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ONE-DIMENSIONAL ANISOTROPIC HEISENBERG MODELIN THE TRANSVERSE MAGNETIC FIELDD. V. Dmitriev a;b *, V. Ya. Krivnov a;b, A. A. Ov
hinnikov a;b, A. Langari b;
a Joint Institute of Chemi
al Physi
s, Russian A
ademy of S
ien
es117977, Mos
ow, Russiab Max-Plan
k-Institut für Physik Komplexer Systeme01187, Dresden, Germany
 Institute for Advan
ed Studies in Basi
 S
ien
esZanjan 45195-159, IranSubmitted 29 Mar
h 2002The one-dimensional spin-1=2 XXZ model in a transverse magneti
 �eld is studied. It is shown that the �eldindu
es a gap in the spe
trum of the model with the easy-plain anisotropy. Using 
onformal invarian
e, the�eld dependen
e of the gap is found at small �elds. The ground state phase diagram is obtained. It 
ontainsfour phases with the long-range order of di�erent types and a disordered phase. These phases are separated by
riti
al lines, where the gap and the long-range order vanish. Using s
aling estimates, the mean-�eld approa
h,and numeri
al 
al
ulations in the vi
inity of all 
riti
al lines, we �nd the 
riti
al exponents of the gap and thelong-range order. It is shown that the transition line between the ordered and disordered phases belongs to theuniversality 
lass of the transverse Ising model.PACS: 75.10.Jm 1. INTRODUCTIONThe e�e
t of the magneti
 �eld on an antiferro-magneti
 
hain has been attra
ting mu
h interest fromtheoreti
al and experimental standpoints. In parti
-ular, a strong dependen
e of the properties of quasi-one-dimensional anisotropi
 antiferromagnets on the�eld orientation was observed experimentally [1℄. It istherefore interesting to study the dependen
e of prop-erties of the one-dimensional antiferromagnet on thedire
tion of the applied �eld. The simplest model ofthe one-dimensional anisotropi
 antiferromagnet is thespin-1=2 XXZ model. This model in a uniform lon-gitudinal magneti
 �eld (along the z axis) was studiedin great detail [2℄. Be
ause the longitudinal �eld 
om-mutes with the XXZ Hamiltonian, the model 
an beexa
tly solved by the Bethe ansatz. This is not the 
aseif the symmetry-breaking transverse magneti
 �eld isapplied and the exa
t integrability is lost. Be
ause ofits mathemati
al 
omplexity, this model has not beenstudied mu
h. From this standpoint, it is of a parti
u-*E-mail: dmitriev�deom.
hph.ras.ru

lar interest to study the ground state properties of the1D XXZ model in the transverse magneti
 �eld. TheHamiltonian of this model is given byH = NXn=1(SxnSxn+1+SynSyn+1+�SznSzn+1)+h NXn=1Sxn (1)with periodi
 boundary 
onditions and even N .The spe
trum of the XXZ model is gapless for�1 < � � 1. In the longitudinal �eld, the spe
trum re-mains gapless if the �eld does not ex
eed the saturationvalue (1 + �). On the other hand, a gap in the ex
i-tation spe
trum seems to open up when the transversemagneti
 �eld is applied. It is supposed [3℄ that this ef-fe
t 
an explain the pe
uliarity of the low-temperaturespe
i�
 heat in Yb4As3 [1℄. The magneti
 properties ofthis 
ompound are des
ribed by the XXZ Hamiltonianwith � � 0:98; it was shown that the magneti
 �eld inthe easy plain indu
es a gap in the spe
trum resultingin a dramati
 de
rease of the linear term in the spe
i�
heat [3℄.First of all, what do we know about model (1)?The �rst part of the Hamiltonian is the well-knownXXZ model, whose exa
t solution is given by the624
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 Heisenberg model : : :Bethe ansatz. In the Ising-like region � > 1, theground state of the XXZ model has a Neel long-rangeorder along the z axis and there is a gap in the ex
ita-tion spe
trum. In the region �1 < � � 1, the systemis in the so-
alled spin-liquid phase with a power-lawde
ay of 
orrelations and a linear spe
trum. Finally,for � < �1, the 
lassi
al ferromagneti
 state is theground state of the XXZ model with a gap over theferromagneti
 state.In the transverse magneti
 �eld, the total spin pro-je
tion Sz is not a good quantum number and themodel is essentially 
ompli
ated, be
ause the transverse�eld breaks rotational symmetry in the xy plane anddestroys the integrability of the XXZ model, ex
ept atsome spe
ial points. In parti
ular, the exa
t diagonal-ization study of this model is di�
ult for �nite systemsbe
ause of a nonmonotoni
 behavior of energy levels.The �rst spe
ial 
ase of model (1) is the limit as� ! �1. In this 
ase, the model redu
es to the 1DIsing model in a transverse �eld (ITF), whi
h 
an beexa
tly solved by transforming it to the system of non-intera
ting fermions. In both limits, the system has thephase transition point h
 = j�j=2, where the gap 
losesand the long-range order in the z dire
tion vanishes.It is suggested [4℄ that the phase transition of theITF type o

