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FRACTAL DIFFUSION IN SMOOTH DYNAMICAL SYSTEMSWITH VIRTUAL INVARIANT CURVESB. V. Chirikov *, V. V. Veheslavov **Budker Institute of Nulear Physis630090, Novosibirsk, RussiaSubmitted 5 April 2002Preliminary results of extensive numerial experiments with a family of simple models spei�ed by the smoothanonial strongly haoti 2D map with global virtual invariant urves are presented. We fous on the statistisof the di�usion rate D of individual trajetories for various �xed values of the model perturbation parameters Kand d. Our previous onjeture on the fratal statistis determined by the ritial struture of both the phasespae and the motion is on�rmed and studied in some detail. In partiular, we �nd additional harateristisof what we earlier termed the virtual invariant urve di�usion suppression, whih is related to a new very spe-i� type of the ritial struture. A surprising example of ergodi motion with a �hidden� ritial struturestrongly a�eting the di�usion rate was also enountered. At a weak perturbation (K � 1), we disovered avery peuliar di�usion regime with the di�usion rate D = K2=3 as in the opposite limit of a strong (K � 1)unorrelated perturbation, but in ontrast to the latter, the new regime involves strong orrelations and existsfor a very short time only. We have no de�nite explanation of suh a ontroversial behavior.PACS: 05.45.A1. INTRODUCTION: VIRTUAL INVARIANTCURVESIn two-dimensional map (2.1) that we study here,the di�usion ruially depends on the global invarianturves (GICs) that ut the 2D phase spae of the mo-tion (a ylinder, see the next setion). Even a singlesuh urve is su�ient to ompletely blok the globaldi�usion in the ation variable along the ylinder. Asis well known by now, the existene of GICs dependsnot only on the perturbation strength but also on itssmoothness. It is onvenient to haraterize the latterby the temporal Fourier spetrum of the perturbation.For an analytial perturbation, the Fourier amplitudesdeay exponentially fast. In this ase, the global di�u-sion sets up if the perturbation � & �r exeeds someritial value. Otherwise, the haos remains loalizedwithin relatively narrow haoti layers of nonlinear res-onanes. As a result, the global di�usion is either om-pletely bloked by GICs or the rate of the di�usion aswell as the measure of its domain deay exponentially*E-mail: hirikov�inp.nsk.su**E-mail: veheslavov�inp.nsk.su

in the parameter 1=� as � ! 0 (the so-alled Arnolddi�usion, see, e.g., [1�3℄ for a general review).By de�nition, the Hamiltonian of a smooth systemhas the power-law Fourier spetrum with a ertain ex-ponent � + 1 (see, e.g., [4℄ and referenes therein). Inthis ase, the global di�usion is always bloked for somesu�iently small perturbation strength � < �r(�) ifthe smoothness parameter � > �r exeeds the riti-al value. This is similar to the ase of an analytialHamiltonian exept that the ritial perturbation nowdepends on the Hamiltonian smoothness (�r(�) ! 0as � ! �r).To the best of our knowledge, the strongest rigor-ous result is that �r < 4 for a 2D map as in this paper(see [5℄). But a simple physial onsideration [4℄ leadsto an even smaller value �r = 3, whih is still to beon�rmed somehow, theoretially or numerially. Inany event, the smoothness � = 2 of our model here iseven less.Until reently, the behavior of dynamial systemsin the opposite ase � < �r of a poor smoothnessremained rather vague. Even though most of the nu-merial data seemed to on�rm the simplest behaviorof some universal global di�usion (see, e.g., [6℄), several647



B. V. Chirikov, V. V. Veheslavov ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002ounterexamples were also observed (see, e.g., [7, 8℄).In these ounterexamples, some trajetories remainedwithin a ertain restrited part of the phase spae fora su�iently long omputation time. No lear expla-nation of these strange events has yet been given.Meanwhile, about 20 years ago (!) a number ofmathematial studies revealed various possibilities forthe existene of GICs in smooth systems with � < �r(see, e.g., [8�10℄). To us, the most omprehensive anal-ysis of this problem was given by Bullett [9℄, who rigor-ously proved a strange survival of in�nitely many GICsamid a strong loal haos. Surprisingly, all these inter-esting results remain essentially unknown, at least tophysiists. Apparently, this is beause the above math-ematial papers were restrited (perfore!) to whatould be done rigorously, that is, to the invariant urvesonly, without any attempt to analyze very interestingand important transport proesses suh as di�usion.This is still within reah of the physial analysis and nu-merial (or laboratory) experiments only. As a result,only after the reent aidental redisovery of GICs inhaos by Ovsyannikov [11℄ (whih is still unpublished,see [12, 13℄ for the full text of Ovsyannikov's theorem),intense physial studies of this interesting phenomenonhave begun [12�16℄.Interestingly, the authors of both [9℄ and [11℄ usedexatly the same model, in whih a strange loked-in trajetory was observed muh earlier [7℄. Appar-ently, this is beause this model (a partiular ase ofour model with the parameter d = 1=2, see Se. 2) isthe simplest one possessing those urious GICs (see [15℄for disussion). Perhaps the main surprise was that theGICs inlude the separatries of nonlinear resonanes,whih have always been onsidered as ones destroyed�rst by almost any perturbation. The prinipal di�er-ene is that the invariant urves, separatries inluding,now exist for speial values of the system parametersonly (e.g., K = Km).Although there are in�nitely many suh speial val-ues of the parameter and in�nitely many GICs suhthat a single GIC ompletely bloks the global di�u-sion for eah of the parameter values, the probabilityof the global di�usion (that is, the measure of suh Kvalues) is apparently zero. Therefore, a prinipal ques-tion to be answered is: what would be the behavior ofthat system for an arbitrary value of K? In [16℄, weonjetured that even though the set of Km is not ev-erywhere dense [9℄ in general, the density of this set israther high, and we an therefore expet some hange(presumably suppression) of the di�usion for every Kvalue ompared to the �usual� (familiar) dynamialsystem. In other words, we hypothesized that the stru-

