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The one-dimensional spin-1/2 X XZ model in a transverse magnetic field is studied. It is shown that the field
induces a gap in the spectrum of the model with the easy-plain anisotropy. Using conformal invariance, the
field dependence of the gap is found at small fields. The ground state phase diagram is obtained. It contains
four phases with the long-range order of different types and a disordered phase. These phases are separated by
critical lines, where the gap and the long-range order vanish. Using scaling estimates, the mean-field approach,
and numerical calculations in the vicinity of all critical lines, we find the critical exponents of the gap and the
long-range order. It is shown that the transition line between the ordered and disordered phases belongs to the

universality class of the transverse Ising model.

PACS: 75.10.Jm

1. INTRODUCTION

The effect of the magnetic field on an antiferro-
magnetic chain has been attracting much interest from
theoretical and experimental standpoints. In partic-
ular, a strong dependence of the properties of quasi-
one-dimensional anisotropic antiferromagnets on the
field orientation was observed experimentally [1]. It is
therefore interesting to study the dependence of prop-
erties of the one-dimensional antiferromagnet on the
direction of the applied field. The simplest model of
the one-dimensional anisotropic antiferromagnet is the
spin-1/2 X X Z model. This model in a uniform lon-
gitudinal magnetic field (along the z axis) was studied
in great detail [2]. Because the longitudinal field com-
mutes with the X X Z Hamiltonian, the model can be
exactly solved by the Bethe ansatz. This is not the case
if the symmetry-breaking transverse magnetic field is
applied and the exact integrability is lost. Because of
its mathematical complexity, this model has not been
studied much. From this standpoint, it is of a particu-
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lar interest to study the ground state properties of the
1D X X7 model in the transverse magnetic field. The
Hamiltonian of this model is given by

N N
H =7 (SiSni+SiSh +ASS: )+h Y Sh (1)
n=1 n=1

with periodic boundary conditions and even N.

The spectrum of the X XZ model is gapless for
—1 < A < 1. In the longitudinal field, the spectrum re-
mains gapless if the field does not exceed the saturation
value (1 + A). On the other hand, a gap in the exci-
tation spectrum seems to open up when the transverse
magnetic field is applied. It is supposed [3] that this ef-
fect can explain the peculiarity of the low-temperature
specific heat in YbyAsg [1]. The magnetic properties of
this compound are described by the X X Z Hamiltonian
with A = 0.98; it was shown that the magnetic field in
the easy plain induces a gap in the spectrum resulting
in a dramatic decrease of the linear term in the specific
heat [3].

First of all, what do we know about model (1)?

The first part of the Hamiltonian is the well-known
XXZ model, whose exact solution is given by the
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Bethe ansatz. In the Ising-like region A > 1, the
ground state of the X X Z model has a Neel long-range
order along the z axis and there is a gap in the excita-
tion spectrum. In the region —1 < A < 1, the system
is in the so-called spin-liquid phase with a power-law
decay of correlations and a linear spectrum. Finally,
for A < —1, the classical ferromagnetic state is the
ground state of the X XZ model with a gap over the
ferromagnetic state.

In the transverse magnetic field, the total spin pro-
jection S* is not a good quantum number and the
model is essentially complicated, because the transverse
field breaks rotational symmetry in the zy plane and
destroys the integrability of the X X Z model, except at
some special points. In particular, the exact diagonal-
ization study of this model is difficult for finite systems
because of a nonmonotonic behavior of energy levels.

The first special case of model (1) is the limit as
A — £oc. In this case, the model reduces to the 1D
Ising model in a transverse field (ITF), which can be
exactly solved by transforming it to the system of non-
interacting fermions. In both limits, the system has the
phase transition point h, = |A|/2, where the gap closes
and the long-range order in the z direction vanishes.

It is suggested [4] that the phase transition of the
ITF type occurs for any A > 0 at some critical value
h = h.(A). It can also be expected that such a tran-
sition exists for any A and the transition line connects
two limiting points h. = |A[/2, A — +oc.

Similarly to these limiting cases, for any |A| > 1
and h < h.(A), the system has a long-range order in
the z direction (the Neel order for A > 1 and the fer-
romagnetic order for A < —1). But for |[A] < 1 and
h < he(A), the ground state changes and instead of the
long-range order in the z direction, a staggered magne-
tization along the y axis appears at h < h.(A).

This assumption is confirmed on the «classical» line
het = V/2(1+ A) (he < he(A)), where the quantum
fluctuations of the X XZ model are compensated by
the transverse field and the exact ground state of (1)
at h = hg is a classical one [5]. The excited states on
the classical line are generally unknown, although it is
assumed that the spectrum is gapped.

The second case where model (1) remains integrable
is the isotropic antiferromagnetic case A = 1. In this
case, the direction of the magnetic field is not impor-
tant and the ground state of the system remains the
spin-liquid one up to the point h = 2, where a phase
transition of the Pokrovsky—Talapov type occurs and
the ground state becomes a completely ordered ferro-
magnetic state.

