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FRACTAL DIFFUSION IN SMOOTH DYNAMICAL SYSTEMSWITH VIRTUAL INVARIANT CURVESB. V. Chirikov *, V. V. Ve
heslavov **Budker Institute of Nu
lear Physi
s630090, Novosibirsk, RussiaSubmitted 5 April 2002Preliminary results of extensive numeri
al experiments with a family of simple models spe
i�ed by the smooth
anoni
al strongly 
haoti
 2D map with global virtual invariant 
urves are presented. We fo
us on the statisti
sof the di�usion rate D of individual traje
tories for various �xed values of the model perturbation parameters Kand d. Our previous 
onje
ture on the fra
tal statisti
s determined by the 
riti
al stru
ture of both the phasespa
e and the motion is 
on�rmed and studied in some detail. In parti
ular, we �nd additional 
hara
teristi
sof what we earlier termed the virtual invariant 
urve di�usion suppression, whi
h is related to a new very spe-
i�
 type of the 
riti
al stru
ture. A surprising example of ergodi
 motion with a �hidden� 
riti
al stru
turestrongly a�e
ting the di�usion rate was also en
ountered. At a weak perturbation (K � 1), we dis
overed avery pe
uliar di�usion regime with the di�usion rate D = K2=3 as in the opposite limit of a strong (K � 1)un
orrelated perturbation, but in 
ontrast to the latter, the new regime involves strong 
orrelations and existsfor a very short time only. We have no de�nite explanation of su
h a 
ontroversial behavior.PACS: 05.45.A
1. INTRODUCTION: VIRTUAL INVARIANTCURVESIn two-dimensional map (2.1) that we study here,the di�usion 
ru
ially depends on the global invariant
urves (GICs) that 
ut the 2D phase spa
e of the mo-tion (a 
ylinder, see the next se
tion). Even a singlesu
h 
urve is su�
ient to 
ompletely blo
k the globaldi�usion in the a
tion variable along the 
ylinder. Asis well known by now, the existen
e of GICs dependsnot only on the perturbation strength but also on itssmoothness. It is 
onvenient to 
hara
terize the latterby the temporal Fourier spe
trum of the perturbation.For an analyti
al perturbation, the Fourier amplitudesde
ay exponentially fast. In this 
ase, the global di�u-sion sets up if the perturbation � & �
r ex
eeds some
riti
al value. Otherwise, the 
haos remains lo
alizedwithin relatively narrow 
haoti
 layers of nonlinear res-onan
es. As a result, the global di�usion is either 
om-pletely blo
ked by GICs or the rate of the di�usion aswell as the measure of its domain de
ay exponentially*E-mail: 
hirikov�inp.nsk.su**E-mail: ve
heslavov�inp.nsk.su

in the parameter 1=� as � ! 0 (the so-
alled Arnolddi�usion, see, e.g., [1�3℄ for a general review).By de�nition, the Hamiltonian of a smooth systemhas the power-law Fourier spe
trum with a 
ertain ex-ponent � + 1 (see, e.g., [4℄ and referen
es therein). Inthis 
ase, the global di�usion is always blo
ked for somesu�
iently small perturbation strength � < �
r(�) ifthe smoothness parameter � > �
r ex
eeds the 
riti-
al value. This is similar to the 
ase of an analyti
alHamiltonian ex
ept that the 
riti
al perturbation nowdepends on the Hamiltonian smoothness (�
r(�) ! 0as � ! �
r).To the best of our knowledge, the strongest rigor-ous result is that �
r < 4 for a 2D map as in this paper(see [5℄). But a simple physi
al 
onsideration [4℄ leadsto an even smaller value �
r = 3, whi
h is still to be
on�rmed somehow, theoreti
ally or numeri
ally. Inany event, the smoothness � = 2 of our model here iseven less.Until re
ently, the behavior of dynami
al systemsin the opposite 
ase � < �
r of a poor smoothnessremained rather vague. Even though most of the nu-meri
al data seemed to 
on�rm the simplest behaviorof some universal global di�usion (see, e.g., [6℄), several647



B. V. Chirikov, V. V. Ve
heslavov ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002
ounterexamples were also observed (see, e.g., [7, 8℄).In these 
ounterexamples, some traje
tories remainedwithin a 
ertain restri
ted part of the phase spa
e fora su�
iently long 
omputation time. No 
lear expla-nation of these strange events has yet been given.Meanwhile, about 20 years ago (!) a number ofmathemati
al studies revealed various possibilities forthe existen
e of GICs in smooth systems with � < �
r(see, e.g., [8�10℄). To us, the most 
omprehensive anal-ysis of this problem was given by Bullett [9℄, who rigor-ously proved a strange survival of in�nitely many GICsamid a strong lo
al 
haos. Surprisingly, all these inter-esting results remain essentially unknown, at least tophysi
ists. Apparently, this is be
ause the above math-emati
al papers were restri
ted (perfor
e!) to what
ould be done rigorously, that is, to the invariant 
urvesonly, without any attempt to analyze very interestingand important transport pro
esses su
h as di�usion.This is still within rea
h of the physi
al analysis and nu-meri
al (or laboratory) experiments only. As a result,only after the re
ent a

idental redis
overy of GICs in
haos by Ovsyannikov [11℄ (whi
h is still unpublished,see [12, 13℄ for the full text of Ovsyannikov's theorem),intense physi
al studies of this interesting phenomenonhave begun [12�16℄.Interestingly, the authors of both [9℄ and [11℄ usedexa
tly the same model, in whi
h a strange lo
ked-in traje
tory was observed mu
h earlier [7℄. Appar-ently, this is be
ause this model (a parti
ular 
ase ofour model with the parameter d = 1=2, see Se
. 2) isthe simplest one possessing those 
urious GICs (see [15℄for dis
ussion). Perhaps the main surprise was that theGICs in
lude the separatri
es of nonlinear resonan
es,whi
h have always been 
onsidered as ones destroyed�rst by almost any perturbation. The prin
ipal di�er-en
e is that the invariant 
urves, separatri
es in
luding,now exist for spe
ial values of the system parametersonly (e.g., K = Km).Although there are in�nitely many su
h spe
ial val-ues of the parameter and in�nitely many GICs su
hthat a single GIC 
ompletely blo
ks the global di�u-sion for ea
h of the parameter values, the probabilityof the global di�usion (that is, the measure of su
h Kvalues) is apparently zero. Therefore, a prin
ipal ques-tion to be answered is: what would be the behavior ofthat system for an arbitrary value of K? In [16℄, we
onje
tured that even though the set of Km is not ev-erywhere dense [9℄ in general, the density of this set israther high, and we 
an therefore expe
t some 
hange(presumably suppression) of the di�usion for every Kvalue 
ompared to the �usual� (familiar) dynami
alsystem. In other words, we hypothesized that the stru
-

ture of the phase spa
e and of the motion therein 
anbe 
hanged by the formation of GIC at a 
lose K valueeven if no GICs o