ture of the phase spae and of the motion therein anbe hanged by the formation of GIC at a lose K valueeven if no GICs our for almost all K. This is why wenow all suh a neighbor-K invariant urve the virtualone (VIC) with respet to any K [16℄.Preliminary numerial experiments presentedin [16℄ did on�rm our onjeture. These experimentswere done by the prompt omputation of the averagedi�usion rate D(K) as a funtion of the parameter Kin the domain with GICs, real or virtual ones. Theexperiments revealed a very strong suppression of thedi�usion, up to many orders of magnitude, restritedonly by the omputation time. But even more in-terestingly, a very ompliated (apparently fratal)struture of the dependene D(K) was revealed. Thisseems to be a result of a very ompliated strutureof the model phase spae itself. Preliminarily, it lookslike the so-alled ritial struture (see, e.g., [4℄), buta rather spei� one due to a forest of VICs.In the present paper, we begin the study of thisseemingly new type of the ritial struture. Spei�-ally, we start with the investigation of the statistialproperties of di�uson as one of the harateristi pro-esses in haoti motion.2. THE MODEL: THE SAME AGAINFor the reader's onveniene, we here repeat thedesription of the model in [15, 16℄. In the anonialvariables given by the ation (momentum) p and thephase x, the model is spei�ed by the mapp = p+Kf(x); x = x+ p mod 1; (2:1)whereK = " > 0 is the perturbation strength (not ne-essarily weak) and the �fore� f(x) is the antisymmet-ri pieewise linear �saw� of period 1 (f(�y) = �f(y),y = x � 1=2). The phase spae of the model is theylinder 0 < x < 1, �1 < p < +1.As in [15, 16℄, we atually onsider a family of mapswith another parameter d (see Fig. 1 in [15℄) and thefore f(x) =8>><>>: 2x1� d ; jxj � 1� d2 ;�2yd ; jyj � d2 ; (2:2)where y = x � 1=2 and the seond parameter d(0 � d � 1) is the distane between the two �teeth� ofthe saw jf(x)j = 1 at the points y = y� = �d=2. Themost studied partiular ase of the family orrespondsto d = 1=2, where the saw f(x) with two teeth is sym-metri. In the limit d = 0, the two teeth merge into648



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Fratal di�usion in smooth dynamial systems : : :D�

1 10 10210�2 10�1 10310�1
102101

�Fig. 1. The di�usion relaxation D�(�) == D(�)=D1 ! 1 in model (2.2) with the parameterd = 0 (without invariant urves) is presented as afuntion of the dimensionless time � , Eq. (3.5), forthe two values K = 0:01 (irles) and K = 3 � 10�5(rosses). Two smooth solid lines show empirialrelation (3.5) with two �tting parameters  = 1and  = 4. Dashed lines are varianes the VM(�)in Eq. (3.2), and dotted lines show the varianesVN (�) in Eq. (3.8). In the lower part, the saling inEq. (3.6) is presented redued by the fator 10 toavoid overlapping with other data. The full volume ofempirial data is J =M �N = 104 � 10 = 105one and all the invariant urves are destroyed. This wasobserved and explained in [15℄ for K > 0. In the oppo-site ase where K < 0 (whih is equivalent to K > 0,d = 1), the dynamis of the model is ompletely di�er-ent, and we do not onsider it in this paper (see [15℄for a brief disussion). In our 2D map (2.1), the GICsupports rotation of the phase x around the ylinder,whih bars any motion in p over GICs. In ontrast tothis, a loal invariant urve (LIC) surrounding, e.g.,the domain of regular motion (see [4℄ and Se. 5 below)orresponds to osillation in the phase x, whih allowsother trajetories to bypass that obstale.The GICs, separatries inluding, exist in the en-tire interval 0 < d < 1, but for speial K values only[9, 15, 16℄. In partiular, the invariant urves are om-pletely absent [9℄ for su�iently large parameter valuesK > KB(d) = 2d21 + d ; 0 < d < 1: (2:3)If K � KB (see below), the physial quantity ofthe main interest for us, the di�usion rate D, an beapproximately alulated from the Fourier expansionof fore (2.2) (see [16℄ for the details)

f(x) =Xn�1 fnn� sin(2�nx); (2:4)where fn = � 2�2 os(n�) sin(n�d)d(1� d) ; � = 2: (2:5)In partiular, in the limit d = 0,fn = � 2� os(n�); � = 1; (2:6)the smoothness parameter � beomes less by one butboth values are less than the ritial one �r = 3.The di�usion rate and other quantities are alu-lated using the standard analysis of nonlinear resonan-es and their interation (overlap) (see, e.g., [1�3; 16℄).The alulation is espeially simple if we neglet thevariation of the oe�ients jfnj � onst in (2.4). Thissimpli�ation is exat for d = 0, see (2.6), and remainsreasonably aurate [16℄ forK & 3KB = 6d21 + d : (2:7)The di�usion rate is then approximately given by a verysimple standard relationD(K) = (�p)2tt � 256�5 K5=2 � 0:57K5=2; (2:8)where t is the motion time in map iterations and theparameter K � 1 is assumed to be su�ienly small.The latter expression in (2.8), whih we use below, isthe result of extensive numerial experiments in [6℄, alsoon�rmed in [16℄ for K . 0:1 (see [16℄ and Se. 3).We note that the dependene D(K) / K5=2 is dif-ferent from the usual, or better to say, the simplest oneD(K) / K2. This is explained by the dynamial or-relation of motion that is determined by the frequenyof the phase osillation on nonlinear resonanes,
n =r2�Kfnn��1 � 2pK � �n(K)� 1; (2:9)where �n stands for the Lyapunov exponent harater-izing the loal exponential instability of the motion,whih is the main riterion for dynamial haos. Wenote that for � = 1, both 
n and �n are independentof the Fourier harmoni number n. The exat value ofthe Lyapunov exponent in the limit d = 0 is given by� = ln (1 +K +p2K +K2) � p2K � 1: (2:10)The latter expression is the approximation for smallK (f. Eq. (2.9)) whih is su�iently good within the649