The last special case is A = —1. Model (1) then
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Fig.1.
lines are the critical lines, the thin solid line is the «clas-
sical» line, and the dashed line is the line hi(A)

Phase diagram of model (1). The thick solid

reduces to the isotropic ferromagnetic model in a stag-
gered magnetic field. This model is nonintegrable, but
as shown [6], the system remains gapless up to some
critical value h = hg, where a phase transition of the
Kosterlitz—Thouless type occurs.

Summarizing, we expect that the phase diagram of
model (1) (in the (A,h) plane) has the form shown
in Fig. 1. The phase diagram contains four regions
that correspond to different phases and are separated
by transition lines. Each phase is characterized by a
long-range order of its own type: the Neel order along
the z axis in region (1); the ferromagnetic order along
the z axis in region (2); the Neel order along the y axis
in region (3); in the region (4), there is no long-range
order except the magnetization along the field direction
x (which certainly exists in all the above regions). By
the long-range order, we hereafter understand the one
of the type corresponding to a given region.

In this paper, we investigate the behavior of the gap
and the long-range order near the transition (critical)
lines. In Sec. 2, devoted to the classical line, we review
the exact ground state and construct three exact exci-
tations. In Sec. 3, we study the transition line h.(A)
using the mean-field approach and the exact diagonal-
ization of finite systems. In Sec. 4, we find the critical
exponents in the vicinity of the line h = 0. The proper-
ties of the model near the critical lines A = £1 and in
the vicinity of the points (A = 1, h = 0) in particular
are studied in Secs. 5 and 6.
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2. THE CLASSICAL LINE

We first we consider the classical line

het = /2(1 + A),

because we often refer to it in what follows. It is re-
markable in the sense that the ground state is identical
to the classical one on this line and quantum flucua-
tions are missing. It was shown in [5] that the ground
state of (1) is two-fold degenerate on this line and the
ground state wave functions with the momentum k£ =0
and k = 7 are given by

A > -1,

1
E(cblid)g),

where @5 are direct products of single-site functions,

Vo=

|<I>1> = ‘0410720[3@4 . > R

|®s) = |aiasago ...).

Here, |a;) is the state of the ith spin lying in the zy
plane for |A| <1 (or in the 2z plane for A > 1) at the
angle ¢ with the = axis. These states can be written as

i) = (%S = 1)), (Al <1,
i) = (€957 =1 [), A>1
with
cosp =he/2, |A[<1
and
cho =he/2, A>1.

The state |@;) is obtained by rotation of the ith spin
by = about the magnetic field axis x,

|ai> — eiﬂSf

ai>.

The ground state has a two-sublattice structure and
is characterized by the presence of the long-range or-
der in the y (JA| < 1) or in the z (A > 1) directions.
In particular, for |A| < 1, the staggered magnetization

(S4) is
J1- e
a

In general, the excited states of (1) on the classical
line are nontrivial. Some of them can nevertheless be
found exactly. For this, it is convenient to introduce

(="
2

(S7)

the operator overturning the ith spin,
R; = eiﬂ—siz, |A| <1,

R; = eirrSiy’ A > 1’
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such that the states of the «overturned» ith spin
B;) = Ri|a;) and |B;) = R;|a;) are orthogonal to
‘Oéi> and |dl>7

(il Bi)

The exact excited states are then written as

‘wi(2)> = ZRm |‘I’1(2)> )
m

(a;|B;) = 0.

W(z)> =2 (=1 "RuRnys | @102))

‘¢?(2)> =Y (=1)"RpRni1Rm [$1(2))
n,m
and therefore, each of the three exact excitations is also
two-fold degenerate. This degeneracy is in fact a con-
sequence of the Zs symmetry describing the rotation of
all spins by 7 about the magnetic field axis x.

To show that these states are indeed the exact ones,
it is convenient to rotate the coordinate system such
that in one of the ground states, for example ®;, all
spins point down. In the case where |A| < 1, this trans-
formation is the rotation of the spins at even (odd) sites
by an angle ¢ (—¢) around the z axis followed by the
rotation by /2 around the y axis,

Sk =07 cosp+ (—1)"c! singp,
S¥ = (=1)"0; sinp — ol cos g, (2)
S:=—or.

In the case where A > 1, the transformation of the
spin operators is defined by

Sy =07 cosp+ (—1)"0F sing,
SY=gY, (3)
S; = —(=1)"o sinp + o, cos .

On the classical line, Hamiltonian (1) then becomes

H, :A20n0n+1+(1+A)ZafL+

h2 n z z
+ he\[1 - Td ;(_1) oh(Opyr +on g +1) (4)

for A <1 and
Hy =Y 0noni1—(A=1)) 0i07 42> oi+
n n n
+ /03 = 4> (=1)"ok(05 + o5 + 1) ()

for A > 1.
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The ground state of both Hamiltonians and of (1)
is two-fold degenerate. Obviously, in one of the ground
states, all spins o,, point down,

®=10)=[1...).

