КРИТИЧЕСКОЕ ПОВЕДЕНИЕ НЕУПОРЯДОЧЕННЫХ СИСТЕМ С ЭФФЕКТАМИ НАРУШЕНИЯ РЕПЛИЧНОЙ СИММЕТРИИ

В. В. Прудников^{*}, П. В. Прудников

Омский государственный университет 644077, Омск, Россия

Поступила в редакцию 17 апреля 2002 г.

Осуществлено теоретико-полевое описание критического поведения слабонеупорядоченных систем с *p*-компонентным параметром порядка. Для систем произвольной размерности от трех до четырех в двухпетлевом приближении проведен ренормгрупповой анализ эффективного репличного гамильтониана модели с потенциалом взаимодействия, не являющимся реплично-симметричным. Для случая одноступенчатого нарушения репличной симметрии с применением техники суммирования Паде-Бореля выделены фиксированные точки ренормгрупповых уравнений. На основе анализа их устойчивости определены для каждого значения *p* пороговые размерности системы, разделяющие области реализации различных типов критического поведения. Выявлены особенности критического поведения, определяемого нарушением репличной симметрии. Осуществлено сравнение с результатами применения *є*-разложения и выделена область применимости этого метода.

PACS: 64.60.Ak, 64.60.Fp

1. ВВЕДЕНИЕ

При ренормгрупповом описании критического поведения неупорядоченных систем с замороженным беспорядком для восстановления трансляционной симметрии эффективного гамильтониана, описывающего взаимодействие флуктуаций, используется метод реплик [1–3]. Однако в ряде работ [4–6] были высказаны идеи о возможности нарушения репличной симметрии в системах с замороженным беспорядком. В работах [4, 5] на базе физических представлений о возникновении в неупорядоченных системах с эффектами случайной температуры перехода многочисленных локальных минимумов энергии было осуществлено ренормгрупповое описание модели ϕ^4 с потенциалом взаимодействия, характеризующимся нарушенной репличной симметрией (НРС). Был применен метод *є*-разложения в низшем порядке теории. Для систем с числом компонент параметра порядка p, меньшим четырех, было выявлено определяющее влияние эффектов НРС на критическое поведение. Было показано, что для р, больших единицы, но меньших четырех, возмож-

но осуществление двух режимов поведения системы, один из которых определяет неуниверсальное критическое поведение, зависящее от затравочных значений параметров модели и, в конечном счете, от концентрации примесей в системе, а второй режим, так же как для наиболее интересного случая изинговских систем (p = 1), характеризуется отсутствием устойчивого критического поведения. Несмотря на столь интересные выводы данных работ, результаты проведенных нами ранее исследований по теоретико-полевому описанию ряда однородных и неупорядоченных систем в двухпетлевом и более высоких порядках приближения с применением методов суммирования асимптотических рядов показали [7], что анализ устойчивости различных типов критического поведения в первом порядке є-разложения можно рассматривать лишь в качестве грубой оценки, особенно для многовершинных статистических моделей [8]. Поэтому результаты исследований эффектов НРС, полученные в работах [4-6], требуют детальной переоценки с позиций применения более точного подхода.

С этой целью нами в работах [9, 10] в рамках теоретико-полевого подхода было осуществлено ренормгрупповое описание модели слабонеупорядо-

^{*}E-mail: prudnikv@univer.omsk.su

ченных трехмерных и двумерных систем с введенным потенциалом взаимодействия четвертого порядка по флуктуациям параметра порядка, задающим HPC. Проведенное в двухпетлевом приближении исследование решений ренормгрупповых уравнений с последовательным применением метода суммирования рядов Паде–Бореля показало, что критическое поведение трехмерных и двумерных систем устойчиво относительно влияния эффектов HPC и реализуется прежний сценарий влияния замороженного беспорядка на критическое поведение [11].

Однако остался невыясненным вопрос об области применимости результатов работ [4, 5] и, в частности, каковы пороговые размерности неупорядоченной системы $d_c(p)$, отделяющие область влияния эффектов НРС от областей критического поведения, в которых эффекты НРС несущественны. Интересна также возможность ренормгруппового исследования режимов поведения систем с НРС, в которых отсутствует устойчивое критическое поведение и осуществляется, согласно [4-6], режим сильной связи. Проведение подобного теоретического исследования особенно важно с точки зрения возможности проявления эффектов НРС в сильнонеупорядоченных системах и их наблюдения в численных экспериментах по компьютерному моделированию критического поведения при концентрациях примеси выше порога примесной перколяции, когда в системе возникают протяженные примесные структуры [12].

Рассмотрению данных вопросов посвящена настоящая работа, в которой для слабонеупорядоченных систем произвольной размерности от трех до четырех без использования ϵ -разложения осуществлен в двухпетлевом приближении с применением методов суммирования ренормгрупповой анализ критического поведения модели с НРС-потенциалом.

