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ONE-DIMENSIONAL ANISOTROPIC HEISENBERG MODELIN THE TRANSVERSE MAGNETIC FIELDD. V. Dmitriev a;b *, V. Ya. Krivnov a;b, A. A. Ovhinnikov a;b, A. Langari b;a Joint Institute of Chemial Physis, Russian Aademy of Sienes117977, Mosow, Russiab Max-Plank-Institut für Physik Komplexer Systeme01187, Dresden, Germany Institute for Advaned Studies in Basi SienesZanjan 45195-159, IranSubmitted 29 Marh 2002The one-dimensional spin-1=2 XXZ model in a transverse magneti �eld is studied. It is shown that the �eldindues a gap in the spetrum of the model with the easy-plain anisotropy. Using onformal invariane, the�eld dependene of the gap is found at small �elds. The ground state phase diagram is obtained. It ontainsfour phases with the long-range order of di�erent types and a disordered phase. These phases are separated byritial lines, where the gap and the long-range order vanish. Using saling estimates, the mean-�eld approah,and numerial alulations in the viinity of all ritial lines, we �nd the ritial exponents of the gap and thelong-range order. It is shown that the transition line between the ordered and disordered phases belongs to theuniversality lass of the transverse Ising model.PACS: 75.10.Jm 1. INTRODUCTIONThe e�et of the magneti �eld on an antiferro-magneti hain has been attrating muh interest fromtheoretial and experimental standpoints. In parti-ular, a strong dependene of the properties of quasi-one-dimensional anisotropi antiferromagnets on the�eld orientation was observed experimentally [1℄. It istherefore interesting to study the dependene of prop-erties of the one-dimensional antiferromagnet on thediretion of the applied �eld. The simplest model ofthe one-dimensional anisotropi antiferromagnet is thespin-1=2 XXZ model. This model in a uniform lon-gitudinal magneti �eld (along the z axis) was studiedin great detail [2℄. Beause the longitudinal �eld om-mutes with the XXZ Hamiltonian, the model an beexatly solved by the Bethe ansatz. This is not the aseif the symmetry-breaking transverse magneti �eld isapplied and the exat integrability is lost. Beause ofits mathematial omplexity, this model has not beenstudied muh. From this standpoint, it is of a partiu-*E-mail: dmitriev�deom.hph.ras.ru

lar interest to study the ground state properties of the1D XXZ model in the transverse magneti �eld. TheHamiltonian of this model is given byH = NXn=1(SxnSxn+1+SynSyn+1+�SznSzn+1)+h NXn=1Sxn (1)with periodi boundary onditions and even N .The spetrum of the XXZ model is gapless for�1 < � � 1. In the longitudinal �eld, the spetrum re-mains gapless if the �eld does not exeed the saturationvalue (1 + �). On the other hand, a gap in the exi-tation spetrum seems to open up when the transversemagneti �eld is applied. It is supposed [3℄ that this ef-fet an explain the peuliarity of the low-temperaturespei� heat in Yb4As3 [1℄. The magneti properties ofthis ompound are desribed by the XXZ Hamiltonianwith � � 0:98; it was shown that the magneti �eld inthe easy plain indues a gap in the spetrum resultingin a dramati derease of the linear term in the spei�heat [3℄.First of all, what do we know about model (1)?The �rst part of the Hamiltonian is the well-knownXXZ model, whose exat solution is given by the624



