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GLOBAL MONOPOLE IN GENERAL RELATIVITYK. A. Bronnikov *Russian Researh Institute for Metrologial Servie117313, Mosow, RussiaInstitute of Gravitation and Cosmology, Peoples Friendship University of Russia117198, Mosow, RussiaB. E. Meierovih **, E. R. PodolyakKapitza Institute for Physial Problems117334, Mosow, RussiaSubmitted 15 April 2002We onsider the gravitational properties of a global monopole on the basis of the simplest Higgs salar tripletmodel in general relativity. We begin with establishing some ommon features of hedgehog-type solutions with aregular enter, independent of the hoie of the symmetry-breaking potential. There are six types of qualitativebehaviors of the solutions; we show, in partiular, that the metri an ontain at most one simple horizon. Forthe standard Mexian hat potential, the previously known properties of the solutions are on�rmed and somenew results are obtained. Thus, we show analytially that solutions with the monotonially growing Higgs �eldand �nite energy in the stati region exist only in the interval 1 <  < 3, where  is the squared energy ofspontaneous symmetry breaking in Plank units. The osmologial properties of these globally regular solutionsapparently favor the idea that the standard Big Bang might be replaed with a nonsingular stati ore anda horizon appearing as a result of some symmetry-breaking phase transition at the Plank energy sale. Inaddition to the monotoni solutions, we present and analyze a sequene of families of new solutions with theosillating Higgs �eld. These families are parameterized by n, the number of knots of the Higgs �eld, and existfor  < n = 6=[(2n + 1)(n+ 2)℄; all suh solutions possess a horizon and a singularity beyond it.PACS: 04.90.+e 1. INTRODUCTIONIn aordane with the Standard osmologialmodel [1℄, the Universe has been expanding and oolingfrom a split seond after the Big Bang to the presentmoment and remained uniform and isotropi in doingso. In the proess of its evolution, the Universe hasexperiened a hain of phase transitions with sponta-neous symmetry breaking, inluding the Grand Uni�-ation and eletroweak phase transitions, formation ofneutrons and protons from quarks, reombination, andso forth. Regions with spontaneously broken symmetrythat are more than the orrelation length apart are sta-tistially independent. At interfaes between these re-*E-mail: kb�rgs.mme.ru**E-mail: meierovih�yahoo.om; http://geoities.om/meierovih

gions, the so-alled topologial defets neessarily arise.A systemati exposition of the potential role of topolog-ial defets in our Universe was given by Vilenkin andShellard [2℄. The partiular types of defets � domainwalls, strings, monopoles, or textures � are determinedby topologial properties of the vauum [3℄. If the va-uum manifold is not shrinkable to a point after thebreakdown, then the Polyakov�t'Hooft monopole-typesolutions [4; 5℄ appear in quantum �eld theory.Spontaneous symmetry breaking plays a fundamen-tal role in modern attempts to onstrut partile the-ories. In this ontext, a symmetry is ommonly asso-iated with internal rather than spae-time transfor-mations, e.g., the isotopi, eletroweak, Grand Uni�a-tion symmetries, and supersymmetry, whose transfor-mations mix bosons and fermions. Topologial defetsthat are aused by spontaneous breaking of internal459



K. A. Bronnikov, B. E. Meierovih, E. R. Podolyak ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002symmetries and are independent of spae-time oordi-nates are said to be global.A fundamental property of a global symmetry vi-olation is the Goldstone degree of freedom. For themonopole, the term related to the Goldstone boson inthe energy�momentum tensor dereases rather slowlyaway from the enter. As a result, the total energyof a global monopole grows linearly with the distane,or in other words, diverges. Without gravity, this di-vergene is a general property of spontaneously bro-ken global symmetries. In his pioneering paper [4℄,Polyakov mentioned two possibilities of avoiding thisdi�ulty. The �rst one was to ombine the monopolewith the Yang�Mills �eld. This idea was indepen-dently onsidered by t'Hooft [5℄. This, among otherreasons, gave rise to numerous papers on gauge (mag-neti) monopoles. The seond possibility was to on-sider a bound monopole�antimonopole system, whosetotal energy would be large (proportional to the dis-tane between the omponents) but �nite.One more possibility is to take the self-gravityof global monopoles into aount; this an in prin-iple remove the above self-energy problem and isalso neessary for potential astrophysial appliations.Suh a study was �rst performed by Barriola andVilenkin [6℄, who found that the gravitational �eld out-side a monopole is haraterized by a solid angle de�itproportional to the energy sale of the spontaneoussymmetry breaking. Harari and Lousto [7℄ showed thatthe gravitational mass of a global monopole, alulatedusing the Tolman integral, is negative. Solutions with ahorizon for supermassive global monopoles were foundby Liebling [8℄, who also on�rmed the estimate inRef. [9℄ for the upper value of the symmetry break-ing energy ompatible with a stati on�guration. Theexistene of de Sitter ores inside global monopoles andother topologial defets have led to the idea of �topo-logial in�ation� [10�12℄.For global strings in �at spae, the energy per unitlength (without gravitation) also diverges with growingdistane from the axis, but only logarithmially. Butin general relativity, integration over the ross-setionyields a �nite result [13; 14℄. The gravitational inter-ation thus leads to self-loalization of a global string.Does a similar e�et our for a global monopole? Anattempt to answer this question, whih does not ap-pear to be answered in the existing papers, was oneof the motivations for reonsidering the gravitationalproperties of a global monopole.The previous studies have used the boundary on-dition aording to whih the symmetry-breaking po-tential must vanish at spatial in�nity. Our approah