2. ОПРЕДЕЛЕНИЕ МОДЕЛИ. МЕТОДИКА РАСЧЕТОВ

Модельный гамильтониан Гинзбурга—Ландау, описывающий поведение *p*-компонентной спиновой системы со слабым замороженным беспорядком вблизи критической точки, имеет вид

$$H = \int d^d x \left\{ \frac{1}{2} \sum_{i=1}^p [\nabla \phi_i(x)]^2 + \frac{1}{2} [\tau - \delta \tau(x)] \sum_{i=1}^p \phi_i^2(x) + \frac{1}{4} g \sum_{i,j=1}^p \phi_i^2(x) \phi_j^2(x) \right\}$$
(1)

с гауссовским распределением случайной температуры фазового перехода $\delta \tau(x)$ с дисперсией $\langle \langle (\delta \tau(x))^2 \rangle \rangle \sim u$, определяемой некоторой положительной константой u и пропорциональной концентрации дефектов структуры. Применение стандартного метода реплик (см., например, [6]) позволяет легко провести усреднение по флуктуациям температуры $\delta \tau(x)$ и свести задачу статистического описания слабонеупорядоченной системы к задаче статистического описания однородной системы с эффективным гамильтонианом

$$H_{n} = \int d^{d}x \left\{ \frac{1}{2} \sum_{i=1}^{p} \sum_{a=1}^{n} [\nabla \phi_{i}^{a}(x)]^{2} + \frac{1}{2} \tau \sum_{i=1}^{p} \sum_{a=1}^{n} [\phi_{i}^{a}(x)]^{2} + \frac{1}{4} \sum_{i,j=1}^{p} \sum_{a,b=1}^{n} g_{ab} [\phi_{i}^{a}(x)]^{2} [\phi_{j}^{b}(x)]^{2} \right\}, \quad (2)$$

где индекс «а» нумерует реплики (образы) исходной однородной составляющей в гамильтониане (1), а дополнительная вершина и, возникающая в матрице взаимодействия $g_{ab} = g\delta_{ab} - u$, задает эффективное взаимодействие флуктуаций (*n* × *p*)-компонентного параметра порядка через поле дефектов. Данная статистическая модель термодинамически эквивалентна исходной неупорядоченной модели в пределе $n \rightarrow 0$. Последующая ренормгрупповая процедура статистического учета вклада длинноволновых флуктуаций параметра порядка относительно основного состояния системы с конфигурацией $\phi(x) = 0$ (при $T \geq T_c$), проведенная на масштабах корреляционной длины, обращающейся в бесконечность при температуре перехода T_c , позволяет провести анализ возможных типов критического поведения системы и условия их реализации, а также расчет критических индексов.

Однако, как показано в [4–6], за счет флуктуаций случайной температуры перехода при $[\tau - \delta \tau(x)] < 0$ в системе реализуется макроскопически большое число пространственных областей с $\phi(x) \neq 0$, отделенных от основного состояния потенциальными барьерами. Для описания статистических свойств систем с многочисленными локальными минимумами энергии в [4–6] по аналогии со спиновыми стеклами был применен формализм нарушения репличной симметрии Паризи [9]. В соответствии с аргументами, представленными в [4–6], статистический учет вкладов непертурбативных степеней свободы, связанных с флуктуациями параметра порядка относительно конфигураций поля $\phi(x)$ в локальных минимумах энергии, приводит при реализации репличной процедуры для слабого беспорядка к появлению в эффективном репличном гамильтониане дополнительных взаимодействий вида $\sum_{a,b} g_{ab} \phi_a^2 \phi_b^2$, где итоговая матрица g_{ab} уже не является реплично-симметричной с $g_{ab} = g\delta_{ab} - u$, а имеет структуру HPC Паризи [13]. Так, согласно [4–6,13] в пределе $n \to 0$ матрица g_{ab} со структурой HPC параметризуется в терминах ее диагональных элементов \tilde{g} и недиагональной функции g(x), которая определена на интервале 0 < x < 1: $g_{ab} \to (\tilde{g}, g(x))$. При этом операции с матрицами g_{ab} задаются следующими правилами:

$$g_{ab}^{k} \to (\tilde{g}^{k}; g^{k}(x)),$$

$$(\hat{g}^{2})_{ab} = \sum_{c=1}^{n} g_{ac}g_{cb} \to (\tilde{c}; c(x)),$$

$$(\hat{g}^{3})_{ab} = \sum_{c,d=1}^{n} g_{ac}g_{cd}g_{db} \to (\tilde{d}; d(x)),$$

(3)

где

$$\begin{split} \tilde{c} &= \tilde{g}^2 - \int_0^1 dx \, g^2(x), \\ c(x) &= 2 \left[\tilde{g} - \int_0^1 dy \, g(y) \right] g(x) - \\ &- \int_0^x dy \, [g(x) - g(y)]^2, \\ \tilde{d} &= \tilde{c}\tilde{g} - \int_0^1 dx \, c(x)g(x), \\ d(x) &= \left[\tilde{g} - \int_0^1 dy \, g(y) \right] c(x) + \\ &+ \left[\tilde{c} - \int_0^1 dy \, c(y) \right] g(x) - \\ &- \int_0^x dy \, [g(x) - g(y)][c(x) - c(y)]. \end{split}$$

Реплично-симметричной ситуации соответствует функция g(x) = const, не зависящая от x.

Ренормгрупповое описание модели, задаваемой репличным гамильтонианом (2), было осуществлено нами в рамках теоретико-полевого подхода в двухпетлевом приближении для систем произвольной размерности от трех до четырех. Возможные типы критического поведения и их устойчивость во флуктуационной области определяются ренормгрупповыми уравнениями для коэффициентов матрицы g_{ab} . Для их определения был применен стандартный метод, основанный на диаграммной технике Фейнмана для вершинных частей неприводимых функций Грина и процедуре перенормировки. Так, в двухпетлевом приближении полученные выражения для двухточечной вершинной функции $\Gamma^{(2)}$, четырехточечных вершинных функций $\Gamma^{(4)}_{ab}$ и двухточечной функции $\Gamma^{(2,1)}_{aa}$ со вставкой $(\phi_i^a)^2$ имеют вид