The energy of this state is
Ey=———-N—. (6)

In this representation, the second ground state ®- has
a more complicated form,

3, = H(cosgp + (=1)"0;" sin ) |0).

n

It is now easy to see that the following three excited
states are exact:

W) =S ok ). Ei-Fo=1+4,
n

o) = Y ()"0t ek, [0),

n

Fy—Fo=2+4A, (7)
o) = () ot ot 10),

E; — Ey = 3+ 2A.

It can be verified that the last terms in (4) and (5)
annihilate these three functions and are therefore the
exact excited states of (1) for any even N. Similarly to
the ground state, excited states (7) are degenerate with
the states ‘1/)5) These states |w§> can be represented in
the same form (7), but in the coordinate system where
the function ®, describes all spins pointing down.

The states ‘¢%(2)> are especially interesting because

they define the gap of model (1) on the classical line at
small values of h.;. Our numerical calculations of finite
systems show that as hy — 0 (A — —1), the low-
est branch of the excitations has a minimum at £ =0
and the corresponding excitation energy is (1 + A) (of
course, because of the Z, symmetry, there is another
branch with the minimum at k£ = 7 and the same min-
imum energy, but we consider one branch only). The
excitation energy at £ = m obtained by the extrapola-
tion of numerical calculations as N — oo is 2(1 + A).
As hg increases, the excitation energies at £ = 0 and
k = m are drawn together and become equal to each
other at some h.. Our numerical results give

he 2076 (A~ —0.79).

On the classical line, the gap is therefore (1 + A) for
-1<A<-0.79.

3. THE TRANSITION LINE h = h.(A)

The existence of the transition line h.(A) passing
through the entire phase diagram is quite natural, be-
cause all types of the long-range order except the long-
range order along the field must vanish at some value
of the magnetic field. The transition line connects two
obvious limits as A — £oc, where model (1) reduces
to the I'TF model. The line passes through the exactly
solvable point (A =1, h = 2) and the point (A = —1,
h = hg) studied in [6]. We suppose that the entire
line h.(A) is of the ITF type with algebraically decay-
ing correlations with the corresponding critical expo-
nents [7].

The transition line can also be observed from the
numerical calculations of finite systems. As an exam-
ple, the dependences of the excitation energies of three
lowest levels on h are shown in Fig. 2 for A = 0 and
for N = 10-18. From this figure, it can be seen that
the two lowest states cross each other N/2 times and
the last crossing occurs at the classical point h,, = V2.
These two states form a two-fold degenerate ground
state in the thermodynamic limit. They have differ-
ent momenta k = 0 and k = 7 and different quantum
numbers describing the Zs symmetry that remains in
the system after applying the field. As for the first
excitation above the degenerate ground state, we also
see numerous level crossings in Fig. 2. These level
crossings lead to incommensurate effects that manifest
themselves in the oscillatory behavior of the spin cor-

E(i) — E(0)
0.6 T T T T T T T T T

0.5

0.4

0.3

0.2

0.1

Fig.2. The dependence of the difference between the

energy of two lowest levels E(1), E(2) and the ground

state energy F(0) on magnetic field h for finite chains
with N =10, ... ,18
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relation functions. The correlation functions at n > 1 e(k) = Va?(k) + b*(k), (13)
are given by
where g =1— A and
(SPSR) = (S%)? = f(n)e™"™, (8) g
k)= (h-1)—(1-2 k4+2vy,—2 k,
where (S*) (o = 2,9, z) is the corresponding magneti- alk) = ( ) ( 2) o8 TSR Ees (14)

zation (the long-range order) and f(n) is the oscillatory
function of n with the oscillation period depending on h
and A. All crossings disappear at h > h.;(A) and the
correlation functions do not contain oscillatory terms
in this region of the phase diagram.

The energy of the first excitation near hy de-
creases rapidly, and after extrapolation we found that
for A = 0, the gap vanishes at the magnetic field
he ~ 1.456(6) > h.. Inside the region h, < h < h,,
the ground state remains two-fold degenerate, although
there are no level crossings. At h > h., the mass gap
appears again; for a large field, the gap is proportional
to h.

To determine the transition line h.(A) and to study
the model in the vicinity of h.(A), we use the Fermi
representation of (1). This representation gives the ex-
act solution in the limits as A — +oo and in addition
yields the exact ground state on the classical line.