ur for almost all K. This is why wenow 
all su
h a neighbor-K invariant 
urve the virtualone (VIC) with respe
t to any K [16℄.Preliminary numeri
al experiments presentedin [16℄ did 
on�rm our 
onje
ture. These experimentswere done by the prompt 
omputation of the averagedi�usion rate D(K) as a fun
tion of the parameter Kin the domain with GICs, real or virtual ones. Theexperiments revealed a very strong suppression of thedi�usion, up to many orders of magnitude, restri
tedonly by the 
omputation time. But even more in-terestingly, a very 
ompli
ated (apparently fra
tal)stru
ture of the dependen
e D(K) was revealed. Thisseems to be a result of a very 
ompli
ated stru
tureof the model phase spa
e itself. Preliminarily, it lookslike the so-
alled 
riti
al stru
ture (see, e.g., [4℄), buta rather spe
i�
 one due to a forest of VICs.In the present paper, we begin the study of thisseemingly new type of the 
riti
al stru
ture. Spe
i�-
ally, we start with the investigation of the statisti
alproperties of di�uson as one of the 
hara
teristi
 pro-
esses in 
haoti
 motion.2. THE MODEL: THE SAME AGAINFor the reader's 
onvenien
e, we here repeat thedes
ription of the model in [15, 16℄. In the 
anoni
alvariables given by the a
tion (momentum) p and thephase x, the model is spe
i�ed by the mapp = p+Kf(x); x = x+ p mod 1; (2:1)whereK = " > 0 is the perturbation strength (not ne
-essarily weak) and the �for
e� f(x) is the antisymmet-ri
 pie
ewise linear �saw� of period 1 (f(�y) = �f(y),y = x � 1=2). The phase spa
e of the model is the
ylinder 0 < x < 1, �1 < p < +1.As in [15, 16℄, we a
tually 
onsider a family of mapswith another parameter d (see Fig. 1 in [15℄) and thefor
e f(x) =8>><>>: 2x1� d ; jxj � 1� d2 ;�2yd ; jyj � d2 ; (2:2)where y = x � 1=2 and the se
ond parameter d(0 � d � 1) is the distan
e between the two �teeth� ofthe saw jf(x)j = 1 at the points y = y� = �d=2. Themost studied parti
ular 
ase of the family 
orrespondsto d = 1=2, where the saw f(x) with two teeth is sym-metri
. In the limit d = 0, the two teeth merge into648
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�Fig. 1. The di�usion relaxation D�(�) == D(�)=D1 ! 1 in model (2.2) with the parameterd = 0 (without invariant 
urves) is presented as afun
tion of the dimensionless time � , Eq. (3.5), forthe two values K = 0:01 (
ir
les) and K = 3 � 10�5(
rosses). Two smooth solid lines show empiri
alrelation (3.5) with two �tting parameters 
 = 1and 
 = 4. Dashed lines are varian
es the VM(�)in Eq. (3.2), and dotted lines show the varian
esVN (�) in Eq. (3.8). In the lower part, the s
aling inEq. (3.6) is presented redu
ed by the fa
tor 10 toavoid overlapping with other data. The full volume ofempiri
al data is J =M �N = 104 � 10 = 105one and all the invariant 
urves are destroyed. This wasobserved and explained in [15℄ for K > 0. In the oppo-site 
ase where K < 0 (whi
h is equivalent to K > 0,d = 1), the dynami
s of the model is 
ompletely di�er-ent, and we do not 
onsider it in this paper (see [15℄for a brief dis
ussion). In our 2D map (2.1), the GICsupports rotation of the phase x around the 
ylinder,whi
h bars any motion in p over GICs. In 
ontrast tothis, a lo
al invariant 
urve (LIC) surrounding, e.g.,the domain of regular motion (see [4℄ and Se
. 5 below)
orresponds to os
illation in the phase x, whi
h allowsother traje
tories to bypass that obsta
le.The GICs, separatri
es in
luding, exist in the en-tire interval 0 < d < 1, but for spe
ial K values only[9, 15, 16℄. In parti
ular, the invariant 
urves are 
om-pletely absent [9℄ for su�
iently large parameter valuesK > KB(d) = 2d21 + d ; 0 < d < 1: (2:3)If K � KB (see below), the physi
al quantity ofthe main interest for us, the di�usion rate D, 
an beapproximately 
al
ulated from the Fourier expansionof for
e (2.2) (see [16℄ for the details)

f(x) =Xn�1 fnn� sin(2�nx); (2:4)where fn = � 2�2 
os(n�) sin(n�d)d(1� d) ; � = 2: (2:5)In parti
ular, in the limit d = 0,fn = � 2� 
os(n�); � = 1; (2:6)the smoothness parameter � be
omes less by one butboth values are less than the 
riti
al one �
r = 3.The di�usion rate and other quantities are 
al
u-lated using the standard analysis of nonlinear resonan-
es and their intera
tion (overlap) (see, e.g., [1�3; 16℄).The 
al
ulation is espe
ially simple if we negle
t thevariation of the 
oe�
ients jfnj � 
onst in (2.4). Thissimpli�
ation is exa
t for d = 0, see (2.6), and remainsreasonably a

urate [16℄ forK & 3KB = 6d21 + d : (2:7)The di�usion rate is then approximately given by a verysimple standard relationD(K) = (�p)2tt � 256�5 K5=2 � 0:57K5=2; (2:8)where t is the motion time in map iterations and theparameter K � 1 is assumed to be su�
ienly small.The latter expression in (2.8), whi
h we use below, isthe result of extensive numeri
al experiments in [6℄, also
on�rmed in [16℄ for K . 0:1 (see [16℄ and Se
. 3).We note that the dependen
e D(K) / K5=2 is dif-ferent from the usual, or better to say, the simplest oneD(K) / K2. This is explained by the dynami
al 
or-relation of motion that is determined by the frequen
yof the phase os
illation on nonlinear resonan
es,
n =r2�Kfnn��1 � 2pK � �n(K)� 1; (2:9)where �n stands for the Lyapunov exponent 
harater-izing the lo
al exponential instability of the motion,whi
h is the main 
riterion for dynami
al 
haos. Wenote that for � = 1, both 
n and �n are independentof the Fourier harmoni
 number n. The exa
t value ofthe Lyapunov exponent in the limit d = 0 is given by� = ln (1 +K +p2K +K2) � p2K � 1: (2:10)The latter expression is the approximation for smallK (
f. Eq. (2.9)) whi
h is su�
iently good within the649
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ability region of Eq. (2.8) (K . 0:1) with thea

ura
y � 1%. Be
ause the time is dis
rete in ourmodel (the number of the map iterations), both 
or-relation 
hara
teristi
s, Eqs. (2.9) and (2.10), must besmall, whi
h implies the above restri
tion on the pa-rameter K.In the opposite limit K � 1, the 
orrelation be-tween su

essive x values is negligible, and we arrive atthe �usual� relation for the di�usion rate,D(K) = K2 1Z0 f2(x) dx = K23 ; (2:11)whi
h is independent of the parameter d. In the in-termediate region (K � 1), the 
orrelation 
auses thede
aying os
illation (see [6℄), whi
h is beyond the s
opeof the present paper.3. DIFFUSION WITHOUT ANY INVARIANTCURVES: AVERAGES AND MOMENTSAs mentioned above, there are no invariant 
urvesfor d = 0. Moreover, the motion is ergodi
, whi
himplies the simplest stru
ture of the phase spa
e (
f.Se
. 4 below). Therefore, this parti
ular 
ase is notof the main interest to us by itself. It is neverthelessa good introdu
tion to our 
entral problem 
onsideredin Se
. 6 below. A similar approa
h was taken in ourprevious paper [16℄.We �rst 
onsider the time dependen
e of the di�u-sion rate D(K; t). The semi
olon instead of the usual
omma is intended to emphasize that this time depen-den
e is not a real physi
al 
ontribution to the di�usionbut rather a 
ombination of two di�erent pro
esses: theproper di�usion via a