is di�erent: we do not even assume the existene of aspatial asymptotis, but require regularity at the en-ter and try to observe the properties of the entire setof global monopole solutions. In doing so, among otherquantities, we disuss the behavior of the total salar�eld energy, whih turns out to be �nite in stati re-gions of supermassive global monopoles.In Se. 2, we present the omplete sets of equa-tions for a stati spherially symmetri gravitatingglobal monopole in two most onvenient oordinatesystems, those with quasiglobal and harmoni radialoordinates. The general properties of stati globalmonopoles are summarized in Se. 3. In Se. 4, weanalytially and numerially analyze the spei� fea-tures of a global monopole in the partiular ase of theMexian hat potential. Setion 5 ontains a generaldisussion of our results, inluding their possible os-mologial interpretation.2. EQUATIONS AND BOUNDARYCONDITIONS2.1. General setting of the problemWe begin with the most general form of a statispherially symmetri metri, without speifying theradial oordinate x1 = u,ds2 = g��dx�dx� = e2F0dt2�e2F1du2�e2F
d
2: (1)Here, d
2 = d�2 + sin2�d'2 is the linear element on aunit sphere and F0, F1, and F
 are funtions of u. Thenonzero omponents of the Rii tensor are (the primedenotes d=du)R00 = e�2F1 [F 000 + F 00(�F 01 + 2F 0
 + F 00)℄;R11 = e�2F1 [F 000 + 2F 00
 + 2F 0
2 + F 002 �� F 01(2F 0
 + F 00)℄;R22 = R33 = �e�2F
 ++ e�2F1 [F 00
 + F 0
(�F 01 + 2F 0
 + F 00)℄: (2)We onsider the Lagrangian desribing a triplet ofreal salar �elds �a (a = 1; 2; 3) in general relativity,L = R16�G + 12g�����a���a � V (�); (3)where R is the salar urvature, V (�) is a potential de-pending on � = �p�a�a, and G is the gravitationalonstant. We use the natural units suh that~ =  = 1; (4)460



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Global monopole in general relativityand therefore, G = m�2Pl , where mPl = 1:22 � 1019 GeVis the Plank mass.To obtain a global monopole with unit topologialharge [2℄, we assume that the metri has form (1) and�a omprise the following �hedgehog� on�guration:�a = �(u)na; na = fsin � os'; sin � sin'; os �g : (5)The Einstein equations an be written asR�� = �8�G ~T �� = �8�G�T �� � 12Æ��T��� ; (6)where T �� is the energy-momentum tensor and thenonzero omponents of ~T �� are~T 00 = �V; ~T 11 = �V � e�2F1�02;~T 22 = ~T 33 = �V � e�2F
�2: (7)The onditions for metri (1) to be regular at theenter are thateF
 ! 0; F0 = F0  +O(e2F
);e�F1+F
 jF 0
j ! 1 (8)at the orresponding value u of the oordinate x1 = u.The last ondition is neessary for loal �atness and en-sures the orret ratio of the irumferene to the radiusfor oordinate irles at small r = eF
 .The salar �eld energy, de�ned as the partial timederivative of the salar �eld ation, E = ��S=�t, is aonserved quantity for our stati system,E = Z p�g T 00 d3x = 4� Z eF0+F1+2F
 ���12e�2F1�02 + e�2F
�2 + V � du; (9)where g is the determinant of the metri tensor.In what follows, we make some general infereneswithout speifying the potential V (�) and then per-form a more detailed study for the simplest and mostfrequently used symmetry-breaking potentialV (�) = 14�(�a�a � �2)2 = 14�4�(f2 � 1)2; (10)where � > 0 haraterizes the energy of symme-try breaking, � is a dimensionless onstant, andf(u) = �(u)=� is the normalized �eld magnitude play-ing the role of an order parameter. The model has aglobal SO(3) symmetry, whih an be spontaneouslybroken to SO(2) by potential wells (V = 0) at f = �1.We now expliitly write the Einstein equations andthe boundary onditions in the two oordinate framesto be used.