First, it is convenient to perform a rotation of the
spins around the y axis by 7/2 in (1) such that the
magnetic field is directed along the z axis,

H =Y (AS;Sq 84S 1 +55Sms)+h Y S5 (9)

After the Jordan—Wigner transformation to Fermi op-
erators a, and ap,

S;LL — elﬂ'ZGJ ajan
1 (10)
S:=atan 3

Hamiltonian (9) becomes

hN N 1+ A
Hp= 47+ <h—1— + cosk)a:amL
k
1-A

1 Zsin k(a:afk +a_ray) +
k

+ Z afanay janyr.  (11)

n
Treating the Hamiltonian Hy in the mean-field ap-
proximation, we find the ground state energy Fy and
the one-particle excitation spectrum e(k)

)

E 1 1
_Oz(h_1)<’71—§>+1—(1—%)72+
+ i -B+d (2

2
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b(k) = (g + 273) sin k.

The quantities 71, 72, and ~3 are the ground state ave-
rages determined by the self-consistent equations:

— lata) = _ a(k)
7= ) ;(1 )
2= (aonn) = - Y A cosk 1)
k>0
b(k
s = {ayan,) = - kZ 25((13) sin k

The magnetization S = (S7) of model (1) is given by

1
SZ——’}/l.

. (16)

The numerical solution of Eqs. (15) shows that the
function e(k) has a minimum at kj,;,, which changes
from 7/2 at h = 0 to zero at h = hy(A) and kpip =0
for h > hy(A). The gap in the spectrum e(k) vanishes
at he(A) (he > hy) and is given by m = |h — h.| for
h > hy. The functions hy(A) and h.(A) are shown in
Fig. 1. We note that the Hamiltonian Hy differs from
the domain-wall fermionic Hamiltonian that is mapped
from (1) in [4]. The transition line obtained in [4] is a
linear function of A in contrast to h.(A) in Fig. 1.

It is interesting to note that the mean-field approx-
imation gives the exact ground state on the classical
line hy = 4/2(1+ A). On this line, the solution of
Egs. (15) has the simple form

1 h 4 — h?
n=s-—, p=-p=——= A<,
2 4 16
1 1 h? —4 (17)
= - - — g = c A 1
71 D) hc[’ V2 V3 4hzl ) > 1,
and the energy is given by
E 1 A
N 2 4

On the classical line in the mean-field approxima-
tion, the gap is

1
m = 1(2 het) |A] < 1,

h2l —92 ) (18)
m= = (h =2, A1
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We compared (18) with the results of the extrapolation
of finite systems on the classical line. The coincidence
is sufficiently good for A > 0.5. Equation (18) gives
a satisfactory estimate for the gap up to A ~ —0.5.
For example, at A = 0 (hy = V/2), it follows that
m = 0.086 from Eq. (18), while the extrapolated gap
is m &~ 0.076(4).

The smaller the fermion density, the better the
mean-field approximation works. It becomes worse as
the magnetization S — 0. This is the reason of in-
correct behavior of the gap as hy — 0 (A — —1). It
follows from (18) that m = 1, while m vanishes in this
limit as m = (1 4+ A) (7).

In the mean-field approximation, the Hamiltonian
Hy is similar to the well-known bilinear Fermi Hamil-
tonian describing the anisotropic XY model or the ITF
model. Using results in [7], the following facts related
to the model under consideration can be established.

1. There is a staggered magnetization (S¥) along
the y axis for |A| < 1 or (S?) along the z axis for
|A| > 1, and they vanish as (h, — h)'/® for h — h,.

2. The magnetization S has a logarithmic singular-
ity as h — he.

3. The spin correlation function decays exponen-
tially (excluding the transition line) as n — oc,

G%(n) = (SPSR) = (S%)* = f(n)e™"". (19)
The function f(n) has an oscillatory behavior for
0 < h < he and is monotonic for h > he; f(n) =0 at

h = he and

het — h
P —
’ “ hcl

for he; — h < 1. The classical line therefore determines
the boundary on the phase diagram where the spin cor-
relation functions show the incommensurate behavior.

On the transition line i = h.(A), the spin correla-
tion functions have a power-law decay,

GY(n) o 1/n'/4,
|Al <1,
GY(n) o 1/n°/4,
|A] > 1.

These results show that the transition at h = h.(A)
belongs to the universality class of the ITF model.

In the vicinity of the point h = 2, A = 1, the
fermion density is small (S ~ 1/2) and the mean-field
approximation of the four-fermion term gives the accu-
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racy up to g or (2 — h)* at least. In this case, we give
the corresponding expressions (for g < 1):

9 9
—9_2 _ 7
he 2 32
2
hl hc %67
(21)
|h — hel, h > hy,
") g 9°
——A/he —h—2=, h<h.
2\/5 c 321 < 1
The magnetization S is
(
L V2 g 9
2 8
g < Vv hc - h',
S = (22)
l_i_Q(hc_h)ln 92
2 d4r g he—h)’
g < Vhe—h.
The susceptibility x(h) = dS/dh is
2 g°
ﬂ_—gln h —h 5 g>>\/hc_h,
x(h) = ‘ (23)

1 1
V21 Vhe — R’

It follows from (23) that there is a crossover from the
square root to the logarithmic divergence of y as the
parameter g*/(h. — h) varies from 0 to oo.

g < Vhe—h.