umulation of random perturba-tion e�e
ts and a stationary regular os
illation of thedi�using variable (p in our 
ase), whi
h is a 
ertain typeof the ba
kground for the di�usion. This phenomenon
an be roughly represented by the simple relationD(K; t) � D1(K) + B(K)t ; (3:1)where B(K) is some fun
tion of the perturbation (see,e.g., [16℄ and Eq. (3.5) below). In other words, in many
ases, the present studies in
luding, the nondi�usingstationary part 
an be separated from the di�usingpart, thereby 
onsiderably simplifying the analysis ofthis 
ompli
ated pro
ess. All this 
an be des
ribed, of
ourse, via the standard method of the 
orrelation ofperturbation. But this would lead to a mu
h more intri-
ate theoreti
al relations, and in addition, to mu
h lessinformation on the di�usion dynami
s (see, e.g., [6℄).

An example of the di�usion kineti
s is presented inFig. 1. The 
omputation was done as follows. Thenumber of traje
toriesM � 1 with random initial 
on-ditions homogeneously distributed within the unit areaof the phase 
ylinder (0 � x0 < 1, 0 � p0 < 1) wererun for a su�
iently long time with su

essive outputsat 
ertain intermediate moments of time t as shown inFig. 1. We re
all that t is measured in the numberof the map iterations. Ea
h output in
ludes the di�u-sion rate hDi averaged over all M traje
tories and thedimensionless varian
eVM = hD2i � hDi22hDi2 : (3:2)For the Gaussian distribution of the a
tion p, thisvarian
e must be equal to unity. This is indeed the
ase for a su�
iently long motion time when the mea-sured di�usion rate rea
hes its asymptoti
 value D1 inEq. (3.1). A quite di�erent dependen
e VM (t) for theprevious smaller time is not surprising (nor is it veryinteresting) be
auseD(t) then depends on a 
ompletelydi�erent physi
al pro
ess that must be passed over.A real surprise was the very beginning of the di�u-sion, the plateau in Fig. 1. This looks as a real di�usionunlike the following part of the stationary os
illation.Moreover, the di�usion rate D0 = K2=3 on the plateauis the maximum one, Eq. (2.11), as forK � 1. Anotherinteresting observation is the duration of this strangedi�usion, t0 � 1� � 1p2K ; (3:3)whi
h is 
lose to the inverse Lyapunov exponent, therise time of the lo
al exponential instability of the un-derlying 
haoti
 motion. The last but not the least
urious property is the fast in
rease of varian
e (3.2),VM (t) � t3 ; 2 � t . t0; (3:4)as shown in Fig. 1. This is qualitatively di�erent fromthe behavior of the same di�usion rate for K � 1 withthe usual varian
e VM � 1. The dynami
al me
hanismof this strange transitional di�usion is not 
ompletely
lear and requires further studies. Apparently, it issomehow related to the main 
orrelation (2.9) on dy-nami
al s
ale (3.3). Although the initial �di�usion� isrelatively fast, it lasts for a short time only, and therelative 
hange of the initial distribution of traje
toriesj�pjj�pj0 �rD0� � K3=4 � 1is therefore negligible for K � 1 unless the initial dis-tribution j�pj0 . K3=4 is very narrow. But in the lat-ter 
ase, the dependen
e D(t) is very sensitive to the650
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al systems : : :form of the initial distribution in p, as several our pre-liminary numeri
al experiments reveal. The varian
eof D(t) is espe
ially strong for small t � t0 in the re-gion of that mysterious plateau but eventually de
aysas t!1, with the di�usion approa
hing its limit valueD1. Apparently, this is related to a 
ompli
ated �nestru
ture of the phase spa
e and/or of the motion 
or-relations. This interesting question 
ertainly deservesfurther studies but in the present paper, we 
onsiderthe simplest, homogeneous distribution of the traje
-tory initial 
onditions on the phase 
ylinder.In this parti
ular 
ase, a very simple and surpri-singly a

urate empiri
al relation for the di�usion timedependen
e has been found starting from the qualita-tive pi
ture in (3.1). It is given byD(t) � D0 + � D1(1 + �
)1=
 ; � = 
� t; (3:5)where � is the dimensionless time with an empiri
al �t-ting parameter 
 that is very 
lose to one. The se
ondempiri
al parameter 
 � 4 is less de�nite, but it a�e
tsthe turn of the dependen
e D(t) at � � 1 only. Thisrelaxation of the di�usion rate has two time s
ales: theplateau �pl = 1 or tpl = 1
� � 1p2K � 1and the relaxation�R = D0D1 � 1pK � 1 or tR � 1K ;whi
h is mu
h longer. Interestingly, the usual di�usionspreading of a very narrow initial p distribution on therelaxation time s
alej�pj2R = D1tR = D1(D0=D1)
� = D0
� = j�pj2plis exa
tly equal to the spreading on the plateau. Hen
e,the full relaxation spreading is twi
e as large, whi
h isalso dire
tly seen from empiri
al relation (3.5),j�pj2R = D(�R) �R
� � D0 + �RD1(1 + �
R)1=
 �R
� � K3=2 � 1;and whi
h is still mu
h less than the unit p-period.In Fig. 1, empiri
al relation (3.5) is presented and
ompared with the numeri
al data in the dimension-less variables � and D� = D=D1, where D1 is theasymptoti
 (�true�) di�usion rate (2.8). In these vari-ables, the 
urves with various K values are similar and
onverge in the limit as � !1.

Another interesting s
aling 
an be done as follows.We 
al
ulate the di�usion rate D1(D(�)) = Dth fromEq. (3.5) and plot its ratio to the true rate in Eq. (2.8),DthD1 � D(�) (1 + �
)1=
 �D0�D1 � 1: (3:6)Then, within the a

