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GLOBAL MONOPOLE IN GENERAL RELATIVITYK. A. Bronnikov *Russian Resear
h Institute for Metrologi
al Servi
e117313, Mos
ow, RussiaInstitute of Gravitation and Cosmology, Peoples Friendship University of Russia117198, Mos
ow, RussiaB. E. Meierovi
h **, E. R. PodolyakKapitza Institute for Physi
al Problems117334, Mos
ow, RussiaSubmitted 15 April 2002We 
onsider the gravitational properties of a global monopole on the basis of the simplest Higgs s
alar tripletmodel in general relativity. We begin with establishing some 
ommon features of hedgehog-type solutions with aregular 
enter, independent of the 
hoi
e of the symmetry-breaking potential. There are six types of qualitativebehaviors of the solutions; we show, in parti
ular, that the metri
 
an 
ontain at most one simple horizon. Forthe standard Mexi
an hat potential, the previously known properties of the solutions are 
on�rmed and somenew results are obtained. Thus, we show analyti
ally that solutions with the monotoni
ally growing Higgs �eldand �nite energy in the stati
 region exist only in the interval 1 < 
 < 3, where 
 is the squared energy ofspontaneous symmetry breaking in Plan
k units. The 
osmologi
al properties of these globally regular solutionsapparently favor the idea that the standard Big Bang might be repla
ed with a nonsingular stati
 
ore anda horizon appearing as a result of some symmetry-breaking phase transition at the Plan
k energy s
ale. Inaddition to the monotoni
 solutions, we present and analyze a sequen
e of families of new solutions with theos
illating Higgs �eld. These families are parameterized by n, the number of knots of the Higgs �eld, and existfor 
 < 
n = 6=[(2n + 1)(n+ 2)℄; all su
h solutions possess a horizon and a singularity beyond it.PACS: 04.90.+e 1. INTRODUCTIONIn a

ordan
e with the Standard 
osmologi
almodel [1℄, the Universe has been expanding and 
oolingfrom a split se
ond after the Big Bang to the presentmoment and remained uniform and isotropi
 in doingso. In the pro
ess of its evolution, the Universe hasexperien
ed a 
hain of phase transitions with sponta-neous symmetry breaking, in
luding the Grand Uni�-
ation and ele
troweak phase transitions, formation ofneutrons and protons from quarks, re
ombination, andso forth. Regions with spontaneously broken symmetrythat are more than the 
orrelation length apart are sta-tisti
ally independent. At interfa
es between these re-*E-mail: kb�rgs.m

me.ru**E-mail: meierovi
h�yahoo.
om; http://geo
ities.
om/meierovi
h

gions, the so-
alled topologi
al defe
ts ne
essarily arise.A systemati
 exposition of the potential role of topolog-i
al defe
ts in our Universe was given by Vilenkin andShellard [2℄. The parti
ular types of defe
ts � domainwalls, strings, monopoles, or textures � are determinedby topologi
al properties of the va
uum [3℄. If the va
-uum manifold is not shrinkable to a point after thebreakdown, then the Polyakov�t'Hooft monopole-typesolutions [4; 5℄ appear in quantum �eld theory.Spontaneous symmetry breaking plays a fundamen-tal role in modern attempts to 
onstru
t parti
le the-ories. In this 
ontext, a symmetry is 
ommonly asso-
iated with internal rather than spa
e-time transfor-mations, e.g., the isotopi
, ele
troweak, Grand Uni�
a-tion symmetries, and supersymmetry, whose transfor-mations mix bosons and fermions. Topologi
al defe
tsthat are 
aused by spontaneous breaking of internal459
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e-time 
oordi-nates are said to be global.A fundamental property of a global symmetry vi-olation is the Goldstone degree of freedom. For themonopole, the term related to the Goldstone boson inthe energy�momentum tensor de
reases rather slowlyaway from the 
enter. As a result, the total energyof a global monopole grows linearly with the distan
e,or in other words, diverges. Without gravity, this di-vergen
e is a general property of spontaneously bro-ken global symmetries. In his pioneering paper [4℄,Polyakov mentioned two possibilities of avoiding thisdi�
ulty. The �rst one was to 
ombine the monopolewith the Yang�Mills �eld. This idea was indepen-dently 
onsidered by t'Hooft [5℄. This, among otherreasons, gave rise to numerous papers on gauge (mag-neti
) monopoles. The se
ond possibility was to 
on-sider a bound monopole�antimonopole system, whosetotal energy would be large (proportional to the dis-tan
e between the 
omponents) but �nite.One more possibility is to take the self-gravityof global monopoles into a