$$\frac{\partial \Gamma^{(2)}}{\partial k^2} \Big|_{k^2 = 0} = 1 + 4fg_{aa}^2 + 2pf\sum_{c=1}^n g_{ac}g_{ca}, \quad (5)$$

$$\Gamma^{(4)}_{ab} \Big|_{k_i = 0} = g_{ab} - p\sum_{c=1}^n g_{ac}g_{cb} - 4g_{aa}g_{ab} - 4g_{ab}^2 + (8 + 16h)g_{ab}^3 + (24 + 8h)g_{aa}^2g_{ab} + (8 + 16h)g_{ab}^3 + (24 + 8h)g_{aa}^2g_{ab} + 48hg_{aa}g_{ab}^2 + 4g_{aa}g_{bb}g_{ab} + 8ph\sum_{c=1}^n g_{ac}g_{cb}^2 + 8phg_{ab}\sum_{c=1}^n g_{ac}g_{cb} + 4phg_{ab}\sum_{c=1}^n g_{ac}g_{cc}g_{cb} + 2p\sum_{c=1}^n g_{ac}g_{cc}g_{cb} + 4phg_{ab}\sum_{c=1}^n g_{ac}g_{cc}g_{cb} + 4pg_{aa}\sum_{c=1}^n g_{ac}g_{cb} + p^2\sum_{c,d=1}^n g_{ac}g_{cd}g_{db}, \quad (6)$$

$$\Gamma_{aa}^{(2,1)}\Big|_{k_i=0} = 1 - p \sum_{c=1}^{n} g_{ca} - 2g_{aa} + 2pg_{aa} \sum_{c=1}^{n} g_{ca} + (4 + 12h)g_{aa}^{2} + 6ph \sum_{c=1}^{n} g_{ca}^{2} + p \sum_{c=1}^{n} g_{cc}g_{ca} + p^{2} \sum_{c,d=1}^{n} g_{dc}g_{ca}, \quad (7)$$

где введены обозначения

$$f(d) = -\frac{1}{J^2} \times \frac{\partial}{\partial k^2} \int \frac{d^d k_1 d^d k_2}{(k_1^2 + 1)(k_2^2 + 1)((k_1 + k_2 + k)^2 + 1)} \Big|_{k^2 = 0},$$

$$h(d) = \frac{1}{J^2} \int \frac{d^d k_1 d^d k_2}{(k_1^2 + 1)^2 (k_2^2 + 1)((k_1 + k_2)^2 + 1)},$$

$$J = \int \frac{d^d k}{(k^2 + 1)^2}$$
(8)

и осуществлено переопределение $g_{ab} \to g_{ab}/J$. Диаграммное представление соответствующих вкладов в $\Gamma^{(2)}$, $\Gamma^{(4)}_{ab}$ и $\Gamma^{(2,1)}_{aa}$ приведено на рис. 1.

Рис. 1. Диаграммное представление вкладов в двухточечную $\Gamma^{(2)}(a)$, четырехточечные $\Gamma^{(4)}_{ab}(b)$ и двухточечную $\Gamma^{(2,1)}_{aa}$ со вставкой $(\phi^a_i)^2(a)$ вершинные функции в одно- и двухпетлевом приближениях с соответствующими весовыми коэффициентами

Однако последующая процедура перенормировки вершинных функций и определение β - и γ -функций, задающих ренормгрупповые преобразования для констант взаимодействия, затруднены из-за сложного характера соотношений (3), (4) для операций с матрицами g_{ab} . Выявленная в [4–6] ступенчатая структура функции g(x) позволяет реализовать процедуру перенормировки. Мы ограничились

в данной статье рассмотрением функции g(x) одноступенчатого вида:

$$g(x) = \begin{cases} g_0, & 0 \le x < x_0, \\ g_1, & x_0 < x \le 1, \end{cases}$$
(9)

где координата ступеньки $0 \le x_0 \le 1$ остается произвольным параметром, который не эволюционирует при масштабных преобразованиях и остается таким же, как и в затравочной функции $g_0(x)$. В результате ренормгрупповые преобразования репличного гамильтониана с НРС задаются тремя параметрами \tilde{g}, g_0, g_1 .

Критические свойства модели могут быть выявлены из анализа коэффициентов $\beta_i(\tilde{g}, g_0, g_1)$ $(i = 1, 2, 3), \gamma_{\phi}(\tilde{g}, g_0, g_1)$ и $\gamma_{\phi^2}(\tilde{g}, g_0, g_1)$ ренормгруппового уравнения Каллана–Симанзика [14]. Мы получили β - и γ -функции в двухпетлевом приближении в виде следующих рядов по перенормированным параметрам \tilde{g}, g_0 и g_1 :