urs for any � > 0 at some 
riti
al valueh = h
(�). It 
an also be expe
ted that su
h a tran-sition exists for any � and the transition line 
onne
tstwo limiting points h
 = j�j=2, �! �1.Similarly to these limiting 
ases, for any j�j > 1and h < h
(�), the system has a long-range order inthe z dire
tion (the Neel order for � > 1 and the fer-romagneti
 order for � < �1). But for j�j < 1 andh < h
(�), the ground state 
hanges and instead of thelong-range order in the z dire
tion, a staggered magne-tization along the y axis appears at h < h
(�).This assumption is 
on�rmed on the �
lassi
al� lineh
l = p2(1 +�) (h
l < h
(�)), where the quantum�u
tuations of the XXZ model are 
ompensated bythe transverse �eld and the exa
t ground state of (1)at h = h
l is a 
lassi
al one [5℄. The ex
ited states onthe 
lassi
al line are generally unknown, although it isassumed that the spe
trum is gapped.The se
ond 
ase where model (1) remains integrableis the isotropi
 antiferromagneti
 
ase � = 1. In this
ase, the dire
tion of the magneti
 �eld is not impor-tant and the ground state of the system remains thespin-liquid one up to the point h = 2, where a phasetransition of the Pokrovsky�Talapov type o

urs andthe ground state be
omes a 
ompletely ordered ferro-magneti
 state.The last spe
ial 
ase is � = �1. Model (1) then
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hFig. 1. Phase diagram of model (1). The thi
k solidlines are the 
riti
al lines, the thin solid line is the �
las-si
al� line, and the dashed line is the line h1(�)redu
es to the isotropi
 ferromagneti
 model in a stag-gered magneti
 �eld. This model is nonintegrable, butas shown [6℄, the system remains gapless up to some
riti
al value h = h0, where a phase transition of theKosterlitz�Thouless type o

urs.Summarizing, we expe
t that the phase diagram ofmodel (1) (in the (�; h) plane) has the form shownin Fig. 1. The phase diagram 
ontains four regionsthat 
orrespond to di�erent phases and are separatedby transition lines. Ea
h phase is 
hara
terized by along-range order of its own type: the Neel order alongthe z axis in region (1); the ferromagneti
 order alongthe z axis in region (2); the Neel order along the y axisin region (3); in the region (4), there is no long-rangeorder ex
ept the magnetization along the �eld dire
tionx (whi
h 
ertainly exists in all the above regions). Bythe long-range order, we hereafter understand the oneof the type 
orresponding to a given region.In this paper, we investigate the behavior of the gapand the long-range order near the transition (
riti
al)lines. In Se
. 2, devoted to the 
lassi
al line, we reviewthe exa
t ground state and 
onstru
t three exa
t ex
i-tations. In Se
. 3, we study the transition line h
(�)using the mean-�eld approa
h and the exa
t diagonal-ization of �nite systems. In Se
. 4, we �nd the 
riti
alexponents in the vi
inity of the line h = 0. The proper-ties of the model near the 
riti
al lines � = �1 and inthe vi
inity of the points (� = �1, h = 0) in parti
ularare studied in Se
s. 5 and 6.13 ÆÝÒÔ, âûï. 3 (9) 625
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onsider the 
lassi
al lineh
l =p2(1 +�); � > �1;be
ause we often refer to it in what follows. It is re-markable in the sense that the ground state is identi
alto the 
lassi
al one on this line and quantum �u
ua-tions are missing. It was shown in [5℄ that the groundstate of (1) is two-fold degenerate on this line and theground state wave fun
tions with the momentum k = 0and k = � are given by	1;2 = 1p2(�1 ��2);where �1(2) are dire
t produ
ts of single-site fun
tions,j�1i = j�1 ��2�3��4 : : : i ;j�2i = j��1�2 ��3�4 : : : i :Here, j�ii is the state of the ith spin lying in the xyplane for j�j < 1 (or in the xz plane for � > 1) at theangle ' with the x axis. These states 
an be written asj�ii = (ei'S+i � 1) j#i ; j�j < 1;j�ii = (e'S+i � 1) j#i ; � > 1with 
os' = h
l=2; j�j < 1and 
h' = h
l=2; � > 1:The state j��ii is obtained by rotation of the ith spinby � about the magneti
 �eld axis x,j��ii = ei�Sxi j�ii :The ground state has a two-sublatti
e stru
ture andis 
hara
terized by the presen
e of the long-range or-der in the y (j�j < 1) or in the z (� > 1) dire
tions.In parti
ular, for j�j < 1, the staggered magnetizationhSyni is hSyni = (�1)n2 r1� h2
l4 :In general, the ex
ited states of (1) on the 
lassi
alline are nontrivial. Some of them 
an nevertheless befound exa
tly. For this, it is 
onvenient to introdu
ethe operator overturning the ith spin,Ri = ei�Szi ; j�j < 1;Ri = ei�Syi ; � > 1;