ura
y of s
aling (3.5) and of �u
-tuations, this ratio must always be 
lose to unity. Thisis indeed the 
ase ex
ept on the plateau (t . t0), wherethe rate D(�) is almost independent of � (see Fig. 1).The next important statisti
al property 
onsists in�u
tuations of the di�usion rate. One 
hara
teristi
of these �u
tuations is the dispersion of traje
tories,whi
h is 
hara
terized by the varian
e in Eq. (3.2). Ifall the traje
tories were statisti
ally independent, thedispersion of the mean di�usion rate would be��hDihDi �2 = 2VMM � 1 : (3:7)By 
onstru
tion, the traje
tories are indeed indepen-dent with respe
t to their initial 
onditions but notne
essarily with respe
t to the 
orresponding di�usionrate. To verify this, we repeated the 
omputation ofthe di�usion N times with new and independent ini-tial 
onditions and then 
al
ulated the se
ond (new)dimensionless varian
e for the average di�usion rate,VN = � hhDi2iNhhDii2N � 1�M � 12VM � 1: (3:8)Again, if Eq. (3.7) is valid, the varian
e VN must be
lose to one.The time dependen
e of both varian
es, VM (t) andVN (t), is shown in Fig. 1. Remarkably, their behav-ior is qualitatively di�erent. The �rst varian
e VM (t)depends on the distribution fun
tion of p in the en-semble of traje
tories, while the se
ond varian
e VN (t)is a�e
ted by the statisti
al dependen
e (or indepen-den
e) among traje
tories for any distribution fun
tion.The results of our numeri
al experiments presented inFig. 1 
learly demonstrate that the distribution in pqui
kly deviates from the Gaussian one during the dif-fusion on the plateau and returns only in the limit ast ! 1, when the di�usion rate D ! D1 approa
hesthe asymptoti
 value without any nondi�using part.Unlike this, the traje
tories remain statisti
ally inde-pendent during the entire pro
ess of the di�usion re-laxation. We return to this interesting point in Se
. 7.We now 
onsider the most informative statisti
al
hara
teristi
, the distribution fun
tion f(D) of the dif-fusion rate.651
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heslavov ÆÝÒÔ, òîì 122, âûï. 3 (9), 20024. DIFFUSION WITHOUT ANY INVARIANTCURVES: THE DISTRIBUTION FUNCTIONIn the main part of our paper (Se
. 6), we are pri-marily interested in the distribution tail D ! 0 of avery low di�usion rate. The shape of this tail is knownto be an important 
hara
teristi
 of the 
riti
al stru
-ture of the motion (see, e.g., [4℄). First indi
ations ofsu
h a stru
ture in the presen
e of virtual invariant
urves were observed in [16℄. Here, we 
ontinue thesestudies.Be
ause the statisti
s of the far tail is always ratherpoor, we follow [16℄ in using a spe
ial version of theintegral distributionF (D) = DZ0 f(D0)dD0 � jJ ; (4:1)the so-
alled �rank-ordering statisti
s of extremeevents� (see, e.g., [17℄). The following simple orderingof the D(j) values (events) of the di�usion rate issu�
ient for this: D(j + 1) > D(j), j = 1; 2; : : : ; J .The integral probability is then approximately givenby the ratio j=J , as shown in Eq. (4.1).In 
omputation, we typi
ally ran M traje
tories Ntimes (see Se
. 3), and the maximum number of theevents therefore rea
hed J = M �N = 104� 10 = 105.To obtain the lowest possible D values and simulta-neously minimize a rather big output, we ordered allthe 
omputed events but printed only J0 of those, withJ0 � J , su
h that some (the smallest) Dj were ob-tained �rst, while the rest were printed in a logarithmi
s
ale. An example of su
h a distribution is presentedin Fig. 2 for K = 0:001 in the variables D� = D=hDiand F (D�) = j=J , where hDi is some average di�usionrate (see below). The upper distribution 
orrespondsto a rather long motion time t = 104 � 1=K, withthe mean di�usion rate already very 
lose to the limitD1. For the lower distribution, t = 10 is very shortand 
orresponds to the plateau.At least in the former 
ase, where the p-distributionis Gaussian (see Se
. 3), the distributionf(D) = ���(�) D��1 e��D (4:2)is the so-
alled Pearson �-distribution with the two mo-mentshDi = ��; (�D)2 = hD2i � hDi2 = ��2 ; (4:3)whi
h are the mean and the varian
e, respe
tively. For

the Gaussian p-distribution, the redu
ed varian
e inEq. (3.2) be
omes VM = 1, and therefore,��DhDi�2 = 1� = 2 (4:4)and � = 1=2 is independent of �. Moreover, if we in-trodu
e the dimensionless di�usion rateD ! D� = DD1 (4:5)with the average hD�i = 1, we also obtain fromEq. (4.3) that � = � = 1=2. The new distributionthen be
omesf(D�) = (D�)�1=2 exp(�D�=2)p2�and F (D�) = D�Z0 f(D0)dD0 !r 2� D�; (4:6)where the latter expression gives the asymptoti
 be-havior as D� ! 0 that we need. This asymptoti
 formis in a very good agreement with the empiri
al datain Fig. 2 even at D� � 0:1 (!). For very small D�,the a

ura
y of the agreement is limited by the �u
tu-ations 
aused by several remaining points. The small-est value D� = 8:3 � 10�11 
orresponds to the estimateD�min � 1=J2 = 10�10.Be
ause the distribution f(D�) in (4.6) is also Gaus-sian in pD�, the integral F (D�) admits a very simpleapproximation found in [18℄,F (D�) � 8>>><>>>: 1� exp (�D�=2)pD� + 1 ; D� > 1=2;r2D�� ; D� < 1=2: (4:6a)The relative a

ura
y j�F=F j < 0:05 of this approx-imation is better than 5% in the entire range of F .A
tually, the a

ura
y is even mu
h better ex
ept in anarrow interval at D� � 1=2.Thus, the upper distribution in Fig. 2, whi
h de-s
ribes the real di�usion at a su�
iently long motiontime, is in a good agreement with the available the-ory. This is no longer the 
ase for the lower distribu-tion on the plateau. In itself, this is not a surprise,be
ause 
ontrary to the previous 
ase, the measureddi�usion rate is mainly determined by nondi�usive pro-
esses. But a very interesting feature of this nondi�u-sive distribution is that the exponent of the power-lawtail remains exa
tly the same as if the p-distribution652
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Fig. 2. The distribution fun
tion F , Eq. (4.1), of the redu
ed di�usion rate D� (Eq. (4.5)) in model (2.2) without invari-ant 
urves (d = 0). The thi
k dashed straight line represents asymptoti
 behavior (4.6) of the integrated D distribution(4.2) for the Gaussian p-statisti
s. Two lower wiggly lines 
orrespond to large deviations from the Gaussian statisti
s:D� = 42 (K = 10�3) and 461 (K = 3�10�5) (see Insert). A group of 10 D distributions in a large interval (10 � D� � 461)are brought together using empiri
al relation (4.9). Insert: the shift fa
tor RD vs the deviation D� (Eq. (4.8)) for K = 10�3(
ir
les) and 3 � 10�5 (
rosses); the straight line is empiri
al relation (4.7)were a Gaussian one. The simplest explanation, quiteplausible to us, is that the far tail still represents a dis-tribution that is a part of the entire distribution a

ord-ing to our original pi
ture expressed by estimate (3.1).One immediate inferen
e is then the de
rease of the tailprobability if we use the same variable D� = D=D1.This is indeed the 
ase a

ording to the data in Fig. 2!A more di�
ult problem is the quantitative es-timate of the distribution shift for the motion timet . 1=K with the ratio hD�i = hD(t)i=D1 > 1. Thisshift 
an be 
hara
terized either via the probability de-
rease by RF times for a �xed D� or via the in
rease ofD� itself by RD times for a �xed probability. We notethat RD = R2F on the tail be
ause of the square-rootdependen
e in Eq. (4.6). The 
hara
teristi
 RD seemsmore preferable to us be
ause it des
ribes the shift notonly of the tail but also (qualitatively) of the entiredistribution F (D�).Having analyzed the data, we found the empiri
alrelation for the tail shift,RD(D�) � Da� ; (4:7)

