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Preliminary results of extensive numerical experiments with a family of simple models specified by the smooth
canonical strongly chaotic 2D map with global virtual invariant curves are presented. We focus on the statistics
of the diffusion rate D of individual trajectories for various fixed values of the model perturbation parameters K
and d. Our previous conjecture on the fractal statistics determined by the critical structure of both the phase
space and the motion is confirmed and studied in some detail. In particular, we find additional characteristics
of what we earlier termed the virtual invariant curve diffusion suppression, which is related to a new very spe-
cific type of the critical structure. A surprising example of ergodic motion with a «hidden» critical structure
strongly affecting the diffusion rate was also encountered. At a weak perturbation (K < 1), we discovered a
very peculiar diffusion regime with the diffusion rate D = K?/3 as in the opposite limit of a strong (K > 1)
uncorrelated perturbation, but in contrast to the latter, the new regime involves strong correlations and exists
for a very short time only. We have no definite explanation of such a controversial behavior.

PACS: 05.45.Ac

1. INTRODUCTION: VIRTUAL INVARIANT
CURVES

In two-dimensional map (2.1) that we study here,
the diffusion crucially depends on the global invariant
curves (GICs) that cut the 2D phase space of the mo-
tion (a cylinder, see the next section). Even a single
such curve is sufficient to completely block the global
diffusion in the action variable along the cylinder. As
is well known by now, the existence of GICs depends
not only on the perturbation strength but also on its
smoothness. It is convenient to characterize the latter
by the temporal Fourier spectrum of the perturbation.
For an analytical perturbation, the Fourier amplitudes
decay exponentially fast. In this case, the global diffu-
sion sets up if the perturbation € 2 €., exceeds some
critical value. Otherwise, the chaos remains localized
within relatively narrow chaotic layers of nonlinear res-
onances. As a result, the global diffusion is either com-
pletely blocked by GICs or the rate of the diffusion as
well as the measure of its domain decay exponentially
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in the parameter 1/e¢ as ¢ — 0 (the so-called Arnold
diffusion, see, e.g., [1-3] for a general review).

By definition, the Hamiltonian of a smooth system
has the power-law Fourier spectrum with a certain ex-
ponent 3+ 1 (see, e.g., [4] and references therein). In
this case, the global diffusion is always blocked for some
sufficiently small perturbation strength € < e..(8) if
the smoothness parameter 5 > .. exceeds the criti-
cal value. This is similar to the case of an analytical
Hamiltonian except that the critical perturbation now
depends on the Hamiltonian smoothness (eq-(3) — 0
as ﬂ — Bcr)‘

To the best of our knowledge, the strongest rigor-
ous result is that .. < 4 for a 2D map as in this paper
(see [5]). But a simple physical consideration [4] leads
to an even smaller value .. = 3, which is still to be
confirmed somehow, theoretically or numerically.
any event, the smoothness 8 = 2 of our model here is
even less.

In

Until recently, the behavior of dynamical systems
in the opposite case f < B of a poor smoothness
remained rather vague. Even though most of the nu-
merical data seemed to confirm the simplest behavior
of some universal global diffusion (see, e.g., [6]), several
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counterexamples were also observed (see, e.g., 7, §8]).
In these counterexamples, some trajectories remained
within a certain restricted part of the phase space for
a sufficiently long computation time. No clear expla-
nation of these strange events has yet been given.

Meanwhile, about 20 years ago (!) a number of
mathematical studies revealed various possibilities for
the existence of GICs in smooth systems with § < (.,
(see, e.g., [8-10]). To us, the most comprehensive anal-
ysis of this problem was given by Bullett [9], who rigor-
ously proved a strange survival of infinitely many GICs
amid a strong local chaos. Surprisingly, all these inter-
esting results remain essentially unknown, at least to
physicists. Apparently, this is because the above math-
ematical papers were restricted (perforce!) to what
could be done rigorously, that is, to the invariant curves
only, without any attempt to analyze very interesting
and important transport processes such as diffusion.
This is still within reach of the physical analysis and nu-
merical (or laboratory) experiments only. As a result,
only after the recent accidental rediscovery of GICs in
chaos by Ovsyannikov [11] (which is still unpublished,
see [12, 13] for the full text of Ovsyannikov’s theorem),
intense physical studies of this interesting phenomenon
have begun [12-16].

Interestingly, the authors of both [9] and [11] used
exactly the same model, in which a strange locked-
in trajectory was observed much earlier [7]. Appar-
ently, this is because this model (a particular case of
our model with the parameter d = 1/2, see Sec. 2) is
the simplest one possessing those curious GICs (see [15]
for discussion). Perhaps the main surprise was that the
GICs include the separatrices of nonlinear resonances,
which have always been considered as ones destroyed
first by almost any perturbation. The principal differ-
ence is that the invariant curves, separatrices including,
now exist for special values of the system parameters
only (e.g., K = K,).

Although there are infinitely many such special val-
ues of the parameter and infinitely many GICs such
that a single GIC completely blocks the global diffu-
sion for each of the parameter values, the probability
of the global diffusion (that is, the measure of such K
values) is apparently zero. Therefore, a principal ques-
tion to be answered is: what would be the behavior of
that system for an arbitrary value of K7 In [16], we
conjectured that even though the set of K, is not ev-
erywhere dense [9] in general, the density of this set is
rather high, and we can therefore expect some change
(presumably suppression) of the diffusion for every K
value compared to the «usualy (familiar) dynamical
system. In other words, we hypothesized that the struc-
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ture of the phase space and of the motion therein can
be changed by the formation of GIC at a close K value
even if no GICs occur for almost all K. This is why we
now call such a neighbor-K invariant curve the virtual
one (VIC) with respect to any K [16].

Preliminary numerical experiments presented
in [16] did confirm our conjecture. These experiments
were done by the prompt computation of the average
diffusion rate D(K) as a function of the parameter K
in the domain with GICs, real or virtual ones. The
experiments revealed a very strong suppression of the
diffusion, up to many orders of magnitude, restricted
only by the computation time. But even more in-
terestingly, a very complicated (apparently fractal)
structure of the dependence D(K) was revealed. This
seems to be a result of a very complicated structure
of the model phase space itself. Preliminarily, it looks
like the so-called critical structure (see, e.g., [4]), but
a rather specific one due to a forest of VICs.