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 One-dimensional anisotropi Heisenberg model : : :Bethe ansatz. In the Ising-like region � > 1, theground state of the XXZ model has a Neel long-rangeorder along the z axis and there is a gap in the exita-tion spetrum. In the region �1 < � � 1, the systemis in the so-alled spin-liquid phase with a power-lawdeay of orrelations and a linear spetrum. Finally,for � < �1, the lassial ferromagneti state is theground state of the XXZ model with a gap over theferromagneti state.In the transverse magneti �eld, the total spin pro-jetion Sz is not a good quantum number and themodel is essentially ompliated, beause the transverse�eld breaks rotational symmetry in the xy plane anddestroys the integrability of the XXZ model, exept atsome speial points. In partiular, the exat diagonal-ization study of this model is di�ult for �nite systemsbeause of a nonmonotoni behavior of energy levels.The �rst speial ase of model (1) is the limit as� ! �1. In this ase, the model redues to the 1DIsing model in a transverse �eld (ITF), whih an beexatly solved by transforming it to the system of non-interating fermions. In both limits, the system has thephase transition point h = j�j=2, where the gap losesand the long-range order in the z diretion vanishes.It is suggested [4℄ that the phase transition of theITF type ours for any � > 0 at some ritial valueh = h(�). It an also be expeted that suh a tran-sition exists for any � and the transition line onnetstwo limiting points h = j�j=2, �! �1.Similarly to these limiting ases, for any j�j > 1and h < h(�), the system has a long-range order inthe z diretion (the Neel order for � > 1 and the fer-romagneti order for � < �1). But for j�j < 1 andh < h(�), the ground state hanges and instead of thelong-range order in the z diretion, a staggered magne-tization along the y axis appears at h < h(�).This assumption is on�rmed on the �lassial� linehl = p2(1 +�) (hl < h(�)), where the quantum�utuations of the XXZ model are ompensated bythe transverse �eld and the exat ground state of (1)at h = hl is a lassial one [5℄. The exited states onthe lassial line are generally unknown, although it isassumed that the spetrum is gapped.The seond ase where model (1) remains integrableis the isotropi antiferromagneti ase � = 1. In thisase, the diretion of the magneti �eld is not impor-tant and the ground state of the system remains thespin-liquid one up to the point h = 2, where a phasetransition of the Pokrovsky�Talapov type ours andthe ground state beomes a ompletely ordered ferro-magneti state.The last speial ase is � = �1. Model (1) then
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hFig. 1. Phase diagram of model (1). The thik solidlines are the ritial lines, the thin solid line is the �las-sial� line, and the dashed line is the line h1(�)redues to the isotropi ferromagneti model in a stag-gered magneti �eld. This model is nonintegrable, butas shown [6℄, the system remains gapless up to someritial value h = h0, where a phase transition of theKosterlitz�Thouless type ours.Summarizing, we expet that the phase diagram ofmodel (1) (in the (�; h) plane) has the form shownin Fig. 1. The phase diagram ontains four regionsthat orrespond to di�erent phases and are separatedby transition lines. Eah phase is haraterized by along-range order of its own type: the Neel order alongthe z axis in region (1); the ferromagneti order alongthe z axis in region (2); the Neel order along the y axisin region (3); in the region (4), there is no long-rangeorder exept the magnetization along the �eld diretionx (whih ertainly exists in all the above regions). Bythe long-range order, we hereafter understand the oneof the type orresponding to a given region.In this paper, we investigate the behavior of the gapand the long-range order near the transition (ritial)lines. In Se. 2, devoted to the lassial line, we reviewthe exat ground state and onstrut three exat exi-tations. In Se. 3, we study the transition line h(�)using the mean-�eld approah and the exat diagonal-ization of �nite systems. In Se. 4, we �nd the ritialexponents in the viinity of the line h = 0. The proper-ties of the model near the ritial lines � = �1 and inthe viinity of the points (� = �1, h = 0) in partiularare studied in Ses. 5 and 6.13 ÆÝÒÔ, âûï. 3 (9) 625



D. V. Dmitriev, V. Ya. Krivnov, A. A. Ovhinnikov, A. Langari ÆÝÒÔ, òîì 122, âûï. 3 (9), 20022. THE CLASSICAL LINEWe �rst we onsider the lassial linehl =p2(1 +�); � > �1;beause we often refer to it in what follows. It is re-markable in the sense that the ground state is identialto the lassial one on this line and quantum �uua-tions are missing. It was shown in [5℄ that the groundstate of (1) is two-fold degenerate on this line and theground state wave funtions with the momentum k = 0and k = � are given by	1;2 = 1p2(�1 ��2);where �1(2) are diret produts of single-site funtions,j�1i = j�1 ��2�3��4 : : : i ;j�2i = j��1�2 ��3�4 : : : i :Here, j�ii is the state of the ith spin lying in the xyplane for j�j < 1 (or in the xz plane for � > 1) at theangle ' with the x axis. These states an be written asj�ii = (ei'S+i � 1) j#i ; j�j < 1;j�ii = (e'S+i � 1) j#i ; � > 1with os' = hl=2; j�j < 1and h' = hl=2; � > 1:The state j��ii is obtained by rotation of the ith spinby � about the magneti �eld axis x,j��ii = ei�Sxi j�ii :The ground state has a two-sublattie struture andis haraterized by the presene of the long-range or-der in the y (j�j < 1) or in the z (� > 1) diretions.In partiular, for j�j < 1, the staggered magnetizationhSyni is hSyni = (�1)n2 r1� h2l4 :In general, the exited states of (1) on the lassialline are nontrivial. Some of them an nevertheless befound exatly. For this, it is onvenient to introduethe operator overturning the ith spin,Ri = ei�Szi ; j�j < 1;Ri = ei�Syi ; � > 1;

suh that the states of the �overturned� ith spinj�ii = Ri j�ii and ����i� = Ri j��ii are orthogonal toj�ii and j��ii, h�ij�ii = 
��ij��i� = 0:The exat exited states are then written as��� 11(2)E =Xm Rm ���1(2)� ;��� 21(2)E =Xn (�1)nRnRn+1 ���1(2)� ;��� 31(2)E =Xn;m(�1)nRnRn+1Rm ���1(2)� ;and therefore, eah of the three exat exitations is alsotwo-fold degenerate. This degeneray is in fat a on-sequene of the Z2 symmetry desribing the rotation ofall spins by � about the magneti �eld axis x.To show that these states are indeed the exat ones,it is onvenient to rotate the oordinate system suhthat in one of the ground states, for example �1, allspins point down. In the ase where j�j < 1, this trans-formation is the rotation of the spins at even (odd) sitesby an angle ' (�') around the z axis followed by therotation by �=2 around the y axis,Sxn = �zn os'+ (�1)n�yn sin';Syn = (�1)n�zn sin'� �yn os';Szn = ��xn: (2)In the ase where � > 1, the transformation of thespin operators is de�ned bySxn = �zn os'+ (�1)n�xn sin';Syn = �yn;Szn = �(�1)n�zn sin'+ �xn os': (3)On the lassial line, Hamiltonian (1) then beomesH1 = �Xn �n�n+1 + (1 +�)Xn �zn ++ hlr1� h2l4 Xn (�1)n�yn(�zn+1 + �zn�1 + 1) (4)for � < 1 andH2 =Xn �n�n+1�(��1)Xn �zn�zn+1+2Xn �zn++qh2l � 4Xn (�1)n�xn(�zn+1 + �zn�1 + 1) (5)for � > 1.626