ount; this 
an in prin-
iple remove the above self-energy problem and isalso ne
essary for potential astrophysi
al appli
ations.Su
h a study was �rst performed by Barriola andVilenkin [6℄, who found that the gravitational �eld out-side a monopole is 
hara
terized by a solid angle de�
itproportional to the energy s
ale of the spontaneoussymmetry breaking. Harari and Lousto [7℄ showed thatthe gravitational mass of a global monopole, 
al
ulatedusing the Tolman integral, is negative. Solutions with ahorizon for supermassive global monopoles were foundby Liebling [8℄, who also 
on�rmed the estimate inRef. [9℄ for the upper value of the symmetry break-ing energy 
ompatible with a stati
 
on�guration. Theexisten
e of de Sitter 
ores inside global monopoles andother topologi
al defe
ts have led to the idea of �topo-logi
al in�ation� [10�12℄.For global strings in �at spa
e, the energy per unitlength (without gravitation) also diverges with growingdistan
e from the axis, but only logarithmi
ally. Butin general relativity, integration over the 
ross-se
tionyields a �nite result [13; 14℄. The gravitational inter-a
tion thus leads to self-lo
alization of a global string.Does a similar e�e
t o

ur for a global monopole? Anattempt to answer this question, whi
h does not ap-pear to be answered in the existing papers, was oneof the motivations for re
onsidering the gravitationalproperties of a global monopole.The previous studies have used the boundary 
on-dition a

ording to whi
h the symmetry-breaking po-tential must vanish at spatial in�nity. Our approa
h

is di�erent: we do not even assume the existen
e of aspatial asymptoti
s, but require regularity at the 
en-ter and try to observe the properties of the entire setof global monopole solutions. In doing so, among otherquantities, we dis
uss the behavior of the total s
alar�eld energy, whi
h turns out to be �nite in stati
 re-gions of supermassive global monopoles.In Se
. 2, we present the 
omplete sets of equa-tions for a stati
 spheri
ally symmetri
 gravitatingglobal monopole in two most 
onvenient 
oordinatesystems, those with quasiglobal and harmoni
 radial
oordinates. The general properties of stati
 globalmonopoles are summarized in Se
. 3. In Se
. 4, weanalyti
ally and numeri
ally analyze the spe
i�
 fea-tures of a global monopole in the parti
ular 
ase of theMexi
an hat potential. Se
tion 5 
ontains a generaldis
ussion of our results, in
luding their possible 
os-mologi
al interpretation.2. EQUATIONS AND BOUNDARYCONDITIONS2.1. General setting of the problemWe begin with the most general form of a stati
spheri
ally symmetri
 metri
, without spe
ifying theradial 
oordinate x1 = u,ds2 = g��dx�dx� = e2F0dt2�e2F1du2�e2F
d
2: (1)Here, d
2 = d�2 + sin2�d'2 is the linear element on aunit sphere and F0, F1, and F
 are fun
tions of u. Thenonzero 
omponents of the Ri