In the present paper, we begin the study of this
seemingly new type of the critical structure. Specifi-
cally, we start with the investigation of the statistical
properties of diffuson as one of the characteristic pro-
cesses in chaotic motion.

2. THE MODEL: THE SAME AGAIN

For the reader’s convenience, we here repeat the
description of the model in [15, 16]. In the canonical
variables given by the action (momentum) p and the
phase z, the model is specified by the map

p=p+Kf(a)

T=xz+p modl, (2.1)

where K = & > 0 is the perturbation strength (not nec-
essarily weak) and the «force» f(x) is the antisymmet-
ric piecewise linear «saw» of period 1 (f(—y) = —f(y),
y = x — 1/2). The phase space of the model is the
cylinder 0 <z <1, —o0 < p < +00.

Asin [15, 16], we actually consider a family of maps
with another parameter d (see Fig. 1 in [15]) and the
force

2z 1—-d
T s
fe) = (2.2)
_2_y | ‘ < C_l
d I y [~ 27
where y = 2 — 1/2 and the second parameter d
(0 < d <1) is the distance between the two «teeth» of

the saw |f(z)| = 1 at the points y = y1 = +d/2. The
most studied particular case of the family corresponds
to d = 1/2, where the saw f(z) with two teeth is sym-
metric. In the limit d = 0, the two teeth merge into
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Fig. 1. The diffusion relaxation D*(r) =
= D(7)/Dec — 1 in model (2.2) with the parameter
d = 0 (without invariant curves) is presented as a

function of the dimensionless time 7, Eq. (3.5), for
the two values K = 0.01 (circles) and K = 3-107°
(crosses). Two smooth solid lines show empirical
relation (3.5) with two fitting parameters c 1
and v = 4. Dashed lines are variances the Vi (7)
in Eq. (3.2), and dotted lines show the variances
Va(7) in Eq. (3.8). In the lower part, the scaling in
Eq. (3.6) is presented reduced by the factor 10 to
avoid overlapping with other data. The full volume of
empirical datais J = M x N = 10* x 10 = 10°

one and all the invariant curves are destroyed. This was
observed and explained in [15] for K > 0. In the oppo-
site case where K < 0 (which is equivalent to K > 0,
d = 1), the dynamics of the model is completely differ-
ent, and we do not consider it in this paper (see [15]
for a brief discussion). In our 2D map (2.1), the GIC
supports rotation of the phase x around the cylinder,
which bars any motion in p over GICs. In contrast to
this, a local invariant curve (LIC) surrounding, e.g.,
the domain of regular motion (see [4] and Sec. 5 below)
corresponds to oscillation in the phase x, which allows
other trajectories to bypass that obstacle.

The GICs, separatrices including, exist in the en-
tire interval 0 < d < 1, but for special K values only
[9, 15, 16]. In particular, the invariant curves are com-
pletely absent [9] for sufficiently large parameter values

22
S 14d

If K > Kp (see below), the physical quantity of
the main interest for us, the diffusion rate D, can be
approximately calculated from the Fourier expansion

of force (2.2) (see [16] for the details)

K > Kp(d) 0<d<1.

(2.3)
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fla)y=>" 7’:—; sin(2rnaz), (2.4)
n>1
where
2 cos(nm) sin(nnd)
n=—— =2. 2.
hE=rm T aa-g 7 (25)
In particular, in the limit d = 0,
fn=——cos(nm), p=1, (2.6)
m

the smoothness parameter 5 becomes less by one but
both values are less than the critical one 3., = 3.

The diffusion rate and other quantities are calcu-
lated using the standard analysis of nonlinear resonan-
ces and their interaction (overlap) (see, e.g., [1-3,16]).
The calculation is especially simple if we neglect the
variation of the coefficients |f,| ~ const in (2.4). This
simplification is exact for d = 0, see (2.6), and remains
reasonably accurate [16] for

6
T 1l4d

(2.7)

The diffusion rate is then approximately given by a very
simple standard relation

(Bp)F _ 256

t 5

K% ~ 057K/,

(2.8)

where ¢ is the motion time in map iterations and the
parameter K < 1 is assumed to be sufficienly small.
The latter expression in (2.8), which we use below, is
the result of extensive numerical experiments in [6], also
confirmed in [16] for K < 0.1 (see [16] and Sec. 3).

We note that the dependence D(K) oc K5/? is dif-
ferent from the usual, or better to say, the simplest one
D(K) o K2. This is explained by the dynamical cor-
relation of motion that is determined by the frequency
of the phase oscillation on nonlinear resonances,

2t K
Qn =1/ :;37{” ~2VK ~ A, (K) < 1,

where A, stands for the Lyapunov exponent charater-
izing the local exponential instability of the motion,
which is the main criterion for dynamical chaos. We
note that for = 1, both §,, and A,, are independent
of the Fourier harmonic number n. The exact value of
the Lyapunov exponent in the limit d = 0 is given by

A=In(1+ K+ V2K + K?)~ V2K <« 1.

The latter expression is the approximation for small
K (cf. Eq. (2.9)) which is sufficiently good within the

(2.9)

(2.10)
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applicability region of Eq. (2.8) (K < 0.1) with the
accuracy ~ 1%. Because the time is discrete in our
model (the number of the map iterations), both cor-
relation characteristics, Eqs. (2.9) and (2.10), must be
small, which implies the above restriction on the pa-
rameter K.

In the opposite limit K > 1, the correlation be-
tween successive x values is negligible, and we arrive at
the «usualy relation for the diffusion rate,

1
- -2 [ 2 K
D(K)=K fi(x)de = 3 (2.11)
0
which is independent of the parameter d. In the in-

termediate region (K ~ 1), the correlation causes the
decaying oscillation (see [6]), which is beyond the scope
of the present paper.

3. DIFFUSION WITHOUT ANY INVARIANT
CURVES: AVERAGES AND MOMENTS

As mentioned above, there are no invariant curves
for d = 0. Moreover, the motion is ergodic, which
implies the simplest structure of the phase space (cf.
Sec. 4 below). Therefore, this particular case is not
of the main interest to us by itself. It is nevertheless
a good introduction to our central problem considered
in Sec. 6 below. A similar approach was taken in our
previous paper [16].