$$\begin{split} \beta_1 &= -\tilde{g} + (8+p) \, \tilde{g}^2 - px_0 \, g_0^2 - p \, (1-x_0) \, g_1^2 + \\ &+ \left[(8 \, f - 40 \, h + 20) p + 16 \, f - 176 \, h + 88 \right] \tilde{g}^3 \, + \\ &+ (24h - 8f - 12) \, x_0 p \tilde{g} g_0^2 + (24h - 8f - 12) \times \\ &\times (1-x_0) \, p \tilde{g} g_1^2 - (16 \, h - 8) \, x_0 \, p g_0^3 \, - \\ &- (16 \, h - 8) \, (1-x_0) \, p g_1^3, \\ \beta_2 &= -g_0 + (4+2 \, p) \, \tilde{g} g_0 + (2 \, p x_0 - 4) \, g_0^2 \, + \\ &+ 2 \, (1-x_0) \, p g_0 g_1 \, + \\ &+ \left[(8 \, f - 48 \, h + 28) p + 16 \, f - 48 \, h + 24 \right] \tilde{g}^2 g_0 \, - \\ &- \left[((32 \, h - 16) \, x_0 + 8 - 32 \, h) p + 48 - 96 \, h \right] \, \tilde{g} g_0^2 - \\ &- (32 \, h - 16) \, (1-x_0) \, p \tilde{g} g_0 g_1 \, + \\ &+ \left[(48 \, h - 8 \, f - 20) \, x_0 \, p - 32 \, h + 16 \right] g_0^3 \, + \\ &+ (32 \, h - 8) \, (1-x_0) \, p g_0^2 g_1 \, + \\ &+ (16 \, h - 12 - 8 \, f) \, (1-x_0) \, p g_0 g_1^2, \\ &+ (16 \, h - 12 - 8 \, f) \, (1-x_0) \, p g_0 g_1^2, \\ &+ (4 + 2 \, p) \, \tilde{g} g_1 \, + \left[(8 \, f - 48 \, h + 28) p + 16 \, f - \\ &- 48 \, h + 24 \right] g_1 \tilde{g}^2 \, - (16 \, h - 8) \, x_0 \, p \tilde{g} g_0^2 \, - \\ &- \left[((8 - 16h) \, x_0 - 8) p + 48 - 96h] u_0 g_1^2 \, + \\ &+ (16h - 8) \, x_0 \, p g_0^3 \, + \, (8 \, h - 8 \, f - 4) \, x_0 \, p g_1 g_0^2 \, + \\ &+ \left[(8 f - 24 \, h + 12) \, x_0 \, p + (48 \, h - 8 \, f - 20) \, p + \\ &+ 16 \, - 32 \, h \right] g_1^3, \\ \gamma_{\phi} &= 4(4 - d) \, f(d) \, \times \\ &\times \left[(p + 2) \tilde{g}^2 - p x_0 g_0^2 - p (1 - x_0) g_1^2 \right], \\ \gamma_{\phi^2} &= -(4 - d) \left[(p + 2) \tilde{g} + p x_0 g_0 + p (1 - x_0) g_1 - \\ &- 2(6 \, h - 2 \, f - 3) \, ((p + 2) \, \tilde{g}^2 \, - \\ &- p x_0 g_0^2 - p \left(1 - x_0 \right) g_1^2 \right]. \end{split}$$

Для возможности сопоставления результатов данной работы с работами [4–6] мы по аналогии с [4–6] в выражениях (10) изменили знаки на противоположные у недиагональных элементов матрицы $g_{a\neq b} \rightarrow -g_{a\neq b}$, в результате чего g_0 и g_1 становятся положительно определенными. Нами был проведен численный расчет интегралов f(d) и h(d) для

 $3 \le d < 4.$

Известно, что ряды теории возмущений являются асимптотическими, а вершины взаимодействия флуктуаций параметра порядка во флуктуационной области $\tau \to 0$ достаточно велики, чтобы можно было непосредственно применять выражения (10). Поэтому с целью извлечения из полученных выражений нужной физической информации мы применили обобщенный на трехпараметрический случай метод Паде–Бореля, используемый для суммирования асимптотических рядов. При этом прямое и обратное преобразования Бореля имеют вид

$$f(\tilde{g}, g_0, g_1) = \sum_{i,j,k} c_{ijk} \tilde{g}^i g_0^j g_1^k =$$

= $\int_0^\infty e^{-t} F(\tilde{g}t, g_0t, g_1t) dt,$ (11)
 $F(\tilde{g}, g_0, g_1) = \sum_{i,j,k} \frac{c_{ijk}}{(i+j+k)!} \tilde{g}^i g_0^j g_1^k.$

Для аналитического продолжения борелевского образа функции вводится ряд по вспомогательной переменной $\boldsymbol{\theta}$

$$\tilde{F}(\tilde{g}, g_0, g_1, \theta) =$$

$$= \sum_{k=0}^{\infty} \theta^k \sum_{i=0}^{k} \sum_{j=0}^{k-i} \frac{c_{i,j,k-i-j}}{k!} \tilde{g}^i g_0^j g_1^{k-i-j}, \quad (12)$$

к которому применяется аппроксимация Паде [L/M] в точке $\theta = 1$. Данная методика была предложена и апробирована в работах [8] для описания критического поведения ряда систем, характеризующихся несколькими вершинами взаимодействия флуктуаций параметра порядка. Выявленное в [8] свойство сохранения симметрии системы в процессе применения паде-аппроксимант по переменной θ становится существенным при описании многовершинных моделей. В данной работе для вычисления β -функций в двухпетлевом приближении использовался аппроксимант [2/1].

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Как известно, природа критического поведения определяется существованием устойчивой фиксированной точки, удовлетворяющей системе уравнений

$$\beta_i(\tilde{g}^*, g_0^*, g_1^*) = 0, \quad i = 1, 2, 3.$$
 (13)

В результате численного решения системы (13) для просуммированных методом Паде-Бореля β-функций для значений числа компонент параметра порядка p = 1, 2, 3 было выделено три типа нетривиальных фиксированных точек в представляющей физический интерес области значений параметров $\tilde{g}^*, g_0^*, g_1^* \ge 0$ (табл. 1–3). Так, фиксированная точка первого типа с $\tilde{g}^{*}\neq 0, \ g_{0}^{*}=g_{1}^{*}=0$ соответствует критическому поведению однородной системы, фиксированная точка второго типа с $\tilde{g}^* \neq 0, \ g_0^* = g_1^* \neq 0$ — критическому поведению неупорядоченной системы с репличной симметрией, а фиксированная точка третьего типа с $\tilde{g}^* \neq 0, \ g_0^* = 0, \ g_1^* \neq 0 -$ критическому поведению неупорядоченной системы с НРС. При этом значения параметров \tilde{g}^*, g_1^* в фиксированной точке с НРС зависят от координаты ступеньки x_0 и в табл. 1–3 приведены полученные значения \tilde{g}^*, g_1^* для $0 < x_0 < 1$ с шагом $\Delta x_0 = 0.1$.