su
h that the states of the �overturned� ith spinj�ii = Ri j�ii and ����i� = Ri j��ii are orthogonal toj�ii and j��ii, h�ij�ii = 
��ij��i� = 0:The exa
t ex
ited states are then written as��� 11(2)E =Xm Rm ���1(2)� ;��� 21(2)E =Xn (�1)nRnRn+1 ���1(2)� ;��� 31(2)E =Xn;m(�1)nRnRn+1Rm ���1(2)� ;and therefore, ea
h of the three exa
t ex
itations is alsotwo-fold degenerate. This degenera
y is in fa
t a 
on-sequen
e of the Z2 symmetry des
ribing the rotation ofall spins by � about the magneti
 �eld axis x.To show that these states are indeed the exa
t ones,it is 
onvenient to rotate the 
oordinate system su
hthat in one of the ground states, for example �1, allspins point down. In the 
ase where j�j < 1, this trans-formation is the rotation of the spins at even (odd) sitesby an angle ' (�') around the z axis followed by therotation by �=2 around the y axis,Sxn = �zn 
os'+ (�1)n�yn sin';Syn = (�1)n�zn sin'� �yn 
os';Szn = ��xn: (2)In the 
ase where � > 1, the transformation of thespin operators is de�ned bySxn = �zn 
os'+ (�1)n�xn sin';Syn = �yn;Szn = �(�1)n�zn sin'+ �xn 
os': (3)On the 
lassi
al line, Hamiltonian (1) then be
omesH1 = �Xn �n�n+1 + (1 +�)Xn �zn ++ h
lr1� h2
l4 Xn (�1)n�yn(�zn+1 + �zn�1 + 1) (4)for � < 1 andH2 =Xn �n�n+1�(��1)Xn �zn�zn+1+2Xn �zn++qh2
l � 4Xn (�1)n�xn(�zn+1 + �zn�1 + 1) (5)for � > 1.626
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 Heisenberg model : : :The ground state of both Hamiltonians and of (1)is two-fold degenerate. Obviously, in one of the groundstates, all spins �n point down,�1 = j0i � j### : : : i :The energy of this state isE0 = �N2 �N�4 : (6)In this representation, the se
ond ground state �2 hasa more 
ompli
ated form,e�2 =Yn (
os'+ (�1)n�+n sin') j0i :It is now easy to see that the following three ex
itedstates are exa
t:��� (1)1 E =Xn �+n j0i ; E1 �E0 = 1 +�;��� (2)1 E =Xn (�1)n�+n �+n+1 j0i ;E2 �E0 = 2 +�;��� (3)1 E =Xn;m(�1)n�+n �+n+1�+m j0i ;E3 �E0 = 3 + 2�: (7)
It 
an be veri�ed that the last terms in (4) and (5)annihilate these three fun
tions and are therefore theexa
t ex
ited states of (1) for any even N . Similarly tothe ground state, ex
ited states (7) are degenerate withthe states �� k2�. These states �� k2� 
an be represented inthe same form (7), but in the 
oordinate system wherethe fun
tion �2 des
ribes all spins pointing down.The states ��� 11(2)E are espe
ially interesting be
ausethey de�ne the gap of model (1) on the 
lassi
al line atsmall values of h
l. Our numeri
al 
al
ulations of �nitesystems show that as h
l ! 0 (� ! �1), the low-est bran
h of the ex
itations has a minimum at k = 0and the 
orresponding ex
itation energy is (1 +�) (of
ourse, be
ause of the Z2 symmetry, there is anotherbran
h with the minimum at k = � and the same min-imum energy, but we 
onsider one bran
h only). Theex
itation energy at k = � obtained by the extrapola-tion of numeri
al 
al
ulations as N ! 1 is 2(1 + �).As h
l in
reases, the ex
itation energies at k = 0 andk = � are drawn together and be
ome equal to ea
hother at some eh
l. Our numeri
al results giveeh
l � 0:76 (� � �0:79):On the 
lassi
al line, the gap is therefore (1 + �) for�1 < � < �0:79.

3. THE TRANSITION LINE h = h
(�)The existen
e of the transition line h
(�) passingthrough the entire phase diagram is quite natural, be-
ause all types of the long-range order ex
ept the long-range order along the �eld must vanish at some valueof the magneti
 �eld. The transition line 
onne
ts twoobvious limits as � ! �1, where model (1) redu
esto the ITF model. The line passes through the exa
tlysolvable point (� = 1, h = 2) and the point (� = �1,h = h0) studied in [6℄. We suppose that the entireline h
(�) is of the ITF type with algebrai
ally de
ay-ing 
orrelations with the 
orresponding 
riti
al expo-nents [7℄.The transition line 
an also be observed from thenumeri
al 
al
ulations of �nite systems. As an exam-ple, the dependen
es of the ex
itation energies of threelowest levels on h are shown in Fig. 2 for � = 0 andfor N = 10�18. From this �gure, it 
an be seen thatthe two lowest states 
ross ea
h other N=2 times andthe last 
rossing o

urs at the 
lassi
al point h
l = p2.These two states form a two-fold degenerate groundstate in the thermodynami
 limit. They have di�er-ent momenta k = 0 and k = � and di�erent quantumnumbers des
ribing the Z2 symmetry that remains inthe system after applying the �eld. As for the �rstex
itation above the degenerate ground state, we alsosee numerous level 
rossings in Fig. 2. These level
rossings lead to in
ommensurate e�e
ts that manifestthemselves in the os
illatory behavior of the spin 
or-