We first consider the time dependence of the diffu-
sion rate D(K;t). The semicolon instead of the usual
comma is intended to emphasize that this time depen-
dence is not a real physical contribution to the diffusion
but rather a combination of two different processes: the
proper diffusion via accumulation of random perturba-
tion effects and a stationary regular oscillation of the
diffusing variable (p in our case), which is a certain type
of the background for the diffusion. This phenomenon
can be roughly represented by the simple relation

B(K)

D(K:t) ~ Do (K) + =

(3.1)
where B(K) is some function of the perturbation (see,
e.g., [16] and Eq. (3.5) below). In other words, in many
cases, the present studies including, the nondiffusing
stationary part can be separated from the diffusing
part, thereby considerably simplifying the analysis of
this complicated process. All this can be described, of
course, via the standard method of the correlation of
perturbation. But this would lead to a much more intri-
cate theoretical relations, and in addition, to much less
information on the diffusion dynamics (see, e.g., [6]).
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An example of the diffusion kinetics is presented in
Fig. 1. The computation was done as follows. The
number of trajectories M > 1 with random initial con-
ditions homogeneously distributed within the unit area
of the phase cylinder (0 < 29 < 1, 0 < pp < 1) were
run for a sufficiently long time with successive outputs
at certain intermediate moments of time ¢ as shown in
Fig. 1. We recall that ¢ is measured in the number
of the map iterations. Each output includes the diffu-
sion rate (D) averaged over all M trajectories and the
dimensionless variance
(D?) — (D)°

2(D)?

For the Gaussian distribution of the action p, this
variance must be equal to unity. This is indeed the
case for a sufficiently long motion time when the mea-
sured diffusion rate reaches its asymptotic value D, in
Eq. (3.1). A quite different dependence Vs (t) for the
previous smaller time is not surprising (nor is it very
interesting) because D(t) then depends on a completely
different physical process that must be passed over.

A real surprise was the very beginning of the diffu-
sion, the plateau in Fig. 1. This looks as a real diffusion
unlike the following part of the stationary oscillation.
Moreover, the diffusion rate Dy = K?/3 on the plateau
is the maximum one, Eq. (2.11), as for K > 1. Another
interesting observation is the duration of this strange
diffusion,

Var = (3.2)

1
A V2K
which is close to the inverse Lyapunov exponent, the
rise time of the local exponential instability of the un-
derlying chaotic motion. The last but not the least
curious property is the fast increase of variance (3.2),

~
~

ty ~

(3.3)

t
Vu(t) = 3. 2<t S, (3.4)

as shown in Fig. 1. This is qualitatively different from
the behavior of the same diffusion rate for K > 1 with
the usual variance V3 &~ 1. The dynamical mechanism
of this strange transitional diffusion is not completely
clear and requires further studies. Apparently, it is
somehow related to the main correlation (2.9) on dy-
namical scale (3.3). Although the initial «diffusion» is
relatively fast, it lasts for a short time only, and the
relative change of the initial distribution of trajectories

A | D
‘ p‘ ~ TONI{S/4<<1

|Aplo

is therefore negligible for K" < 1 unless the initial dis-
tribution |Aplo < K3/* is very narrow. But in the lat-
ter case, the dependence D(t) is very sensitive to the
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form of the initial distribution in p, as several our pre-
liminary numerical experiments reveal. The variance
of D(t) is especially strong for small ¢ ~ ¢ in the re-
gion of that mysterious plateau but eventually decays
as t — oo, with the diffusion approaching its limit value
Dy Apparently, this is related to a complicated fine
structure of the phase space and/or of the motion cor-
relations. This interesting question certainly deserves
further studies but in the present paper, we consider
the simplest, homogeneous distribution of the trajec-
tory initial conditions on the phase cylinder.

In this particular case, a very simple and surpri-
singly accurate empirical relation for the diffusion time
dependence has been found starting from the qualita-
tive picture in (3.1). It is given by

~D0+TDOO

D(t) ~ (1 + T’Y)l/’y’

=cAt, (3.5)

where 7 is the dimensionless time with an empirical fit-
ting parameter ¢ that is very close to one. The second
empirical parameter v & 4 is less definite, but it affects
the turn of the dependence D(¢) at 7 ~ 1 only. This
relaxation of the diffusion rate has two time scales: the
plateau

~

1 1
Ty =1 or t,,=—=~ >1
o A AT
and the relaxation
Do L o1 t
TR = — ~ or ~ =,
T D T VK R

which is much longer. Interestingly, the usual diffusion
spreading of a very narrow initial p distribution on the
relaxation time scale

2

Doo(DO/Doo) _ DO
e S S A———— ol

Ap|j = Dootr =
|Aplk IR cA cA

= |
is exactly equal to the spreading on the plateau. Hence,
the full relaxation spreading is twice as large, which is
also directly seen from empirical relation (3.5),

TR Do+ TrRDs TR

-~ - 7 NA’3/2 1l
A (14t A 0

|Apfg = D(7r)

and which is still much less than the unit p-period.

In Fig. 1, empirical relation (3.5) is presented and
compared with the numerical data in the dimension-
less variables 7 and D* = D/D.,, where Dy is the
asymptotic («trues) diffusion rate (2.8). In these vari-
ables, the curves with various K values are similar and
converge in the limit as 7 — oc.
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Another interesting scaling can be done as follows.
We calculate the diffusion rate Dy (D(7)) = Dy, from
Eq. (3.5) and plot its ratio to the true rate in Eq. (2.8),

D(r) (1+ 7)Y = Dy
7D

D

=~ ~ 1.
Do

(3.6)

Then, within the accuracy of scaling (3.5) and of fluc-
tuations, this ratio must always be close to unity. This
is indeed the case except on the plateau (¢ < #g), where
the rate D(7) is almost independent of 7 (see Fig. 1).
The next important statistical property consists in
fluctuations of the diffusion rate. One characteristic
of these fluctuations is the dispersion of trajectories,
which is characterized by the variance in Eq. (3.2). If
all the trajectories were statistically independent, the
dispersion of the mean diffusion rate would be

(55 -
By construction, the trajectories are indeed indepen-
dent with respect to their initial conditions but not
necessarily with respect to the corresponding diffusion
rate. To verify this, we repeated the computation of
the diffusion N times with new and independent ini-

tial conditions and then calculated the second (new)
dimensionless variance for the average diffusion rate,

2
Again, if Eq. (3.7) is valid, the variance Vi must be
close to one.

The time dependence of both variances, Vi (t) and
Vn(t), is shown in Fig. 1. Remarkably, their behav-
ior is qualitatively different. The first variance Vs (t)
depends on the distribution function of p in the en-
semble of trajectories, while the second variance Vi (t)
is affected by the statistical dependence (or indepen-
dence) among trajectories for any distribution function.
The results of our numerical experiments presented in
Fig. 1 clearly demonstrate that the distribution in p
quickly deviates from the Gaussian one during the dif-
fusion on the plateau and returns only in the limit as
t — oo, when the diffusion rate D — D, approaches
the asymptotic value without any nondiffusing part.
Unlike this, the trajectories remain statistically inde-
pendent during the entire process of the diffusion re-
laxation. We return to this interesting point in Sec. 7.