B. V. Chirikov, V. V. Veheslavov ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002appliability region of Eq. (2.8) (K . 0:1) with theauray � 1%. Beause the time is disrete in ourmodel (the number of the map iterations), both or-relation harateristis, Eqs. (2.9) and (2.10), must besmall, whih implies the above restrition on the pa-rameter K.In the opposite limit K � 1, the orrelation be-tween suessive x values is negligible, and we arrive atthe �usual� relation for the di�usion rate,D(K) = K2 1Z0 f2(x) dx = K23 ; (2:11)whih is independent of the parameter d. In the in-termediate region (K � 1), the orrelation auses thedeaying osillation (see [6℄), whih is beyond the sopeof the present paper.3. DIFFUSION WITHOUT ANY INVARIANTCURVES: AVERAGES AND MOMENTSAs mentioned above, there are no invariant urvesfor d = 0. Moreover, the motion is ergodi, whihimplies the simplest struture of the phase spae (f.Se. 4 below). Therefore, this partiular ase is notof the main interest to us by itself. It is neverthelessa good introdution to our entral problem onsideredin Se. 6 below. A similar approah was taken in ourprevious paper [16℄.We �rst onsider the time dependene of the di�u-sion rate D(K; t). The semiolon instead of the usualomma is intended to emphasize that this time depen-dene is not a real physial ontribution to the di�usionbut rather a ombination of two di�erent proesses: theproper di�usion via aumulation of random perturba-tion e�ets and a stationary regular osillation of thedi�using variable (p in our ase), whih is a ertain typeof the bakground for the di�usion. This phenomenonan be roughly represented by the simple relationD(K; t) � D1(K) + B(K)t ; (3:1)where B(K) is some funtion of the perturbation (see,e.g., [16℄ and Eq. (3.5) below). In other words, in manyases, the present studies inluding, the nondi�usingstationary part an be separated from the di�usingpart, thereby onsiderably simplifying the analysis ofthis ompliated proess. All this an be desribed, ofourse, via the standard method of the orrelation ofperturbation. But this would lead to a muh more intri-ate theoretial relations, and in addition, to muh lessinformation on the di�usion dynamis (see, e.g., [6℄).

An example of the di�usion kinetis is presented inFig. 1. The omputation was done as follows. Thenumber of trajetoriesM � 1 with random initial on-ditions homogeneously distributed within the unit areaof the phase ylinder (0 � x0 < 1, 0 � p0 < 1) wererun for a su�iently long time with suessive outputsat ertain intermediate moments of time t as shown inFig. 1. We reall that t is measured in the numberof the map iterations. Eah output inludes the di�u-sion rate hDi averaged over all M trajetories and thedimensionless varianeVM = hD2i � hDi22hDi2 : (3:2)For the Gaussian distribution of the ation p, thisvariane must be equal to unity. This is indeed thease for a su�iently long motion time when the mea-sured di�usion rate reahes its asymptoti value D1 inEq. (3.1). A quite di�erent dependene VM (t) for theprevious smaller time is not surprising (nor is it veryinteresting) beauseD(t) then depends on a ompletelydi�erent physial proess that must be passed over.A real surprise was the very beginning of the di�u-sion, the plateau in Fig. 1. This looks as a real di�usionunlike the following part of the stationary osillation.Moreover, the di�usion rate D0 = K2=3 on the plateauis the maximum one, Eq. (2.11), as forK � 1. Anotherinteresting observation is the duration of this strangedi�usion, t0 � 1� � 1p2K ; (3:3)whih is lose to the inverse Lyapunov exponent, therise time of the loal exponential instability of the un-derlying haoti motion. The last but not the leasturious property is the fast inrease of variane (3.2),VM (t) � t3 ; 2 � t . t0; (3:4)as shown in Fig. 1. This is qualitatively di�erent fromthe behavior of the same di�usion rate for K � 1 withthe usual variane VM � 1. The dynamial mehanismof this strange transitional di�usion is not ompletelylear and requires further studies. Apparently, it issomehow related to the main orrelation (2.9) on dy-namial sale (3.3). Although the initial �di�usion� isrelatively fast, it lasts for a short time only, and therelative hange of the initial distribution of trajetoriesj�pjj�pj0 �rD0� � K3=4 � 1is therefore negligible for K � 1 unless the initial dis-tribution j�pj0 . K3=4 is very narrow. But in the lat-ter ase, the dependene D(t) is very sensitive to the650



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Fratal di�usion in smooth dynamial systems : : :form of the initial distribution in p, as several our pre-liminary numerial experiments reveal. The varianeof D(t) is espeially strong for small t � t0 in the re-gion of that mysterious plateau but eventually deaysas t!1, with the di�usion approahing its limit valueD1. Apparently, this is related to a ompliated �nestruture of the phase spae and/or of the motion or-relations. This interesting question ertainly deservesfurther studies but in the present paper, we onsiderthe simplest, homogeneous distribution of the traje-tory initial onditions on the phase ylinder.In this partiular ase, a very simple and surpri-singly aurate empirial relation for the di�usion timedependene has been found starting from the qualita-tive piture in (3.1). It is given byD(t) � D0 + � D1(1 + �)1= ; � = � t; (3:5)where � is the dimensionless time with an empirial �t-ting parameter  that is very lose to one. The seondempirial parameter  � 4 is less de�nite, but it a�etsthe turn of the dependene D(t) at � � 1 only. Thisrelaxation of the di�usion rate has two time sales: theplateau �pl = 1 or tpl = 1� � 1p2K � 1and the relaxation�R = D0D1 � 1pK � 1 or tR � 1K ;whih is muh longer. Interestingly, the usual di�usionspreading of a very narrow initial p distribution on therelaxation time salej�pj2R = D1tR = D1(D0=D1)� = D0� = j�pj2plis exatly equal to the spreading on the plateau. Hene,the full relaxation spreading is twie as large, whih isalso diretly seen from empirial relation (3.5),j�pj2R = D(�R) �R� � D0 + �RD1(1 + �R)1= �R� � K3=2 � 1;and whih is still muh less than the unit p-period.In Fig. 1, empirial relation (3.5) is presented andompared with the numerial data in the dimension-less variables � and D� = D=D1, where D1 is theasymptoti (�true�) di�usion rate (2.8). In these vari-ables, the urves with various K values are similar andonverge in the limit as � !1.