2.2. The quasiglobal oordinate �The �rst hoie is the oordinate u = � spei�ed bythe ondition F0+F1 = 0. Setting e2F0 = e�2F1 = A(�)and eF
 = r(�), we obtain the metrids2 = A(�)dt2 � d�2A(�) � r2(�)d
2: (11)The salar �eld equation��a + �V=��a = 0; (12)where � = r�r� is the d'Alembert operator, and er-tain ombinations of the Einstein equations are givenby (Ar2�0)0 � 2� = r2dV=d�; (13)(A0r2)0 = �16�Gr2V; (14)2r00=r = �8�G�02; (15)A(r2)00 � r2A00 = 2(1� 8�G�2); (16)A0rr0+Ar02�1 = 8�G�12Ar2�02��2�r2V � ; (17)where the prime denotes d=d�. Only three of these �veequations are independent: salar �eld equation (13)follows from the Einstein equations and Eq. (17) is a�rst integral of the others. Given a potential V ('), thisis a determined set of equations for the unknowns r; A,and �.This hoie of the oordinates is preferable for on-sidering Killing horizons, whih orrespond to zeros ofthe funtion A(�), beause suh zeros are regular pointsof Eqs. (13)�(17); moreover, in a lose neighborhoodof a horizon, the oordinate � de�ned in this mannervaries (up to a positive onstant fator) as the man-ifestly well-behaved Kruskal-like oordinates used foranalyti ontinuation of the metri [15; 16℄. Therefore,the regions at both sides of a horizon an be simulta-neously onsidered in terms of � and the entire rangeof � an ontain several horizons in general. For thisreason, the oordinate � an be alled quasiglobal.The regularaity onditions at the enter, Eq. (8),are satis�ed ifA(�) = A+O((���)2); r(�) � (���)=pA (18)near some value � of the oordinate �.461



K. A. Bronnikov, B. E. Meierovih, E. R. Podolyak ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002In regions where A < 0 (sometimes alled T -re-gions [1℄), whenever they exist, the oordinate � istimelike and t is spaelike. Changing the notation ast ! x 2 R and introduing the proper time of a o-moving observer in the T -region,� = Z d�=pjA(�)j; (19)we an rewrite the metri asds2 = d�2 � jA(�)jdx2 � r2(�)d
2: (20)The spae-time geometry then orresponds to ahomogeneous anisotropi osmologial model of theKantowski�Sahs type [17; 18℄, where spatial setionshave the topology of R � S2.2.3. The harmoni oordinate uAnother onvenient variable that allows onsider-ably simplifying the form of the equations is the har-moni oordinate u spei�ed by the ondition [19℄1)F1 = 2F
 + F0; (21)suh that �u = 0. The �eld equations an then bewritten as�00 � 2eF0+F1� = e2F1dV=d�; (22)F 000 = �8�Ge2F1V; (23)F 001 � 2F 0
(F 0
 + 2F 00) = �8�G(�02 + e2F1V ); (24)F 00
 � e2(F0+F
) = �8�G(�2e2(F0+F
) + e2F1V ); (25)� e�2F
 + e�2F1(F 0
2 + 2F 0
F 00) == 8�G�12e�2F1�02 � e�2F
�2 � V � ; (26)where the prime denotes d=du.It is straightforward to obtain that the regular-ity ondition at the enter an only orrespond tou! �1; we hoose u! �1, where we must haveeF
 � 1=juj; eF0 =pA (1 +O(u�2));eF1 � 1=u2; (27)and A is the same as in (18).1) A ylindrial version of the harmoni radial oordinate hasbeen used previously in the analysis of gravitational propertiesof urrent-onduting �laments [20℄ and osmi strings [21; 22℄.