where the new di�usion ratio isD�(�) � D0�D1 + 1 (4:8)and the �tted exponent is a = 0:45.The philosophy behind this relation is as follows.We start with our original pi
ture of a 
ombined di�u-sive/nondi�usive pro
ess des
ribed by Eq. (3.1), whi
his almost our �nal 
hoi
e (4.8). But at the beginning,we seemed to improve the original relation by in
lud-ing our surprising dis
overy, the plateau. Spe
i�
ally,we tried to use Eq. (3.5), whi
h is in a good agree-ment with the empiri
al data, for the dependen
e D(t)(see Fig. 1). We also found that it partly des
ribes thedistribution F (D), ex
ept on that mysterious plateau!Our �nal step was then to return from (3.5) to a versionof (3.1) in form (4.8).Although it may have seemed strange, this did workwith a reasonable a

ura
y, as the insert in Fig. 2demonstrates. The question �why?� is still to be an-swered in further studies. This is a
tually a serious653
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heslavov ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002general problem of the dynami
al me
hanism underly-ing the plateau formation and statisti
s.Our empiri
al relation (4.7) 
an be represented dif-ferently. Namely, instead of des
ribing the a
tual dis-tribution tail shifted with respe
t to the asymptoti
form in Eq. (4.6), we 
an introdu
e the s
aled di�usionrate D ! DRD ;whi
h implies that D� ! D�RD : (4:9)The result is shown in Fig. 2 as a beam of 10 s
aleddistributions s
attered around asymptoti
 line (4.6).5. DIFFUSION AMID VIRTUAL INVARIANTCURVES: THE LYAPUNOV EXPONENTSIn the previous se
tions, we 
onsidered a very par-ti
ular and most simple limiting 
ase of our model (2.2)with the parameter d = 0. In this 
ase, the motion isergodi
 [6℄, whi
h greatly simpli�es the problem un-der 
onsideration. Nevertheless, we obtained a numberof new results that form a �rm foundation for furtherstudies.The most important new feature of the motion ford > 0 is the so-
alled divided phase spa
e of the sys-tem, that is, a mixture of both 
haoti
 and regular
omponents of the motion. This is a typi
al stru
tureof dynami
al systems with several degrees of freedom(see, e.g., [4℄).First of all, we must eliminate the regular traje
-tories from further analysis of the di�usion statisti
s.The standard well-known method to a
hieve this 
on-sists in simultaneously 
omputing for ea
h traje
torythe so-
alled Lyapunov exponent �, whi
h is the rateof the lo
al exponential instability of the motion (see,e.g., [1�3℄ and referen
es therein). A two-dimensional
anoni
al (Hamiltonian) map su
h as our model (2.2)involves two Lyapunov exponents whose sum is alwayszero, �1 + �2 = 0. For a 
haoti
 traje
tory, one ex-ponent, e.g., �1 = �+ > 0 is positive and the otheris negative, �2 = �� < 0. As a result, in a

ordan
ewith the standard de�nition of the Lyapunov exponentin the limit as t ! 1, any tangent ve
tor (dx; dp) ofthe linearized motion approa
hes the eigenve
tor 
or-responding to �+ > 0.A simple well-known pro
edure for 
omputing �+that we also use in the present work is as fol-lows. For ea
h of M traje
tories with random ini-tial 
onditions x0 and p0, we 
hose the tangent ve
tor
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j�jORDER CHAOS
Fig. 3. Examples of the distribution fun
tion F (�) oftype (4.1) with the Lyapunov exponent in model (2.2)for d = 0, M =M 0 = 80, t = 104 (the rightmost stepF (�), ergodi
 motion) and for d = 1=2, M = 104,M 0 = 1000, t = 104, 105 (nonergodi
 motion); in all
ases, K = 0:45. The horizontal line indi
ates thetotal share Areg � 0:318 of the motion regular 
ompo-nents. The arrow at � = 10�4 shows the lower borderof 
haoti
 traje
tories 
hosen for further analysis (fort = 105)(dx; dp) of a random dire
tion and the unit modulus,d�2 = dx2 + dp2 = 1. Both maps, the main one andthe one linearized with respe
t to the main referen
etraje
tory x(t; x0; p0), p(t; x0; p0), were then run simul-taneously during some time t. The 
urrent �(t) was�nally 
al
ulated from the standard relation�(t) = hln �(t)it ; (5:1)where the bra
kets denote averaging over M traje
to-ries. In 
ontrast to the formal mathemati
al de�nitionof � in the limit as t ! 1, the Lyapunov exponent�(t) is always time dependent, perfor
e, in numeri
alexperiments.In Fig. 3, several typi
al examples of the � distri-bution are depi
ted for the number of events in (4.1)J = M equal to that of traje
tories and with a smallernumber of printed points J0 = M 0 � M ex
ept in the
ase where d = 0. The simplest distribution is for theergodi
 motion (d = 0). It has the form of an almostverti
al step, whose derivative dF=d� � 104 is a verynarrow Æ fun
tion. We note that the regular 
hain ofpoints along the F axis has no spe
ial physi
al meaningbut simply re�e
ts a parti
ular type of the distributiona

epted, F (�j) = j=J with integer j, see (4.1). The654
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tal di�usion in smooth dynami
al systems : : :mean value of � depends only on K (see Eq. (2.10))but not on the initial 
onditions. This example inFig. 3 shows the empiri
al/theoreti
al ratio, whi
h isvery 
lose to unity, as expe
ted.The other two examples 
orrespond to the same val-ues K = 0:45 and M = 104 but di�erent motion timest = 104 and 105 iterations. Both distributions havethe same step at the largest �, whi
h 
orresponds todi�usive 
omponents (not ne
essarily a single one) ofthe motion, similarly to the ergodi
 
ase. But the mostinteresting part is the rest of the distribution, whi
hrepresents a ri
h motion stru
ture, 
ontrary to a dullone in the ergodi
 motion.The largest (but not the most interesting) part ofthis stru
ture is related to the steep distribution 
ut-o�at small �. Comparison of the two distributions for dif-ferent motion times t = 104 and 105 shows that in thisregion, the � values of the traje
tories de
rease within
reasing time approximately as � � 1=t. This meansthat all these traje
tories are regular (see Eq. (5.1))be
ause the tangent ve
tor � does not grow. The rela-tive number of su
h traje
tories gives the total areaof regular motion on the phase 
ylinder of the sys-tem. In the example under 
onsideration, it is givenby Areg = 3177=10000 � 0:318 (t = 105). Gener-ally, this value depends on a parti
ular 
hoi
e of the
ut-o� border (see the arrow in Fig. 3). This deli
ateexperimental problem is 
onsiderably mitigated by afortunate feature of the � distribution in our model,namely, the o

urren
e of a relatively wide plateau ofF (�) immediately above the 
ut-o� with only severaltraje
tories on it. But the statisti
al a