Another interesting saling an be done as follows.We alulate the di�usion rate D1(D(�)) = Dth fromEq. (3.5) and plot its ratio to the true rate in Eq. (2.8),DthD1 � D(�) (1 + �)1= �D0�D1 � 1: (3:6)Then, within the auray of saling (3.5) and of �u-tuations, this ratio must always be lose to unity. Thisis indeed the ase exept on the plateau (t . t0), wherethe rate D(�) is almost independent of � (see Fig. 1).The next important statistial property onsists in�utuations of the di�usion rate. One harateristiof these �utuations is the dispersion of trajetories,whih is haraterized by the variane in Eq. (3.2). Ifall the trajetories were statistially independent, thedispersion of the mean di�usion rate would be��hDihDi �2 = 2VMM � 1 : (3:7)By onstrution, the trajetories are indeed indepen-dent with respet to their initial onditions but notneessarily with respet to the orresponding di�usionrate. To verify this, we repeated the omputation ofthe di�usion N times with new and independent ini-tial onditions and then alulated the seond (new)dimensionless variane for the average di�usion rate,VN = � hhDi2iNhhDii2N � 1�M � 12VM � 1: (3:8)Again, if Eq. (3.7) is valid, the variane VN must belose to one.The time dependene of both varianes, VM (t) andVN (t), is shown in Fig. 1. Remarkably, their behav-ior is qualitatively di�erent. The �rst variane VM (t)depends on the distribution funtion of p in the en-semble of trajetories, while the seond variane VN (t)is a�eted by the statistial dependene (or indepen-dene) among trajetories for any distribution funtion.The results of our numerial experiments presented inFig. 1 learly demonstrate that the distribution in pquikly deviates from the Gaussian one during the dif-fusion on the plateau and returns only in the limit ast ! 1, when the di�usion rate D ! D1 approahesthe asymptoti value without any nondi�using part.Unlike this, the trajetories remain statistially inde-pendent during the entire proess of the di�usion re-laxation. We return to this interesting point in Se. 7.We now onsider the most informative statistialharateristi, the distribution funtion f(D) of the dif-fusion rate.651



B. V. Chirikov, V. V. Veheslavov ÆÝÒÔ, òîì 122, âûï. 3 (9), 20024. DIFFUSION WITHOUT ANY INVARIANTCURVES: THE DISTRIBUTION FUNCTIONIn the main part of our paper (Se. 6), we are pri-marily interested in the distribution tail D ! 0 of avery low di�usion rate. The shape of this tail is knownto be an important harateristi of the ritial stru-ture of the motion (see, e.g., [4℄). First indiations ofsuh a struture in the presene of virtual invarianturves were observed in [16℄. Here, we ontinue thesestudies.Beause the statistis of the far tail is always ratherpoor, we follow [16℄ in using a speial version of theintegral distributionF (D) = DZ0 f(D0)dD0 � jJ ; (4:1)the so-alled �rank-ordering statistis of extremeevents� (see, e.g., [17℄). The following simple orderingof the D(j) values (events) of the di�usion rate issu�ient for this: D(j + 1) > D(j), j = 1; 2; : : : ; J .The integral probability is then approximately givenby the ratio j=J , as shown in Eq. (4.1).In omputation, we typially ran M trajetories Ntimes (see Se. 3), and the maximum number of theevents therefore reahed J = M �N = 104� 10 = 105.To obtain the lowest possible D values and simulta-neously minimize a rather big output, we ordered allthe omputed events but printed only J0 of those, withJ0 � J , suh that some (the smallest) Dj were ob-tained �rst, while the rest were printed in a logarithmisale. An example of suh a distribution is presentedin Fig. 2 for K = 0:001 in the variables D� = D=hDiand F (D�) = j=J , where hDi is some average di�usionrate (see below). The upper distribution orrespondsto a rather long motion time t = 104 � 1=K, withthe mean di�usion rate already very lose to the limitD1. For the lower distribution, t = 10 is very shortand orresponds to the plateau.At least in the former ase, where the p-distributionis Gaussian (see Se. 3), the distributionf(D) = ���(�) D��1 e��D (4:2)is the so-alled Pearson �-distribution with the two mo-mentshDi = ��; (�D)2 = hD2i � hDi2 = ��2 ; (4:3)whih are the mean and the variane, respetively. For

the Gaussian p-distribution, the redued variane inEq. (3.2) beomes VM = 1, and therefore,��DhDi�2 = 1� = 2 (4:4)and � = 1=2 is independent of �. Moreover, if we in-trodue the dimensionless di�usion rateD ! D� = DD1 (4:5)with the average hD�i = 1, we also obtain fromEq. (4.3) that � = � = 1=2. The new distributionthen beomesf(D�) = (D�)�1=2 exp(�D�=2)p2�and F (D�) = D�Z0 f(D0)dD0 !r 2� D�; (4:6)where the latter expression gives the asymptoti be-havior as D� ! 0 that we need. This asymptoti formis in a very good agreement with the empirial datain Fig. 2 even at D� � 0:1 (!). For very small D�,the auray of the agreement is limited by the �utu-ations aused by several remaining points. The small-est value D� = 8:3 � 10�11 orresponds to the estimateD�min � 1=J2 = 10�10.Beause the distribution f(D�) in (4.6) is also Gaus-sian in pD�, the integral F (D�) admits a very simpleapproximation found in [18℄,F (D�) � 8>>><>>>: 1� exp (�D�=2)pD� + 1 ; D� > 1=2;r2D�� ; D� < 1=2: (4:6a)The relative auray j�F=F j < 0:05 of this approx-imation is better than 5% in the entire range of F .Atually, the auray is even muh better exept in anarrow interval at D� � 1=2.Thus, the upper distribution in Fig. 2, whih de-sribes the real di�usion at a su�iently long motiontime, is in a good agreement with the available the-ory. This is no longer the ase for the lower distribu-tion on the plateau. In itself, this is not a surprise,beause ontrary to the previous ase, the measureddi�usion rate is mainly determined by nondi�usive pro-esses. But a very interesting feature of this nondi�u-sive distribution is that the exponent of the power-lawtail remains exatly the same as if the p-distribution652
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Fig. 2. The distribution funtion F , Eq. (4.1), of the redued di�usion rate D� (Eq. (4.5)) in model (2.2) without invari-ant urves (d = 0). The thik dashed straight line represents asymptoti behavior (4.6) of the integrated D distribution(4.2) for the Gaussian p-statistis. Two lower wiggly lines orrespond to large deviations from the Gaussian statistis:D� = 42 (K = 10�3) and 461 (K = 3�10�5) (see Insert). A group of 10 D distributions in a large interval (10 � D� � 461)are brought together using empirial relation (4.9). Insert: the shift fator RD vs the deviation D� (Eq. (4.8)) for K = 10�3(irles) and 3 � 10�5 (rosses); the straight line is empirial relation (4.7)were a Gaussian one. The simplest explanation, quiteplausible to us, is that the far tail still represents a dis-tribution that is a part of the entire distribution aord-ing to our original piture expressed by estimate (3.1).One immediate inferene is then the derease of the tailprobability if we use the same variable D� = D=D1.This is indeed the ase aording to the data in Fig. 2!A more di�ult problem is the quantitative es-timate of the distribution shift for the motion timet . 1=K with the ratio hD�i = hD(t)i=D1 > 1. Thisshift an be haraterized either via the probability de-rease by RF times for a �xed D� or via the inrease ofD� itself by RD times for a �xed probability. We notethat RD = R2F on the tail beause of the square-rootdependene in Eq. (4.6). The harateristi RD seemsmore preferable to us beause it desribes the shift notonly of the tail but also (qualitatively) of the entiredistribution F (D�).Having analyzed the data, we found the empirialrelation for the tail shift,RD(D�) � Da� ; (4:7)