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 One-dimensional anisotropi Heisenberg model : : :The ground state of both Hamiltonians and of (1)is two-fold degenerate. Obviously, in one of the groundstates, all spins �n point down,�1 = j0i � j### : : : i :The energy of this state isE0 = �N2 �N�4 : (6)In this representation, the seond ground state �2 hasa more ompliated form,e�2 =Yn (os'+ (�1)n�+n sin') j0i :It is now easy to see that the following three exitedstates are exat:��� (1)1 E =Xn �+n j0i ; E1 �E0 = 1 +�;��� (2)1 E =Xn (�1)n�+n �+n+1 j0i ;E2 �E0 = 2 +�;��� (3)1 E =Xn;m(�1)n�+n �+n+1�+m j0i ;E3 �E0 = 3 + 2�: (7)
It an be veri�ed that the last terms in (4) and (5)annihilate these three funtions and are therefore theexat exited states of (1) for any even N . Similarly tothe ground state, exited states (7) are degenerate withthe states �� k2�. These states �� k2� an be represented inthe same form (7), but in the oordinate system wherethe funtion �2 desribes all spins pointing down.The states ��� 11(2)E are espeially interesting beausethey de�ne the gap of model (1) on the lassial line atsmall values of hl. Our numerial alulations of �nitesystems show that as hl ! 0 (� ! �1), the low-est branh of the exitations has a minimum at k = 0and the orresponding exitation energy is (1 +�) (ofourse, beause of the Z2 symmetry, there is anotherbranh with the minimum at k = � and the same min-imum energy, but we onsider one branh only). Theexitation energy at k = � obtained by the extrapola-tion of numerial alulations as N ! 1 is 2(1 + �).As hl inreases, the exitation energies at k = 0 andk = � are drawn together and beome equal to eahother at some ehl. Our numerial results giveehl � 0:76 (� � �0:79):On the lassial line, the gap is therefore (1 + �) for�1 < � < �0:79.

3. THE TRANSITION LINE h = h(�)The existene of the transition line h(�) passingthrough the entire phase diagram is quite natural, be-ause all types of the long-range order exept the long-range order along the �eld must vanish at some valueof the magneti �eld. The transition line onnets twoobvious limits as � ! �1, where model (1) reduesto the ITF model. The line passes through the exatlysolvable point (� = 1, h = 2) and the point (� = �1,h = h0) studied in [6℄. We suppose that the entireline h(�) is of the ITF type with algebraially deay-ing orrelations with the orresponding ritial expo-nents [7℄.The transition line an also be observed from thenumerial alulations of �nite systems. As an exam-ple, the dependenes of the exitation energies of threelowest levels on h are shown in Fig. 2 for � = 0 andfor N = 10�18. From this �gure, it an be seen thatthe two lowest states ross eah other N=2 times andthe last rossing ours at the lassial point hl = p2.These two states form a two-fold degenerate groundstate in the thermodynami limit. They have di�er-ent momenta k = 0 and k = � and di�erent quantumnumbers desribing the Z2 symmetry that remains inthe system after applying the �eld. As for the �rstexitation above the degenerate ground state, we alsosee numerous level rossings in Fig. 2. These levelrossings lead to inommensurate e�ets that manifestthemselves in the osillatory behavior of the spin or-
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Fig. 2. The dependene of the di�erene between theenergy of two lowest levels E(1), E(2) and the groundstate energy E(0) on magneti �eld h for �nite hainswith N = 10; : : : ; 18627 13*



D. V. Dmitriev, V. Ya. Krivnov, A. A. Ovhinnikov, A. Langari ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002relation funtions. The orrelation funtions at n � 1are given by hS�1 S�n i � hS�i2 = f(n)e��n; (8)where hS�i (� = x; y; z) is the orresponding magneti-zation (the long-range order) and f(n) is the osillatoryfuntion of n with the osillation period depending on hand �. All rossings disappear at h > hl(�) and theorrelation funtions do not ontain osillatory termsin this region of the phase diagram.The energy of the �rst exitation near hl de-reases rapidly, and after extrapolation we found thatfor � = 0, the gap vanishes at the magneti �eldh � 1:456(6) > hl. Inside the region hl < h < h,the ground state remains two-fold degenerate, althoughthere are no level rossings. At h > h, the mass gapappears again; for a large �eld, the gap is proportionalto h.To determine the transition line h(�) and to studythe model in the viinity of h(�), we use the Fermirepresentation of (1). This representation gives the ex-at solution in the limits as � ! �1 and in additionyields the exat ground state on the lassial line.First, it is onvenient to perform a rotation of thespins around the y axis by �=2 in (1) suh that themagneti �eld is direted along the z axis,H =Xn (�SxnSxn+1+SynSyn+1+SznSzn+1)+hXn Szn: (9)After the Jordan�Wigner transformation to Fermi op-erators a+n and an,S+n = ei�P a+j ajan;Szn = a+n an � 12 ; (10)Hamiltonian (9) beomesHf = �hN2 +N4 +Xk �h� 1� 1 +�2 os k�a+k ak++ 1��4 Xk sin k(a+k a+�k + a�kak) ++Xn a+n ana+n+1an+1: (11)Treating the Hamiltonian Hf in the mean-�eld ap-proximation, we �nd the ground state energy E0 andthe one-partile exitation spetrum "(k),E0N = (h� 1)�1 � 12�+ 14 � �1� g2� 2 ++ g23 + 21 � 22 + 23 ; (12)