We now consider the most informative statistical
characteristic, the distribution function f(D) of the dif-
fusion rate.

A(D
(D)

2V
M-1

(3.7)

M-1_.
Wy

(3.8)
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4. DIFFUSION WITHOUT ANY INVARIANT
CURVES: THE DISTRIBUTION FUNCTION

In the main part of our paper (Sec. 6), we are pri-
marily interested in the distribution tail D — 0 of a
very low diffusion rate. The shape of this tail is known
to be an important characteristic of the critical struc-
ture of the motion (see, e.g., [4]). First indications of
such a structure in the presence of virtual invariant
curves were observed in [16]. Here, we continue these
studies.

Because the statistics of the far tail is always rather
poor, we follow [16] in using a special version of the
integral distribution

, (4.1)

.

D
F(D) = /f(D’)dD’ ~
0

the so-called «rank-ordering statistics of extreme
events» (see, e.g., [17]). The following simple ordering
of the D(j) values (events) of the diffusion rate is
sufficient for this: D(j + 1) > D(j), j = 1,2,...,J.
The integral probability is then approximately given
by the ratio j/J, as shown in Eq. (4.1).

In computation, we typically ran M trajectories N
times (see Sec. 3), and the maximum number of the
events therefore reached J = M x N = 10* x 10 = 10°.
To obtain the lowest possible D values and simulta-
neously minimize a rather big output, we ordered all
the computed events but printed only Jy of those, with
Jo < J, such that some (the smallest) D; were ob-
tained first, while the rest were printed in a logarithmic
scale. An example of such a distribution is presented
in Fig. 2 for K = 0.001 in the variables D* = D/(D)
and F(D*) = j/.J, where (D) is some average diffusion
rate (see below). The upper distribution corresponds
to a rather long motion time ¢t = 10* > 1/K, with
the mean diffusion rate already very close to the limit
D.,. For the lower distribution, ¢ = 10 is very short
and corresponds to the plateau.

At least in the former case, where the p-distribution
is Gaussian (see Sec. 3), the distribution

o

I'(\)

AflefaD

f(D) = (4.2)

is the so-called Pearson I'-distribution with the two mo-
ments

(D) ==, (AD)*=(D? — (D) ;o (43)

which are the mean and the variance, respectively. For
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the Gaussian p-distribution, the reduced variance in
Eq. (3.2) becomes Vi = 1, and therefore,

(@)

and A = 1/2 is independent of a. Moreover, if we in-
troduce the dimensionless diffusion rate

AD
(D)

2 B 1 B

=3 = (4.4)

D
D — D*=— 4.5
5D = (45)

oo

with the average (D*) 1, we also obtain from
Eq. (4.3) that a = A = 1/2. The new distribution
then becomes
(D) V2 exp(=D*/2)

V2r

b
F(D*):/f(D’)dD’—M/%D*, (4.6)

0

(D7) =

and

where the latter expression gives the asymptotic be-
havior as D* — 0 that we need. This asymptotic form
is in a very good agreement with the empirical data
in Fig. 2 even at D* ~ 0.1 (!). For very small D*,
the accuracy of the agreement is limited by the fluctu-
ations caused by several remaining points. The small-
est value D* = 8.3 - 107! corresponds to the estimate
D} ~1/J? =10710,

Because the distribution f(D*) in (4.6) is also Gaus-
sian in v/D*, the integral F(D*) admits a very simple
approximation found in [18],

1_w D* >1/2
F(D*) ~ VDT +1 | (4.62)
2D*
D* < 1/2.
T’ <Y

The relative accuracy |[AF/F| < 0.05 of this approx-
imation is better than 5% in the entire range of F.
Actually, the accuracy is even much better except in a
narrow interval at D* ~ 1/2.

Thus, the upper distribution in Fig. 2, which de-
scribes the real diffusion at a sufficiently long motion
time, is in a good agreement with the available the-
ory. This is no longer the case for the lower distribu-
tion on the plateau. In itself, this is not a surprise,
because contrary to the previous case, the measured
diffusion rate is mainly determined by nondiffusive pro-
cesses. But a very interesting feature of this nondiffu-
sive distribution is that the exponent of the power-law
tail remains exactly the same as if the p-distribution
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Fig.2. The distribution function F', Eq. (4.1), of the reduced diffusion rate D* (Eq. (4.5)) in model (2.2) without invari-
ant curves (d = 0). The thick dashed straight line represents asymptotic behavior (4.6) of the integrated D distribution
(4.2) for the Gaussian p-statistics. Two lower wiggly lines correspond to large deviations from the Gaussian statistics:
D. =42 (K =107%) and 461 (K = 3-107°) (see Insert). A group of 10 D distributions in a large interval (10 < D. < 461)

are brought together using empirical relation (4.9). Insert: the shift factor Rp vs the deviation D. (Eq

. (4.8)) for K =107

(circles) and 3-107° (crosses); the straight line is empirical relation (4.7)

were a Gaussian one. The simplest explanation, quite
plausible to us, is that the far tail still represents a dis-
tribution that is a part of the entire distribution accord-
ing to our original picture expressed by estimate (3.1).
One immediate inference is then the decrease of the tail
probability if we use the same variable D* = D/D.
This is indeed the case according to the data in Fig. 2!

A more difficult problem is the quantitative es-
timate of the distribution shift for the motion time
t < 1/K with the ratio (D*) = (D(t))/Ds > 1. This
shift can be characterized either via the probability de-
crease by Rp times for a fixed D* or via the increase of
D* itself by Rp times for a fixed probability. We note
that Rp = R% on the tail because of the square-root
dependence in Eq. (4.6). The characteristic Rp seems
more preferable to us because it describes the shift not
only of the tail but also (qualitatively) of the entire
distribution F'(D*).