i tensor are (the primedenotes d=du)R00 = e�2F1 [F 000 + F 00(�F 01 + 2F 0
 + F 00)℄;R11 = e�2F1 [F 000 + 2F 00
 + 2F 0
2 + F 002 �� F 01(2F 0
 + F 00)℄;R22 = R33 = �e�2F
 ++ e�2F1 [F 00
 + F 0
(�F 01 + 2F 0
 + F 00)℄: (2)We 
onsider the Lagrangian des
ribing a triplet ofreal s
alar �elds �a (a = 1; 2; 3) in general relativity,L = R16�G + 12g�����a���a � V (�); (3)where R is the s
alar 
urvature, V (�) is a potential de-pending on � = �p�a�a, and G is the gravitational
onstant. We use the natural units su
h that~ = 
 = 1; (4)460
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k mass.To obtain a global monopole with unit topologi
al
harge [2℄, we assume that the metri
 has form (1) and�a 
omprise the following �hedgehog� 
on�guration:�a = �(u)na; na = fsin � 
os'; sin � sin'; 
os �g : (5)The Einstein equations 
an be written asR�� = �8�G ~T �� = �8�G�T �� � 12Æ��T��� ; (6)where T �� is the energy-momentum tensor and thenonzero 
omponents of ~T �� are~T 00 = �V; ~T 11 = �V � e�2F1�02;~T 22 = ~T 33 = �V � e�2F
�2: (7)The 
onditions for metri
 (1) to be regular at the
enter are thateF
 ! 0; F0 = F0 
 +O(e2F
);e�F1+F
 jF 0
j ! 1 (8)at the 
orresponding value u
 of the 
oordinate x1 = u.The last 
ondition is ne
essary for lo
al �atness and en-sures the 
orre
t ratio of the 
ir
umferen
e to the radiusfor 
oordinate 
ir
les at small r = eF
 .The s
alar �eld energy, de�ned as the partial timederivative of the s
alar �eld a
tion, E = ��S=�t, is a
onserved quantity for our stati
 system,E = Z p�g T 00 d3x = 4� Z eF0+F1+2F
 ���12e�2F1�02 + e�2F
�2 + V � du; (9)where g is the determinant of the metri
 tensor.In what follows, we make some general inferen
eswithout spe
ifying the potential V (�) and then per-form a more detailed study for the simplest and mostfrequently used symmetry-breaking potentialV (�) = 14�(�a�a � �2)2 = 14�4�(f2 � 1)2; (10)where � > 0 
hara
terizes the energy of symme-try breaking, � is a dimensionless 
onstant, andf(u) = �(u)=� is the normalized �eld magnitude play-ing the role of an order parameter. The model has aglobal SO(3) symmetry, whi
h 
an be spontaneouslybroken to SO(2) by potential wells (V = 0) at f = �1.We now expli
itly write the Einstein equations andthe boundary 
onditions in the two 
oordinate framesto be used.

2.2. The quasiglobal 
oordinate �The �rst 
hoi
e is the 
oordinate u = � spe
i�ed bythe 
ondition F0+F1 = 0. Setting e2F0 = e�2F1 = A(�)and eF
 = r(�), we obtain the metri
ds2 = A(�)dt2 � d�2A(�) � r2(�)d
2: (11)The s
alar �eld equation��a + �V=��a = 0; (12)where � = r�r� is the d'Alembert operator, and 
er-tain 
ombinations of the Einstein equations are givenby (Ar2�0)0 � 2� = r2dV=d�; (13)(A0r2)0 = �16�Gr2V; (14)2r00=r = �8�G�02; (15)A(r2)00 � r2A00 = 2(1� 8�G�2); (16)A0rr0+Ar02�1 = 8�G�12Ar2�02��2�r2V � ; (17)where the prime denotes d=d�. Only three of these �veequations are independent: s
alar �eld equation (13)follows from the Einstein equations and Eq. (17) is a�rst integral of the others. Given a potential V ('), thisis a determined set of equations for the unknowns r; A,and �.This 
hoi
e of the 
oordinates is preferable for 
on-sidering Killing horizons, whi
h 
orrespond to zeros ofthe fun
tion A(�), be
ause su
h zeros are regular pointsof Eqs. (13)�(17); moreover, in a 
lose neighborhoodof a horizon, the 
oordinate � de�ned in this mannervaries (up to a positive 
onstant fa
tor) as the man-ifestly well-behaved Kruskal-like 
oordinates used foranalyti
 
ontinuation of the metri
 [15; 16℄. Therefore,the regions at both sides of a horizon 
an be simulta-neously 
onsidered in terms of � and the entire rangeof � 
an 
ontain several horizons in general. For thisreason, the 
oordinate � 
an be 
alled quasiglobal.The regularaity 
onditions at the 
enter, Eq. (8),are satis�ed ifA(�) = A
+O((���
)2); r(�) � (���
)=pA
 (18)near some value �
 of the 
oordinate �.461
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alled T -re-gions [1℄), whenever they exist, the 
oordinate � istimelike and t is spa
elike. Changing the notation ast ! x 2 R and introdu
ing the proper time of a 
o-moving observer in the T -region,� = Z d�=pjA(�)j; (19)we 
an rewrite the metri
 asds2 = d�2 � jA(�)jdx2 � r2(�)d
2: (20)The spa
e-time geometry then 
orresponds to ahomogeneous anisotropi
 
osmologi
al model of theKantowski�Sa
hs type [17; 18℄, where spatial se
tionshave the topology of R � S2.2.3. The harmoni
 
oordinate uAnother 
onvenient variable that allows 
onsider-ably simplifying the form of the equations is the har-moni
 