Возможность реализации того или иного типа критического поведения для каждого p определяется устойчивостью соответствующей фиксированной точки. Требование устойчивости фиксированной точки сводится к условию, при котором собственные значения λ_i матрицы

$$B_{ij} = \frac{\partial \beta_i(\tilde{g}^*, g_0^*, g_1^*)}{\partial g_j} \tag{14}$$

находятся в правой комплексной полуплоскости. Анализ значений λ_i для каждого типа фиксированных точек (табл. 1–3) позволяет сделать следующие выводы.

1) Для трехмерной модели Изинга (p = 1) устойчива фиксированная точка второго типа (табл. 1а). Комплексные значения λ_1, λ_2 при положительных $|\lambda_1|, |\lambda_2|, \lambda_3$ указывают на то, что фиксированная точка второго типа в отличие от фиксированной точки третьего типа является устойчивым фокусом в параметрическом пространстве (\tilde{g}, g_0, g_1) и приближение ренормгрупповых потоков к фиксированной точке второго типа осуществляется по спиралевидной траектории. Лишь при пороговой размерности системы $d_c = 3.986$ (табл. 16, в) фиксированная точка второго типа теряет устойчивость (λ_3 меняет знак), а поскольку во всем интервале изменения

размерности системы $3 \le d < 4$ остальные фиксированные точки остаются неустойчивыми, то, следовательно, при $3.986 \le d$ в системе за счет эффектов нарушений репличной симметрии вообще не реализуется устойчивое критическое поведение. Результаты проведенного нами исследования поведения ренормгрупповых потоков для $3.986 \le d$ представлены ниже.

2) Для трехмерной XY-модели (p = 2) получаемые малые положительные значения λ_i (табл. 2а) указывают на слабую устойчивость реплично-симметричной фиксированной точки второго типа типа. Однако уже при размерности $d_c = 3.1$ (табл. 26, в) устойчивой становится фиксированная точка третьего типа с эффектами нарушения репличной симметрии. При этом критическое поведение, определяемое данной точкой, является неуниверсальным и оказывается зависящим от величины параметра x_0 , а следовательно, от концентрации примесей. Анализ устойчивости фиксированной точки третьего типа показал, что она оказывается устойчивой лишь для интервала $0 \leq x_0 \leq x_c(d)$, где x_c — некоторое пороговое значение параметра, зависящее от размерности системы. Так, для d = 3.1 величина $x_c = 0.1$, а для d = 3.999 имеем $x_c = 0.3$. В интервале же $x_{c}(d) < x_{0} < 1$ ни одна из фиксированных точек не является устойчивой.

3) Для изотропной трехмерной модели Гейзенберга (p = 3) устойчивой становится фиксированная точка первого типа (табл. 3а), в то время как в других фиксированных точках константы g_0^*, g_1^* принимают нефизические отрицательные значения. Лишь при размерности системы $d_c = 3.999$ значения констант g_0^*, g_1^* для фиксированной точки третьего типа принимают физические значения и одновременно фиксированная точка третьего типа становится устойчивой для интервала изменения $0 \le x_0 \le 0.4$ (табл. 36, в). В интервале же $0.4 < x_0 < 1$ ни одна из фиксированных точек не является устойчивой.

Отметим, что хотя для трехмерной XY-модели (p = 2) расчеты показали устойчивость примесной реплично-симметричной фиксированной точки второго типа, есть основания считать, что в более высоких порядках приближения теории, как и в случае неупорядоченных систем, рассматриваемых без учета эффектов HPC [11], устойчивой станет фиксированная точка первого типа, соответствующая критическому поведению однородной системы. На это, с одной стороны, указывает чрезвычайно слабая устойчивость (λ_3 =0.000004) фиксированной точки второго типа и то, что найденное в двухпетлевом

14 ЖЭТФ, вып. 3 (9)

d	Тип	x_0	\tilde{g}^*	g_0^*	g_1^*	$\lambda_1 \qquad \lambda_2$	λ_3
	1		0.1774	0	0	0.6536 - 0.1692	-0.1692
	2		0.1844	0.0812	0.0812	$0.5253 \pm 0.0893i$	0.2112
		0.0	0.1844	0	0.0812	$0.5253 \pm 0.0893i$	-0.0392
		0.1	0.1840	0	0.0829	$0.5352 \pm 0.0983i$	-0.0492
		0.2	0.1835	0	0.0846	$0.5471 \pm 0.1067i$	-0.0599
		0.3	0.1830	0	0.0863	$0.5607 \pm 0.1133i$	-0.0712
		0.4	0.1824	0	0.0880	$0.5765 \pm 0.1180i$	-0.0832
a) $d = 3.0$	3	0.5	0.1817	0	0.0895	$0.5951 \pm 0.1203 i$	-0.0959
		0.6	0.1810	0	0.0910	$0.6172 \pm 0.1189i$	-0.1093
		0.7	0.1802	0	0.0924	$0.6439 \pm 0.1114i$	-0.1234
		0.8	0.1793	0	0.0936	$0.6760 \pm 0.0921 i$	-0.1381
		0.9	0.1784	0	0.0947	$0.7135 \pm 0.0353i$	-0.1534
		1.0	0.1774	0	0.0957	$0.8573 \qquad 0.6536$	-0.1692
б) <i>d</i> = 3.985	1		0.0917	0	0	0.6315 - 0.4163	-0.4163
	2		0.1231	0.1090	0.1090	${f 0.6986\pm 0.1311}i$	0.0022
	3	0.0	0.1231	0	0.1090	$0.7047 \pm 0.1069i$	-0.0363
	1		0.0916	0	0	0.6318 - 0.4165	-0.4165
в) $d = 3.986$	2		0.1230	0.1092	0.1092	$0.6895 \pm 0.1453i$	-0.0076
	3	0.0	0.1230	0	0.1092	$0.7018 \pm 0.0935 i$	-0.0359

