &V 3ce = 3.71

and the corresponding energy is therefore given by

1 n (%2)1/4 = 1.48 an.

Ea(n)opm 4 (35)
4rg? 3

We note that in contrast with the results obtained near
the nonlinear o-model, the parameter p is independent
of the skyrmion number n for large a. For a > n, the
skyrmion radius is proportional to the square root of
the skyrmion number, r, « n'/2, the skyrmion thick-
ness is given by

0 X 1y /pox n'/2,
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Table 1. Energy per unit skyrmion number (in 4mwg?) for different values of the parameter a for the OBM with
second-order corrections in a taken into account

n=1 n=>2 n=23 n=4 n=>5 n==6 n =
a = 0.001 1.0063 1.00157 1.0016 1.0017 1.0019 1.0021 1.0023
a=0.01 1.0384 1.0157 1.0161 1.0176 1.0191 1.0206 1.0234
a=0.0316 1.0933 1.0496 1.0508 1.0553 1.0601 1.0649 1.0737
a=0.1 1.2227 1.1567 1.1605 1.1737 1.1882 1.2025 1.2291
a=0.316 1.5113 1.4930 1.5026 1.5358 1.5638 1.6126 1.6835
apeq = 0.316 (num) 1.5647 1.4681 1.4901 1.5284 1.5692 1.6092 1.6832

a = 0.316 (num) 1.564 1.468 1.460 1.450 1.456 1.449 —

The last two lines contain the exact results obtained from the numerical simulations of the respective multi-
skyrmions with ring-like shapes (n > 2) and with shapes other than ring-like (n > 3) [10]. In the first case, we
have numerically solved the equations using the hedgehog ansatz (5).

Table 2.  Energy per unit skyrmion number for different values of the parameter a for the NBM
n=1 n=2 n=3 n=4 n=35 n==~6 n=2~8 n=12 | n=16
a=0.01 1.0363 | 1.0111 | 1.0093 | 1.0088 | 1.0085 | 1.0084 | 1.0083 | 1.0082 1.0082
a=0.0316 1.0851 | 1.0348 | 1.0294 | 1.0277 | 1.0270 | 1.0266 | 1.0262 1.0260 1.0259
a=0.1 1.1887 | 1.1083 | 1.0928 | 1.0877 | 1.0855 | 1.0843 | 1.0831 1.0823 1.0820
a = 0.316 1.3814 | 1.3238 | 1.2912 | 1.2768 | 1.2699 | 1.2662 | 1.2626 | 1.2602 1.2593
a=0.4213 1.44 1.4193 | 1.3865 | 1.3684 | 1.3597 | 1.3549 | 1.3501 1.3467 1.3455
a = 0.4213 (num) 1.564 1.405 1.371 1.358 1.352 1.349 1.3447 | 1.3407 1.3385

The last line contains the exact results determined by the numerical simulations [10] of multiskyrmions with
ring-like shapes for @ = 0.4213, which coincide with ours for n < 6.

and therefore, the ring-like structure of the configura-
tion is not very pronounced. Direct numerical mini-
mization of (33) with respect to p gives pmin = 4.5 and
the corresponding value of the energy is

Ea(n)osm
The energy obtained by solving the Euler-Lagrange
equation numerically is [§]

EL@) = 1.333 an.

4mg?

The profile function corresponding to this solution is
given by

P2 2
cosfzgﬁ(rn—r)+2r—2—1 for r<r,
and
f=0 for r>r,.

This solution is quite different from our parameteriza-
tion (10), and the 16 % difference between the exact
and the approximate solutions is therefore understand-
able.

To conclude, we recall that for the NBM, parame-
terization (10) works well for arbitrarily large n and its
accuracy increases with increasing n, as illustrated in
Table 2.

5. PROPERTIES OF THE SKYRMIONS: MEAN
SQUARE RADII, ENERGY DENSITY, AND
MOMENT OF INERTIA

Many properties of multiskyrmions can be deter-
mined using ansatz (10). For example, the mean square
radius of the n-skyrmion configuration takes the simple
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form with 0 &~ 2r,/n, see discussion after (16). For the
22 NBM, when n is large, (40) takes the constant value
/drr - (37)
= pem(2n/p)’

where 7, is given by (14) for the OBM and NBM. For
small a, it was shown in Sec. 2 that p = 2n, implying
that the mean square radius becomes

my/2(n? - 1)
sin(r/n)v3n’

my/2(n? — 1) .
nsin(w/n)v3’

which takes the respective values r, 8#/3\/5, /5, ...
and 2, 87/3, 275, ... forn =2,3.4,...

For the NBM, even for a sufficiently large value
of the parameter a, analytical formula (14) with the
power p taken from (23) gives the values of (r?), 5.
in a remarkably good agreement with those obtained
in numerical calculations. For example, the analytical
result for n = 3 is \/(r?)s = 2.987, in natural units of
the model 1/geu, to be compared with 2.872 obtained
numerically. This agreement improves with increasing
n, and we have \/(r?);2 ~ 10.92 for n = 12, to be
compared with 10.85 determined numerically. A simi-
lar agreement between analytical and numerical results
takes place for the mean square radius of the energy
distribution of multiskyrmions (the 3D case was con-
sidered in detail in [6]).

We note that the one-skyrmion configuration is
(still) a singular case because (37) is undefined for
n 1. But as we have shown earlier, by express-
ing p = 2 + ¢ and expanding (14) in &, we obtain

2 2¢/3, which leads to

Th=1 =

<T2>nOBM ~

(38)

2
35min

(") =2 (39)
for ™" given by (29). Our approximate method there-
fore shows that as the model parameter tends to zero,
the mean square radius of the one-skyrmion field tends
to infinity because

(") ~a

on the other hand, because

\/ﬁ<r2>OBM (n)a

the mean square radius is given by (39) for both models
in this case.