Having analyzed the data, we found the empirical
relation for the tail shift,

Rp(D,) ~ D", (4.7)
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where the new diffusion ratio is

(4.8)

and the fitted exponent is a = 0.45.

The philosophy behind this relation is as follows.
We start with our original picture of a combined diffu-
sive/nondiffusive process described by Eq. (3.1), which
is almost our final choice (4.8). But at the beginning,
we seemed to improve the original relation by includ-
ing our surprising discovery, the plateau. Specifically,
we tried to use Eq. (3.5), which is in a good agree-
ment with the empirical data, for the dependence D(t)
(see Fig. 1). We also found that it partly describes the
distribution F(D), except on that mysterious plateau!
Our final step was then to return from (3.5) to a version
of (3.1) in form (4.8).

Although it may have seemed strange, this did work
with a reasonable accuracy, as the insert in Fig. 2
demonstrates. The question «why?» is still to be an-
swered in further studies. This is actually a serious
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general problem of the dynamical mechanism underly-
ing the plateau formation and statistics.

Our empirical relation (4.7) can be represented dif-
ferently. Namely, instead of describing the actual dis-
tribution tail shifted with respect to the asymptotic
form in Eq. (4.6), we can introduce the scaled diffusion

rate
D

D — —
Rp’

which implies that
D*

D* — .
Rp

(4.9)

The result is shown in Fig. 2 as a beam of 10 scaled
distributions scattered around asymptotic line (4.6).

5. DIFFUSION AMID VIRTUAL INVARIANT
CURVES: THE LYAPUNOV EXPONENTS

In the previous sections, we considered a very par-
ticular and most simple limiting case of our model (2.2)
with the parameter d = 0. In this case, the motion is
ergodic [6], which greatly simplifies the problem un-
der consideration. Nevertheless, we obtained a number
of new results that form a firm foundation for further
studies.

The most important new feature of the motion for
d > 0 is the so-called divided phase space of the sys-
tem, that is, a mixture of both chaotic and regular
components of the motion. This is a typical structure
of dynamical systems with several degrees of freedom
(see, e.g., [4]).

First of all, we must eliminate the regular trajec-
tories from further analysis of the diffusion statistics.
The standard well-known method to achieve this con-
sists in simultaneously computing for each trajectory
the so-called Lyapunov exponent A, which is the rate
of the local exponential instability of the motion (see,
e.g., [1-3] and references therein). A two-dimensional
canonical (Hamiltonian) map such as our model (2.2)
involves two Lyapunov exponents whose sum is always
zero, Ay + Ay = 0. For a chaotic trajectory, one ex-
ponent, e.g., Ay = Ay > 0 is positive and the other
is negative, A» = A_ < 0. As a result, in accordance
with the standard definition of the Lyapunov exponent
in the limit as ¢ — oo, any tangent vector (dx,dp) of
the linearized motion approaches the eigenvector cor-
responding to Ay > 0.

A simple well-known procedure for computing A
that we also use in the present work is as fol-
For each of M trajectories with random ini-
tial conditions xg and pg, we chose the tangent vector

lows.
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1.0

0.8
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Fig.3. Examples of the distribution function F(A) of
type (4.1) with the Lyapunov exponent in model (2.2)
ford =0, M = M' =80, t = 10" (the rightmost step
F(A), ergodic motion) and for d = 1/2, M = 10,
M’ = 1000, t = 10*, 10° (nonergodic motion); in all
cases, K = 0.45. The horizontal line indicates the
total share A,.y = 0.318 of the motion regular compo-
nents. The arrow at A = 10™* shows the lower border
of chaotic trajectories chosen for further analysis (for
t =10°)

(dz,dp) of a random direction and the unit modulus,
dp? = da? + dp? = 1. Both maps, the main one and
the one linearized with respect to the main reference
trajectory x(t, xo, po), p(t, g, po), were then run simul-
taneously during some time ¢. The current A(t) was
finally calculated from the standard relation

Aty = no®)

: (5.1)

where the brackets denote averaging over M trajecto-
ries. In contrast to the formal mathematical definition
of A in the limit as ¢ — oo, the Lyapunov exponent
A(t) is always time dependent, perforce, in numerical
experiments.

In Fig. 3, several typical examples of the A distri-
bution are depicted for the number of events in (4.1)
J = M equal to that of trajectories and with a smaller
number of printed points Jo = M' < M except in the
case where d = 0. The simplest distribution is for the
ergodic motion (d = 0). It has the form of an almost
vertical step, whose derivative dF/dA ~ 10* is a very
narrow ¢ function. We note that the regular chain of
points along the F' axis has no special physical meaning
but simply reflects a particular type of the distribution
accepted, F(Aj) = j/J with integer j, see (4.1). The
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mean value of A depends only on K (see Eq. (2.10))
but not on the initial conditions. This example in
Fig. 3 shows the empirical /theoretical ratio, which is
very close to unity, as expected.

The other two examples correspond to the same val-
ues K = 0.45 and M = 10* but different motion times
t = 10* and 10° iterations. Both distributions have
the same step at the largest A, which corresponds to
diffusive components (not necessarily a single one) of
the motion, similarly to the ergodic case. But the most
interesting part is the rest of the distribution, which
represents a rich motion structure, contrary to a dull
one in the ergodic motion.

The largest (but not the most interesting) part of
this structure is related to the steep distribution cut-off
at small A. Comparison of the two distributions for dif-
ferent motion times ¢ = 10* and 10° shows that in this
region, the A values of the trajectories decrease with
increasing time approximately as A ~ 1/¢. This means
that all these trajectories are regular (see Eq. (5.1))
because the tangent vector p does not grow. The rela-
tive number of such trajectories gives the total area
of regular motion on the phase cylinder of the sys-
tem. In the example under consideration, it is given
by A, = 3177/10000 =~ 0.318 (t = 10°). Gener-
ally, this value depends on a particular choice of the
cut-off border (see the arrow in Fig. 3). This delicate
experimental problem is considerably mitigated by a
fortunate feature of the A distribution in our model,
namely, the occurrence of a relatively wide plateau of
F(A) immediately above the cut-off with only several
trajectories on it. But the statistical accuracy

AArey

~ (MAype,) /2
Areg ( g)

(5.2)
is typically much worse, and can be improved by in-
creasing the number of trajectories (and the computa-
tion time) only.