Таблица 1. Значения фиксированных точек и собственных значений для p=1

приближении пороговое значение параметра порядка $p_c = 2.0114$, разделяющее области критического поведения, определяемые фиксированными точками первого $(p > p_c)$ и второго $(p < p_c)$ типов, оказывается очень близким к p = 2. Этим объясняется наблюдаемое очень медленное изменение собственных значений λ_i матрицы устойчивости для неупорядоченной ХУ-модели с изменением размерности системы (табл. 2). С другой стороны, отрицательное значение критического показателя α для теплоемкости однородной ХҮ-модели в соответствии с критерием Харриса также указывает на устойчивость критического поведения модели относительно влияния замороженного беспорядка и, следовательно, на то, что в более высоких порядках приближения теории $p_c < 2$. Так, в работе [15] при применении псевдо-є-разложения в шестипетлевом приближении и метода суммирования Паде-Бореля-Лероя с тщательно подобранным подгоночным параметром было найдено значение $p_c = 1.912(4)$.

По причине того что для XY-модели значение p_c оказывается очень близким к p = 2, можно ожидать,

что расчеты, проведенные в более высоких порядках приближения теории, существенно изменят и величину пороговой размерности $d_c(p=2)$, хотя для моделей Изинга и Гейзенберга возможные изменения в значениях $d_c(p)$ должны быть малыми. Основанием для этого могут служить результаты расчета критических индексов для трехмерных однородных моделей с p = 1, 2, 3 и неупорядоченной модели Изинга, проведенные нами в двухпетлевом приближении с применением метода Паде-Бореля (табл. 4), и их сопоставление со значениями соответствующих индексов из работ [16, 17], в которых рекордные расчеты для трехмерных моделей были проведены в шестипетлевом приближении. Сравнение показывает, что отклонение в значениях критических индексов не превышает 0.02.

Полученные в настоящей работе значения пороговых размерностей $d_c(p)$, отделяющие область критического поведения с эффектами НРС $d_c(p) < d < 4$ от области, в которой данные эффекты несущественны, можно рассматривать и как пороговые размерности, ограничивающие область

d	Тип	x_0	${ ilde g}^{*}$	g_0^*	g_1^*	λ_1	λ_2	λ_3
	1		0.155830	0	0	0.667315	-0.001672	-0.001672
	2		0.155831	0.000584	0.000584	0.667312	0.001682	0.000004
		0.0	0.155831	0	0.000584	0.667313	0.001683	-0.000001
		0.1	0.155831	0	0.000614	0.667313	0.001684	-0.000088
		0.2	0.155831	0	0.000648	0.667313	0.001685	-0.000186
		0.3	0.155831	0	0.000686	0.667313	0.001686	-0.000296
a) $d = 3.0$	3	0.4	0.155831	0	0.000729	0.667313	0.001687	-0.000419
		0.5	0.155831	0	0.000778	0.667313	0.001687	-0.000559
		0.6	0.155831	0	0.000833	0.667313	0.001688	-0.000717
		0.7	0.155831	0	0.000896	0.667314	0.001690	-0.000901
		0.8	0.155831	0	0.000971	0.667314	0.001692	-0.001116
		0.9	0.155831	0	0.001058	0.667315	0.001694	-0.001369
		1.0	0.155830	0	0.001163	0.667316	0.001696	-0.001672
	1		0.1499955	0	0	0.689608	-0.009539	-0.009539
	2		0.1500170	0.00325	0.00325	0.689535	0.009887	-0.000003
б) <i>d</i> = 3.10		0.0	0.1500170	0	0.00325	0.689535	0.009887	0.000109
	3	0.1	0.1500169	0	0.00341	0.689535	0.009899	-0.000401
		0.2	0.1500167	0	0.00360	0.689536	0.009926	-0.000961
в) $d = 3.999$	1		0.089762	0	0	1.119442	-0.133591	-0.133591
	2		0.092307	0.036991	0.036991	1.103421	0.227335	-0.025378
		0.0	0.092307	0	0.036991	1.103421	0.227335	0.030783
	3	0.1	0.092270	0	0.038723	1.102142	0.235506	0.021563
		0.2	0.092205	0	0.040559	1.100913	0.244667	0.011135
		0.3	0.092108	0	0.042500	1.099845	0.254810	-0.000648
		0.4	0.091970	0	0.044547	1.099106	0.265820	-0.013939

Таблица 2. Значения фиксированных точек и собственных значений для p=2

применимости метода ε -разложения к данной трехвершинной модели слабонеупорядоченной системы и результатов работ [4–6] на нем основанных. Проведенные исследования показывают также, что результаты применения метода ε -разложения к многовершинным статистическим моделям независимо от порядка используемого приближения не являются надежными. Это объясняется конкуренцией между различными типами фиксированных точек в параметрическом пространстве многовершинных моделей, которая не позволяет, как правило, осуществлять протяжку $\varepsilon \rightarrow 1$ без пересечения маргинальных размерностей системы $3 \leq d_c < 4$, разделяющих области устойчивости различных фиксированных точек.