The average energy density per unit surface element
is defined as

(r’)nBu(n) =

(40)
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i.e., is independent of n. Equation (41) therefore rep-
resents the fundamental property of multiskyrmions of
this type. On the contrary, for the OBM with ring-like
configurations (which do not correspond to the min-
imum of the energy [5, 10]) taken into account, the
energy density increases with n as \/n for small values
of a.

Another quantity of physical significance determin-
ing the quantum corrections to the energy of skyrmions
is the moment of inertia; it has been considered for
two-dimensional models in [13]. To obtain the energy
quantum correction of the soliton, due to its rotation
around the axis perpendicular to the plane in which the
soliton is located, we must take the t-dependent ansatz
of the form

wt)],
wt)],

ny = sin f(7) cos[n(¢ —

ny = sin f(7) sin[n(¢ — (42)
ng = cos f (7).

The w dependence of the energy is then given by the

simple formula:

o

2

where ©;, the so-called moment of inertia, is given

by [13]

BTt = (43)

0;(n) = ¢*n® /d2r sin? £ (L+af'?). (44)
Using (10) and the relations
1/(1 7 (r/rn)? rdr _
4 1+ (r/rn)"]
0

_ 2mr2 p>2

p? sin(27r/p) 7 7 (45)
1 T r/r
G fa-ep e [ A
16 / [1+ ( r/rn

1
= = > 01

6p P

we find that at large values of n, the moment of inertia
simplifies to

2n  an
2n  anp
p

3r2 (46)

0s(n) ~ drg’nr? (
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which holds for any multiskyrmion configuration de-
scribed by ansatz (10), for both models. For small val-
ues of a, letting p = 2n and taking r2 given by (14),
we find that

2
Os(n)osm ~ 471'5/2117',21 (1—!— ay/%) ,
2 9 2
Os(n)NBMm &~ 4mg nr, (1 +a\/;> ;

which implies that for large n, the moment of inertia is

(47)

~
~

©,(n) =~ E.(n) r?

n?

(48)

in agreement with simple semiclassical arguments for
the thin massive ring.  Similar semiclassical for-
mulas have been obtained for the three-dimensional
skyrmions (see, e.g., Refs. [6, 14]) and the moment of
inertia was shown to be given by

O5 =2Mpry/3

for large baryon numbers; this expression is valid for a
classical spherical bubble with the mass concentrated
in its shell.

6. CONCLUSIONS

We have presented an analytical approach for deriv-
ing approximate expressions of skyrmion solutions in
the two-dimensional O(3) o-model. These approxima-
tions are very accurate for small values of the parameter
a that determines the weight of the Skyrme term and
the potential term in the Lagrangian. For other val-
ues of the model parameter, we have performed some
numerical calculations and then combined them with
further analytical work to investigate the binding and
other properties of multiskyrmion states.

Two models have been studied: the «old baby
Skyrme model» and the «new baby Skyrme model,
which differ from each other in the form of poten-
tials (2). For both models, the a dependence of the
energy of a single skyrmion differs from the cases where
topological number n > 2. For the OBM, when a
is small, the n 3 skyrmion configuration is stable
with respect to the decay into a single skyrmion and a
two-skyrmion configuration, while the ring-like multi-
skyrmion configurations with n > 4 are unstable with
respect to the breakup into two- and three-skyrmion
configurations. For the NBM, on the other hand,
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the hedgehog multiskyrmion configurations considered
in [10] and here describe bound states, because the en-
ergy per skyrmion decreases as the skyrmion number
increases. We note that the results obtained for the
NBM are similar to the ones obtained for the three-
dimensional model studied in [6]. In both cases, the
energy per skyrmion decreases as the skyrmion number
increases. The three-dimensional skyrmions obtained
using the rational map ansatz [15] for large n have the
form of a bubble with the energy and the baryon num-
ber concentrated in the shell. The thickness and the
energy density of the shell (which is analogous to the
thickness of the ring in the two-dimensional case) are
independent of the skyrmion number [6]. Similarly, in
this paper we have shown that for large n, the two-
dimensional baby skyrmions of the NBM correspond
to ring-like configurations with a constant thickness
and a constant energy density per unit surface of the
ring. The building material for these objects is a band
of matter with a constant thickness and the average
energy density per unit surface. The baby skyrmions
can therefore be obtained as dimensional reductions of
the three-dimensional skyrmions at large n; the three-
dimensional skyrmions can be derived from the two-
dimensional baby skyrmions as dimensional extensions.

It was concluded in [8] that the Casimir energy,
or quantum loop corrections, can destroy the binding
properties of the two-skyrmion bound states. The va-
lidity of this argument for the two- and three-skyrmion
bound states of the NBM would be worth investigating.
Another interesting problem is to determine to what ex-
tent the region of sufficiently small a is of importance
from the standpoint of physics. For large a, the method
overestimates the skyrmion masses for the OBM but is
accurate for the NBM, especially for large n.

The existence of bound states of the three-di-
mensional skyrmions has rich phenomenological
consequences in elementary particles and nuclear
physics. It suggests possible existence of multibaryons
with nontrivial flavor, strangeness, charm, or beauty;
more details are given in [14] and references therein.
Similarly, the existence of bound states of two-dimen-
sional baby skyrmions with universal properties in
the NBM, which describes anisotropic systems, can
also have some consequences for the condensed state
physics, which would be worth investigating in detail.

V. B. K. isindebted to G. Holzwarth for drawing his
attention to the paper [8]; his work is supported by the
RFBR (grant 01-02-16615). T. I. thanks the Nuffield
Foundation for a newly appointed lecturer award.
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