0 0:4 0:8 1:2 1:6 2:0

E(i)�E(0)
N = 10 N = 18 h

N = 10
N = 180:10:20:30:40:50:6

Fig. 2. The dependen
e of the di�eren
e between theenergy of two lowest levels E(1), E(2) and the groundstate energy E(0) on magneti
 �eld h for �nite 
hainswith N = 10; : : : ; 18627 13*
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tions. The 
orrelation fun
tions at n � 1are given by hS�1 S�n i � hS�i2 = f(n)e��n; (8)where hS�i (� = x; y; z) is the 
orresponding magneti-zation (the long-range order) and f(n) is the os
illatoryfun
tion of n with the os
illation period depending on hand �. All 
rossings disappear at h > h
l(�) and the
orrelation fun
tions do not 
ontain os
illatory termsin this region of the phase diagram.The energy of the �rst ex
itation near h
l de-
reases rapidly, and after extrapolation we found thatfor � = 0, the gap vanishes at the magneti
 �eldh
 � 1:456(6) > h
l. Inside the region h
l < h < h
,the ground state remains two-fold degenerate, althoughthere are no level 
rossings. At h > h
, the mass gapappears again; for a large �eld, the gap is proportionalto h.To determine the transition line h
(�) and to studythe model in the vi
inity of h
(�), we use the Fermirepresentation of (1). This representation gives the ex-a
t solution in the limits as � ! �1 and in additionyields the exa
t ground state on the 
lassi
al line.First, it is 
onvenient to perform a rotation of thespins around the y axis by �=2 in (1) su
h that themagneti
 �eld is dire
ted along the z axis,H =Xn (�SxnSxn+1+SynSyn+1+SznSzn+1)+hXn Szn: (9)After the Jordan�Wigner transformation to Fermi op-erators a+n and an,S+n = ei�P a+j ajan;Szn = a+n an � 12 ; (10)Hamiltonian (9) be
omesHf = �hN2 +N4 +Xk �h� 1� 1 +�2 
os k�a+k ak++ 1��4 Xk sin k(a+k a+�k + a�kak) ++Xn a+n ana+n+1an+1: (11)Treating the Hamiltonian Hf in the mean-�eld ap-proximation, we �nd the ground state energy E0 andthe one-parti
le ex
itation spe
trum "(k),E0N = (h� 1)�
1 � 12�+ 14 � �1� g2� 
2 ++ g2
3 + 
21 � 
22 + 
23 ; (12)

"(k) =pa2(k) + b2(k); (13)where g = 1�� anda(k) = (h�1)��1�g2� 
os k+2
1�2
2 
os k;b(k) = �g2 + 2
3� sin k: (14)The quantities 
1, 
2, and 
3 are the ground state ave-rages determined by the self-
onsistent equations:
1 = ha+n ani =Xk>0�1� a(k)"(k)� ;
2 = ha+n an+1i = �Xk>0 a(k)"(k) 
os k;
3 = ha+n a+n+1i = �Xk>0 b(k)2"(k) sin k: (15)
The magnetization S = hSxni of model (1) is given byS = 12 � 
1: (16)The numeri
al solution of Eqs. (15) shows that thefun
tion "(k) has a minimum at kmin, whi
h 
hangesfrom �=2 at h = 0 to zero at h = h1(�) and kmin = 0for h > h1(�). The gap in the spe
trum "(k) vanishesat h
(�) (h
 > h1) and is given by m = jh � h
j forh > h1. The fun
tions h1(�) and h
(�) are shown inFig. 1. We note that the Hamiltonian Hf di�ers fromthe domain-wall fermioni
 Hamiltonian that is mappedfrom (1) in [4℄. The transition line obtained in [4℄ is alinear fun
tion of � in 
ontrast to h
(�) in Fig. 1.It is interesting to note that the mean-�eld approx-imation gives the exa
t ground state on the 
lassi
alline h
l = p2(1 +�). On this line, the solution ofEqs. (15) has the simple form
1 = 12 � h
l4 ; 
2 = �
3 = 4� h2
l16 ; j�j < 1;
1 = 12 � 1h
l ; 
2 = 
3 = h2
l � 44h2
l ; � > 1; (17)and the energy is given byE0N = �12 � �4 :On the 
lassi
al line in the mean-�eld approxima-tion, the gap ism = 14(2� h
l)2; j�j < 1;m = h2
l � 22h2
l (h
l � 2)2; � > 1: (18)628
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 Heisenberg model : : :We 
ompared (18) with the results of the extrapolationof �nite systems on the 
lassi
al line. The 
oin
iden
eis su�
iently good for � > 0:5. Equation (18) givesa satisfa
tory estimate for the gap up to � � �0:5.For example, at � = 0 (h
l = p2), it follows thatm = 0:086 from Eq. (18), while the extrapolated gapis m � 0:076(4).The smaller the fermion density, the better themean-�eld approximation works. It be
omes worse asthe magnetization S ! 0. This is the reason of in-
orre
t behavior of the gap as h
l ! 0 (� ! �1). Itfollows from (18) that m = 1, while m vanishes in thislimit as m = (1 +�) (7).In the mean-�eld approximation, the HamiltonianHf is similar to the well-known bilinear Fermi Hamil-tonian des
ribing the anisotropi
XY model or the ITFmodel. Using results in [7℄, the following fa
ts relatedto the model under 
onsideration 
an be established.1. There is a staggered magnetization hSyni alongthe y axis for j�j < 1 or hSzni along the z axis forj�j > 1, and they vanish as (h
 � h)1=8 for h! h
.2. The magnetization S has a logarithmi
 singular-ity as h! h
.3. The spin 
orrelation fun
tion de
ays exponen-tially (ex
luding the transition line) as n!1,G�(n) = hS�1 S�n i � hS�i2 = f(n)e��n: (19)The fun
tion f(n) has an os
illatory behavior for0 < h < h
l and is monotoni
 for h > h
l; f(n) = 0 ath = h
l andf(n) � 
os!nn2 ; ! =r2h
l � hh
lfor h
l�h� 1. The 
lassi
al line therefore determinesthe boundary on the phase diagram where the spin 
or-relation fun
tions show the in
ommensurate behavior.On the transition line h = h
(�), the spin 
orrela-tion fun
tions have a power-law de
ay,Gx(n) / 1=n2; Gy(n) / 1=n1=4;Gz(n) / 1=n9=4; j�j < 1;Gx(n) / 1=n2; Gy(n) / 1=n9=4;Gz(n) / 1=n1=4; j�j > 1: (20)These results show that the transition at h = h
(�)belongs to the universality 
lass of the ITF model.In the vi
inity of the point h = 2, � = 1, thefermion density is small (S � 1=2) and the mean-�eldapproximation of the four-fermion term gives the a

u-

ra
y up to g3 or (2� h)4 at least. In this 
ase, we givethe 
orresponding expressions (for g � 1):h
 = 2� g2 � g232 ;h1 = h
 � g216 ;m =8>><>>: jh� h
j; h > h1;g2p2rh
 � h� g232 ; h < h1: (21)
The magnetization S is
S = 8>>>>>>>>>><>>>>>>>>>>:

12 � p2� ph
 � h� g8� ;g � ph
 � h;12 � g4� � 2(h
 � h)�g ln� g2h
 � h� ;g � ph
 � h: (22)
The sus
eptibility �(h) = dS=dh is�(h) = 8>>><>>>: 2�g ln� g2h
 � h� ; g � ph
 � h;1p2� 1ph
 � h; g � ph
 � h: (23)It follows from (23) that there is a 
rossover from thesquare root to the logarithmi
 divergen
e of � as theparameter g2=(h
 � h) varies from 0 to 1.4. THE LINE h = 0, j�j< 14.1. S
aling estimatesThe XXZ model is integrable and its low-energyproperties are des
ribed by a free massless boson �eldtheory with the HamiltonianH0 = v2 Z dx ��2 + (�x�)2� ; (24)where �(x) is the momentum 
onjugate to the boson�eld �(x), whi
h 
an be separated into the left andright moving terms,� = �L +�R:The dual �eld ~� is de�ned as the di�eren
e~� = �L ��R:629
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hinnikov, A. Langari ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002The spin-density operators are represented asSzn � 12�R�x�+ 
onst(�1)n 
os �R;Sxn � 
os�2�R~���C(�1)n + 
onst � 
os �R� (25)with the 
onstant C found in [8℄. The 
ompa
ti�
ationradius R is known from the exa
t solution2�R2 = � = 1� ar

os�� :The nonos
illating part of the operator Sx inEq. (25) has the s
aling dimensiond = �2 + 12�and 
onformal spin S = 1. A nonzero 
onformal spinof the perturbation operator Sx 
an lead to in
ommen-surability in the system [9℄, whi
h agrees with Eq. (19).As shown in [10℄, the general formula for the mass gapm � h� ; � = 12� d = 24� � � 1=� ; (26)is not appli
able in the entire region j�j < 1. Be
auseof a nonzero 
onformal spin of the nonos
illating partof the operator Sx, higher-order e�e
ts in h must be
onsidered. The analysis shows [10℄ that the originalperturbation with a nonzero 
onformal spin generatesanother perturbation with zero 
onformal spin,V = h2 
os�4�R~�� : (27)This perturbation gives the 
riti
al exponent for themass gap m � h
 ; 
 = 11� � : (28)Comparing Eqs. (26) and (28), we see that perturba-tion (27) be
omes more relevant in the region� < 
os(�p2) � �0:266:It turns out that the os
illating part of the opera-tor Sx gives another, more relevant index for the gapat � < 0. We now reprodu
e the standard �
onfor-mal� 
hain of arguments for this os
illating part. Theperturbed a
tion of the model is given byS = S0 + h Z dt dxSx(x; t); (29)where S0 is the Gaussian a
tion of the XXZ model.The time-dependent 
orrelation fun
tions of the XXZ


hain show the power-law de
ay at j�j < 1 and havethe asymptoti
 form [11℄hSx(x; �)Sx(0; 0)i �� (�1)xA1(x2 + v2�2)�=2 � A2(x2 + v2�2)�=2+1=2� ; (30)where A1 and A2 are known 
onstants [8℄ and � = itis the imaginary time. We 
an therefore estimate thelarge-distan
e 
ontribution to the a
tion of the os
illat-ing part of the operator Sx(x; �) ash Z d� dxSx(x; �) � h Z d�Xn (�1)n(n2 + v2�2)�=4 �� h Z d� Xeven n �n(n2 + v2�2)�=4 �� h Z d� dx �x(x2 + v2�2)�=4+1 :The relevant �eld Sx(x; �) leads to a �nite 
orrela-tion length �. This 
orrelation length is su
h that the
ontribution of the �eld Sx(x; �) to the a
tion is of theorder of unity. That is,h �=vZ0 d� �Z0 dx �x(x2 + v2�2)�=4+1 � �h�1��=2v � 1whi
h gives the mass gapm � v� � h�; � = 11� �=2 : (31)In fa
t, the os
illating fa
tor (�1)n in the 
orrelator insome sense eliminates one singular integration over x,and the general 
onformal formulam / h1=(D�d);where D is the dimension of spa
e and d is the s
alingdimension of the perturbation operator, must be takenwith D = 1 instead of 
onventional D = 2.The 
omparison of Eqs. (26), (28), and (31) showsthat for 0 < � < 1, the leading term is given byEq. (26) and for�1 < � < 0, by Eq. (31). We thereforehave m � h� ; 0 < � < 1;m � h�; �1 < � < 0: (32)The fun
tions �(�), �(�), and 
(�) are shown inFig. 3. In this respe
t, model (1) is di�erent from theXXZ model in the staggered transverse �eld, for whi
hm / h2=(4��)630
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0 0:4�0:4 0:8 ��0:81:0Fig. 3. The dependen
e of the 
riti
al exponents �, �,and 
 on �. The smallest exponent gives the pertur-bation of the most relevant type and de�nes the indexfor the mass gapfor all j�j < 1 [12℄.The staggered magnetization (long-range order)along the y axis behaves ashSyni � (�1)n��=2 � (�1)nm�=2: (33)Hen
e, the long-range order also has two di�erent 
rit-i
al exponents,hjSyji � h�=(4���1=�); 0 < � < 1;hjSyji � h�=(2��); �1 < � < 0: (34)4.2. Perturbation seriesThe 
riti
al exponents � and � 
an also be derivedfrom the analysis of infrared divergen
es of the pertur-bation theory in h. Obviously, only even orders in hgive 
ontributions. We now estimate the large-distan
ebehavior of the operatorU = 1E0 �H0V 1E0 �H0V (35)determining the perturbation theory order, whereV = hPSxi and H0 is the Hamiltonian of the XXZmodel. The perturbation series for the ground stateenergy is given byÆE � V 1E0 �H0 V (1 + U + U2 + : : : ): (36)We 
onsider a large but �nite system of the lengthN . We keep the powers of N and h only, omittingall other fa
tors. We �rst 
onsider the nonos
illating