Для выяснения природы поведения неупорядоченной системы с эффектами НРС в области отсутствия устойчивого критического состояния был исследован фазовый портрет модели на основании решения системы уравнений

$$r\frac{\partial g_i}{\partial r} = \beta_i(\tilde{g}, g_0, g_1), \tag{15}$$

задающей фазовые траектории в пространстве вершин (\tilde{g}, g_0, g_1) . Исследования показали (рис. 2), что для модели Изинга с $d_c = 3.986$ при $d \ge 3.986$, где не устойчива ни одна из фиксированных точек, реализуется режим сильной связи с ренормгрупповыми потоками, задаваемыми $(\tilde{g}, g_0, g_1) \rightarrow (\infty, 0, 0)$ при условии $\tilde{g} > \tilde{g}^*$. В то же время при $\tilde{g} < \tilde{g}^*$ реализуются потоки с $(\tilde{g}, g_0, g_1) \rightarrow (0, 0, 0)$, асимптоти-

 14^{*}

d	Тип	x_0	\tilde{g}^*	g_0^*	g_1^*	λ_1	λ_2	λ_3
a) $d = 3.0$	1		0.1383	0	0	0.6814	0.1315	0.1315
	2		0.1419	-0.0359	-0.0359	0.6727	-0.0891	-0.1450
		0.0	0.1419	0	-0.0359	0.6727	-0.0891	-0.0058
	3	0.1	0.1420	0	-0.0382	0.6727	-0.0865	0.0011
		0.2	0.1420	0	-0.0408	0.6728	-0.0836	0.0088
	1		0.090189	0	0	1.008004	0.024111	0.024111
	2		0.090269	-0.005167	-0.005167	-3.346714	-0.829868	-0.861435
б) $d = 3.998$		0.0	0.090269	0	-0.005167	1.007806	-0.022461	-0.005642
	3	0.1	0.090271	0	-0.005519	1.007803	-0.022334	-0.004451
		0.2	0.090273	0	-0.005922	1.007801	-0.022185	-0.003093
	1		0.081989	0	0	1.113633	-0.000820	-0.000820
	2		0.081989	0.000171	0.000171	1.113633	0.000822	-0.000228
		0.0	0.081989	0	0.000171	1.113633	0.000822	0.000228
в) $d = 3.999$		0.1	0.081989	0	0.000183	1.113633	0.000822	0.000188
		0.2	0.081989	0	0.000196	1.113633	0.000823	0.000142
		0.3	0.081989	0	0.000212	1.113633	0.000823	0.000088
	3	0.4	0.081989	0	0.000230	1.113633	0.000823	0.000025
		0.5	0.081989	0	0.000251	1.113633	0.000823	-0.000050
		0.6	0.081989	0	0.000277	1.113633	0.000824	-0.000140
		0.7	0.081989	0	0.000309	1.113633	0.000824	-0.000251
		0.8	0.081989	0	0.000350	1.113633	0.000825	-0.000391
		0.9	0.081989	0	0.000402	1.113633	0.000826	-0.000574
		1.0	0.081989	0	0.000473	1.113633	0.000828	-0.000820

Таблица 3. Значения фиксированных точек и собственных значений для p=3

Таблица 4. Значения критических индексов для трехмерных моделей в реплично-симметричных фиксированных точках (ФТ)

Модель	ΦT	η	ν	γ	β	α
Изинга	$\Phi T1$	0.0280	0.637	1.256	0.327	0.088
	[16]	0.031(4)	0.630(2)	1.241(2)	0.325(2)	0.110(5)
	$\Phi T2$	0.0283	0.679	1.339	0.349	-0.037
	[17]	0.030(3)	0.678(10)	1.330(17)	0.349(5)	-0.034(30)
XY	$\Phi T1$	0.0288	0.674	1.328	0.347	-0.022
	[16]	0.034(3)	0.669(1)	1.316(1)	0.346(1)	-0.007(6)
Гейзенберга	$\Phi T1$	0.0283	0.706	1.392	0.363	-0.118
	[16]	0.034(3)	0.705(1)	1.387(1)	0.364(1)	-0.115(9)

Рис.2. Картина ренормгрупповых потоков в параметрическом пространстве (\tilde{g}, g_0, g_1) для модели Изинга при размерности системы d = 3.99

чески близко приближающиеся к гауссовой фиксированной точке (0, 0, 0), а затем также стремящиеся к бесконечности вдоль направлений, задаваемых осями \tilde{g}, g_0, g_1 . Такое поведение потоков для $\tilde{g} < \tilde{g}^*$ обусловливается близостью размерности системы d к четырем, когда влияние флуктуаций пренебрежимо мало и притягивающим центром становится гауссова фиксированная точка.