"(k) =pa2(k) + b2(k); (13)where g = 1�� anda(k) = (h�1)��1�g2� os k+21�22 os k;b(k) = �g2 + 23� sin k: (14)The quantities 1, 2, and 3 are the ground state ave-rages determined by the self-onsistent equations:1 = ha+n ani =Xk>0�1� a(k)"(k)� ;2 = ha+n an+1i = �Xk>0 a(k)"(k) os k;3 = ha+n a+n+1i = �Xk>0 b(k)2"(k) sin k: (15)
The magnetization S = hSxni of model (1) is given byS = 12 � 1: (16)The numerial solution of Eqs. (15) shows that thefuntion "(k) has a minimum at kmin, whih hangesfrom �=2 at h = 0 to zero at h = h1(�) and kmin = 0for h > h1(�). The gap in the spetrum "(k) vanishesat h(�) (h > h1) and is given by m = jh � hj forh > h1. The funtions h1(�) and h(�) are shown inFig. 1. We note that the Hamiltonian Hf di�ers fromthe domain-wall fermioni Hamiltonian that is mappedfrom (1) in [4℄. The transition line obtained in [4℄ is alinear funtion of � in ontrast to h(�) in Fig. 1.It is interesting to note that the mean-�eld approx-imation gives the exat ground state on the lassialline hl = p2(1 +�). On this line, the solution ofEqs. (15) has the simple form1 = 12 � hl4 ; 2 = �3 = 4� h2l16 ; j�j < 1;1 = 12 � 1hl ; 2 = 3 = h2l � 44h2l ; � > 1; (17)and the energy is given byE0N = �12 � �4 :On the lassial line in the mean-�eld approxima-tion, the gap ism = 14(2� hl)2; j�j < 1;m = h2l � 22h2l (hl � 2)2; � > 1: (18)628



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 One-dimensional anisotropi Heisenberg model : : :We ompared (18) with the results of the extrapolationof �nite systems on the lassial line. The oinideneis su�iently good for � > 0:5. Equation (18) givesa satisfatory estimate for the gap up to � � �0:5.For example, at � = 0 (hl = p2), it follows thatm = 0:086 from Eq. (18), while the extrapolated gapis m � 0:076(4).The smaller the fermion density, the better themean-�eld approximation works. It beomes worse asthe magnetization S ! 0. This is the reason of in-orret behavior of the gap as hl ! 0 (� ! �1). Itfollows from (18) that m = 1, while m vanishes in thislimit as m = (1 +�) (7).In the mean-�eld approximation, the HamiltonianHf is similar to the well-known bilinear Fermi Hamil-tonian desribing the anisotropiXY model or the ITFmodel. Using results in [7℄, the following fats relatedto the model under onsideration an be established.1. There is a staggered magnetization hSyni alongthe y axis for j�j < 1 or hSzni along the z axis forj�j > 1, and they vanish as (h � h)1=8 for h! h.2. The magnetization S has a logarithmi singular-ity as h! h.3. The spin orrelation funtion deays exponen-tially (exluding the transition line) as n!1,G�(n) = hS�1 S�n i � hS�i2 = f(n)e��n: (19)The funtion f(n) has an osillatory behavior for0 < h < hl and is monotoni for h > hl; f(n) = 0 ath = hl andf(n) � os!nn2 ; ! =r2hl � hhlfor hl�h� 1. The lassial line therefore determinesthe boundary on the phase diagram where the spin or-relation funtions show the inommensurate behavior.On the transition line h = h(�), the spin orrela-tion funtions have a power-law deay,Gx(n) / 1=n2; Gy(n) / 1=n1=4;Gz(n) / 1=n9=4; j�j < 1;Gx(n) / 1=n2; Gy(n) / 1=n9=4;Gz(n) / 1=n1=4; j�j > 1: (20)These results show that the transition at h = h(�)belongs to the universality lass of the ITF model.In the viinity of the point h = 2, � = 1, thefermion density is small (S � 1=2) and the mean-�eldapproximation of the four-fermion term gives the au-

ray up to g3 or (2� h)4 at least. In this ase, we givethe orresponding expressions (for g � 1):h = 2� g2 � g232 ;h1 = h � g216 ;m =8>><>>: jh� hj; h > h1;g2p2rh � h� g232 ; h < h1: (21)
The magnetization S is
S = 8>>>>>>>>>><>>>>>>>>>>:

12 � p2� ph � h� g8� ;g � ph � h;12 � g4� � 2(h � h)�g ln� g2h � h� ;g � ph � h: (22)
The suseptibility �(h) = dS=dh is�(h) = 8>>><>>>: 2�g ln� g2h � h� ; g � ph � h;1p2� 1ph � h; g � ph � h: (23)It follows from (23) that there is a rossover from thesquare root to the logarithmi divergene of � as theparameter g2=(h � h) varies from 0 to 1.4. THE LINE h = 0, j�j< 14.1. Saling estimatesThe XXZ model is integrable and its low-energyproperties are desribed by a free massless boson �eldtheory with the HamiltonianH0 = v2 Z dx ��2 + (�x�)2� ; (24)where �(x) is the momentum onjugate to the boson�eld �(x), whih an be separated into the left andright moving terms,� = �L +�R:The dual �eld ~� is de�ned as the di�erene~� = �L ��R:629



D. V. Dmitriev, V. Ya. Krivnov, A. A. Ovhinnikov, A. Langari ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002The spin-density operators are represented asSzn � 12�R�x�+ onst(�1)n os �R;Sxn � os�2�R~���C(�1)n + onst � os �R� (25)with the onstant C found in [8℄. The ompati�ationradius R is known from the exat solution2�R2 = � = 1� aros�� :The nonosillating part of the operator Sx inEq. (25) has the saling dimensiond = �2 + 12�and onformal spin S = 1. A nonzero onformal spinof the perturbation operator Sx an lead to inommen-surability in the system [9℄, whih agrees with Eq. (19).As shown in [10℄, the general formula for the mass gapm � h� ; � = 12� d = 24� � � 1=� ; (26)is not appliable in the entire region j�j < 1. Beauseof a nonzero onformal spin of the nonosillating partof the operator Sx, higher-order e�ets in h must beonsidered. The analysis shows [10℄ that the originalperturbation with a nonzero onformal spin generatesanother perturbation with zero onformal spin,V = h2 os�4�R~�� : (27)This perturbation gives the ritial exponent for themass gap m � h ;  = 11� � : (28)Comparing Eqs. (26) and (28), we see that perturba-tion (27) beomes more relevant in the region� < os(�p2) � �0:266:It turns out that the osillating part of the opera-tor Sx gives another, more relevant index for the gapat � < 0. We now reprodue the standard �onfor-mal� hain of arguments for this osillating part. Theperturbed ation of the model is given byS = S0 + h Z dt dxSx(x; t); (29)where S0 is the Gaussian ation of the XXZ model.The time-dependent orrelation funtions of the XXZ

hain show the power-law deay at j�j < 1 and havethe asymptoti form [11℄hSx(x; �)Sx(0; 0)i �� (�1)xA1(x2 + v2�2)�=2 � A2(x2 + v2�2)�=2+1=2� ; (30)where A1 and A2 are known onstants [8℄ and � = itis the imaginary time. We an therefore estimate thelarge-distane ontribution to the ation of the osillat-ing part of the operator Sx(x; �) ash Z d� dxSx(x; �) � h Z d�Xn (�1)n(n2 + v2�2)�=4 �� h Z d� Xeven n �n(n2 + v2�2)�=4 �� h Z d� dx �x(x2 + v2�2)�=4+1 :The relevant �eld Sx(x; �) leads to a �nite orrela-tion length �. This orrelation length is suh that theontribution of the �eld Sx(x; �) to the ation is of theorder of unity. That is,h �=vZ0 d� �Z0 dx �x(x2 + v2�2)�=4+1 � �h�1��=2v � 1whih gives the mass gapm � v� � h�; � = 11� �=2 : (31)In fat, the osillating fator (�1)n in the orrelator insome sense eliminates one singular integration over x,and the general onformal formulam / h1=(D�d);where D is the dimension of spae and d is the salingdimension of the perturbation operator, must be takenwith D = 1 instead of onventional D = 2.The omparison of Eqs. (26), (28), and (31) showsthat for 0 < � < 1, the leading term is given byEq. (26) and for�1 < � < 0, by Eq. (31). We thereforehave m � h� ; 0 < � < 1;m � h�; �1 < � < 0: (32)The funtions �(�), �(�), and (�) are shown inFig. 3. In this respet, model (1) is di�erent from theXXZ model in the staggered transverse �eld, for whihm / h2=(4��)630
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0 0:4�0:4 0:8 ��0:81:0Fig. 3. The dependene of the ritial exponents �, �,and  on �. The smallest exponent gives the pertur-bation of the most relevant type and de�nes the indexfor the mass gapfor all j�j < 1 [12℄.The staggered magnetization (long-range order)along the y axis behaves ashSyni � (�1)n��=2 � (�1)nm�=2: (33)Hene, the long-range order also has two di�erent rit-ial exponents,hjSyji � h�=(4���1=�); 0 < � < 1;hjSyji � h�=(2��); �1 < � < 0: (34)4.2. Perturbation seriesThe ritial exponents � and � an also be derivedfrom the analysis of infrared divergenes of the pertur-bation theory in h. Obviously, only even orders in hgive ontributions. We now estimate the large-distanebehavior of the operatorU = 1E0 �H0V 1E0 �H0V (35)determining the perturbation theory order, whereV = hPSxi and H0 is the Hamiltonian of the XXZmodel. The perturbation series for the ground stateenergy is given byÆE � V 1E0 �H0 V (1 + U + U2 + : : : ): (36)We onsider a large but �nite system of the lengthN . We keep the powers of N and h only, omittingall other fators. We �rst onsider the nonosillating