Another interesting feature of the A distribution in
our model is a characteristic «forky shape of the cut-off.
This is a result of negative A for many regular trajec-
tories. Such a peculiar representation is obtained by
ordering A(t) values with their signs but plotting the
moduli |A(t)| only. The lower prong of the fork there-
fore corresponds to A(t) < 0, while A(t) > 0 on the
upper one. This is because of the complex-conjugate
Lyapunov exponents, resulting in a strictly bounded
oscillation of the tangent vector (dz,dp) in this case.
However, the area Ay (see Eq. (5.4) in what follows)
is noticeably smaller than the total area of regular do-
mains A,eq, Ar ~ 020 < A,y ~ 0.318. The rest
is filled with trajectories that are also regular but lin-

early unstable. This implies the linear growth of the
tangent vector in time, p(t) ~ t, such that A(t) — 0
remains positive but vanishes in the limit as ¢ — oo.
This is the so-called marginal local instability with both
A1 = 0 equal zero (see [19] for a discussion). A curious
point is that this seemingly exceptional case becomes
the typical one in a nonlinear oscillator system because
oscillation frequencies depend on the trajectory initial
conditions. In fact, the bounded p oscillation produc-
ing negative A(t) is the exceptional case. The origin
of this peculiarity is in a piecewise linear force in our
model (2.2). As a result, the motion in the main (and
for large K, the biggest) regular domain around the
fixed point * = 1/2, p = 0 is precisely the harmonic
oscillation with the frequency (for K < d)

-

k
Q) = arccos (1 - —&> ~ 1.47, (5.3)

d

which remains the same in the entire regular domain of

the area
2r K K
A ="—yi (1- =] ~0.20. 4
L= TR (1-gg) o G
Here, y+ = x4+ — 0.5 = £d/2 is the position of two
singularities of the force (see Eq. (2.2) and below) that
restrict the size of the regular domain surrounded by
the limiting ellipse to which both lines of the singu-
larity y+ = d/2 = 0.25 are tangent. This ellipse is
determined by the initial conditions

-

s
po=0, zo=05+ys (1 - 2—;) ~ 0.5+£0.185. (5.5)

All the numerical values above correspond to K = 0.45
and d = 1/2. Within the ellipse, the motion of the
tangent vector obeys the same equation as the main
motion, the only difference being an arbitrary length p
of the tangent vector (for details, see [3] and references
therein).

Returning to Fig. 3, we note that the measured area
Ay decreases as the motion time increases. This is ex-
plained by the penetration of trajectories into a very
complicated critical structure at the chaos border sur-
rounding each regular domain (for details, see, e.g., [4]).
For the same reason, the direct measurement of the en-
tire regular region A,., ~ 0.40 by a single chaotic tra-
jectory for 107 iterations gives a noticeably larger value
compared to A,., ~ 0.318 obtained from 10* trajecto-
ries with 10° iterations each.

With all the curiosity of the A(t) distribution being
in regular components of the motion, our main inter-
est in the present study is in the intermediate region
between the regular cut-off at smallest A(¢t) — 0 and
the chaotic step at maximum A independent of ¢. In

655
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this region, the distribution is also independent of the
motion time and characterizes the proper critical struc-
ture of the chaotic motion. In the example in Fig. 3,
this structure is represented by a relatively small prob-
ability step AF =~ 0.06 at A =~ 0.03. Several other
examples are also considered in the next section.

6. DIFFUSION AMID VIRTUAL INVARIANT
CURVES: THE CRITICAL STATISTICS

In Fig. 4, we present three characteristic examples
of the effect of the critical structure on the diffusion
statistics. The dashed curve shows the «unperturbed»
distribution F'(D*) of the normalized diffusion rate
D* = D/Dyorm, see Eq. (4.1), with the normalizing
rate Dyorm to be chosen in each particular case (see
below). The term «unperturbeds refers to the ergodic

F
b B B B B B i B B B B B e b I |
1t i
: 0.4 "0.09
1071k 0.45 -
1072¢ .
i '
4
107 0.3 /- 1
4
/
,/ 05
10—4 Aol 3ol v oood 3ood 3o vl svved vved vl 3ol soed 3oed 3o ooed ed e 3
107*21071° 107® 107¢ 107* 1072 1 10® 10%
D*

Fig.4. Three characteristic examples of the diffusion
statistics in the critical structure including virtual in-
variant curves (d 1/2). Shown are the integral
distributions F' (Eq. (4.1)) of the normalized diffusion
rate D* = D/Dyorm. The numbers at the curves are
the critical diffusion exponents ¢,,. The largest one
co = 0.5 corresponds to the ergodic motion (d = 0)
without any critical structure (the dashed curve). Two
straight lines show the averaged (¢i = 0.3) and local
(¢t = 0.4) critical exponents for K = 0.45 (the solid
line connecting 500 values of F(D")). The distribu-
tion for K = 0.335 with two local critical exponents
(ca = 0.09 and ¢ = 0.45) is presented by 300 points
shifted to the right to avoid overlapping with the other
two distributions. The third distribution (a solid line
through 1000 points, K = 0.3294) is surprisingly close
to that in ergodic case (dashed line). In all three ex-
amples, M =10, t = 10°
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case d = 0 without any invariant curves and critical
structure (see Sec. 4; the problem of the critical struc-
ture in this case is not as simple as it may seem, see
below and Sec. 7). The normalizing rate D,orm = Do
is then the true asymptotic diffusion rate (4.5).

We are now interested in the effect of the critical
structure that typically arises in a nonergodic motion
with its barriers for the chaos, or chaos borders. The
latter are a particular, and a very important, case of
an invariant curve transformed into itself under the dy-
namics of the system. As discussed in Sec. 1, there are
several different types of invariant curves.

One is the well-studied and rather familiar chaos
border surrounding any domain with regular motion.
In this paper, we call it the local invariant curve (LIC);
it does not block the global diffusion around such a do-
main. An important property of a LIC is the robust-
ness, which means that a small change of the system,
e.g., of the parameter K or d cannot destroy the LIC
but can only deform it slightly. This implies that LICs
are always present in any divided phase space.