4. ВЫВОДЫ

Таким образом, проведенные в двухпетлевом приближении ренормгрупповые исследования слабонеупорядоченных систем произвольной размерности от трех до четырех показали, что критическое поведение трехмерных систем устойчиво относительно влияния эффектов нарушения репличной симметрии. В системах с однокомпонентным параметром порядка реализуется критическое поведение, определяемое структурным беспорядком с реплично-симметричной фиксированной точкой. Наличие слабого беспорядка не влияет на критическое поведение многокомпонентных систем, хотя для доказательства этого в случае систем с p = 2 необходимо проведение расчетов в более высоких порядках приближения.

Эффекты нарушений репличной симметрии проявляются лишь при размерностях неупорядоченной системы больших трех, при этом пороговые значения размерности d_c зависят от числа компонент параметра порядка p и величины параметра x_0 . Качественно предсказываемая картина влияния эффектов нарушений репличной симметрии на критическое поведение неупорядоченных систем с размерностью $d > d_c$ согласуется с результатами работ [4–6], получаемыми на основе ϵ -разложения: для систем с p = 1 эффекты HPC разрушают устойчивое критическое поведение и реализуется режим сильной связи, а для систем с p = 2, 3 возникает область неуниверсального критического поведения при значениях параметра $0 \le x_0 \le x_c(d)$. При значениях параметра x_0 вне этого интервала устойчивое критическое поведение системы отсутствует, как и в случае с p = 1.

Полученные значения пороговых размерностей $d_c(p): d_c(p = 1) = 3.986, d_c(p = 2) = 3.10,$ $d_c(p=3) = 3.999$, отделяющих область критического поведения с эффектами НРС, $d_c(p) < d < 4$, от области, в которой данные эффекты несущественны, задают одновременно и нижнюю границу области применимости результатов є-разложения к описанию модели слабонеупорядоченных систем с эффектами НРС [4-6]. В статье обсуждается, что расчеты, проведенные в более высоких порядках приближения теории, могут существенно изменить величину пороговой размерности d_c для XY-модели, хотя для моделей Изинга и Гейзенберга изменения в значениях $d_c(p)$ должны быть малыми, оставляющими область применимости результатов є-разложения близкой к размерности четыре.

С увеличением концентрации дефектов можно ожидать понижения пороговых значений d_c и достижения ими значений $d_c \leq 3$, начиная с некоторой пороговой концентрации. В этом случае влияние эффектов нарушения репличной симметрии может приобрести реальный смысл и быть значительным. В силу особенностей проявления эффектов НРС в критическом поведении неупорядоченных систем роль пороговой концентрации дефектов для модели Изинга может сыграть концентрация n_s , соответствующая порогу спиновой перколяции, с отсутствием устойчивого критического поведения для $n > n_s$, а для XY-модели и модели Гейзенберга — концентрация дефектов, соответствующая порогу примесной перколяции $n_{imp} = 1 - n_s$, с неуниверсальным критическим поведением для $n_{imp} < n < n_s$ и отсутствием устойчивого критического поведения для $n > n_s$.

Работа выполнена при финансовой поддержке РФФИ (проекты 00-02-16455 и 02-02-06181) и Министерства образования РФ (проекты E00-3.2-43 и УР.01.01.052).

ЛИТЕРАТУРА

- S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).
- 2. J. Emery. Phys. Rev. B 11, 239 (1975).
- G. Grinstein and A. Luther, Phys. Rev. B 13, 1329 (1976).
- Vik. S. Dotsenko, A. B. Harris, D. Sherrington, and R. B. Stinchcombe, J. Phys. A 28, 3093 (1995).
- Vik. S. Dotsenko and D. E. Feldman, J. Phys. A 28, 5183 (1995).
- **6**. Вик. С. Доценко, УФН **165**, 481 (1995).
- В. В. Прудников, А. В. Иванов, А. А. Федоренко, Письма в ЖЭТФ 66, 793 (1997); В. В. Прудников, С. В. Белим, А. В. Иванов и др., ЖЭТФ 114, 972 (1998); В. В. Прудников, П. В. Прудников, А. А. Федоренко, ЖЭТФ 116, 611 (1999); V. V. Prudnikov, P. V. Prudnikov, and A. A. Fedorenko, Phys. Rev. B 62, 8777 (2000).
- K. E. Варнашев, А. И. Соколов, ФТТ 38, 3665 (1996);
 A. I. Sokolov, K. B. Varnashev, and A. I. Mudrov, Int. J. Mod. Phys. B 12, 1365 (1998);
 A. I. Sokolov and K. B. Varnashev, Phys. Rev. B 59, 8363 (1999).

- В. В. Прудников, П. В. Прудников, А. А. Федоренко, Письма в ЖЭТФ 73, 153 (2001).
- V. V. Prudnikov, P. V. Prudnikov, and A. A. Fedorenko, Phys. Rev. B 63, 184201 (2001).
- A. Pelissetto and E. Vicari, Phys. Rev. B 62, 6393 (2000).
- В. В. Прудников, А. Н. Вакилов, ЖЭТФ 103, 962 (1993).
- G. Parisi, J. Phys. A 13, 1101 (1980); G. Parisi, J. Phys. A 13, L115 (1980); G. Parisi, J. Phys. A 13, 1887 (1980); M. Mezard, G. Parisi, and M. Virasoro, *Spin-Glass Theory and Beyond*, World Scientific, Singapore (1987); Вик. С. Доценко, УФН 163, 6, 1 (1993).
- J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon, Oxford (1996).
- M. Dudka, Yu. Holovatch, and T. Yavorskii, J. Phys. Stud. 5, 233 (2001).
- 16. J. C. LeGuillou and J. Zinn-Justin, Phys. Rev. B 21, 3976 (1980).
- 17. A. Pelissetto and E. Vicari, E-print archives, cond-mat/0002402.