4. THE LINE h =0, |A| < 1

4.1. Scaling estimates

The XX Z model is integrable and its low-energy
properties are described by a free massless boson field
theory with the Hamiltonian

v

Hy 5

/dx [11* + (0,9)°] . (24)

where TI(z) is the momentum conjugate to the boson
field ®(z), which can be separated into the left and
right moving terms,

b=, + Pp.
The dual field ® is defined as the difference

d=3, — dp.
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The spin-density operators are represented as

1
~ mﬁzé + const

/2 COS (27rRti>) {C(—l)" + const - cos%

P
Sk (=1)" cos o
(25)
Sn
with the constant C found in [8]. The compactification

radius R is known from the exact solution

orR? — =1 — arccosA.
™
The nonoscillating part of the operator S? in
Eq. (25) has the scaling dimension
6 1
d=-+ —
> 2
and conformal spin S = 1. A nonzero conformal spin
of the perturbation operator S® can lead to incommen-
surability in the system [9], which agrees with Eq. (19).
As shown in [10], the general formula for the mass gap

1 2
2—d 4-6-1/8

m~h", v= (26)
is not applicable in the entire region |A| < 1. Because
of a nonzero conformal spin of the nonoscillating part
of the operator S*, higher-order effects in h must be
considered. The analysis shows [10] that the original
perturbation with a nonzero conformal spin generates
another perturbation with zero conformal spin,

V = h®cos (471'R‘i>) . (27)
This perturbation gives the critical exponent for the
mass gap

1

BT oy =
m Ry

(28)
Comparing Eqs. (26) and (28), we see that perturba-
tion (27) becomes more relevant in the region

A < cos(mV/2) ~ —0.266.

It turns out that the oscillating part of the opera-
tor S* gives another, more relevant index for the gap
at A < 0. We now reproduce the standard «confor-
mal» chain of arguments for this oscillating part. The
perturbed action of the model is given by

S:So+h/dtdx3z(x,t), (29)
where Sy is the Gaussian action of the X X Z model.
The time-dependent correlation functions of the X X Z
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chain show the power-law decay at |A| < 1 and have
the asymptotic form [11]

(S*(x,7)5%(0,0)) ~
=D"4

(22 +v272)9/2

Ay
(22 + v272)9/2+1/20 ’

~

(30)

where A; and A, are known constants [8] and 7 = it
is the imaginary time. We can therefore estimate the
large-distance contribution to the action of the oscillat-
ing part of the operator S*(x, 1) as

h/drdacS’”(x,r) ~ h/dTZ R (="

v272)0/4 ~
on
Nh/dT Z (n® + v272)0/4 ~

Oz
~ h/drdx(x2 FEERIIEE

The relevant field S*(z, 7) leads to a finite correla-
tion length &. This correlation length is such that the
contribution of the field S*(x, ) to the action is of the
order of unity. That is,

&/ ¢
[ ar [ dx b L omer
(22 + v272)0/4+1 v
0 0
which gives the mass gap
v 1
mN—Nhu, [J:m (31)

In fact, the oscillating factor (—1)™ in the correlator in
some sense eliminates one singular integration over z,
and the general conformal formula

m o h'/(P=4)

where D is the dimension of space and d is the scaling
dimension of the perturbation operator, must be taken
with D = 1 instead of conventional D = 2.

The comparison of Eqs. (26), (28), and (31) shows
that for 0 < A < 1, the leading term is given by
Eq. (26) and for —1 < A < 0, by Eq. (31). We therefore

have

D<A,
-1<A<O.

m e~ h",

/ 32

— (32)

The functions v(A), w(A), and y(A) are shown in
Fig. 3. In this respect, model (1) is different from the
X X Z model in the staggered transverse field, for which

m oc h2/(4=0)
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9 gl Y part of correlator (30). Taking only low-lying excita-
B ' ' ' ' ' ' ' ' ' ] tions of the spectrum of the X X Z model into account
E B (these excitations give the most divergent part) and
99F 7 ] estimating the large-distance behavior of the nonoscil-
] lating part of correlator (30), we arrive at
18} -; ¥ (s15) v
L ] 2% ~ 2 772 _
? ? R V) R T
1.4 ;— n —; — h2N47971/9. (37)
) 3 - < . ] Tt follows that if 4 — 6 —1/6 > 0, then each next or-
0 —0.8 —0.4 0 0.4 0.8 A der in perturbation theory (36) diverges more and more

Fig.3. The dependence of the critical exponents v, p,

and 7 on A. The smallest exponent gives the pertur-

bation of the most relevant type and defines the index
for the mass gap

for all |A| <1 [12].
The staggered magnetization (long-range order)
along the y axis behaves as

(-1)"
£0/2

(Sh) ~ ~ (=1)"m, (33)

Hence, the long-range order also has two different crit-
ical exponents,
<‘Sy|> ~ h\9/(4—0—1/0)7
(|SY]) ~ R0,

0< A<,

(34)
-1<A<O.