Here, we are mainly interested in invariant curves
of a different type, the global invariant curves. Each
GIC cuts the entire phase-space cylinder (z mod 1)
of our model, and therefore completely prevents global
diffusion in p. Such invarinat curves are less known,
especially the most surprising of them, the separatrix
of a nonlinear resonance. But those GICs are not ro-
bust in the model under consideration (see [9]), being
destroyed by almost any arbitrarily small perturbation
of the system, in particular by a change of even a sin-
gle its parameter. In other words, such GICs exist only
for the special values, e.g., K = K,,. Although there
are typically infinitely many such special values, the
probability to find a GIC in a randomly chosen sys-
tem is zero. This is why we are interested in a more
generic situation where our model has no GICs at all.
But the effect of those still persists in a certain domain
around each K,,! For this reason, we call such GICs
the virtual invariant curves in analogy with other vir-
tual quantities in physics, e.g., virtual energy levels in
gantum mechanics. We note that unlike a GIC, the
VIC is robust, and hence, generic.

Both LICs and GICs produce the so-called critical
structure of motion (see, e.g., [4]), which is typically
characterized by a power-law distribution of principal
quantities. The corresponding exponents ¢, are called
the critical exponents. Their values are shown in Fig. 4
at the related distributions. We note that the opposite
is generally not true, that is, a particular power law
does not necessarily indicate any critical structure. In
our model, this is the case for the ergodic motion where
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the diffusion rate distribution is also characterized by
an asymptotic (D — 0) power law with the exponent
co = 0.5 (see above and Sec. 7). An important dif-
ference between ergodic and nonergodic dynamics is
however that in the latter case, all the critical expo-
nents ¢, < ¢ are less than the (generally noncritical)
ergodic exponent c¢g. This is the main physical result
of our preliminary numerical experiments that we can
present and already discuss now (see Fig. 4).

We start with the distribution for K = 0.45 (the up-
per solid line), which is far in the region without VICs
(the border of this region is at Kg(d = 1/2) = 1/3, see
Eq. (2.3) above and [16]). But the regular trajectories
(Aregy & 0.318) together with LICs and the related crit-
ical structure are present. As a result, the distribution
(with Dyorm = Do) considerably deviates from the
unperturbed one for the ergodic motion with d = 0.
The critical structure of this type in a relatively nar-
row layer around a LIC is well studied by now (see,
e.g., [4]), including the case where the typical distribu-
tion deviates from a pure power law. The latter would
imply the exact scale invariance of the underlying crit-
ical structure in both the system phase space and its
motion time.

The critical structure is described by the so-called
renormalization group, or renormgroup for brevity. On
the other hand, the equations of motion also form a cer-
tain (dynamical) group for any dynamical system. Such
a fundamental similarity allows interpreting the critical
structure as a certain dynamics, which was called the
renormdynamics [20, 4]. In this picture, the exact scale
invariance with a pure power-law distribution corre-
sponds to the simplest, periodic renormdynamics, even
though the original dynamics may be the most compli-
cated chaotic motion. The resolution of this apparent
paradox is that the complexity of the original dynamics
is «transferred» to the dynamical infinite-dimensional
space of the renormdynamics, leaving behind the sim-
plest renormdynamics itself (sometimes!).

This case is best studied only because it is the sim-
plest one. But the generic case is just the opposite —
a typical renormchaos is also chaotic [21, 20]. This im-
plies a certain chaotic oscillation of the characteristic
distribution around some average power law. This is
precisely the case for the upper distribution in Fig. 4.
It is characterized by the average critical exponent
¢1 = 0.3 with fluctuations of the order ¢j — ¢y = 0.1.
Such an interpretation of the critical structure in ques-
tion is known to be typical but not necessarily unique
(see below). The truly unique property of this criti-
cal structure is the infinite power law, with or without
fluctuations. The term «infinitey here corresponds to

15 ZK3T®, Bem. 3(9)

the range of a renormdynamical variable In D — —o0
with an unrestricted variation, even though the diffu-
sion rate itself D > 0 is strictly bounded from below.

This is no longer the case for the critical structure
of a new type that we have encountered in our problem
and which is produced by VICs (=robust GICs) rather
than by robust LICs. As explained above, the principal
difference between the two is that the VIC is not an in-
variant curve at all. In terms of renormdynamics, this
implies that a VIC can mimic a GIC for relatively large
In D only. This is clearly seen in Fig. 4 in the upper
part of the distribution with the local critical exponent
¢y = 0.09 and the parameter K = 0.335 (points). Here,
we have taken Dorm = 107% < Do ~ 21075 much
smaller than the true diffusion rate D,. This shifts the
entire distribution to the right in order to avoid over-
lapping with other distributions. This value is slightly
above the border Kp(1/2) = 1/3 (see Eq. (2.3)), where
there are many VICs without any GIC. As a result,
the range of the characteristic critical exponent cs,
Aln D* ~ 5 is very short compared to the total avail-
able range ~ 25. The rest of the distribution remains
sufficiently close to the unperturbed one. This implies
the absence of the critical structure or its sharp change
at InD < 2 at least. With this interpretation, the
renorm-motion stops in the specified region.

This in turn implies a «dissipative» rather than
«Hamiltonian» renormdynamics. We note that the
main part of the distribution is close but not identical
to the unperturbed one because of a slight difference
in the characteristic exponent. Whether this implies a
certain very slow renorm-motion remains a very inter-
esting open question. Interestingly, the larger critical
exponent ¢y = 0.45 is also close to the local critical ex-
ponent ¢; = 0.4 in the region without VICs or GICs;
above, it was interpreted as a random fluctuation in
renormchaos. Whether this is indeed true remains un-
clear.

Finally, the third distribution in Fig. 4 (the lower
solid line) actually coincides with the unperturbed dis-
tribution (Dporm & Do), €ven though it corresponds
to the region with many VICs and a strong suppression
of the diffusion (K = 0.3294, see Fig. 3 in [16]). A devi-
ation for very small D* is due to a poor statistics at this
end. We note that the coincidence of both distributions
is not only asympotic (as F' — 0), but also complete,
including the opposite limit as F' — 1. This occurs
in spite of a rather large regular region A,., ~ 0.581.
The origin of this peculiarity for a particular K value
remains unclear. One possibility is that the area of the
critical structure at the chaos border around this regu-
lar domain is unusually small for some reasons. Exam-
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ples of such a peculiarity are known in different models,
see [22], where the critical structure was found to be
unusually large but hidden. In other words, the mo-
tion was ergodic but with strong correlations (cf. the
unusual diffusion rate in Eq. (2.8) for K < 1 in the
ergodic system at d = 0). Returning to this case in
Fig. 4, we conclude that our «unperturbed» power-law
distribution with the exponent ¢g = 0.5 (dashed line)
may well represent a peculiar critical structure related
to the strong hidden temporal correlations rather than
to a purely spatial geometry of the phase space. If
this is true, the correlation decay may indeed be not
a power-law one, as is the case in the model in [22],
where such a hidden decay is purely exponential (see
Fig. 6 in [22]).

