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We consider quasielastic large-angle electron-muon scattering at high energies with radiative corrections up
to the two-loop level. The lowest-order radiative corrections arising from the one-loop virtual photon emis-
sion and a real soft emission are presented within a power accuracy. Two-loop corrections are supposed to be
of three gauge-invariant classes. One of them, the so-called vertex contribution, is given in the logarithmic
approximation. Relation to the renormalization group approach is discussed.

PACS: 11.80.-m, 13.10.+q, 13.65.+i

1. INTRODUCTION

Interest in the physics at electron—muon colliders is
now increasing. The main attention is paid to the inves-
tigation of rare processes, for instance those violating
the lepton number conservation law. Another motiva-
tion is a test of the models alternative to the Standard
Model [1]. The problems of calibration and precise de-
termination of luminosity will be important. For this,
the process of quasi-elastic electron—muon scattering
can be used.

The processes of quasi-elastic and inelastic large-
angle electron—muon scattering (EMS) play an impor-
tant role in the luminosity calibration at electron—
positron colliders. Indeed, they have a clear signature:
the scattered leptons move almost back-to-back (in the
center-of-mass reference frame) and the cross-section is
sufficiently large,

doo(f) 200 nb
dQ. s [GeV2]’

~
~

cosf (1)
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where s is the total energy squared in center-of-mass
reference frame, df), is the element of angular phase,
and @ is the scattering angle.

The modern experimental requirements to the the-
oretical accuracy are at the level of per mille or even
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less and therefore necessitate a detailed knowledge of
nonleading terms in the two-loop approximation. Some
of these terms were recently calculated in a series of
papers [2] devoted to the study of large-angle Bhabha
scattering. The contribution of the elastic genuine two-
loop virtual correction to the Bhabha amplitude was
recently evaluated [3] using the prescription developed
in [4] to handle singular terms in QCD at the two-loop
level.

In this paper, we consider the EMS process in the
two-loop approximation. At this level, we are inter-
ested in the contribution to the cross-section given by
the interference of the Born amplitude and the two-loop
virtual corrections. An attempt to solve this problem
was made in a series of papers [5], where a direct cal-
culation was performed; unfortunately, their result is
incorrect even in the part containing the infrared diver-
gence. Other papers (see, e.g., [6]) were devoted to the
calculation of two-loop Feynman amplitudes within the
dimensional regularization scheme. Once again, their
results cannot be straightforwardly applied to the real
amplitudes of large-angle EMS. One of the reasons is
the requirement of distinct masses of the interacting
particles.

Here, we consider only virtual and real soft pho-
ton contributions to the cross-section of the EMS. In
the third order of the perturbation theory, there ex-
ist three sets of contributions, each of which is free of
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Fig. 1. First-order contributions

infrared singularities. They include the contribution
coming from the one-loop virtual photon emission cor-
rections (see Fig. 1) and the one given by a soft photon
emission (see Fig. 3a).

In the fourth order, there are four sets free of in-
frared singularities. One of them, the dubbed vertex,
contains virtual corrections to the lepton vertex func-
tion up to the second order of the perturbation theory
and relevant inelastic processes with the emission and
absorption of real soft photons and lepton pairs by the
initial and scattered electrons (and similarly muons).
We here use the known expression for the lepton ver-
tex function up to the fourth order of the perturbation
theory [7]. Together with the contribution coming from
the emission of two real soft photons and a soft charged
lepton pair (see Figs. 34, e, f), it is our primary concern
in the present paper. We also consider the contribution
to the vacuum polarization caused by hadrons and the
soft real pion pair production.

Three additional gauge invariant contributions are
described by the one-photon exchange containing lep-
ton vertex functions accounting for the vacuum po-
larization and box-type Feynman diagrams with the
self-energy insertion into one of the exchange photon
Green’s functions. They are left for a separate consid-
eration.

Quasielastic refers to a process with the final parti-
cles emitted almost back-to-back in the center-of-mass
reference frame. The final particle energies coincide
with those of the initial particles up to a small value
Ae < e. This disbalance is due to a possible emission
of soft photons and pairs.

We start by giving the results for the Born differen-
tial cross-section and first-order corrections. The latter
contain radiative corrections due to the emission of vir-
tual photons at the one-loop level and the emission of
an additional soft photon. These contributions involve
infrared divergences that cancel when the two contri-
butions are added.