where the new di�usion ratio isD�(�) � D0�D1 + 1 (4:8)and the �tted exponent is a = 0:45.The philosophy behind this relation is as follows.We start with our original piture of a ombined di�u-sive/nondi�usive proess desribed by Eq. (3.1), whihis almost our �nal hoie (4.8). But at the beginning,we seemed to improve the original relation by inlud-ing our surprising disovery, the plateau. Spei�ally,we tried to use Eq. (3.5), whih is in a good agree-ment with the empirial data, for the dependene D(t)(see Fig. 1). We also found that it partly desribes thedistribution F (D), exept on that mysterious plateau!Our �nal step was then to return from (3.5) to a versionof (3.1) in form (4.8).Although it may have seemed strange, this did workwith a reasonable auray, as the insert in Fig. 2demonstrates. The question �why?� is still to be an-swered in further studies. This is atually a serious653



B. V. Chirikov, V. V. Veheslavov ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002general problem of the dynamial mehanism underly-ing the plateau formation and statistis.Our empirial relation (4.7) an be represented dif-ferently. Namely, instead of desribing the atual dis-tribution tail shifted with respet to the asymptotiform in Eq. (4.6), we an introdue the saled di�usionrate D ! DRD ;whih implies that D� ! D�RD : (4:9)The result is shown in Fig. 2 as a beam of 10 saleddistributions sattered around asymptoti line (4.6).5. DIFFUSION AMID VIRTUAL INVARIANTCURVES: THE LYAPUNOV EXPONENTSIn the previous setions, we onsidered a very par-tiular and most simple limiting ase of our model (2.2)with the parameter d = 0. In this ase, the motion isergodi [6℄, whih greatly simpli�es the problem un-der onsideration. Nevertheless, we obtained a numberof new results that form a �rm foundation for furtherstudies.The most important new feature of the motion ford > 0 is the so-alled divided phase spae of the sys-tem, that is, a mixture of both haoti and regularomponents of the motion. This is a typial strutureof dynamial systems with several degrees of freedom(see, e.g., [4℄).First of all, we must eliminate the regular traje-tories from further analysis of the di�usion statistis.The standard well-known method to ahieve this on-sists in simultaneously omputing for eah trajetorythe so-alled Lyapunov exponent �, whih is the rateof the loal exponential instability of the motion (see,e.g., [1�3℄ and referenes therein). A two-dimensionalanonial (Hamiltonian) map suh as our model (2.2)involves two Lyapunov exponents whose sum is alwayszero, �1 + �2 = 0. For a haoti trajetory, one ex-ponent, e.g., �1 = �+ > 0 is positive and the otheris negative, �2 = �� < 0. As a result, in aordanewith the standard de�nition of the Lyapunov exponentin the limit as t ! 1, any tangent vetor (dx; dp) ofthe linearized motion approahes the eigenvetor or-responding to �+ > 0.A simple well-known proedure for omputing �+that we also use in the present work is as fol-lows. For eah of M trajetories with random ini-tial onditions x0 and p0, we hose the tangent vetor
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Fig. 3. Examples of the distribution funtion F (�) oftype (4.1) with the Lyapunov exponent in model (2.2)for d = 0, M =M 0 = 80, t = 104 (the rightmost stepF (�), ergodi motion) and for d = 1=2, M = 104,M 0 = 1000, t = 104, 105 (nonergodi motion); in allases, K = 0:45. The horizontal line indiates thetotal share Areg � 0:318 of the motion regular ompo-nents. The arrow at � = 10�4 shows the lower borderof haoti trajetories hosen for further analysis (fort = 105)(dx; dp) of a random diretion and the unit modulus,d�2 = dx2 + dp2 = 1. Both maps, the main one andthe one linearized with respet to the main referenetrajetory x(t; x0; p0), p(t; x0; p0), were then run simul-taneously during some time t. The urrent �(t) was�nally alulated from the standard relation�(t) = hln �(t)it ; (5:1)where the brakets denote averaging over M trajeto-ries. In ontrast to the formal mathematial de�nitionof � in the limit as t ! 1, the Lyapunov exponent�(t) is always time dependent, perfore, in numerialexperiments.In Fig. 3, several typial examples of the � distri-bution are depited for the number of events in (4.1)J = M equal to that of trajetories and with a smallernumber of printed points J0 = M 0 � M exept in thease where d = 0. The simplest distribution is for theergodi motion (d = 0). It has the form of an almostvertial step, whose derivative dF=d� � 104 is a verynarrow Æ funtion. We note that the regular hain ofpoints along the F axis has no speial physial meaningbut simply re�ets a partiular type of the distributionaepted, F (�j) = j=J with integer j, see (4.1). The654