We finally mention another peculiarity of the crit-
ical structure in question: all the critical exponents
found so far are smaller, albeit by a small amount,
than the «unperturbed» or «hidden» one ¢g = 0.5. The
physical meaning of this universal inequality is that the
critical structure under consideration always increases
the probability of a very low diffusion rate D — 0. The
general mechanism of this effect is known (see, e.g., [4]),
and is explained by the trajectory «sticking» within a
complicated critical structure, which slows down the
diffusion. Interestingly, the sign of the sticking effect
can be opposite when the sticking accelerates the dif-
fusion up to the absolute maximum D(¢) o ¢ of the
homogeneous diffusion rate [23, 24].

To summarize, we see that our «simple» model con-
sidered in this paper reveals a great variety of critical
structures still to be further studied and understood.

7. CONCLUSION: A HIDDEN CRITICAL
STRUCTURE?

In this paper, we present some preliminary results
of the numerical experiments with a family of simple
models specified by the smooth canonical 2D map (2.1)
with global virtual invariant curves. As in [16], we here
use the same strongly chaotic model and again focus on
the statistics of the diffusion rate D, which proves to
be of a very complicated (apparently fractal) type de-
termined by the so-called critical structure of both the
phase space and the motion (see, e.g., [4]). In [16], we
studied the statistics of the mean diffusion rate (D(K))
averaged over the ensemble of trajectories with random
initial conditions. Our main result there was the ob-
servation of very big and irregular fluctuations of the
dependence (D(K)) and a long and very slowly decay-
ing tail of the (D) distribution as (D) — 0. We termed
the latter effect the VIC diffusion suppression.
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In the present paper, we continue studying this in-
teresting phenomenon in more detail. For this, we pass
from the statistics of averages (D(K)) as functions of
the model parameter K to the statistics of individual
trajectories for a given K. In principle, this approach
provides the deepest insight into the statistical prob-
lem. As the main statistical characteristic, we have
chosen the integral distribution F'(D) in form (4.1) for
a poor statistics as D — 0. Preliminary results of our
extensive numerical experiments presented in Fig. 4
confirm our earlier conjecture on a critical structure
underlying the fractal dependence (D(K)) in [16], the
true sign of such a structure being various power-law
distributions found. Moreover, in addition to the famil-
iar well-known critical structure exemplified in Fig. 4
by the case with the parameter K = 0.45, we observed
many cases of a rather different structure, as the one
with K = 0.335. The principal difference of the latter
is its finite size in the structure variable AlnD < 5.
A natural explanation of this difference is as follows.
First, the VIC is not a true invariant curve like a GIC.
The latter completely blocks the global diffusion, while
the former can at most inhibit the diffusion only. The
mechanism of inhibition is known to be the trajec-
tory sticking inside a very complicated critical struc-
ture. The sticking is the stronger (longer) the smaller
is the spatial and/or the longer is the temporal scale of
the critical structure. But for the VIC structure, both
scales are strictly limited. On the other hand, this re-
striction is the weaker the higher is the VIC density.
In the system under consideration, the VIC density is
rather large, and hence, the restriction leaves enough
freedom for a strong suppression of the global diffu-
sion for almost any K. Moreover, because the critical
exponent of the VIC structure is typically very small
(for example, ¢co = 0.09 in Fig. 4), the probability of
large suppression is high even for a short critical struc-
ture (cf. [16] for a different characteristic of this phe-
nomenon). This slowly decaying suppression probabil-
ity is well ascertained in our numerical experiments,
but we have no theoretical explanation of such behav-
ior.

We now come to possibly the most interesting
result of our current studies. Strange although it may
seem, this brings us to the apparently simplest case
of our model with d = 0, when the motion is ergodic.
The problem is whether it can still reveal any structure
on the grounds that the distribution F'(D) is also a
power law (Fig. 4). This is certainly not the case if in
addition K > 1 and the diffusion rate has standard
form (2.11), D o« K2. But if K < 1, the diffusion rate
becomes qualitatively different at least, D oc K5/2,
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This does not imply anything in general. But in the
particular case under consideration, this dependence
D(K) can be, and actually was, derived [16] from the
resonance structure of motion. If the system were not
ergodic (with a divided phase space), this structure
would be clearly seen in the phase space. The question
is what happens for the ergodic motion with the same
dependence D(K). In [16], we conjectured that some
structure would persist in the form of correlations
that determine the diffusion rate, which is in some
<hidden» form and cannot be directly seen in the
picture of the motion in phase space. An example of
such a hidden critical structure was found in [22] (see
Sec. 6). But in that case, a particular distribution
function was exponential rather than a power-law
one(?). Hence, the question is whether this qualitative
difference can depend on a particular characteristic of
the critical structure. Another question arises from a
very strange temporal behavior of the diffusion rate
in the same «simple» case of the ergodic motion for
d = 0 — a «mysterious» plateau at the very beginning
of diffusion under a weak perturbation (K < 1, see
Fig. 1). In this case, the dependence D(K) = K?2/3 is
the same as in the opposite limit of strong (K > 1)
uncorrelated perturbation(?) but for a very short time
only, the shorter the stronger is the perturbation(?!).
Moreover, the correlations on the plateau are not only
very large as in the weak-perturbation limit X' — 0
but also increase during the entire plateau regime
(see Fig. 1, dashed lines for the variances Vj;(7) in
Eq. (3.2)). At present, we have no definite explanation
for this controversial behavior. A discreet current
conjecture is as follows. The duration of the plateau is
o & 1, 0or ty ~ 1/A =~ 1/Q (see Eq. (2.9)). But the
latter expression gives the phase oscillation period on
the critical nonlinear resonance that determines the
diffusion rate [16]. One can then imagine that this
period characterizes not only the correlation decay,
as usual, but also the correlation uprise. But the
invariable diffusion rate over the entire plateau region
is yet to be explained.
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