oordinate u spe
i�ed by the 
ondition [19℄1)F1 = 2F
 + F0; (21)su
h that �u = 0. The �eld equations 
an then bewritten as�00 � 2eF0+F1� = e2F1dV=d�; (22)F 000 = �8�Ge2F1V; (23)F 001 � 2F 0
(F 0
 + 2F 00) = �8�G(�02 + e2F1V ); (24)F 00
 � e2(F0+F
) = �8�G(�2e2(F0+F
) + e2F1V ); (25)� e�2F
 + e�2F1(F 0
2 + 2F 0
F 00) == 8�G�12e�2F1�02 � e�2F
�2 � V � ; (26)where the prime denotes d=du.It is straightforward to obtain that the regular-ity 
ondition at the 
enter 
an only 
orrespond tou! �1; we 
hoose u! �1, where we must haveeF
 � 1=juj; eF0 =pA
 (1 +O(u�2));eF1 � 1=u2; (27)and A
 is the same as in (18).1) A 
ylindri
al version of the harmoni
 radial 
oordinate hasbeen used previously in the analysis of gravitational propertiesof 
urrent-
ondu
ting �laments [20℄ and 
osmi
 strings [21; 22℄.

3. GENERAL PROPERTIES OF GLOBALMONOPOLES3.1. Monopoles in Minkowski spa
e-timeThe Minkowski metri
 written in the usual spheri
al
oordinates, ds2 = dt2 � dr2 � r2d
2; (28)is a spe
ial 
ase of (11) with r � � and A � 1. In �atspa
e-time, the only unknown is �(r) and the only �eldequation is (13), whi
h be
omes(r2�0)0 � 2� = r2dV=d�: (29)For the parti
ular potential in Eq. (10), we havedV=d� = ��(�2 � �2) and the s
alar �eld equation 
anthen be written in terms of f = �=� asr�2(r2f 0)0 � 2fr�2 + ��2f(1� f2) = 0: (30)The energy integral in Eq. (9) takes the formE = 4� Z r2 �12�02 + �2r2 + V � dr: (31)In the 
ase where V (�) � 0, its 
onvergen
e impliesthat all the three terms must vanish as r ! 1 su�-
iently rapidly:� = o(r�1=2); �0 = o(r�3=2); V = o(r�3): (32)This a
tually implies that a �nite-energy 
on�gurationis only possible with V (0) = 0, 
ontrary to the sym-metry breaking assumption a

ording to whi
h V hasminima in nonsymmetri
 states, � 6= 0. In parti
ular,potential (10) does not give rise to global monopoleswith a �nite energy. A 
onsideration of self-gravity ofthe �eld triad �a is one of the ways to over
ome thisdi�
ulty.In �at spa
e-time, the harmoni
 
oordinate u is re-lated to r as u � u0 = �1=r, where u0 is an arbitrary
onstant; 
hoosing the minus sign, we �nd that u rangesfrom �1, whi
h 
orresponds to the 
enter r = 0, to u0
orresponding to spatial in�nity.3.2. Solutions with 
onstant �Under the assumption that � = �0 = 
onst, the
orresponding value of the potential V (�0) = V0 (times8�G) plays the role of a 
osmologi
al 
onstant, and theEinstein equations 
an be integrated expli
itly.Indeed, in the region where � = 
onst, Eq. (15)redu
es to r00 = 0, when
e r = �� + r0, where462
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onst. It remains to �nd A(r), and this isimmediately done by integrating Eq. (16),A(r) = 1���2 � 2GMr + Cr2; � = 8�G�20; (33)where M and C are integration 
onstants. Substitu-ting (33) in (14), we �ndC = �8�GV0=3: (34)Thus, the solution is essentially determined by the val-ues of �0, V0, and M . One more 
onstant, �, re�e
tsthe freedom in 
hoosing the unit of time. We note thatthis is not a monopole solution. Even if we set M = 0,whi
h is evidently ne
essary for regularity at r = 0, thissolution with 
onstant � 6= 0 is singular at the 
enter:for A(r) given by (33) with M = 0, the Krets
hmanns
alar is K = R��
ÆR��
Æ � 4�2=r4 at small r.Regarding the global monopole, two 
ases of thesolution in Eq. (33) are of interest. The 
ase where�0 � 0 des
ribes the symmetri
 state and the 
asewhere V0 = 0 gives a possible asymptoti
 behavior atspatial or temporal in�nity.In the 
ase where �0 = 0 (the symmetri
 state), set-ting M = 0 (whi
h is ne
essary for a regular 
enter),we arrive at the de Sitter metri
ds2 = �1�r2r2h� dt2��1�r2r2h��1 dr2�r2d
2;r2h = 8�GV03 : (35)This metri
 has a horizon at r = rh. At r > rh, out-side the horizon, r be
omes a timelike 
oordinate andt is a spa
elike one. Changing the notation as in (19)and (20), we obtain the metri
ds2 = d�2 � sh2(�=rh)dx2 � r2h 
h2(�=rh)d
2: (36)This is the Kantowski�Sa
hs 
osmology with theisotropi
 in�ationary expansion at late times (� !1).In the other 
ase, �0 6= 0 but V0 = 0 (the 
ase ofbroken symmetry, su
h as � = � in potential (10)), themetri
 be
omes [6℄ds2 = �1���2 � 2GMr � dt2 ���1���2 � 2GMr ��1 dr2 � r2d
2; (37)where the 
onstant M has the meaning of mass in thesense that test parti
les at rest experien
e the a