The result of the calculations agrees with the renor-
malization group (RG) prediction in the leading loga-
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rithmic approximation,

«Q «Q —t
;ptN17 ;<<17 ptzlnmm7
€
dGO 4 ' (2)
do = ——=D
MRS T Rt

where TI(t) is defined below (see Eq. (7)), Da is the
A-part of the nonsinglet lepton structure function [9],

oo a n
Da=1+Y (52r) Pua.
n=1

PlA =2lnA + 2,
5\ (3)
P2A: (21DA+§> —4(2,
Ae w2

A=— 1 = —.
6<<’ G2 6

Here, p; is the so-called large logarithm, ¢ is the kine-
matical invariant, and m. and m, are masses of the
leptons.

In addition, we give the explicit form of the non-
leading terms and present the result of calculating the
lowest-order radiative corrections to a power accuracy,

2

1+O<am )
Vs

= ?pt
Our calculation of the second-order contribution is per-
formed in the logarithmic approximation. We keep
all the logarithmically enhanced terms including those
containing logarithms of the mass ratio and omit the
terms of the order O(1).

In calculating radiative corrections in the fourth or-
der of the perturbution theory, we consider three sep-
arate gauge-invariant contributions. We call them the
vertex contributions, the decorated boxes, and contri-
butions of the eikonal type. The last two involve am-
plitudes with the electron—muon exchange enhanced by
one or two additional virtual (or real soft) photons and
by a virtual (real soft) pair. Their contributions are
not considered here.

The first set of Feynman diagrams is of the vertex
type with second-order radiative corrections (Fig. 2).

(4)
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Fig.2. Some of the second-order V'-type contributions:
a, d, e, f— double virtual photon contributions to ver-
tex function, b, ¢ — vacuum polarization insertions

a b c
d e f

Fig.3. Some of the soft photon contributions. Dia-
gram a corresponds to the first-order radiative correc-
tions; in b, the filled circle denotes the vertex one-loop
radiative corrections; ¢, d, e represent the emission of
two soft photons; f represents a soft pair production

The corresponding contribution involves the fourth
power of large logarithms and the infrared divergent
terms. Combining this with additional contributions
coming from the emission and absorption of one and
two soft photons by either of the lepton lines results in
the cancellation of the fourth and third powers of large
logarithms and of all the infrared-divergent terms. The
result is found to be in agreement with the RG predic-
tions.

Our paper is organized as follows. After some intro-
ductory remarks, we discuss the first-order contribution
to the cross-section of the process in Sec. 2. In Sec. 3.1,
the radiative corrections coming from the vertex dia-
grams are considered to the a? order of the perturba-
tion theory. Section 3.2 is devoted to the study of the

vacuum polarization effects including the hadronic con-
tribution to the vertex Feynman diagrams. In Sec. 3.3,
we give the contribution due to the emission of one and
two soft photons and a soft pair for the cases of emitted
(absorbed) leptons with equal and different masses. In
conclusion, we summarize the results obtained.

2. THE BORN CROSS-SECTION AND
LOWEST-ORDER RADIATIVE
CORRECTIONS

We recall that we consider the large-angle high-
energy electron—muon scattering

e (p1) +pu (p2) = e () + 1 (ph),

pi=p; =ml,

(5)

2 __ /2 2
Py =Dy =My,

with the kinematic invariants s, ¢, and u much larger
than the lepton mass squared,

s
s=(p+p)’ t=(p—p))’= —5(1 —c),

S
u=(p—ph)’ = —5(1 +0),

where ¢ = cos(m) is the cosine of the scatter an-
gle in the center-of-mass reference frame (this refer-
ence frame is implied in what follows). The differential
cross-section in the Born approximation is given by

1
dO’o = —Bdl“,
8s

587 +u?