3. GENERAL PROPERTIES OF GLOBALMONOPOLES3.1. Monopoles in Minkowski spae-timeThe Minkowski metri written in the usual spherialoordinates, ds2 = dt2 � dr2 � r2d
2; (28)is a speial ase of (11) with r � � and A � 1. In �atspae-time, the only unknown is �(r) and the only �eldequation is (13), whih beomes(r2�0)0 � 2� = r2dV=d�: (29)For the partiular potential in Eq. (10), we havedV=d� = ��(�2 � �2) and the salar �eld equation anthen be written in terms of f = �=� asr�2(r2f 0)0 � 2fr�2 + ��2f(1� f2) = 0: (30)The energy integral in Eq. (9) takes the formE = 4� Z r2 �12�02 + �2r2 + V � dr: (31)In the ase where V (�) � 0, its onvergene impliesthat all the three terms must vanish as r ! 1 su�-iently rapidly:� = o(r�1=2); �0 = o(r�3=2); V = o(r�3): (32)This atually implies that a �nite-energy on�gurationis only possible with V (0) = 0, ontrary to the sym-metry breaking assumption aording to whih V hasminima in nonsymmetri states, � 6= 0. In partiular,potential (10) does not give rise to global monopoleswith a �nite energy. A onsideration of self-gravity ofthe �eld triad �a is one of the ways to overome thisdi�ulty.In �at spae-time, the harmoni oordinate u is re-lated to r as u � u0 = �1=r, where u0 is an arbitraryonstant; hoosing the minus sign, we �nd that u rangesfrom �1, whih orresponds to the enter r = 0, to u0orresponding to spatial in�nity.3.2. Solutions with onstant �Under the assumption that � = �0 = onst, theorresponding value of the potential V (�0) = V0 (times8�G) plays the role of a osmologial onstant, and theEinstein equations an be integrated expliitly.Indeed, in the region where � = onst, Eq. (15)redues to r00 = 0, whene r = �� + r0, where462



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Global monopole in general relativity�; r0 = onst. It remains to �nd A(r), and this isimmediately done by integrating Eq. (16),A(r) = 1���2 � 2GMr + Cr2; � = 8�G�20; (33)where M and C are integration onstants. Substitu-ting (33) in (14), we �ndC = �8�GV0=3: (34)Thus, the solution is essentially determined by the val-ues of �0, V0, and M . One more onstant, �, re�etsthe freedom in hoosing the unit of time. We note thatthis is not a monopole solution. Even if we set M = 0,whih is evidently neessary for regularity at r = 0, thissolution with onstant � 6= 0 is singular at the enter:for A(r) given by (33) with M = 0, the Kretshmannsalar is K = R��ÆR��Æ � 4�2=r4 at small r.Regarding the global monopole, two ases of thesolution in Eq. (33) are of interest. The ase where�0 � 0 desribes the symmetri state and the asewhere V0 = 0 gives a possible asymptoti behavior atspatial or temporal in�nity.In the ase where �0 = 0 (the symmetri state), set-ting M = 0 (whih is neessary for a regular enter),we arrive at the de Sitter metrids2 = �1�r2r2h� dt2��1�r2r2h��1 dr2�r2d
2;r2h = 8�GV03 : (35)This metri has a horizon at r = rh. At r > rh, out-side the horizon, r beomes a timelike oordinate andt is a spaelike one. Changing the notation as in (19)and (20), we obtain the metrids2 = d�2 � sh2(�=rh)dx2 � r2h h2(�=rh)d
2: (36)This is the Kantowski�Sahs osmology with theisotropi in�ationary expansion at late times (� !1).In the other ase, �0 6= 0 but V0 = 0 (the ase ofbroken symmetry, suh as � = � in potential (10)), themetri beomes [6℄ds2 = �1���2 � 2GMr � dt2 ���1���2 � 2GMr ��1 dr2 � r2d
2; (37)where the onstant M has the meaning of mass in thesense that test partiles at rest experiene the ael-eration �GM=r2 in gravitational �eld (37) at large r.