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Fratal di�usion in smooth dynamial systems : : :mean value of � depends only on K (see Eq. (2.10))but not on the initial onditions. This example inFig. 3 shows the empirial/theoretial ratio, whih isvery lose to unity, as expeted.The other two examples orrespond to the same val-ues K = 0:45 and M = 104 but di�erent motion timest = 104 and 105 iterations. Both distributions havethe same step at the largest �, whih orresponds todi�usive omponents (not neessarily a single one) ofthe motion, similarly to the ergodi ase. But the mostinteresting part is the rest of the distribution, whihrepresents a rih motion struture, ontrary to a dullone in the ergodi motion.The largest (but not the most interesting) part ofthis struture is related to the steep distribution ut-o�at small �. Comparison of the two distributions for dif-ferent motion times t = 104 and 105 shows that in thisregion, the � values of the trajetories derease withinreasing time approximately as � � 1=t. This meansthat all these trajetories are regular (see Eq. (5.1))beause the tangent vetor � does not grow. The rela-tive number of suh trajetories gives the total areaof regular motion on the phase ylinder of the sys-tem. In the example under onsideration, it is givenby Areg = 3177=10000 � 0:318 (t = 105). Gener-ally, this value depends on a partiular hoie of theut-o� border (see the arrow in Fig. 3). This deliateexperimental problem is onsiderably mitigated by afortunate feature of the � distribution in our model,namely, the ourrene of a relatively wide plateau ofF (�) immediately above the ut-o� with only severaltrajetories on it. But the statistial auray�AregAreg � (MAreg)�1=2 (5:2)is typially muh worse, and an be improved by in-reasing the number of trajetories (and the omputa-tion time) only.Another interesting feature of the � distribution inour model is a harateristi �fork� shape of the ut-o�.This is a result of negative � for many regular traje-tories. Suh a peuliar representation is obtained byordering �(t) values with their signs but plotting themoduli j�(t)j only. The lower prong of the fork there-fore orresponds to �(t) < 0, while �(t) > 0 on theupper one. This is beause of the omplex-onjugateLyapunov exponents, resulting in a stritly boundedosillation of the tangent vetor (dx; dp) in this ase.However, the area A� (see Eq. (5.4) in what follows)is notieably smaller than the total area of regular do-mains Areg , A� � 0:20 < Areg � 0:318. The restis �lled with trajetories that are also regular but lin-

early unstable. This implies the linear growth of thetangent vetor in time, �(t) � t, suh that �(t) ! 0remains positive but vanishes in the limit as t ! 1.This is the so-alled marginal loal instability with both�� = 0 equal zero (see [19℄ for a disussion). A uriouspoint is that this seemingly exeptional ase beomesthe typial one in a nonlinear osillator system beauseosillation frequenies depend on the trajetory initialonditions. In fat, the bounded � osillation produ-ing negative �(t) is the exeptional ase. The originof this peuliarity is in a pieewise linear fore in ourmodel (2.2). As a result, the motion in the main (andfor large K, the biggest) regular domain around the�xed point x = 1=2, p = 0 is preisely the harmoniosillation with the frequeny (for K < d)
 = aros�1� Kd � � 1:47; (5:3)whih remains the same in the entire regular domain ofthe area A� = 2�Kd y2��1� K2d� � 0:20: (5:4)Here, y� = x� � 0:5 = �d=2 is the position of twosingularities of the fore (see Eq. (2.2) and below) thatrestrit the size of the regular domain surrounded bythe limiting ellipse to whih both lines of the singu-larity y� = d=2 = 0:25 are tangent. This ellipse isdetermined by the initial onditionsp0 = 0; x0 = 0:5+y��1� K2d� � 0:5�0:185: (5:5)All the numerial values above orrespond to K = 0:45and d = 1=2. Within the ellipse, the motion of thetangent vetor obeys the same equation as the mainmotion, the only di�erene being an arbitrary length �of the tangent vetor (for details, see [3℄ and referenestherein).Returning to Fig. 3, we note that the measured areaA� dereases as the motion time inreases. This is ex-plained by the penetration of trajetories into a veryompliated ritial struture at the haos border sur-rounding eah regular domain (for details, see, e.g., [4℄).For the same reason, the diret measurement of the en-tire regular region Areg � 0:40 by a single haoti tra-jetory for 109 iterations gives a notieably larger valueompared to Areg � 0:318 obtained from 104 trajeto-ries with 105 iterations eah.With all the uriosity of the �(t) distribution beingin regular omponents of the motion, our main inter-est in the present study is in the intermediate regionbetween the regular ut-o� at smallest �(t) ! 0 andthe haoti step at maximum � independent of t. In655



B. V. Chirikov, V. V. Veheslavov ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002this region, the distribution is also independent of themotion time and haraterizes the proper ritial stru-ture of the haoti motion. In the example in Fig. 3,this struture is represented by a relatively small prob-ability step �F � 0:06 at � � 0:03. Several otherexamples are also onsidered in the next setion.6. DIFFUSION AMID VIRTUAL INVARIANTCURVES: THE CRITICAL STATISTICSIn Fig. 4, we present three harateristi examplesof the e�et of the ritial struture on the di�usionstatistis. The dashed urve shows the �unperturbed�distribution F (D�) of the normalized di�usion rateD� = D=Dnorm, see Eq. (4.1), with the normalizingrate Dnorm to be hosen in eah partiular ase (seebelow). The term �unperturbed� refers to the ergodi

.
..

. ...
.....
.......

........
...............
................
...............

..............
..................
........................
..................................
..........................................
.......................................
.............................

.................
..... ..