B =3 |Mof = 8(4ma)* =,
_ 1 A dpy ©)
(27)2 2e; 2e,

54 o ) = )
x 6% (p1 +p2 — Py — py) S22

We can then write

doyg a? s +u? m?
2 - =1 K )
dQ. 2s 2 +0 s

The lowest-order radiative corrections come from
the emission of virtual (one-loop corrections) and real
photons. The one-loop radiative corrections are clas-
sified into three distinct sets. One of them is related
to the vacuum polarization insertion into the propaga-
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tor of a photon exchanged between leptons. It can be
taken into account as

do \"_dog 1
Q. ) Q. | 1—1#)]2’
« 5 «a 5
Ot)=— (l,— =) +— (L, — =
*) 37r<t 3>+37r<t 3>+
CM2
+ Onad(t) + m(lt + L)+ ...,
«a dM? t (
_ - R(M?) ——
Onad(t) = 32 iz MM
4m?2
—t
ltzln 2:pt+L7
—t
Ltzln—2=pt—L, L=1In
mu Me

where M? denotes the square of the hadron invariant
mass in the process ee — h and

(8)

is the known ratio of the single-photon annihilation
cross-sections with hadron and muon pairs produced.

Another set of one-loop radiative corrections con-
tains the vertex function (we recall that only the Dirac
formfactor of the vertex function applies within power
accuracy implied in Eq. (4)),

(in.) -

with the lowest-order Dirac formfactors of leptons given
by (see [7])

do
dQ.

dGO

a0, Vel

)V (Le)?, (9)

2
(0] (0]
Vell) = 14 Z 71 + A7) + .
Vi(Ly) = Ve(ly = Ly),
3. 1, 1 (10)
) = (1—lt)—1+4l th +§<21
l)\zln%.

A

Here, A is a fictitious photon mass. It is convenient to
represent f1(4) (I;) as the sum of two ingredients,

O = gy poe, (11)
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where f'P contains QED vacuum polarization effects
(to be specified in Sec. 3.2) and

3 17 1
’w:_4__3 - _
A TR T +< C2>
21
+<——— e+ C3> li +
1

5 (lt—].) l,\(lt—l)x

1 3 1
X <_Zl +th—1+§<2> +O(1),

(3 ~ 1.2020569. (12)

The contribution of the Pauli formfactor is neglected
because it is proportional to the lepton mass squared.
The remaining one-loop radiative correction is associ-
ated with the interference of the Born amplitude with
those containing two virtual photons exchanged be-
tween lepton lines.

Depending on the photon energy, the soft region
(w < Ae < ¢) and the hard region (w > Ae) of the real
photon emission can be distinguished. In the quasireal
case, only the soft region is relevant,

do?® —dra [ Pk

- = - 2

dog  (27)3 / QwR (),

w=Vk2+ A2 < Ae, (13)
1P} 275 _ p

R(k) = Q" + Q7™ Qpp—Tk—E

We now give some useful formulas for the descrip-
tion of a soft photon emission. The center-of-mass
reference frame is understood for the initial particles,
which implies that the values of 3-momenta of all par-
ticles are equal (we consider the elastic EMS).

We first give the expression for a single soft photon

emission,
/ < ) 2

2 1
: [(lt — 1) (lnA + l)\) + Zlg — <2+

d*k

w

a
472

Pl P1

s —
11 ik pik

w<Ae

1. (1+¢c
+ §L12 < D) >] s (14)
with the dilogarithm function
d
Lis(2) = —/—xln(l — ).
x

0

By properly squaring this formula, it is easy to derive
the quantity 675 (see Eqs. (21) and (22)).
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rections that are free of infrared singularities and orig-

inate in two sets containing Dirac formfactors of the 1,

leptons and the relevant contribution coming from a Da(z) =1+z2Pa+ 2° Poatoot

soft photon emission can be cast into the form n %z” A+ (18)

do™) @
o = L [0 12017 ()08 4217 (Lo)] =
ago ™
—1+2 |:2(pt - 1) <21nA+ g) — 26— 1+
™

1+¢

+ 2Lis ( )} ,  (15)
which agrees with the structure function approach.

After accounting for the soft photon contributions
07y and d3,, and the interference of the Born and box-
type Feynman diagrams, we obtain

« 1
= 1+=——
do dao{ + = TP X
. [ 1+c i
X [pt(4 InA+3)—4In A—4—-2(>+2Lis <T> +K },

1—
K = E{Lus(4lnA+Lst + Lut) + 2Liy < c) +
™
t2
—_— X
s2 + u?
u s s—u
X | 7Lst — 7 Lut + (6C+ L3 + Ly | ¢y (16)
t t 2t
Lg =1In i7 Loyt =1ng7 Lys —n Y
-1 t S

(details of the lowest-order box Feynman diagram con-
tribution can be found in [2]). The factor K represents
the sum of the elastic Born and box-type amplitudes
and the corresponding inelastic contributions. The ex-
pression for the cross-section given above is in agree-
ment with predictions expected from the RG consider-
ations.