Furthermore, a nonzero value of �0 leads to a solid an-gle de�it � de�ned in (33) in the asymptoti regionas r ! 1 (see [2℄ for more detail) and to a linear di-vergene of integral (9) at large r.The general ase of Eq. (33) desribes the large-rasymptoti behavior of any solution to Eqs. (13)�(17),provided that suh an asymptoti form exists and �tends to a onstant value su�iently rapidly.For the monopoles to be studied, metri (37) givesa large-r asymptoti behavior in the ase where � < 1.We also onsider solutions with � > 1, for whih astati asymptoti regime is absent. Metri (37) thendesribes osmologial evolution at late times.3.3. General properties of solutions withvarying �We now onsider the general form of Eqs. (13)�(17)with varying �, without speifying the potential V (�).We �rst note that beause of (15), we have r00 � 0,whih forbids any nonsingular on�gurations without aenter suh as wormholes and horns (see Theorem 1 inRef. [16℄ for further details).Seond, Eq. (16) an be rewritten as(r4B0)0 = �2(1� 8�G�2); B def= A=r2; (38)and at a point where B0 = 0, we have r4B00 == �2(1 � 8�G�2). Hene, it follows that as long as�2 < 1=(8�G) (i.e., the � �eld does not reah trans-Plankian values), B00 < 0 at possible extrema of thefuntion B. In other words, B annot have a regularminimum.Our interest is in systems with a regular enter sat-isfying onditions (18) with A(�) > 0 and B(�) > 0near � = �. At a possible horizon � = h, both A andB vanish, and beause this annot be a minimum of B,B < 0 at � > h near the horizon. At greater �, thefuntion B(�), having no minima, an only dereaseand never returns to zero; therefore, A = Br2 < 0 at� > h. We onlude that there an be no more thanone horizon, and if it exists, it is simple (orrespondsto a simple zero of A(�)). Beause the global ausalstruture of spae-time is determined (up to possibleidenti�ations of isometri hypersurfaes) by the num-ber and disposition of Killing horizons [23�25℄, we havethe following result.Statement 1. Under the assumption that�2 < 1=(8�G) in the entire spae, our system witha regular enter an have either no horizon or onesimple horizon; in the latter ase, its global strutureis the same as that of de Sitter spae-time.463
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Fig. 1. Possible behavior of r(�) in global monopolesolutionsThe above reasoning is essentially the same as inthe proof of Theorem 2 in Ref. [16℄ on the dispositionof horizons in salar-vauum spae-times. It uses onlyEq. (16), whih does not involve the potential V . Theonlusion is therefore valid for systems with any po-tentials, positive or negative.We now return to Eq. (15), aording to whihr00 � 0. Beause r0 > 0 at a regular enter, this leavesthree possibilities for the funtion r(�) (Fig. 1):(a) monotoni growth with a dereasing slope, butr !1 as �!1,(b) monotoni growth with r ! rmax < 1 as�!1, and() growth up to rmax at some �1 <1 and furtherderease, reahing r = 0 at some �nite �2 > �1.In eah ase, aording to Statement 1, a horizonan our at some � = h within the range of �, andwe therefore have a T -region with the geometry of theKantowski�Sahs osmologial model at � > h.We onlude that there are six lasses of qualitativebehaviors of the solutions, i.e., (a), (b), and (), eahwith or without a horizon, whih we indiate with therespetive symbols 1 or 0. Thus, all solutions with aspatial asymptoti behavior belong to lass (a0). Class(b0) inludes spae-times ending with a �tube� onsist-ing of two-dimensional spheres of equal radii. Solutionsin lass (0) ontain a seond enter at � = �2, and thisenter an a priori be regular or singular. We thus ob-tain a stati analogue of losed osmologies. Classes(a1), (b1), and (1) desribe di�erent late-time osmo-logial behaviors in the two diretions orresponding toS2, whereas the fate of the third spatial diretion (R)is determined by the funtion A(�). In partiular, thepossible de Sitter asymptoti metri in Eq. (36) belongsto lass (a1) solutions, and the expansion is isotropi

at late times in this ase. On the other hand, lass-(1) ontains models that at late times behave as theShwarzshild spae-time inside the horizon, ontrat-ing to r = 0.This lassi�ation is obtained without any assump-tions about V (�). Solutions with given V (�) ontainsome of these lasses, not neessarily all of them.In the ase V � 0, where Eq. (14) leads to one moreimportant observation: beause A0r2 = 0 at a regularenter, we an write (14) in the integral formA0r2 = �16�G �Z0 V (��) r2(��) d��; (39)and therefore, A(�) is a dereasing funtion unlessV � 0. Equation (39) leads to the following onlu-sions.Statement 1a. If V (�) � 0, our system with aregular enter an have either no horizon or one sim-ple horizon; in the latter ase, its global struture is thesame as that of de Sitter spae-time.Statement 2. If V (�) � 0, the seond enter inlass-(0) solutions is singular.Statement 3. If V (�) � 0 and the solution isasymptotially �at, the mass M of the global monopoleis negative.Statement 1a shows that for nonnegative potentials,the assumption �2 < 1=(8�G) in Statement 1 is unne-essary, and the ausal struture types are known forany magnitudes of �.Statement 2 follows from A0(�2) < 0, whereas ata regular enter, it should be A0 = 0, see (18). Theequality A0(�2) = 0 ould only be possible with V � 0,but in this ase, the only solution with a regular enteris trivial (�at spae, � = 0).In Statement 3, the asymptoti �atness is under-stood up to the solid angle de�it, i.e., r = � and A isgiven by (33) with C = 0 at large �. As � ! 1, wethen obtain 2GM in the left-hand side of Eq. (39) anda negative quantity in the right-hand side.To our knowledge, this simple onlusion, valid forall nonnegative potentials, has so far been obtainedonly numerially for the partiular potential (10) [9℄.We note that Statement 3 is an extension to globalmonopoles of the so-alled generalized Rosen theo-rem [16; 26℄, previously known for salar-vauum on-�gurations.Therefore, even before studying partiular solutionswith potential (10), we have a more or less ompleteknowledge of what an be expeted of suh globalmonopole systems.464



ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Global monopole in general relativity4. THE MEXICAN HAT POTENTIAL4.1. Equations and boundary onditionsIn what follows, we analyze the partiular Mexianhat potential in Eq. (10). For numerial integration,we prefer to use the harmoni oordinate u and to workwith Eqs. (22)�(25). This variable enters the equationsonly via derivatives and is therefore invariant undertranslations u! u+ onst.Introduing the dimensionless quantities~u = u=(p��); e ~F
 = p��eF
 ;e ~F1 = ��2eF1 ; (40)we eliminate the parameter � from the equations. In-deed, omitting the tildes, we obtainf 00 = e2(F0+F
)[2� e2F
(1� f2)℄f; (41)F 000 = �4 e2(F0+2F
)(f2 � 1)2; (42)F 00
 = e2(F0+F
) h1� f2 � 4 e2F
(1� f2)2i : (43)Condition (21) is preserved for the newly de�ned quan-tities, but the metri beomesds2 = e2F0dt2 � e2F1du2 + e2F
d
2��2 : (44)The boundary onditions as u! �1 are given byf = 0; F0 = 0; F 00 = 0;F
 = � ln(�u) + o(1=juj): (45)They follow from the regularity requirement at the en-ter and a partiular hoie of the time unit (F0 = 0)and of the origin of the u oordinate (the fourth on-dition).There remains only one dimensionless parameter inEqs. (41)�(43),  = 8�G�2; (46)whih is the squared energy of symmetry breaking inPlank units.It is easy to obtain that  = 1 is a ritial valueof this parameter. Indeed, if we assume the existeneof a large-r asymptoti behavior suh that f ! 1, i.e.,the �eld tends to the minimum of potential (10), thenthe asymptoti form of the metri at large r is givenby (37) with� = . Consequently, the asymptotis anbe stati only if  � 1, whereas for  > 1, the large-r

asymptotis an be only osmologial (the Kantowski�Sahs type), and there is a horizon separating suh anouter region from the stati monopole ore.On the other hand, if a on�guration with  < 1possesses a horizon, there is again the Kantowski�Sahsosmology outside it, but there annot be a large-rasymptoti form, and in aordane with Se. 3, thesolutions belong to lasses (b1) or (1).Now, leaving aside the su�iently well studied aseof solutions with a stati asymptotis [2; 6; 7℄ belongingto lass-(a0) in aordane with Se. 3, we suppose thatthere is a horizon and return to Eqs. (41)�(43). Thehorizon orresponds to u ! +1. In suh ases, inaddition to (45), we impose the boundary onditionf(u)! fh; jfhj <1 as u! +1: (47)This ondition is neessary for the regularity of a so-lution on the horizon and is appliable to lasses (a1),(b1), and (1).For lass-(a0) solutions, having a spatial asymptotibehavior and no horizon, ondition (47) is meaningless.Moreover, the oordinate u then ranges from �1 tosome u0 <1 suh that r(u0) =1.For on�gurations of lasses (a0) and (a1), the om-monly used boundary ondition isf ! 1 as r !1: (48)It is of interest that in ase (a1), to whih both ondi-tions are appliable, ondition (47), being less restri-tive, still leads to solutions satisfying (48) beause ofthe properties of the physial system itself.The set of equations (41)�(43) with boundary on-ditions (45) and (47) omprise a well-posed nonlineareigenvalue problem. Its trivial solution, with f = 0 andde Sitter metri (35), desribes the symmetri state(with unbroken symmetry). Nontrivial solutions de-sribing hedgehog on�gurations with spontaneouslybroken symmetry an be found numerially and yield asequene of eigenvalues n, n = 0; 1; : : : ; and the or-responding values of the horizon radius rh;n for eahgiven value of fh. Conversely, for a given (admissible)value of , we obtain a sequene of values of fh and rh.4.2. The linear eigenvalue problemLiebling [8℄ has empirially found the upper ritialvalue 0 � 3 for the existene of stati solutions2). Inthis setion, we �nd a theoretial ground for this limit.2) In the notation of Ref. [10℄, �� �p3=(8�):3 ÆÝÒÔ, âûï. 3 (9) 465