part of 
orrelator (30). Taking only low-lying ex
ita-tions of the spe
trum of the XXZ model into a

ount(these ex
itations give the most divergent part) andestimating the large-distan
e behavior of the nonos
il-lating part of 
orrelator (30), we arrive atU � h2Pi;j 
Sxi Sxj �(1=N)2 � h2N2 N2N�+1=� == h2N4���1=�: (37)It follows that if 4 � � � 1=� > 0, then ea
h next or-der in perturbation theory (36) diverges more and morestrongly. To absorb these infrared divergen
es, we mustintrodu
e the s
aling parameter y = Nh� and assumethat the series �1 + U + U2 + : : : � in (36) forms somefun
tion of the s
aling parameter y. In our 
ase,� = 24� � � 1=�(see Eq. (26)) and U / y2=� :The leading se
ond-order divergen
e of the groundstate energy 
an be found similarly to (37),ÆE(2) = V 1E0 �H0V � h2N3���1=�: (38)Combining Eqs. (37) and (38), we 
an writeÆE � Nh2�f(y)with some unknown fun
tion f(y) whose small-y ex-pansion is given byf(y) = 1y2 1Xn=1 
ny2n=� :In the thermodynami
 limit as N ! 1, the s
al-ing parameter y = Nh� also tends to in�nity, y ! 1.Be
ause the energy is proportional to N , the fun
tionf(y) has a �nite limit f(1) = a. In the thermodynami
limit for the 
orre
tion to the ground state energy, wetherefore have ÆE � aNh2� : (39)For the �rst ex
ited state, the perturbation theorydivergen
es have the same form as in (37) and (38). Forthe gap, we therefore �nd the same s
aling parametery = Nh� and m � Nh2�g(y):631
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hinnikov, A. Langari ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002In the thermodynami
 limit, the mass gap is of theorder of unity (in terms of N), and therefore, the fun
-tion g(y) / 1=y as y ! 1. Thus, �nally we arrive atthe Eq. (26).We now 
onsider the more subtle, os
illating partof 
orrelator (30). For the os
illating part at large dis-tan
es, we 
an writeXi;j 
Sxi Sxj � � NXr (�1)rr� � NXr 1r�+1 � N 1N� :The os
illating part of the perturbation operator V
onne
ts the low-lying gapless states with �nite-energystates. That is, ea
h se
ond level in all orders of theperturbation series is separated from the ground stateby a �nite gap. For the operator U , we therefore haveU � h2Pi;j 
Sxi Sxj �(1=N) � h2N2��:Be
ause � is always less than 2, the divergen
esgrow with the order of the perturbation theory. Toeliminate these divergen
es, we introdu
e the s
alingparameter y = Nh�, with � de�ned in Eq. (31), su
hthat U � y2=�.The se
ond-order 
orre
tion to the ground state en-ergy is then given byÆE(2) � h2Pi;j 
Sxi Sxj �1 � h2N1��and the total 
orre
tion to the ground state energy isÆE � Nh2�f(y);where f(y) is an unknown fun
tion with a �nite limitf(1) = b.In the thermodynami
 limit, the ground state en-ergy therefore behaves asÆE � bNh2�:The mass gap is found similarly,m � Nh2�g(y)with the fun
tion g(y) / 1=y as y ! 1. We thusreprodu
e Eq. (31) in the thermodynami
 limit.We note that we have estimated only the long wave-length divergent part of the perturbation theory. Inaddition, the regular part of the perturbation theorygives the leading term of the order h2. Combining allthe above fa
ts, we thus arrive atÆEN = ��2 h2 + ah2� + bh2�: (40)