el-eration �GM=r2 in gravitational �eld (37) at large r.

Furthermore, a nonzero value of �0 leads to a solid an-gle de�
it � de�ned in (33) in the asymptoti
 regionas r ! 1 (see [2℄ for more detail) and to a linear di-vergen
e of integral (9) at large r.The general 
ase of Eq. (33) des
ribes the large-rasymptoti
 behavior of any solution to Eqs. (13)�(17),provided that su
h an asymptoti
 form exists and �tends to a 
onstant value su�
iently rapidly.For the monopoles to be studied, metri
 (37) givesa large-r asymptoti
 behavior in the 
ase where � < 1.We also 
onsider solutions with � > 1, for whi
h astati
 asymptoti
 regime is absent. Metri
 (37) thendes
ribes 
osmologi
al evolution at late times.3.3. General properties of solutions withvarying �We now 
onsider the general form of Eqs. (13)�(17)with varying �, without spe
ifying the potential V (�).We �rst note that be
ause of (15), we have r00 � 0,whi
h forbids any nonsingular 
on�gurations without a
enter su
h as wormholes and horns (see Theorem 1 inRef. [16℄ for further details).Se
ond, Eq. (16) 
an be rewritten as(r4B0)0 = �2(1� 8�G�2); B def= A=r2; (38)and at a point where B0 = 0, we have r4B00 == �2(1 � 8�G�2). Hen
e, it follows that as long as�2 < 1=(8�G) (i.e., the � �eld does not rea
h trans-Plan
kian values), B00 < 0 at possible extrema of thefun
tion B. In other words, B 
annot have a regularminimum.Our interest is in systems with a regular 
enter sat-isfying 
onditions (18) with A(�) > 0 and B(�) > 0near � = �
. At a possible horizon � = h, both A andB vanish, and be
ause this 
annot be a minimum of B,B < 0 at � > h near the horizon. At greater �, thefun
tion B(�), having no minima, 
an only de
reaseand never returns to zero; therefore, A = Br2 < 0 at� > h. We 
on
lude that there 
an be no more thanone horizon, and if it exists, it is simple (
orrespondsto a simple zero of A(�)). Be
ause the global 
ausalstru
ture of spa
e-time is determined (up to possibleidenti�
ations of isometri
 hypersurfa
es) by the num-ber and disposition of Killing horizons [23�25℄, we havethe following result.Statement 1. Under the assumption that�2 < 1=(8�G) in the entire spa
e, our system witha regular 
enter 
an have either no horizon or onesimple horizon; in the latter 
ase, its global stru
tureis the same as that of de Sitter spa
e-time.463
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Fig. 1. Possible behavior of r(�) in global monopolesolutionsThe above reasoning is essentially the same as inthe proof of Theorem 2 in Ref. [16℄ on the dispositionof horizons in s
alar-va
uum spa
e-times. It uses onlyEq. (16), whi
h does not involve the potential V . The
on
lusion is therefore valid for systems with any po-tentials, positive or negative.We now return to Eq. (15), a

ording to whi
hr00 � 0. Be
ause r0 > 0 at a regular 
enter, this leavesthree possibilities for the fun
tion r(�) (Fig. 1):(a) monotoni
 growth with a de
reasing slope, butr !1 as �!1,(b) monotoni
 growth with r ! rmax < 1 as�!1, and(
) growth up to rmax at some �1 <1 and furtherde
rease, rea
hing r = 0 at some �nite �2 > �1.In ea
h 
ase, a