K. A. Bronnikov, B. E. Meierovih, E. R. Podolyak ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002Atually, we analytially �nd a sequene of ritial val-ues n; n = 0; 1; : : : , suh that for  < n, there ex-ist stati on�gurations with the �eld magnitude f(u)hanging its sign n times.Only the analysis for f(u) > 0 an be found in theliterature. Our numerial integration of Eqs. (41)�(43)shows that in addition to solutions with monotoniallygrowing f(u) (whih exist for  < 0 = 3, Fig. 2a),there exist regular solutions for  < 1 = 2=3 with f(u)hanging its sign one (Fig. 2b). Solutions with two ze-ros of f(u) exist for  < 2 = 0:3 (Fig. 2), et. Allthese solutions have a horizon, and the absolute valueof f on the horizon, jfh;nj = jfn(1)j, is a dereasingfuntion of , vanishing as  ! n � 0 (Fig. 3).As  ! n, the funtion f(u) vanishes in the entirerange of u, and it is this irumstane that allows usto �nd the ritial values n analytially. In a loseneighborhood of n, the �eld f(u) is small within thehorizon, f2 � 1, and Eq. (41) therefore redues to alinear equation with given bakground funtions F0 andF
 orresponding to de Sitter metri (35). In terms ofthe dimensionless spherial radius r, Eq. (41) beomesddr �r2 �1� r2r2h� dfdr�� (2� r2)f = 0; (49)where rh = p12= is the value of r on the horizon.The boundary onditions aref ���r=0 = 0; jf(rh)j <1: (50)Nontrivial solutions of (49) with these boundaryonditions exist for a sequene of eigenvalues  = n,n = 0; 1; 2; : : : ; and the orresponding eigenfuntionsfn(r), whih are regular in the interval 0 � r � rh, aresimple polynomials,fn(r) = nXk=0 ak � rrh�2k+1 : (51)Substituting (51) in (49), we �nd the eigenvaluesr2h;n = 2(2n+1)(n+2); n = 3(n+1=2)(n+ 2) (52)and the reurrent relationak = ak�1 (2k�1)(2k+2)�r2h;n(2k+1)(2k+2)�2 ; k = 1; 2; : : : ; (53)allowing us to express all ak; k = 1; 2; : : : ; n; in termsof a0. Beause Eq. (49) is linear and homogeneous, a0
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ÆÝÒÔ, òîì 122, âûï. 3 (9), 2002 Global monopole in general relativityis an arbitrary onstant3). For �xed n, the oe�ientsak in (51) areak = a0 kYi=1 (2i� 1)(2i+ 2)� r2h;n(2i+ 1)(2i+ 2)� 2 ;n > 0; 1 � k � n: (54)The ase wheren = 0; rh;0 = 2; f0(r) = a0r=rh;0gives a monotonially growing funtion f(u) in a loseviinity of  = 0 = 3, see Fig. 2a. Thus, the upperlimit 0 = 3 for the existene of stati monopole solu-tions, previously found by Liebling [8℄ numerially, isnow obtained analytially.

The ase wheren = 1; rh;1 = 3p2;f1(r) = a0 rrh;1 "1� 75 � rrh;1�2#desribes the funtion f(u) hanging its sign one, at lose to 1 = 2=3, see Fig. 2b. The ase where n = 2;2 = 3=10, rh;2 = 2p10, andf2(r) = a0 rrh;2 "1� 185 � rrh;2�2 + 9935 � rrh;2�4#gives the �eld funtion f(u) hanging its sign twie(Fig. 2).For n� 1, the funtion fn(r) rapidly osillates,fn(r) = a0 os"rh;n arsins r2 � 2r2h;n � 2 �p2 arsin p2r s1� (r=rh;n)21� 2=r2h;n !#4qr2(r2 � 2)�1� (r=rh;n)2� :But this semilassial formula is not valid near the leftturning point4) r = p2, see the dashed urve in Fig. 4.Its appliability range is 1� r < rh;n � 2n, n� 1.We have not previously met regular monopole on-�gurations with the �eld funtion f(u) hanging itssign. It seems that this is their �rst presentation.4.3. Solutions with monotonially growing f(u)As is lear from the aforesaid, the interval 0 <  < 3of the existene of nontrivial solutions with monotoni-ally growing f(u) splits into two qualitatively di�erentregions separated by  = 1.In the interval 0 <  < 1, the solutions have spatialasymptotis (37); aording to our general lassi�a-tion, they belong to lass (a0). The spherial radiusr(u) = eF
(u) varies from zero to in�nity, f(u) growsfrom zero to unity, and A(u) dereases from unity toits limiting positive value (f. Eq. (37))A���r!1 = 1� �2 ;� = drd� �����!1 = 1� 2 1Z0 f 02(�)r(�)d�; (55)