The expression for the EMS cross-section in the
leading logarithmic approximation can be brought to
the form of a Drell-Yan-like process [9] written in terms
of structure functions,
dO'() DA <

dr = —>
AT OIR
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Here, P, is the n-th iteration of the A-part of the
kernel of evolution equations,

Pu(y) = lim [Paad(1—y) + O(1—y—=A)Ppg] =

1
dz
:/?Pl(x)Pn,l (), n>2
y (19)
14y? 14y? 1—-y)2 3
P VR i s D]
1—y 1—y Yy 2
1
+§(1+y)lny—(1—y)

Explicit expressions for Piao and Pya are given in (3).
The parameter A (A < 1) can be interpreted as the
energy fraction carried by soft real photons and pairs
escaping detectors. The running QED coupling con-

stant is
«
a(t) = —————.
®) 1—(a/3n)t
3. SECOND-ORDER RADIATIVE

CORRECTIONS

Second-order radiative corrections can be repre-
sented as the sum of several sets, each of which de-
pends on the choice of the gauge with respect to vir-
tual and real photons. We consider Feynman diagrams
describing elastic scattering with the vacuum polariza-
tion effects included and with the soft pair production
taken into account. They are related to the one-photon
exchange Feynman diagrams for both the elastic and
quasi-elastic processes and can be specified by the emis-
sion of two more (either virtual or real) photons from
the same lepton lines.

A keystone to this classification is the soft photon
radiator cross-section. In the case of only one soft pho-
ton emitted, it takes the form

Oy

d*k

s 2w

s 1 dQ.
o= —
8s 8(2m)5

(FE) -

=2Re > MiMM (—dra)R* (k).

2w/\/§<A’
(20)
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For the emission of two soft photons (e.g., by the elec-
tron block), we have

Pk Pk
201 (27)° 2wa(27)7

1
do®® = dog—

5 (—47a)®

< QL@ @

2w1/V/54+2wa /\/5<A

For the emission of two soft photons such that their
total energy does not exceed Ae < &, we have

/d3k1 DiDj
wi pik1 - pik
X/dskz PiPm _
wa  prka - pmka e A
= (a1 lnA+b1)(a2 lnA+b2) —a1a2<2, (22)
where
3 -
[/dkli,]fzp],k} =a;IlnA + by,
W1 Pik1 Pk w1 <Ae
3
{/dlﬂM] = ayIn A + by.
wa  prks Pk

wa<Ae

The general structure of all the above contributions
to the differential cross-section reveals the presence of
large logarithms up to the fourth power. But the sum
involves only their second powers. Such a cancellation
is characteristic of each gauge-invariant set of correc-
tions.

3.1. Vertex graphs

Three gauge-invariant groups of Feynman diagrams
containing one photon exchange contribute

do”

(23)

a2
do’ F[al +dl +a2].
0

The quantity a; is related to the emission of two (vir-
tual and real) photons out of a muon line,

a; = al(lt — Lt).

Using the results given in Eq. (12) for the electron
Dirac formfactor up to the fourth order of the perturba-
tion theory'), we can construct the contributions to the

1) Here, we omit the contribution of the vacuum polarization;
it is taken into account in what follows.
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squared matrix element of one-photon exchange ampli-
tudes, that are free of infrared singularities

88

a] = (f1(2))2 + 2]("77 + 2f1(2) isll + 1173

24
s = AP 4 28+ TP Oty
where fl(2) corresponds to the muon formfactor, which
is identical to the electron one with the electron mass
replaced by that of the muon. The quantities 47; and
677 correspond to the emission of one and two soft real
photons (their energies are restricted by the condition
Aw; + Aws < €) from the fermion lines 4, j. The corre-
sponding expression is given in Eq. (14). We note the
factor 1/2!in front of the latter quantities, which is due
to the identity of the soft photons emitted.

The relevant contribution to the differential cross-

section in the logarithmic approximation is then given
by

ay +éa = p;Poa +

45
+ pt |:—§ +Y + 20+ 6<3:| + O(1),
as = p; Paa + pi [-6+Y + 5] + O(1),

1+c>_

— (4G 4+ 14)In A — 8In* A.