ura
y�AregAreg � (MAreg)�1=2 (5:2)is typi
ally mu
h worse, and 
an be improved by in-
reasing the number of traje
tories (and the 
omputa-tion time) only.Another interesting feature of the � distribution inour model is a 
hara
teristi
 �fork� shape of the 
ut-o�.This is a result of negative � for many regular traje
-tories. Su
h a pe
uliar representation is obtained byordering �(t) values with their signs but plotting themoduli j�(t)j only. The lower prong of the fork there-fore 
orresponds to �(t) < 0, while �(t) > 0 on theupper one. This is be
ause of the 
omplex-
onjugateLyapunov exponents, resulting in a stri
tly boundedos
illation of the tangent ve
tor (dx; dp) in this 
ase.However, the area A� (see Eq. (5.4) in what follows)is noti
eably smaller than the total area of regular do-mains Areg , A� � 0:20 < Areg � 0:318. The restis �lled with traje
tories that are also regular but lin-

early unstable. This implies the linear growth of thetangent ve
tor in time, �(t) � t, su
h that �(t) ! 0remains positive but vanishes in the limit as t ! 1.This is the so-
alled marginal lo
al instability with both�� = 0 equal zero (see [19℄ for a dis
ussion). A 
uriouspoint is that this seemingly ex
eptional 
ase be
omesthe typi
al one in a nonlinear os
illator system be
auseos
illation frequen
ies depend on the traje
tory initial
onditions. In fa
t, the bounded � os
illation produ
-ing negative �(t) is the ex
eptional 
ase. The originof this pe
uliarity is in a pie
ewise linear for
e in ourmodel (2.2). As a result, the motion in the main (andfor large K, the biggest) regular domain around the�xed point x = 1=2, p = 0 is pre
isely the harmoni
os
illation with the frequen
y (for K < d)
 = ar

os�1� Kd � � 1:47; (5:3)whi
h remains the same in the entire regular domain ofthe area A� = 2�Kd y2��1� K2d� � 0:20: (5:4)Here, y� = x� � 0:5 = �d=2 is the position of twosingularities of the for
e (see Eq. (2.2) and below) thatrestri
t the size of the regular domain surrounded bythe limiting ellipse to whi
h both lines of the singu-larity y� = d=2 = 0:25 are tangent. This ellipse isdetermined by the initial 
onditionsp0 = 0; x0 = 0:5+y��1� K2d� � 0:5�0:185: (5:5)All the numeri
al values above 
orrespond to K = 0:45and d = 1=2. Within the ellipse, the motion of thetangent ve
tor obeys the same equation as the mainmotion, the only di�eren
e being an arbitrary length �of the tangent ve
tor (for details, see [3℄ and referen
estherein).Returning to Fig. 3, we note that the measured areaA� de
reases as the motion time in
reases. This is ex-plained by the penetration of traje
tories into a very
ompli
ated 
riti
al stru
ture at the 
haos border sur-rounding ea
h regular domain (for details, see, e.g., [4℄).For the same reason, the dire
t measurement of the en-tire regular region Areg � 0:40 by a single 
haoti
 tra-je
tory for 109 iterations gives a noti
eably larger value
ompared to Areg � 0:318 obtained from 104 traje
to-ries with 105 iterations ea
h.With all the 
uriosity of the �(t) distribution beingin regular 
omponents of the motion, our main inter-est in the present study is in the intermediate regionbetween the regular 
ut-o� at smallest �(t) ! 0 andthe 
haoti
 step at maximum � independent of t. In655



B. V. Chirikov, V. V. Ve
heslavov ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002this region, the distribution is also independent of themotion time and 
hara
terizes the proper 
riti
al stru
-ture of the 
haoti
 motion. In the example in Fig. 3,this stru
ture is represented by a relatively small prob-ability step �F � 0:06 at � � 0:03. Several otherexamples are also 
onsidered in the next se
tion.6. DIFFUSION AMID VIRTUAL INVARIANTCURVES: THE CRITICAL STATISTICSIn Fig. 4, we present three 
hara
teristi
 examplesof the e�e
t of the 
riti
al stru
ture on the di�usionstatisti
s. The dashed 
urve shows the �unperturbed�distribution F (D�) of the normalized di�usion rateD� = D=Dnorm, see Eq. (4.1), with the normalizingrate Dnorm to be 
hosen in ea
h parti
ular 
ase (seebelow). The term �unperturbed� refers to the ergodi
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∗Fig. 4. Three 
hara
teristi
 examples of the di�usionstatisti
s in the 
riti
al stru
ture in
luding virtual in-variant 
urves (d = 1=2). Shown are the integraldistributions F (Eq. (4.1)) of the normalized di�usionrate D� = D=Dnorm. The numbers at the 
urves arethe 
riti
al di�usion exponents 
m. The largest one
0 = 0:5 
orresponds to the ergodi
 motion (d = 0)without any 
riti
al stru
ture (the dashed 
urve). Twostraight lines show the averaged (
1 = 0:3) and lo
al(
01 = 0:4) 
riti
al exponents for K = 0:45 (the solidline 
onne
ting 500 values of F (D�)). The distribu-tion for K = 0:335 with two lo
al 
riti
al exponents(
2 = 0:09 and 
02 = 0:45) is presented by 300 pointsshifted to the right to avoid overlapping with the othertwo distributions. The third distribution (a solid linethrough 1000 points, K = 0:3294) is surprisingly 
loseto that in ergodi
 
ase (dashed line). In all three ex-amples, M = 104, t = 105


ase d = 0 without any invariant 
urves and 
riti
alstru
ture (see Se
. 4; the problem of the 
riti
al stru
-ture in this 
ase is not as simple as it may seem, seebelow and Se
. 7). The normalizing rate Dnorm = D1is then the true asymptoti
 di�usion rate (4.5).We are now interested in the e�e
t of the 
riti
alstru
ture that typi
ally arises in a nonergodi
 motionwith its barriers for the 
haos, or 
haos borders. Thelatter are a parti
ular, and a very important, 
ase ofan invariant 
urve transformed into itself under the dy-nami
s of the system. As dis
ussed in Se
. 1, there areseveral di�erent types of invariant 
urves.One is the well-studied and rather familiar 
haosborder surrounding any domain with regular motion.In this paper, we 
all it the lo
al invariant 
urve (LIC);it does not blo
k the global di�usion around su
h a do-main. An important property of a LIC is the robust-ness, whi
h means that a small 
hange of the system,e.g., of the parameter K or d 
annot destroy the LICbut 
an only deform it slightly. This implies that LICsare always present in any divided phase spa
e.Here, we are mainly interested in invariant 
urvesof a di�erent type, the global invariant 
urves. Ea
hGIC 
uts the entire phase-spa
e 
ylinder (x mod 1)of our model, and therefore 
ompletely prevents globaldi�usion in p. Su
h invarinat 
urves are less known,espe
ially the most surprising of them, the separatrixof a nonlinear resonan
e. But those GICs are not ro-bust in the model under 
onsideration (see [9℄), beingdestroyed by almost any arbitrarily small perturbationof the system, in parti
ular by a 
hange of even a sin-gle its parameter. In other words, su
h GICs exist onlyfor the spe
ial values, e.g., K = Km. Although thereare typi
ally in�nitely many su
h spe
ial values, theprobability to �nd a GIC in a randomly 
hosen sys-tem is zero. This is why we are interested in a moregeneri
 situation where our model has no GICs at all.But the e�e
t of those still persists in a 
ertain domainaround ea
h Km! For this reason, we 
all su
h GICsthe virtual invariant 
urves in analogy with other vir-tual quantities in physi
s, e.g., virtual energy levels inqantum me
hani
s. We note that unlike a GIC, theVIC is robust, and hen
e, generi
.Both LICs and GICs produ
e the so-
alled 
riti
alstru
ture of motion (see, e.g., [4℄), whi
h is typi
ally
hara
terized by a power-law distribution of prin
ipalquantities. The 
orresponding exponents 
n are 
alledthe 
riti
al exponents. Their values are shown in Fig. 4at the related distributions. We note that the oppositeis generally not true, that is, a parti
ular power lawdoes not ne
essarily indi
ate any 
riti
al stru
ture. Inour model, this is the 
ase for the ergodi
 motion where656