F

0.5

0.45

0.090.4

0.3

10
−12

10
−10

10
−4

10
−2

1 10
2

10
−6

10
−8

10
4

10
−4

10
−3

10
−2

10
−1

1

D
∗Fig. 4. Three harateristi examples of the di�usionstatistis in the ritial struture inluding virtual in-variant urves (d = 1=2). Shown are the integraldistributions F (Eq. (4.1)) of the normalized di�usionrate D� = D=Dnorm. The numbers at the urves arethe ritial di�usion exponents m. The largest one0 = 0:5 orresponds to the ergodi motion (d = 0)without any ritial struture (the dashed urve). Twostraight lines show the averaged (1 = 0:3) and loal(01 = 0:4) ritial exponents for K = 0:45 (the solidline onneting 500 values of F (D�)). The distribu-tion for K = 0:335 with two loal ritial exponents(2 = 0:09 and 02 = 0:45) is presented by 300 pointsshifted to the right to avoid overlapping with the othertwo distributions. The third distribution (a solid linethrough 1000 points, K = 0:3294) is surprisingly loseto that in ergodi ase (dashed line). In all three ex-amples, M = 104, t = 105

ase d = 0 without any invariant urves and ritialstruture (see Se. 4; the problem of the ritial stru-ture in this ase is not as simple as it may seem, seebelow and Se. 7). The normalizing rate Dnorm = D1is then the true asymptoti di�usion rate (4.5).We are now interested in the e�et of the ritialstruture that typially arises in a nonergodi motionwith its barriers for the haos, or haos borders. Thelatter are a partiular, and a very important, ase ofan invariant urve transformed into itself under the dy-namis of the system. As disussed in Se. 1, there areseveral di�erent types of invariant urves.One is the well-studied and rather familiar haosborder surrounding any domain with regular motion.In this paper, we all it the loal invariant urve (LIC);it does not blok the global di�usion around suh a do-main. An important property of a LIC is the robust-ness, whih means that a small hange of the system,e.g., of the parameter K or d annot destroy the LICbut an only deform it slightly. This implies that LICsare always present in any divided phase spae.Here, we are mainly interested in invariant urvesof a di�erent type, the global invariant urves. EahGIC uts the entire phase-spae ylinder (x mod 1)of our model, and therefore ompletely prevents globaldi�usion in p. Suh invarinat urves are less known,espeially the most surprising of them, the separatrixof a nonlinear resonane. But those GICs are not ro-bust in the model under onsideration (see [9℄), beingdestroyed by almost any arbitrarily small perturbationof the system, in partiular by a hange of even a sin-gle its parameter. In other words, suh GICs exist onlyfor the speial values, e.g., K = Km. Although thereare typially in�nitely many suh speial values, theprobability to �nd a GIC in a randomly hosen sys-tem is zero. This is why we are interested in a moregeneri situation where our model has no GICs at all.But the e�et of those still persists in a ertain domainaround eah Km! For this reason, we all suh GICsthe virtual invariant urves in analogy with other vir-tual quantities in physis, e.g., virtual energy levels inqantum mehanis. We note that unlike a GIC, theVIC is robust, and hene, generi.Both LICs and GICs produe the so-alled ritialstruture of motion (see, e.g., [4℄), whih is typiallyharaterized by a power-law distribution of prinipalquantities. The orresponding exponents n are alledthe ritial exponents. Their values are shown in Fig. 4at the related distributions. We note that the oppositeis generally not true, that is, a partiular power lawdoes not neessarily indiate any ritial struture. Inour model, this is the ase for the ergodi motion where656



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Fratal di�usion in smooth dynamial systems : : :the di�usion rate distribution is also haraterized byan asymptoti (D ! 0) power law with the exponent0 = 0:5 (see above and Se. 7). An important dif-ferene between ergodi and nonergodi dynamis ishowever that in the latter ase, all the ritial expo-nents n < 0 are less than the (generally nonritial)ergodi exponent 0. This is the main physial resultof our preliminary numerial experiments that we anpresent and already disuss now (see Fig. 4).We start with the distribution forK = 0:45 (the up-per solid line), whih is far in the region without VICs(the border of this region is at KB(d = 1=2) = 1=3, seeEq. (2.3) above and [16℄). But the regular trajetories(Areg � 0:318) together with LICs and the related rit-ial struture are present. As a result, the distribution(with Dnorm = D1) onsiderably deviates from theunperturbed one for the ergodi motion with d = 0.The ritial struture of this type in a relatively nar-row layer around a LIC is well studied by now (see,e.g., [4℄), inluding the ase where the typial distribu-tion deviates from a pure power law. The latter wouldimply the exat sale invariane of the underlying rit-ial struture in both the system phase spae and itsmotion time.The ritial struture is desribed by the so-alledrenormalization group, or renormgroup for brevity. Onthe other hand, the equations of motion also form a er-tain (dynamial) group for any dynamial system. Suha fundamental similarity allows interpreting the ritialstruture as a ertain dynamis, whih was alled therenormdynamis [20, 4℄. In this piture, the exat saleinvariane with a pure power-law distribution orre-sponds to the simplest, periodi renormdynamis, eventhough the original dynamis may be the most ompli-ated haoti motion. The resolution of this apparentparadox is that the omplexity of the original dynamisis �transferred� to the dynamial in�nite-dimensionalspae of the renormdynamis, leaving behind the sim-plest renormdynamis itself (sometimes!).This ase is best studied only beause it is the sim-plest one. But the generi ase is just the opposite �a typial renormhaos is also haoti [21, 20℄. This im-plies a ertain haoti osillation of the harateristidistribution around some average power law. This ispreisely the ase for the upper distribution in Fig. 4.It is haraterized by the average ritial exponent1 = 0:3 with �utuations of the order 01 � 1 = 0:1.Suh an interpretation of the ritial struture in ques-tion is known to be typial but not neessarily unique(see below). The truly unique property of this riti-al struture is the in�nite power law, with or without�utuations. The term �in�nite� here orresponds to