ording to Statement 1, a horizon
an o

ur at some � = h within the range of �, andwe therefore have a T -region with the geometry of theKantowski�Sa
hs 
osmologi
al model at � > h.We 
on
lude that there are six 
lasses of qualitativebehaviors of the solutions, i.e., (a), (b), and (
), ea
hwith or without a horizon, whi
h we indi
ate with therespe
tive symbols 1 or 0. Thus, all solutions with aspatial asymptoti
 behavior belong to 
lass (a0). Class(b0) in
ludes spa
e-times ending with a �tube� 
onsist-ing of two-dimensional spheres of equal radii. Solutionsin 
lass (
0) 
ontain a se
ond 
enter at � = �2, and this
enter 
an a priori be regular or singular. We thus ob-tain a stati
 analogue of 
losed 
osmologies. Classes(a1), (b1), and (
1) des
ribe di�erent late-time 
osmo-logi
al behaviors in the two dire
tions 
orresponding toS2, whereas the fate of the third spatial dire
tion (R)is determined by the fun
tion A(�). In parti
ular, thepossible de Sitter asymptoti
 metri
 in Eq. (36) belongsto 
lass (a1) solutions, and the expansion is isotropi


at late times in this 
ase. On the other hand, 
lass-(
1) 
ontains models that at late times behave as theS
hwarzs
hild spa
e-time inside the horizon, 
ontra
t-ing to r = 0.This 
lassi�
ation is obtained without any assump-tions about V (�). Solutions with given V (�) 
ontainsome of these 
lasses, not ne
essarily all of them.In the 
ase V � 0, where Eq. (14) leads to one moreimportant observation: be
ause A0r2 = 0 at a regular
enter, we 
an write (14) in the integral formA0r2 = �16�G �Z0 V (��) r2(��) d��; (39)and therefore, A(�) is a de
reasing fun
tion unlessV � 0. Equation (39) leads to the following 
on
lu-sions.Statement 1a. If V (�) � 0, our system with aregular 
enter 
an have either no horizon or one sim-ple horizon; in the latter 
ase, its global stru
ture is thesame as that of de Sitter spa
e-time.Statement 2. If V (�) � 0, the se
ond 
enter in
lass-(
0) solutions is singular.Statement 3. If V (�) � 0 and the solution isasymptoti
ally �at, the mass M of the global monopoleis negative.Statement 1a shows that for nonnegative potentials,the assumption �2 < 1=(8�G) in Statement 1 is unne
-essary, and the 
ausal stru
ture types are known forany magnitudes of �.Statement 2 follows from A0(�2) < 0, whereas ata regular 
enter, it should be A0 = 0, see (18). Theequality A0(�2) = 0 
ould only be possible with V � 0,but in this 
ase, the only solution with a regular 
enteris trivial (�at spa
e, � = 0).In Statement 3, the asymptoti
 �atness is under-stood up to the solid angle de�
it, i.e., r = � and A isgiven by (33) with C = 0 at large �. As � ! 1, wethen obtain 2GM in the left-hand side of Eq. (39) anda negative quantity in the right-hand side.To our knowledge, this simple 
on
lusion, valid forall nonnegative potentials, has so far been obtainedonly numeri
ally for the parti
ular potential (10) [9℄.We note that Statement 3 is an extension to globalmonopoles of the so-
alled generalized Rosen theo-rem [16; 26℄, previously known for s
alar-va
uum 
on-�gurations.Therefore, even before studying parti
ular solutionswith potential (10), we have a more or less 
ompleteknowledge of what 
an be expe
ted of su
h globalmonopole systems.464
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onditionsIn what follows, we analyze the parti
ular Mexi
anhat potential in Eq. (10). For numeri
al integration,we prefer to use the harmoni
 