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Fra
tal di�usion in smooth dynami
al systems : : :the di�usion rate distribution is also 
hara
terized byan asymptoti
 (D ! 0) power law with the exponent
0 = 0:5 (see above and Se
. 7). An important dif-feren
e between ergodi
 and nonergodi
 dynami
s ishowever that in the latter 
ase, all the 
riti
al expo-nents 
n < 
0 are less than the (generally non
riti
al)ergodi
 exponent 
0. This is the main physi
al resultof our preliminary numeri
al experiments that we 
anpresent and already dis
uss now (see Fig. 4).We start with the distribution forK = 0:45 (the up-per solid line), whi
h is far in the region without VICs(the border of this region is at KB(d = 1=2) = 1=3, seeEq. (2.3) above and [16℄). But the regular traje
tories(Areg � 0:318) together with LICs and the related 
rit-i
al stru
ture are present. As a result, the distribution(with Dnorm = D1) 
onsiderably deviates from theunperturbed one for the ergodi
 motion with d = 0.The 
riti
al stru
ture of this type in a relatively nar-row layer around a LIC is well studied by now (see,e.g., [4℄), in
luding the 
ase where the typi
al distribu-tion deviates from a pure power law. The latter wouldimply the exa
t s
ale invarian
e of the underlying 
rit-i
al stru
ture in both the system phase spa
e and itsmotion time.The 
riti
al stru
ture is des
ribed by the so-
alledrenormalization group, or renormgroup for brevity. Onthe other hand, the equations of motion also form a 
er-tain (dynami
al) group for any dynami
al system. Su
ha fundamental similarity allows interpreting the 
riti
alstru
ture as a 
ertain dynami
s, whi
h was 
alled therenormdynami
s [20, 4℄. In this pi
ture, the exa
t s
aleinvarian
e with a pure power-law distribution 
orre-sponds to the simplest, periodi
 renormdynami
s, eventhough the original dynami
s may be the most 
ompli-
ated 
haoti
 motion. The resolution of this apparentparadox is that the 
omplexity of the original dynami
sis �transferred� to the dynami
al in�nite-dimensionalspa
e of the renormdynami
s, leaving behind the sim-plest renormdynami
s itself (sometimes!).This 
ase is best studied only be
ause it is the sim-plest one. But the generi
 
ase is just the opposite �a typi
al renorm
haos is also 
haoti
 [21, 20℄. This im-plies a 
ertain 
haoti
 os
illation of the 
hara
teristi
distribution around some average power law. This ispre
isely the 
ase for the upper distribution in Fig. 4.It is 
hara
terized by the average 
riti
al exponent
1 = 0:3 with �u
tuations of the order 
01 � 
1 = 0:1.Su
h an interpretation of the 
riti
al stru
ture in ques-tion is known to be typi
al but not ne
essarily unique(see below). The truly unique property of this 
riti-
al stru
ture is the in�nite power law, with or without�u
tuations. The term �in�nite� here 
orresponds to

the range of a renormdynami
al variable lnD ! �1with an unrestri
ted variation, even though the di�u-sion rate itself D > 0 is stri
tly bounded from below.This is no longer the 
ase for the 
riti
al stru
tureof a new type that we have en
ountered in our problemand whi
h is produ
ed by VICs (=robust GICs) ratherthan by robust LICs. As explained above, the prin
ipaldi�eren
e between the two is that the VIC is not an in-variant 
urve at all. In terms of renormdynami
s, thisimplies that a VIC 
an mimi
 a GIC for relatively largelnD only. This is 
learly seen in Fig. 4 in the upperpart of the distribution with the lo
al 
riti
al exponent
2 = 0:09 and the parameterK = 0:335 (points). Here,we have taken Dnorm = 10�6 < D1 � 2 � 10�5 mu
hsmaller than the true di�usion rateD1. This shifts theentire distribution to the right in order to avoid over-lapping with other distributions. This value is slightlyabove the border KB(1=2) = 1=3 (see Eq. (2.3)), wherethere are many VICs without any GIC. As a result,the range of the 
hara
teristi
 
riti
al exponent 
2,� lnD� � 5 is very short 
ompared to the total avail-able range � 25. The rest of the distribution remainssu�
iently 
lose to the unperturbed one. This impliesthe absen
e of the 
riti
al stru
ture or its sharp 
hangeat lnD . 2 at least. With this interpretation, therenorm-motion stops in the spe
i�ed region.This in turn implies a �dissipative� rather than�Hamiltonian� renormdynami
s. We note that themain part of the distribution is 
lose but not identi
alto the unperturbed one be
ause of a slight di�eren
ein the 
hara
teristi
 exponent. Whether this implies a
ertain very slow renorm-motion remains a very inter-esting open question. Interestingly, the larger 
riti
alexponent 
02 = 0:45 is also 
lose to the lo
al 
riti
al ex-ponent 
01 = 0:4 in the region without VICs or GICs;above, it was interpreted as a random �u
tuation inrenorm
haos. Whether this is indeed true remains un-
lear.Finally, the third distribution in Fig. 4 (the lowersolid line) a
tually 
oin
ides with the unperturbed dis-tribution (Dnorm � D1), even though it 
orrespondsto the region with many VICs and a strong suppressionof the di�usion (K = 0:3294, see Fig. 3 in [16℄). A devi-ation for very smallD� is due to a poor statisti
s at thisend. We note that the 
oin
iden
e of both distributionsis not only asympoti
 (as F ! 0), but also 
omplete,in
luding the opposite limit as F ! 1. This o

ursin spite of a rather large regular region Areg � 0:581.The origin of this pe
uliarity for a parti
ular K valueremains un
lear. One possibility is that the area of the
riti
al stru
ture at the 
haos border around this regu-lar domain is unusually small for some reasons. Exam-15 ÆÝÒÔ, âûï. 3 (9) 657
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heslavov ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002ples of su
h a pe
uliarity are known in di�erent models,see [22℄, where the 
riti
al stru
ture was found to beunusually large but hidden. In other words, the mo-tion was ergodi
 but with strong 
orrelations (
f. theunusual di�usion rate in Eq. (2.8) for K � 1 in theergodi
 system at d = 0). Returning to this 
ase inFig. 4, we 
on
lude that our �unperturbed� power-lawdistribution with the exponent 
0 = 0:5 (dashed line)may well represent a pe
uliar 
riti
al stru
ture relatedto the strong hidden temporal 
orrelations rather thanto a purely spatial geometry of the phase spa
e. Ifthis is true, the 
orrelation de
ay may indeed be nota power-law one, as is the 
ase in the model in [22℄,where su
h a hidden de
ay is purely exponential (seeFig. 6 in [22℄).We �nally mention another pe
uliarity of the 
rit-i
al stru
ture in question: all the 
riti
al exponentsfound so far are smaller, albeit by a small amount,than the �unperturbed� or �hidden� one 
0 = 0:5. Thephysi
al meaning of this universal inequality is that the
riti
al stru
ture under 
onsideration always in
reasesthe probability of a very low di�usion rate D ! 0. Thegeneral me
hanism of this e�e
t is known (see, e.g., [4℄),and is explained by the traje
tory �sti
king� within a
ompli
ated 
riti
al stru
ture, whi
h slows down thedi�usion. Interestingly, the sign of the sti
king e�e
t
an be opposite when the sti
king a