part of orrelator (30). Taking only low-lying exita-tions of the spetrum of the XXZ model into aount(these exitations give the most divergent part) andestimating the large-distane behavior of the nonosil-lating part of orrelator (30), we arrive atU � h2Pi;j 
Sxi Sxj �(1=N)2 � h2N2 N2N�+1=� == h2N4���1=�: (37)It follows that if 4 � � � 1=� > 0, then eah next or-der in perturbation theory (36) diverges more and morestrongly. To absorb these infrared divergenes, we mustintrodue the saling parameter y = Nh� and assumethat the series �1 + U + U2 + : : : � in (36) forms somefuntion of the saling parameter y. In our ase,� = 24� � � 1=�(see Eq. (26)) and U / y2=� :The leading seond-order divergene of the groundstate energy an be found similarly to (37),ÆE(2) = V 1E0 �H0V � h2N3���1=�: (38)Combining Eqs. (37) and (38), we an writeÆE � Nh2�f(y)with some unknown funtion f(y) whose small-y ex-pansion is given byf(y) = 1y2 1Xn=1 ny2n=� :In the thermodynami limit as N ! 1, the sal-ing parameter y = Nh� also tends to in�nity, y ! 1.Beause the energy is proportional to N , the funtionf(y) has a �nite limit f(1) = a. In the thermodynamilimit for the orretion to the ground state energy, wetherefore have ÆE � aNh2� : (39)For the �rst exited state, the perturbation theorydivergenes have the same form as in (37) and (38). Forthe gap, we therefore �nd the same saling parametery = Nh� and m � Nh2�g(y):631



D. V. Dmitriev, V. Ya. Krivnov, A. A. Ovhinnikov, A. Langari ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002In the thermodynami limit, the mass gap is of theorder of unity (in terms of N), and therefore, the fun-tion g(y) / 1=y as y ! 1. Thus, �nally we arrive atthe Eq. (26).We now onsider the more subtle, osillating partof orrelator (30). For the osillating part at large dis-tanes, we an writeXi;j 
Sxi Sxj � � NXr (�1)rr� � NXr 1r�+1 � N 1N� :The osillating part of the perturbation operator Vonnets the low-lying gapless states with �nite-energystates. That is, eah seond level in all orders of theperturbation series is separated from the ground stateby a �nite gap. For the operator U , we therefore haveU � h2Pi;j 
Sxi Sxj �(1=N) � h2N2��:Beause � is always less than 2, the divergenesgrow with the order of the perturbation theory. Toeliminate these divergenes, we introdue the salingparameter y = Nh�, with � de�ned in Eq. (31), suhthat U � y2=�.The seond-order orretion to the ground state en-ergy is then given byÆE(2) � h2Pi;j 
Sxi Sxj �1 � h2N1��and the total orretion to the ground state energy isÆE � Nh2�f(y);where f(y) is an unknown funtion with a �nite limitf(1) = b.In the thermodynami limit, the ground state en-ergy therefore behaves asÆE � bNh2�:The mass gap is found similarly,m � Nh2�g(y)with the funtion g(y) / 1=y as y ! 1. We thusreprodue Eq. (31) in the thermodynami limit.We note that we have estimated only the long wave-length divergent part of the perturbation theory. Inaddition, the regular part of the perturbation theorygives the leading term of the order h2. Combining allthe above fats, we thus arrive atÆEN = ��2 h2 + ah2� + bh2�: (40)

As an be seen from Eq. (40), ÆE onsists of a regu-lar term h2 and two singular terms. Beause � > 1 and� > 1, the suseptibility � is �nite for any� in ontrastto the model with the staggered transverse �eld [12℄,where the singular term is h� with � = 4=(4� �) < 2.It follows from Eqs. (26) and (31) that � ! 1 as� ! 1 and � ! 1 as � ! �1. In both limits, one ofthe singular terms therefore beomes proportional toh2, and hene, ontributes to the suseptibility. Thisimplies that the suseptibility has a jump at the sym-metri points � = �1.5. THE LINE �= 1In the viinity of the line � = 1, it is onvenient torewrite Hamiltonian (1) asH = H0 + V;H0 =Xn (Sn � Sn+1) + hXn Sxn;V = �gXn SznSzn+1; (41)where the parameter g = 1 � � � 1 is small. Onthe isotropi line � = 1, model (1) is exatly solvableby the Bethe ansatz. The properties of the system re-main ritial up to the transition point h = 2, wherethe ground state beomes ferromagneti. Therefore, forh < 2 and small perturbation V , we an use onformalestimates.The asymptoti form of the orrelation funtion onthis line is given byhSzi Szi+ni � (�1)nn�(h) ; (42)where �(h) is a known funtion obtained from theBethe ansatz [13℄. It has the asymptoti forms�(h) �8><>: 1� 12 ln (1=h) ; h! 0;12 ; h! 2: (43)The saling dimension of the operator Sz isdz = �(h)=2 and the saling dimension of Szi Szi+1is four times greater, dzz = 4dz = 2�(h). Beause�(h) < 1, the perturbation V is relevant and leads tothe mass gap and the staggered magnetization givenby m � jgj1=(2�dzz) = jgj1=(2�2�) ;hjSyji � jgj�=(4�4�) ; � < 1;hjSzji � jgj�=(4�4�) ; � > 1: (44)632