As 
an be seen from Eq. (40), ÆE 
onsists of a regu-lar term h2 and two singular terms. Be
ause � > 1 and� > 1, the sus
eptibility � is �nite for any� in 
ontrastto the model with the staggered transverse �eld [12℄,where the singular term is h� with � = 4=(4� �) < 2.It follows from Eqs. (26) and (31) that � ! 1 as� ! 1 and � ! 1 as � ! �1. In both limits, one ofthe singular terms therefore be
omes proportional toh2, and hen
e, 
ontributes to the sus
eptibility. Thisimplies that the sus
eptibility has a jump at the sym-metri
 points � = �1.5. THE LINE �= 1In the vi
inity of the line � = 1, it is 
onvenient torewrite Hamiltonian (1) asH = H0 + V;H0 =Xn (Sn � Sn+1) + hXn Sxn;V = �gXn SznSzn+1; (41)where the parameter g = 1 � � � 1 is small. Onthe isotropi
 line � = 1, model (1) is exa
tly solvableby the Bethe ansatz. The properties of the system re-main 
riti
al up to the transition point h
 = 2, wherethe ground state be
omes ferromagneti
. Therefore, forh < 2 and small perturbation V , we 
an use 
onformalestimates.The asymptoti
 form of the 
orrelation fun
tion onthis line is given byhSzi Szi+ni � (�1)nn�(h) ; (42)where �(h) is a known fun
tion obtained from theBethe ansatz [13℄. It has the asymptoti
 forms�(h) �8><>: 1� 12 ln (1=h) ; h! 0;12 ; h! 2: (43)The s
aling dimension of the operator Sz isdz = �(h)=2 and the s
aling dimension of Szi Szi+1is four times greater, dzz = 4dz = 2�(h). Be
ause�(h) < 1, the perturbation V is relevant and leads tothe mass gap and the staggered magnetization givenby m � jgj1=(2�dzz) = jgj1=(2�2�) ;hjSyji � jgj�=(4�4�) ; � < 1;hjSzji � jgj�=(4�4�) ; � > 1: (44)632
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 Heisenberg model : : :From the general expressions for the mass gap inEq. (44), we obtain that m � g in the limit as h ! 2,whi
h agrees with the result of the mean-�eld approx-imation in Eq. (21).In the vi
inity of the point � = 1, h = 2, the long-range order vanishes on both lines: at � = 1 as g1=4(see (44)) and at h = h
 as jh
 � hj1=8. We also havethe exa
t expression for the long-range order on the
lassi
al line, hjSyji
l = pg2p2 : (45)Combining all these fa
ts, we arrive at the formulahjSyji = 2�7=8g1=4 jh
 � hj1=8 : (46)The behavior of the system near the point � = 1,h = 0 is more subtle. As follows from Eq. (32), themass gap is m � h for very small h; on the other hand,Eq. (44) implies a di�erent s
alingm � gln(1=h). There-fore, there are two regions near this point with di�er-ent behaviors of the mass gap. The boundary betweenthese two regions 
an be found as follows. We rewritethe perturbation in Hamiltonian (41) asV = V1 + V2;V1 = �g2Xn �SynSyn+1 + SznSzn+1� ;V2 = g2Xn �SynSyn+1 � SznSzn+1� :The partH0+V1 of the Hamiltonian 
orresponds to theXXZ model in the longitudinal magneti
 �eld, whi
his gapless for the magneti
 �eldh > exp�� �22pg� :Therefore, in the region of very small magneti
 �eldh < exp�� �22pg� ;the perturbation V1 is relevant, leading to the mass gapm � h. The two-
uto� s
aling pro
edure [9; 10℄ leadsto the mass gap m � h exp�� �22pg �for h > exp�� �22pg � :Finally, when g is mu
h less than h, the s
aling dimen-sion of the operator V2 de�nes the exponent for the gap

in Eq. (44). Summarizing, the mass gap in the vi
inityof the isotropi
 point � = 1, h = 0 is given bym � h; lnh� � 1pg ;m � he��2=2pg ; 1pg ln g � lnh� � 1pg ;m � g� lnh; lnh� 1pg ln g : (47)
6. THE LINE �= �1In this se
tion, we 
onsider model (1) in the vi
inityof the line � = �1, where1 +� = Æ � 1is a small parameter. It is 
onvenient to rotate spinson ea
h odd site by � around the z axis, su
h thatmodel (1) be
omesH = �Xn (Sn � Sn+1) + ÆXn SznSzn+1 �� hXn (�1)nSxn: (48)At Æ = 0 and h = 0, the ground state of (48) isthe ferromagneti
 state with zero momentum degene-rate with respe
t to total Sz. The states that 
an berea
hed from the ground state by means of the transi-tion operator Xn (�1)nSxnare the states with q = � and a �nite gap over theground state. For Æ � 1, the transition operator 
on-ne
ts the low-energy states and the states with theenergies "s � 2. The se
ond-order 
orre
tion to low-energy states is given byÆE(2)l = h2 Xs;n;m hlj (�1)nSxn jsi hsj (�1)mSxm jliEl �Es ; (49)where jli is a low-energy state and jsi is a state withthe high energy Es � El � 2. For Æ � 1, Eq. (49) 
antherefore be rewritten asÆE(2)l = �h22 Xn;m hlj (�1)n�mSxnSxm jli == �h2N8 � h2 Xn<m hlj (�1)n�mSxnSxm jli : (50)633
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hinnikov, A. Langari ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002The spin 
orrelation fun
tion hljSxnSxm jli is a slowlyvarying fun
tion of jm� nj for Æ � 1. Therefore,Xn<m hlj (�1)n�mSxnSxm jli �� �12Xn hljSxnSxn+1 jli : (51)In a

ordan
e with Eqs. (49)�(51), the low-lyingstates of (48) are therefore des
ribed for jÆj � 1 andh� 1 by the XY Z HamiltonianH = �h2N8 ��Xn ��1�h22 �SxnSxn+1+SynSyn+1��SznSzn+1� : (52)The 
oin
iden
e of the low-energy spe
tra of (48)and (52) in the vi
inity of the ferromagneti
 point� = �1, h = 0 has been 
he
ked numeri
ally for �-nite systems. The spe
trum of low-lying ex
itations ofthe s = 1=2 XY Z model in Eq. (52) and of the originalmodel in Eq. (1) near the ferromagneti
 point � = �1,h = 0 
an be asymptoti
ally exa
tly des
ribed by thespin-wave theory, whi
h givesm = hp(1 +�)=2; � > �1;m =p(1 +�)(1 +� + h2=2); � < �1: (53)It 
an be veri�ed that Eq. (53) yields the exa
t gapof the XY Z model [14℄ for jÆj, h � 1. The validity ofthe spin-wave approximation is quite natural be
ausethe number of magnons forming the ground state issmall in the vi
inity of the ferromagneti
 point� = �1,h = 0.We also note that the gap in Eq. (53) for � � �1agrees with the 
onformal theory result (32) and givesthe preexponential fa
tor for the gap. On the 
lassi
alline h
l =p2(1 +�);Eq. (53) yields the gap m = 1+�, whi
h 
on�rms thatthe fun
tion  (1)1 in Eq. (7) gives the exa
t gap.A similar mapping of model (1) with an arbitraryspin s to theXY Z model 
an be performed for� � �1,h � 1. Taking into a