(25)

Y = 2PaLiy <

This result is in agreement with the RG form of the
large-angle cross-section.

3.2. Hadronic vacuum polarization

We study the vacuum polarization effects occurring
in considering vertex Feynman diagrams (see Fig. 2b,
¢). For this, we use the known expression for the
hadronic vacuum contribution to the photon Green’s
function by making the substitution

1 o [ dM? R(M?)

2 3x ) M E—are
am2

(26)

where k is the 4-momentum of the virtual photon, M?>
is the hadron invariant mass squared, and the ratio
R(M?) is given in Eq. (8).

In the next order of the perturbation theory, we
must consider the three gauge-invariant classes of Feyn-
man diagrams for elastic and quasi-elastic processes
with a soft photon and a soft pion pair production.
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We first examine the vertex class. The cross-sections

can be written as

do
— =1 0% + 0% hads
dog + (0° + 0" ) had,

taa = 6“2[F<m2 £) + F(m},, 1)), -

d]M2
e

F(m?t) =

2
4m2

R(MQ)Fl(t7m27M2)7

where 67, corresponds to the soft hadron emission of
soft pion pairs and F; (with the hadronic vacuum po-
larization of the virtual photon) is the vertex contribu-
tion to the Dirac formfactor of a lepton with the mass
m. The contribution of the Pauli formfactor F5 is sup-
pressed by the factor [m?/t|.

The standard calculation with the regularization at
t =0 leads to

1 1
d a a
2 0, 22
Fi(t,m?, M?) 2/dx/ydy[lnd+d do} (28)
0 0

with
a=ag+t[l—y+2z1-m1)y?,
d=dy—y*xz(1 —2)t, (29)
ap = —m*(2 —y?), do =y*m?+ (1 —y)M?

(for details, see Appendix A). It can be seen that the
condition Fi|;—q = 0 is satisfied. We now consider two
limiting cases for Fy. In the case of a large hadron
invariant mass squared compared to —t, we find

t [2, M?* 11
Fi(t M? —ln—+ —|,
(¢, m?, )= M2[3n—t+9} (30)
M? > —t,
and in the case of a small invariant mass squared,
t M? t
Fi(t,m* M?)=-In> — —2In— In — —
m? m2  m? (31)
-t w1 9 9
—5111@4'?—57 —t>M >>mu.

Taking the emission of soft pairs into account (see Ap-
pendix B), we obtain the hadronic contribution to the
radiative correction

¢
a? dM?
672 M?2

4m?2

(0° + 6% had = R(M?) x

M2
—1In— (81 —2InA + 10| —
[ nM2 [8 nmemu nA + 0}

2 2

2
~101n —6In? e 2
MMy, MMy, me 3

—61n?

71'2—1} . (32

31 Leptonic vacuum polarization and soft
lepton pairs

We next study the contribution to the lepton ver-
tex function of the vacuum polarization type. Obvi-
ously, there are two possibilities for a vacuum polariza-
tion blob to be inserted into the lepton vertex function.
The contribution to the elastic cross-section can then
be written as

doP a?
< o0 )e = QF Z1(me,me) + Zg(me.,mu)‘|, (33)

where
1 4 1 /19 9
_ — (= _ _
36”7t T 1 < 6 > P

1 265
—— 1|6 —Z 4312 -19L vp
36 ( Co + 6 + ) pe=f

7 (me-, me) =

is the contribution of the electron blob inserted into the

electron vertex function (see (11) for the definition of

/) and
1, 1/19 ,
_ = — (=4 _
36pt+12<6+ )”t

1 265
—— s = 4312+ 63L
36 ( (o + 6 + + > Pt

ZZ(mE’ mu) =

is a muon blob contribution to the electron vertex.
A similar expression is valid for the muon vertex
function (the electron blob contribution to the muon

vertex),
1, 1 /19 \
_ —(Z_r _
36t+2<6 )pt
1
36

265
— <6<2 + 7 +3L% - 25L> Pt

Z3(muvme) =

We now turn to the inelastic process of a soft
lepton—antilepton pair production (of the mass u obey-
ing 2u € Ae < ¢). For the differential cross-section,

we obtain
do*P a? 5
—_— L3 L2 (2lnA -2
dog 6n2|3° T < " 3) *

+L<41 2A——1 AJF@—4<2+2L12 <¥>>] (34)

with
= In(—t/n?)
We assume a muon or an electron to be a scattered

lepton, and consequently, the quantity u stands for the
corresponding mass.
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The sum of contributions (33) and (34) does not
contain cubic powers of large logarithms; for the «elec-
tron line correctionsy, it is found to be (see [11])

do®vvP a2 2 1
= (= ZInA+ =) p2
< dO’O >e (71') {<3n +2>pt+
17 11, 2, 10
+2pt —E—EL'FE]H A—KIHA—CQ'F
1_. 1+¢