elerates the dif-fusion up to the absolute maximum D(t) / t of thehomogeneous di�usion rate [23, 24℄.To summarize, we see that our �simple� model 
on-sidered in this paper reveals a great variety of 
riti
alstru
tures still to be further studied and understood.7. CONCLUSION: A HIDDEN CRITICALSTRUCTURE?In this paper, we present some preliminary resultsof the numeri
al experiments with a family of simplemodels spe
i�ed by the smooth 
anoni
al 2D map (2.1)with global virtual invariant 
urves. As in [16℄, we hereuse the same strongly 
haoti
 model and again fo
us onthe statisti
s of the di�usion rate D, whi
h proves tobe of a very 
ompli
ated (apparently fra
tal) type de-termined by the so-
alled 
riti
al stru
ture of both thephase spa
e and the motion (see, e.g., [4℄). In [16℄, westudied the statisti
s of the mean di�usion rate hD(K)iaveraged over the ensemble of traje
tories with randominitial 
onditions. Our main result there was the ob-servation of very big and irregular �u
tuations of thedependen
e hD(K)i and a long and very slowly de
ay-ing tail of the hDi distribution as hDi ! 0. We termedthe latter e�e
t the VIC di�usion suppression.

In the present paper, we 
ontinue studying this in-teresting phenomenon in more detail. For this, we passfrom the statisti
s of averages hD(K)i as fun
tions ofthe model parameter K to the statisti
s of individualtraje
tories for a given K. In prin
iple, this approa
hprovides the deepest insight into the statisti
al prob-lem. As the main statisti
al 
hara
teristi
, we have
hosen the integral distribution F (D) in form (4.1) fora poor statisti
s as D ! 0. Preliminary results of ourextensive numeri
al experiments presented in Fig. 4
on�rm our earlier 
onje
ture on a 
riti
al stru
tureunderlying the fra
tal dependen
e hD(K)i in [16℄, thetrue sign of su
h a stru
ture being various power-lawdistributions found. Moreover, in addition to the famil-iar well-known 
riti
al stru
ture exempli�ed in Fig. 4by the 
ase with the parameter K = 0:45, we observedmany 
ases of a rather di�erent stru
ture, as the onewith K = 0:335. The prin
ipal di�eren
e of the latteris its �nite size in the stru
ture variable � lnD . 5.A natural explanation of this di�eren
e is as follows.First, the VIC is not a true invariant 
urve like a GIC.The latter 
ompletely blo
ks the global di�usion, whilethe former 
an at most inhibit the di�usion only. Theme
hanism of inhibition is known to be the traje
-tory sti
king inside a very 
ompli
ated 
riti
al stru
-ture. The sti
king is the stronger (longer) the smalleris the spatial and/or the longer is the temporal s
ale ofthe 
riti
al stru
ture. But for the VIC stru
ture, boths
ales are stri
tly limited. On the other hand, this re-stri
tion is the weaker the higher is the VIC density.In the system under 
onsideration, the VIC density israther large, and hen
e, the restri
tion leaves enoughfreedom for a strong suppression of the global di�u-sion for almost any K. Moreover, be
ause the 
riti
alexponent of the VIC stru
ture is typi
ally very small(for example, 
2 = 0:09 in Fig. 4), the probability oflarge suppression is high even for a short 
riti
al stru
-ture (
f. [16℄ for a di�erent 
hara
teristi
 of this phe-nomenon). This slowly de
aying suppression probabil-ity is well as
ertained in our numeri
al experiments,but we have no theoreti
al explanation of su
h behav-ior.We now 
ome to possibly the most interestingresult of our 
urrent studies. Strange although it mayseem, this brings us to the apparently simplest 
aseof our model with d = 0, when the motion is ergodi
.The problem is whether it 
an still reveal any stru
tureon the grounds that the distribution F (D) is also apower law (Fig. 4). This is 
ertainly not the 
ase if inaddition K � 1 and the di�usion rate has standardform (2.11), D / K2. But if K � 1, the di�usion ratebe
omes qualitatively di�erent at least, D / K5=2.658
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tal di�usion in smooth dynami
al systems : : :This does not imply anything in general. But in theparti
ular 
ase under 
onsideration, this dependen
eD(K) 
an be, and a
tually was, derived [16℄ from theresonan
e stru
ture of motion. If the system were notergodi
 (with a divided phase spa
e), this stru
turewould be 
learly seen in the phase spa
e. The questionis what happens for the ergodi
 motion with the samedependen
e D(K). In [16℄, we 
onje
tured that somestru
ture would persist in the form of 
orrelationsthat determine the di�usion rate, whi
h is in some�hidden� form and 
annot be dire
tly seen in thepi
ture of the motion in phase spa
e. An example ofsu
h a hidden 
riti
al stru
ture was found in [22℄ (seeSe
. 6). But in that 
ase, a parti
ular distributionfun
tion was exponential rather than a power-lawone(?). Hen
e, the question is whether this qualitativedi�eren
e 
an depend on a parti
ular 
hara
teristi
 ofthe 
riti
al stru
ture. Another question arises from avery strange temporal behavior of the di�usion ratein the same �simple� 
ase of the ergodi
 motion ford = 0 � a �mysterious� plateau at the very beginningof di�usion under a weak perturbation (K � 1, seeFig. 1). In this 
ase, the dependen
e D(K) = K2=3 isthe same as in the opposite limit of strong (K � 1)un
orrelated perturbation(?) but for a very short timeonly, the shorter the stronger is the perturbation(?!).Moreover, the 
orrelations on the plateau are not onlyvery large as in the weak-perturbation limit K ! 0but also in
rease during the entire plateau regime(see Fig. 1, dashed lines for the varian
es VM (�) inEq. (3.2)). At present, we have no de�nite explanationfor this 
ontroversial behavior. A dis
reet 
urrent
onje
ture is as follows. The duration of the plateau is�pl � 1, or tpl � 1=� � 1=
 (see Eq. (2.9)). But thelatter expression gives the phase os
illation period onthe 
riti
al nonlinear resonan
e that determines thedi�usion rate [16℄. One 
an then imagine that thisperiod 
hara
terizes not only the 
orrelation de
ay,as usual, but also the 
orrelation uprise. But theinvariable di�usion rate over the entire plateau regionis yet to be explained.This work was partly supported by the RussianFoundation for Basi
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