ount that "s = 4s, the 
orre-sponding XY Z Hamiltonian isH == �Xn ��1�h22 �SxnSxn+1+SynSyn+1��SznSzn+1��� h24sXn (Sxn)2; (54)

where S�n are spin-s operators.The leading term of the gap of model (1) with anarbitrary spin s in the vi
inity of the point � = �1,h = 0 is exa
tly given by the spin-wave theory,m = hp(1 +�)=2; � > �1;m = 2sp(1 +�)(1 +� + h2=8s2); � < �1: (55)On the 
lassi
al line h
l, Eq. (55) gives the 
orre
t re-sult m = 2sÆ.Stri
tly on the line � = �1, model (1) redu
esto the isotropi
 ferromagnet in the staggered magneti
�eld. This model is nonintegrable, but it was suggestedin [6℄ that the system is governed by a 
 = 1 
onformal�eld theory up to some 
riti
al value h = h0, where thephase transition of the Kosterlitz�Thouless type o

urs.For h � 1, where the mapping of (48) to XY Zmodel (52) is valid, the line � = �1 is des
ribed bythe XXZ model and the 
orrelation fun
tions have apower-law de
ay,hSzi Szi+ni = hSyi Syi+ni � (�1)nn1=�(h) ;hSxi Sxi+ni � (�1)nn�(h) : (56)We believe that the relation between the indi
es ofx and y, z 
orrelators on the line � = �1 is givenby (56) for 0 < h < h0. The s
aling dimensions of theoperators Sxi and Syi , Szi on this line are therefore givenby dx = �=2 and dy = dz = 1=2�.On the line � = �1, model (1) is gapless for h < h0.This implies that the magneti
 �eld term is irrelevantfor h < h0 (�(h) > 4) and be
omes marginal at h = h0,where dx = 2 and �(h0) = 4. Therefore, at the pointh = h0, the transition is of the Kosterlitz�Thoulesstype, and for h > h0, the mass gap is exponentiallysmall.In the vi
inity of the line � = �1, the termÆXn SznSzn+1in (48) 
an be 
onsidered as a perturbation and thes
aling dimension of the perturbation operator SznSzn+1is dzz = 4dz = 2=�(h):Be
ause �(h) � 4 for h < h0, the perturbation is rel-evant and leads to the mass gap and the long-rangeorder, m � jÆj1=(2�2=�) ;hjSyji � Æ1=4(��1); Æ > 0;hjSzji � jÆj1=4(��1) ; Æ < 0: (57)634
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 Heisenberg model : : :In parti
ular, m / jÆj2=3 and hjSyji � jÆj1=12 ash! h0.The fun
tion �(h) is generally unknown, ex
ept inthe 
ase where h� 1, the mapping to the XXZ modelis valid, and�(h) = �1� 1� ar

os�h22 � 1���1 � �h :But be
ause model (1) is 
onformally invariant at� = �1 and h < h0, we 
an use a �nite-size s
alinganalysis to determine the exponent �(h) and the valueof h0. A

ording to the standard s
aling approa
h [15℄,�(h) = 2�vA ;where v is the speed of sound and A=N is the di�er-en
e between the two lowest energies of the system.We 
al
ulated �(h) for �nite systems. The extrapo-lated fun
tion �(h) agrees well with the dependen
e�=h at h� 1 and � = 4 at h0 � 0:52. This estimate is
lose to our dire
t numeri
al estimates h0 � 0:549. Onthe other hand, the mean-�eld approa
h gives a rather
rude value h0 = h
(�1) = 0:69:7. CONCLUSIONSIn summary, we have studied the e�e
t of thesymmetry-breaking transverse magneti
 �eld on thes = 1=2 XXZ 
hain. Unlike the longitudinal �eld, thetransverse �eld generates the staggered magnetizationin the y dire
tion and the gap in the spe
trum of themodel with the easy-plain anisotropy. Using 
onformalinvarian
e, we have found the 
riti
al exponents of the�eld dependen
e of the gap and the long-range order.We have shown that the spe
trum of the model isgapped on the entire h� plain ex
ept at several 
riti
allines, where the gap and the long-range order vanish.The behavior of the gap and the long-range order inthe vi
inity of the 
riti
al lines � = �1 is 
onsideredon the base of the 
onformal �eld theory. We notethat in the vi
inity of the points (� = 1, h = 0) and(� = 1, h = 2), there is a 
rossover between di�erentregimes of the behavior of the system. We have shownthat near the point (� = �1, h = 0), the originalmodel 
an be mapped to the e�e
tive exa
tly solvable1D XY Z model and has the spin-wave spe
trum. Thetransition line h
(�) between the ordered phases andthe disordered one is studied in the mean-�eld approxi-mation. This study shows that this transition is similarto that in the Ising model in the transverse �eld. Butthe behavior of the model on the transition line nearthe Kosterlitz�Thouless point (� = �1, h = h0) is

not so 
lear. The mean-�eld approximation worsensas �! �1 and a more sophisti
ated theory is needed.We thank Prof. P. Fulde for many useful dis
us-sions. We are grateful to Max-Plan
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