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 One-dimensional anisotropi Heisenberg model : : :From the general expressions for the mass gap inEq. (44), we obtain that m � g in the limit as h ! 2,whih agrees with the result of the mean-�eld approx-imation in Eq. (21).In the viinity of the point � = 1, h = 2, the long-range order vanishes on both lines: at � = 1 as g1=4(see (44)) and at h = h as jh � hj1=8. We also havethe exat expression for the long-range order on thelassial line, hjSyjil = pg2p2 : (45)Combining all these fats, we arrive at the formulahjSyji = 2�7=8g1=4 jh � hj1=8 : (46)The behavior of the system near the point � = 1,h = 0 is more subtle. As follows from Eq. (32), themass gap is m � h for very small h; on the other hand,Eq. (44) implies a di�erent salingm � gln(1=h). There-fore, there are two regions near this point with di�er-ent behaviors of the mass gap. The boundary betweenthese two regions an be found as follows. We rewritethe perturbation in Hamiltonian (41) asV = V1 + V2;V1 = �g2Xn �SynSyn+1 + SznSzn+1� ;V2 = g2Xn �SynSyn+1 � SznSzn+1� :The partH0+V1 of the Hamiltonian orresponds to theXXZ model in the longitudinal magneti �eld, whihis gapless for the magneti �eldh > exp�� �22pg� :Therefore, in the region of very small magneti �eldh < exp�� �22pg� ;the perturbation V1 is relevant, leading to the mass gapm � h. The two-uto� saling proedure [9; 10℄ leadsto the mass gap m � h exp�� �22pg �for h > exp�� �22pg � :Finally, when g is muh less than h, the saling dimen-sion of the operator V2 de�nes the exponent for the gap

in Eq. (44). Summarizing, the mass gap in the viinityof the isotropi point � = 1, h = 0 is given bym � h; lnh� � 1pg ;m � he��2=2pg ; 1pg ln g � lnh� � 1pg ;m � g� lnh; lnh� 1pg ln g : (47)
6. THE LINE �= �1In this setion, we onsider model (1) in the viinityof the line � = �1, where1 +� = Æ � 1is a small parameter. It is onvenient to rotate spinson eah odd site by � around the z axis, suh thatmodel (1) beomesH = �Xn (Sn � Sn+1) + ÆXn SznSzn+1 �� hXn (�1)nSxn: (48)At Æ = 0 and h = 0, the ground state of (48) isthe ferromagneti state with zero momentum degene-rate with respet to total Sz. The states that an bereahed from the ground state by means of the transi-tion operator Xn (�1)nSxnare the states with q = � and a �nite gap over theground state. For Æ � 1, the transition operator on-nets the low-energy states and the states with theenergies "s � 2. The seond-order orretion to low-energy states is given byÆE(2)l = h2 Xs;n;m hlj (�1)nSxn jsi hsj (�1)mSxm jliEl �Es ; (49)where jli is a low-energy state and jsi is a state withthe high energy Es � El � 2. For Æ � 1, Eq. (49) antherefore be rewritten asÆE(2)l = �h22 Xn;m hlj (�1)n�mSxnSxm jli == �h2N8 � h2 Xn<m hlj (�1)n�mSxnSxm jli : (50)633



D. V. Dmitriev, V. Ya. Krivnov, A. A. Ovhinnikov, A. Langari ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002The spin orrelation funtion hljSxnSxm jli is a slowlyvarying funtion of jm� nj for Æ � 1. Therefore,Xn<m hlj (�1)n�mSxnSxm jli �� �12Xn hljSxnSxn+1 jli : (51)In aordane with Eqs. (49)�(51), the low-lyingstates of (48) are therefore desribed for jÆj � 1 andh� 1 by the XY Z HamiltonianH = �h2N8 ��Xn ��1�h22 �SxnSxn+1+SynSyn+1��SznSzn+1� : (52)The oinidene of the low-energy spetra of (48)and (52) in the viinity of the ferromagneti point� = �1, h = 0 has been heked numerially for �-nite systems. The spetrum of low-lying exitations ofthe s = 1=2 XY Z model in Eq. (52) and of the originalmodel in Eq. (1) near the ferromagneti point � = �1,h = 0 an be asymptotially exatly desribed by thespin-wave theory, whih givesm = hp(1 +�)=2; � > �1;m =p(1 +�)(1 +� + h2=2); � < �1: (53)It an be veri�ed that Eq. (53) yields the exat gapof the XY Z model [14℄ for jÆj, h � 1. The validity ofthe spin-wave approximation is quite natural beausethe number of magnons forming the ground state issmall in the viinity of the ferromagneti point� = �1,h = 0.We also note that the gap in Eq. (53) for � � �1agrees with the onformal theory result (32) and givesthe preexponential fator for the gap. On the lassialline hl =p2(1 +�);Eq. (53) yields the gap m = 1+�, whih on�rms thatthe funtion  (1)1 in Eq. (7) gives the exat gap.A similar mapping of model (1) with an arbitraryspin s to theXY Z model an be performed for� � �1,h � 1. Taking into aount that "s = 4s, the orre-sponding XY Z Hamiltonian isH == �Xn ��1�h22 �SxnSxn+1+SynSyn+1��SznSzn+1��� h24sXn (Sxn)2; (54)