the range of a renormdynamial variable lnD ! �1with an unrestrited variation, even though the di�u-sion rate itself D > 0 is stritly bounded from below.This is no longer the ase for the ritial strutureof a new type that we have enountered in our problemand whih is produed by VICs (=robust GICs) ratherthan by robust LICs. As explained above, the prinipaldi�erene between the two is that the VIC is not an in-variant urve at all. In terms of renormdynamis, thisimplies that a VIC an mimi a GIC for relatively largelnD only. This is learly seen in Fig. 4 in the upperpart of the distribution with the loal ritial exponent2 = 0:09 and the parameterK = 0:335 (points). Here,we have taken Dnorm = 10�6 < D1 � 2 � 10�5 muhsmaller than the true di�usion rateD1. This shifts theentire distribution to the right in order to avoid over-lapping with other distributions. This value is slightlyabove the border KB(1=2) = 1=3 (see Eq. (2.3)), wherethere are many VICs without any GIC. As a result,the range of the harateristi ritial exponent 2,� lnD� � 5 is very short ompared to the total avail-able range � 25. The rest of the distribution remainssu�iently lose to the unperturbed one. This impliesthe absene of the ritial struture or its sharp hangeat lnD . 2 at least. With this interpretation, therenorm-motion stops in the spei�ed region.This in turn implies a �dissipative� rather than�Hamiltonian� renormdynamis. We note that themain part of the distribution is lose but not identialto the unperturbed one beause of a slight di�erenein the harateristi exponent. Whether this implies aertain very slow renorm-motion remains a very inter-esting open question. Interestingly, the larger ritialexponent 02 = 0:45 is also lose to the loal ritial ex-ponent 01 = 0:4 in the region without VICs or GICs;above, it was interpreted as a random �utuation inrenormhaos. Whether this is indeed true remains un-lear.Finally, the third distribution in Fig. 4 (the lowersolid line) atually oinides with the unperturbed dis-tribution (Dnorm � D1), even though it orrespondsto the region with many VICs and a strong suppressionof the di�usion (K = 0:3294, see Fig. 3 in [16℄). A devi-ation for very smallD� is due to a poor statistis at thisend. We note that the oinidene of both distributionsis not only asympoti (as F ! 0), but also omplete,inluding the opposite limit as F ! 1. This oursin spite of a rather large regular region Areg � 0:581.The origin of this peuliarity for a partiular K valueremains unlear. One possibility is that the area of theritial struture at the haos border around this regu-lar domain is unusually small for some reasons. Exam-15 ÆÝÒÔ, âûï. 3 (9) 657



B. V. Chirikov, V. V. Veheslavov ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002ples of suh a peuliarity are known in di�erent models,see [22℄, where the ritial struture was found to beunusually large but hidden. In other words, the mo-tion was ergodi but with strong orrelations (f. theunusual di�usion rate in Eq. (2.8) for K � 1 in theergodi system at d = 0). Returning to this ase inFig. 4, we onlude that our �unperturbed� power-lawdistribution with the exponent 0 = 0:5 (dashed line)may well represent a peuliar ritial struture relatedto the strong hidden temporal orrelations rather thanto a purely spatial geometry of the phase spae. Ifthis is true, the orrelation deay may indeed be nota power-law one, as is the ase in the model in [22℄,where suh a hidden deay is purely exponential (seeFig. 6 in [22℄).We �nally mention another peuliarity of the rit-ial struture in question: all the ritial exponentsfound so far are smaller, albeit by a small amount,than the �unperturbed� or �hidden� one 0 = 0:5. Thephysial meaning of this universal inequality is that theritial struture under onsideration always inreasesthe probability of a very low di�usion rate D ! 0. Thegeneral mehanism of this e�et is known (see, e.g., [4℄),and is explained by the trajetory �stiking� within aompliated ritial struture, whih slows down thedi�usion. Interestingly, the sign of the stiking e�etan be opposite when the stiking aelerates the dif-fusion up to the absolute maximum D(t) / t of thehomogeneous di�usion rate [23, 24℄.To summarize, we see that our �simple� model on-sidered in this paper reveals a great variety of ritialstrutures still to be further studied and understood.7. CONCLUSION: A HIDDEN CRITICALSTRUCTURE?In this paper, we present some preliminary resultsof the numerial experiments with a family of simplemodels spei�ed by the smooth anonial 2D map (2.1)with global virtual invariant urves. As in [16℄, we hereuse the same strongly haoti model and again fous onthe statistis of the di�usion rate D, whih proves tobe of a very ompliated (apparently fratal) type de-termined by the so-alled ritial struture of both thephase spae and the motion (see, e.g., [4℄). In [16℄, westudied the statistis of the mean di�usion rate hD(K)iaveraged over the ensemble of trajetories with randominitial onditions. Our main result there was the ob-servation of very big and irregular �utuations of thedependene hD(K)i and a long and very slowly deay-ing tail of the hDi distribution as hDi ! 0. We termedthe latter e�et the VIC di�usion suppression.

In the present paper, we ontinue studying this in-teresting phenomenon in more detail. For this, we passfrom the statistis of averages hD(K)i as funtions ofthe model parameter K to the statistis of individualtrajetories for a given K. In priniple, this approahprovides the deepest insight into the statistial prob-lem. As the main statistial harateristi, we havehosen the integral distribution F (D) in form (4.1) fora poor statistis as D ! 0. Preliminary results of ourextensive numerial experiments presented in Fig. 4on�rm our earlier onjeture on a ritial strutureunderlying the fratal dependene hD(K)i in [16℄, thetrue sign of suh a struture being various power-lawdistributions found. Moreover, in addition to the famil-iar well-known ritial struture exempli�ed in Fig. 4by the ase with the parameter K = 0:45, we observedmany ases of a rather di�erent struture, as the onewith K = 0:335. The prinipal di�erene of the latteris its �nite size in the struture variable � lnD . 5.A natural explanation of this di�erene is as follows.First, the VIC is not a true invariant urve like a GIC.The latter ompletely bloks the global di�usion, whilethe former an at most inhibit the di�usion only. Themehanism of inhibition is known to be the traje-tory stiking inside a very ompliated ritial stru-ture. The stiking is the stronger (longer) the smalleris the spatial and/or the longer is the temporal sale ofthe ritial struture. But for the VIC struture, bothsales are stritly limited. On the other hand, this re-strition is the weaker the higher is the VIC density.In the system under onsideration, the VIC density israther large, and hene, the restrition leaves enoughfreedom for a strong suppression of the global di�u-sion for almost any K. Moreover, beause the ritialexponent of the VIC struture is typially very small(for example, 2 = 0:09 in Fig. 4), the probability oflarge suppression is high even for a short ritial stru-ture (f. [16℄ for a di�erent harateristi of this phe-nomenon). This slowly deaying suppression probabil-ity is well asertained in our numerial experiments,but we have no theoretial explanation of suh behav-ior.We now ome to possibly the most interestingresult of our urrent studies. Strange although it mayseem, this brings us to the apparently simplest aseof our model with d = 0, when the motion is ergodi.The problem is whether it an still reveal any strutureon the grounds that the distribution F (D) is also apower law (Fig. 4). This is ertainly not the ase if inaddition K � 1 and the di�usion rate has standardform (2.11), D / K2. But if K � 1, the di�usion ratebeomes qualitatively di�erent at least, D / K5=2.658
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