For a muon, it is given by

dosv:vp an? | /2 1
= (= SlnA+ = | p?
( doo )H (ﬂ) {(3 B +2>pt+
17 11
o |- s M 2 A A
+ 2p¢ 12+6 +3 g 10 G+
1 1
+§Li2< +C) } (36)

It can be seen that the leading terms are in agreement
with the RG predictions.

4. SUMMARY

We have evaluated the Born cross-section and the
first-order radiative correction to it of the EMS process
in the quasi-elastic kinematical situation. The relevant
formulas are given in (2) and (3) in the leading logarith-
mic approximation and in (16) with power accuracy.

Among second-order contributions, we have consid-
ered gauge-invariant contributions from Feynman dia-
grams with radiative corrections to the vertex function
of either lepton. We have also included soft photon and
pair emission with the energies less than Ae.

In the leading logarithmic approximation, the re-
sults are in agreement with the RG.

The explicit results for virtual and soft real photon
emission are given in Eqs. (23) and (25). For the emis-
sion of virtual and soft real lepton pairs, the relevant
formulas are given in Eqs. (34) and (35).

In Sec. 3.2, we determined the contributions coming
from the hadronic vacuum polarization, where the ra-
diative correction is expressed in terms of an explicit in-
tegral of the experimentally measured quantity R(M?).
We also consider a soft pion pair production (see Ap-
pendix B). We calculate the hadronic vacuum polariza-
tion contribution to the vertex functions of the electron
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or muon explicitly. The relevant formulas for radiative
corrections are given in (32).

The evaluation of contributions of the other gauge-
invariant types, the eikonal and the decorated box
Feynman diagrams requires additional investigation.

This paper is supported in part by the RFBR, (grant
01-02-17437).

APPENDIX A

Details of the hadronic vacuum polarization

We here consider the details of the vertex hadron
function calculation. For the vertex function, we can
write

Vi =Ty + Taldye — vu4)s (37)
where ¢ = po—p), and I'y and 'y are the Dirac and Pauli
formfactors respectively. We write the vertex function
as

Vi = [Tt +4mDa] — 2(po +p'2)u1"2 =

= WA+ (p2 +p3)u B, (38)
where
2y2paph 4
A= /ydy/d {y 2 4 Z(m +paph) —
d —2m?y3z? 2y3z(1-x)
—2yln W‘F d d (—2]9217’2)} >
)2 (39)
= dy [ de|=(-
/yy/‘ﬁd(
29 2932 (1 —
i +££L_ﬁ%ﬁ
d
The quantities d and dg are defined in Eq. (29). With

the regularization at ¢ = 0, we have

Fi(t,m?* M?) =T, —
1 1
:2/dm/ydy[
0 0

The contribution of the Pauli formfactor I's is propor-
tional to B and is therefore suppressed by the factor
m?/t|.

Fl‘t—[) =

o

G- o
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APPENDIX B and the master integral is
Soft pion pair production A
€
/
The general expression for the soft pion pair pro- / dao /q(z) _ q2/ dQ pipy  _
duction is 4T p1gpiq
M ? dra)’ &
2l ar, = (12 d4q/ T+ o
M, 7 2 12<2A6>+1 <2As>1 (1—0) :
=In" | ——= n n|——|—¢.
d3q_ B /02 /02 2
X/?(Qﬂ) 6 (g4 +q- — q) X 1 1
B oip The soft pion pair production contribution to the in-
X (0 = ¢ ular —q-)wdudv.  Ju=(Qq ), variant mass distribution (from the emission of both
where the electron and muon blocks) is given by
my < V@< Ae e g > 0P M2 do _ o® [, —t . Ac
o AT = 3 B e 0]
Here, g+ is the 4-momentum and ey is the energy of 70
+: ¢ is the 4-momentum and ¢ is the energy of the
soft pair.
Rewriting
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