oordinate u and to workwith Eqs. (22)�(25). This variable enters the equationsonly via derivatives and is therefore invariant undertranslations u! u+ 
onst.Introdu
ing the dimensionless quantities~u = u=(p��); e ~F
 = p��eF
 ;e ~F1 = ��2eF1 ; (40)we eliminate the parameter � from the equations. In-deed, omitting the tildes, we obtainf 00 = e2(F0+F
)[2� e2F
(1� f2)℄f; (41)F 000 = �
4 e2(F0+2F
)(f2 � 1)2; (42)F 00
 = e2(F0+F
) h1� 
f2 � 
4 e2F
(1� f2)2i : (43)Condition (21) is preserved for the newly de�ned quan-tities, but the metri
 be
omesds2 = e2F0dt2 � e2F1du2 + e2F
d
2��2 : (44)The boundary 
onditions as u! �1 are given byf = 0; F0 = 0; F 00 = 0;F
 = � ln(�u) + o(1=juj): (45)They follow from the regularity requirement at the 
en-ter and a parti
ular 
hoi
e of the time unit (F0 = 0)and of the origin of the u 
oordinate (the fourth 
on-dition).There remains only one dimensionless parameter inEqs. (41)�(43), 
 = 8�G�2; (46)whi
h is the squared energy of symmetry breaking inPlan
k units.It is easy to obtain that 
 = 1 is a 
riti
al valueof this parameter. Indeed, if we assume the existen
eof a large-r asymptoti
 behavior su
h that f ! 1, i.e.,the �eld tends to the minimum of potential (10), thenthe asymptoti
 form of the metri
 at large r is givenby (37) with� = 
. Consequently, the asymptoti
s 
anbe stati
 only if 
 � 1, whereas for 
 > 1, the large-r

asymptoti
s 
an be only 
osmologi
al (the Kantowski�Sa
hs type), and there is a horizon separating su
h anouter region from the stati
 monopole 
ore.On the other hand, if a 
on�guration with 
 < 1possesses a horizon, there is again the Kantowski�Sa
hs
osmology outside it, but there 
annot be a large-rasymptoti
 form, and in a

ordan
e with Se
. 3, thesolutions belong to 
lasses (b1) or (
1).Now, leaving aside the su�
iently well studied 
aseof solutions with a stati
 asymptoti
s [2; 6; 7℄ belongingto 
lass-(a0) in a

ordan
e with Se
. 3, we suppose thatthere is a horizon and return to Eqs. (41)�(43). Thehorizon 
orresponds to u ! +1. In su
h 
ases, inaddition to (45), we impose the boundary 
onditionf(u)! fh; jfhj <1 as u! +1: (47)This 
ondition is ne
essary for the regularity of a so-lution on the horizon and is appli
able to 
lasses (a1),(b1), and (
1).For 
lass-(a0) solutions, having a spatial asymptoti
behavior and no horizon, 
ondition (47) is meaningless.Moreover, the 
oordinate u then ranges from �1 tosome u0 <1 su
h that r(u0) =1.For 
on�gurations of 
lasses (a0) and (a1), the 
om-monly used boundary 
ondition isf ! 1 as r !1: (48)It is of interest that in 
ase (a1), to whi
h both 
ondi-tions are appli
able, 
ondition (47), being less restri
-tive, still leads to solutions satisfying (48) be
ause ofthe properties of the physi
al system itself.The set of equations (41)�(43) with boundary 
on-ditions (45) and (47) 
omprise a well-posed nonlineareigenvalue problem. Its trivial solution, with f = 0 andde Sitter metri
 (35), des
ribes the symmetri
 state(with unbroken symmetry). Nontrivial solutions de-s
ribing hedgehog 
on�gurations with spontaneouslybroken symmetry 
an be found numeri
ally and yield asequen
e of eigenvalues 
n, n = 0; 1; : : : ; and the 
or-responding values of the horizon radius rh;n for ea
hgiven value of fh. Conversely, for a given (admissible)value of 
, we obtain a sequen
e of values of fh and rh.4.2. The linear eigenvalue problemLiebling [8℄ has empiri
ally found the upper 
riti
alvalue 
0 � 3 for the existen
e of stati
 solutions2). Inthis se
tion, we �nd a theoreti
al ground for this limit.2) In the notation of Ref. [10℄, �� �p3=(8�):3 ÆÝÒÔ, âûï. 3 (9) 465
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tually, we analyti
ally �nd a sequen
e of 
riti
al val-ues 
n; n = 0; 1; : : : , su
h that for 
 < 
n, there ex-ist stati
 
on�gurations with the �eld magnitude f(u)
hanging its sign n times.Only the analysis for f(u) > 0 
an be found in theliterature. Our numeri
al integration of Eqs. (41)�(43)shows that in addition to solutions with monotoni
allygrowing f(u) (whi
h exist for 
 < 
0 = 3, Fig. 2a),there exist regular solutions for 
 < 
1 = 2=3 with f(u)
hanging its sign on
e (Fig. 2b). Solutions with two ze-ros of f(u) exist for 
 < 
2 = 0:3 (Fig. 2
), et
. Allthese solutions have a horizon, and the absolute valueof f on the horizon, jfh;nj = jfn(1)j, is a de
reasingfun
tion of 
, vanishing as 
 ! 
n � 0 (Fig. 3).As 
 ! 
n, the fun
tion f(u) vanishes in the entirerange of u, and it is this 
ir
umstan
e that allows usto �nd the 
riti
al values 
n analyti
ally. In a 
loseneighborhood of 
n, the �eld f(u) is small within thehorizon, f2 � 1, and Eq. (41) therefore redu
es to alinear equation with given ba
kground fun
tions F0 andF
 