4.2. Perturbation series

The critical exponents v and p can also be derived
from the analysis of infrared divergences of the pertur-
bation theory in h. Obviously, only even orders in h
give contributions. We now estimate the large-distance
behavior of the operator

1 1

U= Vv
Ey— Hy Ey— Hp

v

(35)

determining the perturbation theory order, where
V = h> S¥ and Hy is the Hamiltonian of the XX Z
model. The perturbation series for the ground state
energy is given by

1

0E ~V—"-—
Ey — Hy

VA+U+U?+...). (36)
We consider a large but finite system of the length
N. We keep the powers of N and h only, omitting

all other factors. We first consider the nonoscillating
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strongly. To absorb these infrared divergences, we must
introduce the scaling parameter y = Nh” and assume
that the series (14U +U>+...) in (36) forms some
function of the scaling parameter y. In our case,

B 2
4-6-1/8

14

(see Eq. (26)) and
U x y2/”.

The leading second-order divergence of the ground
state energy can be found similarly to (37)

)

1

V o~ h2N37971/9.
Ey — Hy

SE®) =v (38)

Combining Eqs. (37) and (38), we can write
OB ~ Nh? f(y)

with some unknown function f(y) whose small-y ex-
pansion is given by

1 [eS]
) == > eay®™.
Yy n=1

In the thermodynamic limit as N — oo, the scal-
ing parameter y = Nh"” also tends to infinity, y — oo.
Because the energy is proportional to N, the function
f(y) has a finite limit f(c0) = a. In the thermodynamic
limit for the correction to the ground state energy, we
therefore have

5E ~ aNh2. (39)

For the first excited state, the perturbation theory
divergences have the same form as in (37) and (38). For
the gap, we therefore find the same scaling parameter
y = Nh” and

m ~ Nh*"g(y).
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In the thermodynamic limit, the mass gap is of the
order of unity (in terms of V), and therefore, the func-
tion g(y) « 1/y as y — oo. Thus, finally we arrive at
the Eq. (26).

We now consider the more subtle, oscillating part
of correlator (30). For the oscillating part at large dis-
tances, we can write

> (srsy)
0]

The oscillating part of the perturbation operator V
connects the low-lying gapless states with finite-energy
states. That is, each second level in all orders of the
perturbation series is separated from the ground state
by a finite gap. For the operator U, we therefore have

U~ h? R

(1/N)

Because 6 is always less than 2, the divergences
grow with the order of the perturbation theory. To
eliminate these divergences, we introduce the scaling
parameter y = Nh*, with u defined in Eq. (31), such
that U ~ y>/#.

The second-order correction to the ground state en-
ergy is then given by

ro+1 NO -

~ h2N27Y.

> (57S7)
h2 i,j

6E(2) -~ -~ h2N179

1

and the total correction to the ground state energy is
0B ~ NI f(y),

where f(y) is an unknown function with a finite limit
f(oo) =0

In the thermodynamic limit, the ground state en-
ergy therefore behaves as

§E ~ bN K.
The mass gap is found similarly,
m ~ Nh*g(y)

with the function g(y) « 1/y as y — oc. We thus
reproduce Eq. (31) in the thermodynamic limit.

We note that we have estimated only the long wave-
length divergent part of the perturbation theory. In
addition, the regular part of the perturbation theory
gives the leading term of the order h2. Combining all
the above facts, we thus arrive at

" _

X2 2 2 4
¥ 2h + ah™ + bh7H. (40)

As can be seen from Eq. (40), JE consists of a regu-
lar term A% and two singular terms. Because v > 1 and
i > 1, the susceptibility y is finite for any A in contrast
to the model with the staggered transverse field [12],
where the singular term is A" with n =4/(4 — 6) < 2.

It follows from Eqs. (26) and (31) that v — 1 as
A —land g — 1 as A — —1. In both limits, one of
the singular terms therefore becomes proportional to
h2, and hence, contributes to the susceptibility. This
implies that the susceptibility has a jump at the sym-
metric points A = +1.

5. THE LINE A =1

In the vicinity of the line A = 1, it is convenient to
rewrite Hamiltonian (1) as

H=Hy+V,
Hy = Z(s “Sni1) + th )

= —QZS Snt1s

where the parameter ¢ = 1 — A <« 1 is small. On
the isotropic line A = 1, model (1) is exactly solvable
by the Bethe ansatz. The properties of the system re-
main critical up to the transition point h, = 2, where
the ground state becomes ferromagnetic. Therefore, for
h < 2 and small perturbation V', we can use conformal
estimates.