and the energy integral (9) diverges.In the interval 1 <  < 3, solutions with mono-tonially growing f(u) belong to lass (a1). Insteadof a spatial asymptotis, there is a horizon and theKantowski�Sahs osmology outside it. The funtionsA and r inside and outside the horizon are presented inFig. 5 for  = 2. In the presene of a global monopole,the osmologial expansion is slower than the de Sit-ter one, Eq. (36). As � ! 1, the radius r(�) growslinearly, while A tends to the negative onstant value�( � 1)=�2.Within the horizon, f(u) monotonially grows fromzero at u = �1 to a value fh = fh;0() on the horizon,u!1, see Fig. 2a. As a funtion of , the value fh;0 off on the horizon dereases from unity at  = 1 to zeroat  = 0 = 3, see Fig. 3. Integral (9) taken over thestati region onverges, and we an onlude that at1 <  < 3, the gravitational �eld is su�iently strongto suppress the Goldstone divergene and to loalizethe monopole. At  > 3, gravity is probably so strongthat it restores the high symmetry of the system.Outside the horizon, the �eld f as a funtion of theproper time � grows from fh;0 on the horizon to unity3) As  ! n � 0, the general equation (41) has the same solution as (49), with a0 � 1. To �nd the dependene a0(), we musttake the next terms that are nonlinear in f into aount.4) We reall that in view of the substitution (40), the distanes are measured in the units (p��)�1 .467 3*
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(u).A horizon, whenever it exists, orresponds to u ! 1,where F
 remains �nite. Beause it behaves logarith-mially as u ! �1, there is (at least one) in�etionpoint where the seond-order derivative is zero, and itfollows from Eq. (43) that1� f2 � 4 e2F
(f2 � 1)2 = 0; u = uinf :This is a quadrati equation for 1� f2, and hene,1� f2 = 2e�2F
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 � : (58)A monotonially growing funtion f(u) orresponds togreater values of f , i.e., to the �minus� branh of (58)(as is on�rmed by numerial results). But the right-hand side of (58) is then negative for  < 1, leading tof2 > 1, whih annot our beause f2 = 1 is the max-imum attainable value for the solutions under study.Therefore, for  < 1, all solutions with monotoniallygrowing f(u) belong to lass (a0) and possess a spatialasymptotis with a solid angle de�it and a divergent�eld energy.Numerial integration on�rms these onlusions.The di�erent behavior of F
(u) for  < 1 and  > 1 isshown in Fig. 7.

4.4. Solutions with f(u) hanging its signFor  < 1 = 2=3, there are solutions with thefuntion f(�) hanging its sign one, see Fig. 2b. For < 2 = 0:3, there are solutions with f(�) hangingits sign twie, see Fig. 2, et. Unlike the monotonisolutions disussed in Se. 4.3, all of them possess ahorizon and in agreement with the general inferenesin Se. 4.1, belong to lass (1). This implies that be-ginning with a regular enter, the spherial radius r(�)�rst grows, then passes its maximum rmax at some �1,and then dereases to zero at �nite � = �2, whih is asingularity. The horizon ours at some � = h < �2,whih an be greater or smaller than �1, but in anyase, the singularity ours in a T -region and is of theosmologial nature. The dependene r(�) before andafter the horizon is a single smooth urve (Fig. 8a).Beyond the horizon, jA(�)j grows from zero at � = 0(the horizon) to in�nity as � ! �s = �(�2) (the singu-larity) as a funtion of the proper time � of a omovingobserver, see Fig. 8b. Beyond the horizon, the salar�eld magnitude jf j �rst grows and then slightly variesaround unity. Approahing the singularity, f(�(�))hanges its sign and �nally jf(�(�))j ! 1 as � ! �s,see Fig. 8.5. CONCLUSION AND DISCUSSIONWe have performed a general study of the proper-ties of stati global monopoles in general relativity. Wehave shown that independently of the shape of the sym-metry breaking potential, the metri an ontain eitherno horizon or one simple horizon, and in the latter ase,the global struture of spae-time is the same as thatof the de Sitter spae-time. Outside the horizon, thegeometry orresponds to homogeneous anisotropi os-mologial models of the Kantowski�Sahs type, wherespatial setions have the topology R � S2. In general,all possible solutions an be divided into six lasseswith di�erent qualitative behaviors. This lassi�ationis obtained without any assumptions about V (�). Solu-tions with given V (�) ontain some of these lasses, notneessarily all of them. This qualitative analysis givesa omplete piture of what an be expeted of globalmonopole systems with partiular symmetry breakingpotentials.Our analytial and numerial analysis for the Mexi-an hat potential on�rms the previous results of otherauthors onerning the on�gurations with the mono-tonially growing Higgs �eld magnitude f . Amongother things, we have analytially obtained the upper469
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