where S�n are spin-s operators.The leading term of the gap of model (1) with anarbitrary spin s in the viinity of the point � = �1,h = 0 is exatly given by the spin-wave theory,m = hp(1 +�)=2; � > �1;m = 2sp(1 +�)(1 +� + h2=8s2); � < �1: (55)On the lassial line hl, Eq. (55) gives the orret re-sult m = 2sÆ.Stritly on the line � = �1, model (1) reduesto the isotropi ferromagnet in the staggered magneti�eld. This model is nonintegrable, but it was suggestedin [6℄ that the system is governed by a  = 1 onformal�eld theory up to some ritial value h = h0, where thephase transition of the Kosterlitz�Thouless type ours.For h � 1, where the mapping of (48) to XY Zmodel (52) is valid, the line � = �1 is desribed bythe XXZ model and the orrelation funtions have apower-law deay,hSzi Szi+ni = hSyi Syi+ni � (�1)nn1=�(h) ;hSxi Sxi+ni � (�1)nn�(h) : (56)We believe that the relation between the indies ofx and y, z orrelators on the line � = �1 is givenby (56) for 0 < h < h0. The saling dimensions of theoperators Sxi and Syi , Szi on this line are therefore givenby dx = �=2 and dy = dz = 1=2�.On the line � = �1, model (1) is gapless for h < h0.This implies that the magneti �eld term is irrelevantfor h < h0 (�(h) > 4) and beomes marginal at h = h0,where dx = 2 and �(h0) = 4. Therefore, at the pointh = h0, the transition is of the Kosterlitz�Thoulesstype, and for h > h0, the mass gap is exponentiallysmall.In the viinity of the line � = �1, the termÆXn SznSzn+1in (48) an be onsidered as a perturbation and thesaling dimension of the perturbation operator SznSzn+1is dzz = 4dz = 2=�(h):Beause �(h) � 4 for h < h0, the perturbation is rel-evant and leads to the mass gap and the long-rangeorder, m � jÆj1=(2�2=�) ;hjSyji � Æ1=4(��1); Æ > 0;hjSzji � jÆj1=4(��1) ; Æ < 0: (57)634



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 One-dimensional anisotropi Heisenberg model : : :In partiular, m / jÆj2=3 and hjSyji � jÆj1=12 ash! h0.The funtion �(h) is generally unknown, exept inthe ase where h� 1, the mapping to the XXZ modelis valid, and�(h) = �1� 1� aros�h22 � 1���1 � �h :But beause model (1) is onformally invariant at� = �1 and h < h0, we an use a �nite-size salinganalysis to determine the exponent �(h) and the valueof h0. Aording to the standard saling approah [15℄,�(h) = 2�vA ;where v is the speed of sound and A=N is the di�er-ene between the two lowest energies of the system.We alulated �(h) for �nite systems. The extrapo-lated funtion �(h) agrees well with the dependene�=h at h� 1 and � = 4 at h0 � 0:52. This estimate islose to our diret numerial estimates h0 � 0:549. Onthe other hand, the mean-�eld approah gives a ratherrude value h0 = h(�1) = 0:69:7. CONCLUSIONSIn summary, we have studied the e�et of thesymmetry-breaking transverse magneti �eld on thes = 1=2 XXZ hain. Unlike the longitudinal �eld, thetransverse �eld generates the staggered magnetizationin the y diretion and the gap in the spetrum of themodel with the easy-plain anisotropy. Using onformalinvariane, we have found the ritial exponents of the�eld dependene of the gap and the long-range order.We have shown that the spetrum of the model isgapped on the entire h� plain exept at several ritiallines, where the gap and the long-range order vanish.The behavior of the gap and the long-range order inthe viinity of the ritial lines � = �1 is onsideredon the base of the onformal �eld theory. We notethat in the viinity of the points (� = 1, h = 0) and(� = 1, h = 2), there is a rossover between di�erentregimes of the behavior of the system. We have shownthat near the point (� = �1, h = 0), the originalmodel an be mapped to the e�etive exatly solvable1D XY Z model and has the spin-wave spetrum. Thetransition line h(�) between the ordered phases andthe disordered one is studied in the mean-�eld approxi-mation. This study shows that this transition is similarto that in the Ising model in the transverse �eld. Butthe behavior of the model on the transition line nearthe Kosterlitz�Thouless point (� = �1, h = h0) is
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