The asymptotic form of the correlation function on
this line is given by

~ ﬂ (42)

<Sz Sz+n> no(h)

where a(h) is a known function obtained from the
Bethe ansatz [13]. Tt has the asymptotic forms

1

~ 2In(1/h)’
1
3
The scaling dimension of the operator S* is
d. = a(h)/2 and the scaling dimension of S;S7
is four times greater, d,, = 4d., = 2a(h). Because
a(h) < 1, the perturbation V is relevant and leads to
the mass gap and the staggered magnetization given
by

h — 0,
a(h) ~ (43)

h — 2.

|g|1/ 2 dz., |g|1/(2—20{)7
(|SY]) ~]g|*/U) A <1, (44)
(|S7]) ~ [g|/ " A>T
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From the general expressions for the mass gap in
Eq. (44), we obtain that m ~ g in the limit as h — 2,
which agrees with the result of the mean-field approx-
imation in Eq. (21).

In the vicinity of the point A =1, h = 2, the long-
range order vanishes on both lines: at A = 1 as ¢'/*
(see (44)) and at h = h. as |h. — h\l/g. We also have
the exact expression for the long-range order on the
classical line,

(5" = 22

Combining all these facts, we arrive at the formula

(45)

(15¥)) = 27 7/8g 4 |ho — n|'/® (46)

The behavior of the system near the point A = 1,
h = 0 is more subtle. As follows from Eq. (32), the
mass gap is m ~ h for very small h; on the other hand,
Eq. (44) implies a different scaling m ~ ¢g"(1/%) There-
fore, there are two regions near this point with differ-
ent behaviors of the mass gap. The boundary between
these two regions can be found as follows. We rewrite
the perturbation in Hamiltonian (41) as

V=V+V,
(SySh 1 +SiSiii),
g z z
Vo= 3 Z (SHShi1 = SnSiga) -
The part Ho+V; of the Hamiltonian corresponds to the

X X Z model in the longitudinal magnetic field, which
is gapless for the magnetic field

w2 >
2/9)

Therefore, in the region of very small magnetic field
2

Vi)
2/9)°
the perturbation V; is relevant, leading to the mass gap
m ~ h. The two-cutoff scaling procedure [9, 10] leads

2

to the mass gap
)
2

)

2\/5 '
Finally, when g is much less than h, the scaling dimen-
sion of the operator V5 defines the exponent for the gap

h > exp <—

h < exp <—

m & hexp (—

for
h > exp <—
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in Eq. (44). Summarizing, the mass gap in the vicinity
of the isotropic point A =1, h = 0 is given by

1

m~h, Inhg——,
V9

2 1 1

m ~ he™™ /?V9, >Inh>——, (47

V9lng V9 (47)
1
—Inh

mn~g ., Inh> .

V9lng

6. THE LINE A = —1

In this section, we consider model (1) in the vicinity
of the line A = —1, where

1+4A=0x1

is a small parameter. It is convenient to rotate spins
on each odd site by 7w around the z axis, such that
model (1) becomes

H==> (Sn-Sup1)+6)_ S8 -

—hY (-1)"SE. (48)

At 6 = 0 and h = 0, the ground state of (48) is
the ferromagnetic state with zero momentum degene-
rate with respect to total S*. The states that can be
reached from the ground state by means of the transi-

tion operator
> (=1s;

n

are the states with ¢ = 7 and a finite gap over the
ground state. For § < 1, the transition operator con-
nects the low-energy states and the states with the
energies ¢, & 2. The second-order correction to low-
energy states is given by

[s) (s| (=1)™S7, 1)
E, — E,

s,n,m

where |l) is a low-energy state and |s) is a state with
the high energy E; — E; ~ 2. For § < 1, Eq. (49) can
therefore be rewritten as

2
SEP =~ S (<17 Sz 1) =

_kN
s

=B Y (=) SES (D) . (50)

n<m
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The spin correlation function (1| SZ.S¥, |I) is a slowly
varying function of |m — n| for § < 1. Therefore,

> (-1

n<m

)" TSRSy 1) &

——Z (1] Szsz Iy

In accordance with Eqs. (49)-(51), the low-lying
states of (48) are therefore described for |§] < 1 and
h < 1 by the XY Z Hamiltonian

(51)

h*N
8

_ZK1_—> SEST  +SYSY  —ASESE |. (52)

H=-—

The coincidence of the low-energy spectra of (48)
and (52) in the vicinity of the ferromagnetic point
A = —1, h = 0 has been checked numerically for fi-
nite systems. The spectrum of low-lying excitations of
the s = 1/2 XY Z model in Eq. (52) and of the original
model in Eq. (1) near the ferromagnetic point A = —1,
h = 0 can be asymptotically exactly described by the
spin-wave theory, which gives

m=hy/1+A)/2, A>-1, "
m=+(1+A)(1+A+h2/2), A<-1. (53)

It can be verified that Eq. (53) yields the exact gap
of the XY Z model [14] for |d], h < 1. The validity of
the spin-wave approximation is quite natural because
the number of magnons forming the ground state is
small in the vicinity of the ferromagnetic point A = —1,
h=0.

We also note that the gap in Eq. (53) for A > —1
agrees with the conformal theory result (32) and gives
the preexponential factor for the gap. On the classical
line

ha = 20+ &),
Eq. (53) yields the gap m = 14+ A, which confirms that
the function wgl) in Eq. (7) gives the exact gap.

A similar mapping of model (1) with an arbitrary
spin s to the XY Z model can be performed for A ~ —1,
h <« 1. Taking into account that ¢, = 4s, the corre-
sponding XY Z Hamiltonian is

H =
h2
--3 {(1--) S2S8% . +SYSY,  ~ASESE.
h? m
PO
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where S¢ are spin-s operators.

The leading term of the gap of model (1) with an
arbitrary spin s in the vicinity of the point A = —1,
h = 0 is exactly given by the spin-wave theory,

m=hy/(1+A)/2,

m=2s\/(1+A)(1

A > -1,

+ A+ 12/852) %9)

A< —1.

On the classical line h.;, Eq. (55) gives the correct re-
sult m = 2s4.

Strictly on the line A —1, model (1) reduces
to the isotropic ferromagnet in the staggered magnetic
field. This model is nonintegrable, but it was suggested
in [6] that the system is governed by a ¢ = 1 conformal
field theory up to some critical value h = hg, where the
phase transition of the Kosterlitz—Thouless type occurs.

For h <« 1, where the mapping of (48) to XY Z
model (52) is valid, the line A = —1 is described by
the X X Z model and the correlation functions have a
power-law decay,

zQz (_1)71
1 o0

We believe that the relation between the indices of
x and y, z correlators on the line A —1 is given
by (56) for 0 < h < hg. The scaling dimensions of the
operators S¥ and SY, S? on this line are therefore given
by d, = /2 and d, = d. =1/25.

On the line A = —1, model (1) is gapless for h < hyg.
This implies that the magnetic field term is irrelevant
for h < hg (S(h) > 4) and becomes marginal at h = ho,
where d, = 2 and §(ho) = 4. Therefore, at the point
h = hg, the transition is of the Kosterlitz—Thouless
type, and for h > hg, the mass gap is exponentially
small.

In the vicinity of the line A = —1, the term

53 5i55

n (48) can be considered as a perturbation and the
scahng dimension of the perturbation operator S;S7
is

d.. = 4d. = 2/B(h).
Because [(h) > 4 for h < hg, the perturbation is rel-

evant and leads to the mass gap and the long-range
order,

m ~ ‘5|1/(2—2/B) )
(15¥]) ~
(157 ~

51/4(B—1)’
‘5|1/4(B—1)

6> 0,
, 6<0.

(57)
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In particular, m o |6\2/3 and (|SY]) ~ |5|1/12 as
h — ho.

The function B(h) is generally unknown, except in
the case where h < 1, the mapping to the X X Z model
is valid, and

)|

B(h) = {1 _1 arccos <
™
But because model (1) is conformally invariant at
A = —1and h < hg, we can use a finite-size scaling
analysis to determine the exponent $(h) and the value
of hg. According to the standard scaling approach [15],
27w

where v is the speed of sound and A/N is the differ-
ence between the two lowest energies of the system.
We calculated B(h) for finite systems. The extrapo-
lated function B(h) agrees well with the dependence
w/h at h < 1 and 8 =4 at hyg ~ 0.52. This estimate is
close to our direct numerical estimates hg ~ 0.549. On
the other hand, the mean-field approach gives a rather
crude value

h2
— -1 ~
2

S

ho = he(—1) = 0.69.

7. CONCLUSIONS

In summary, we have studied the effect of the
symmetry-breaking transverse magnetic field on the
s =1/2 XX Z chain. Unlike the longitudinal field, the
transverse field generates the staggered magnetization
in the y direction and the gap in the spectrum of the
model with the easy-plain anisotropy. Using conformal
invariance, we have found the critical exponents of the
field dependence of the gap and the long-range order.
We have shown that the spectrum of the model is
gapped on the entire hA plain except at several critical
lines, where the gap and the long-range order vanish.
The behavior of the gap and the long-range order in
the vicinity of the critical lines A = +1 is considered
on the base of the conformal field theory. We note
that in the vicinity of the points (A = 1, h = 0) and
(A =1, h = 2), there is a crossover between different
regimes of the behavior of the system. We have shown
that near the point (A —1, h = 0), the original
model can be mapped to the effective exactly solvable
1D XY Z model and has the spin-wave spectrum. The
transition line h.(A) between the ordered phases and
the disordered one is studied in the mean-field approxi-
mation. This study shows that this transition is similar
to that in the Ising model in the transverse field. But
the behavior of the model on the transition line near
the Kosterlitz—Thouless point (A = —1, h = hg) is
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not so clear. The mean-field approximation worsens
as A — —1 and a more sophisticated theory is needed.
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