orresponding to de Sitter metri
 (35). In terms ofthe dimensionless spheri
al radius r, Eq. (41) be
omesddr �r2 �1� r2r2h� dfdr�� (2� r2)f = 0; (49)where rh = p12=
 is the value of r on the horizon.The boundary 
onditions aref ���r=0 = 0; jf(rh)j <1: (50)Nontrivial solutions of (49) with these boundary
onditions exist for a sequen
e of eigenvalues 
 = 
n,n = 0; 1; 2; : : : ; and the 
orresponding eigenfun
tionsfn(r), whi
h are regular in the interval 0 � r � rh, aresimple polynomials,fn(r) = nXk=0 ak � rrh�2k+1 : (51)Substituting (51) in (49), we �nd the eigenvaluesr2h;n = 2(2n+1)(n+2); 
n = 3(n+1=2)(n+ 2) (52)and the re
urrent relationak = ak�1 (2k�1)(2k+2)�r2h;n(2k+1)(2k+2)�2 ; k = 1; 2; : : : ; (53)allowing us to express all ak; k = 1; 2; : : : ; n; in termsof a0. Be
ause Eq. (49) is linear and homogeneous, a0

a
2:99
2:52:0
1:2
 = 0 1:60:51:0

�4 �2 0 200:2
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 = 0 0:2950:280:250:17�1 0 2�2 1�1:0�0:50
0:51:0
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0�0:5 0:5 1:0�1:0
1:0
�0:50
0:5

u

f2

Fig. 2. The �eld magnitude f as a fun
tion of theharmoni
 
oordinate u for di�erent values of 
. Solu-tions with monotoni
ally growing f = f0(u) (a) existfor 0 < 
 < 
0 = 3: In the region 
 < 
1 = 2=3,there are solutions with f = f1(u) 
hanging their signon
e (b ); in the region 
 < 
2 = 0:3, there are solu-tions with f = f2(u) 
hanging their sign twi
e (
). As
 ! 
n � 0, the fun
tion fn(u) vanishes in the entirerange �1 < u <1 from the 
enter to the horizon466
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onstant3). For �xed n, the 
oe�
ientsak in (51) areak = a0 kYi=1 (2i� 1)(2i+ 2)� r2h;n(2i+ 1)(2i+ 2)� 2 ;n > 0; 1 � k � n: (54)The 
ase wheren = 0; rh;0 = 2; f0(r) = a0r=rh;0gives a monotoni
ally growing fun
tion f(u) in a 
losevi
inity of 
 = 
0 = 3, see Fig. 2a. Thus, the upperlimit 
0 = 3 for the existen
e of stati
 monopole solu-tions, previously found by Liebling [8℄ numeri
ally, isnow obtained analyti
ally.

The 
ase wheren = 1; rh;1 = 3p2;f1(r) = a0 rrh;1 "1� 75 � rrh;1�2#des
ribes the fun
tion f(u) 
hanging its sign on
e, at
 
lose to 
1 = 2=3, see Fig. 2b. The 
ase where n = 2;
2 = 3=10, rh;2 = 2p10, andf2(r) = a0 rrh;2 "1� 185 � rrh;2�2 + 9935 � rrh;2�4#gives the �eld fun
tion f(u) 
hanging its sign twi
e(Fig. 2
).For n� 1, the fun
tion fn(r) rapidly os
illates,fn(r) = a0 
os"rh;n ar
sins r2 � 2r2h;n � 2 �p2 ar
sin p2r s1� (r=rh;n)21� 2=r2h;n !#4qr2(r2 � 2)�1� (r=rh;n)2� :But this semi
lassi
al formula is not valid near the leftturning point4) r = p2, see the dashed 
urve in Fig. 4.Its appli
ability range is 1� r < rh;n � 2n, n� 1.We have not previously met regular monopole 
on-�gurations with the �eld fun
tion f(u) 
hanging itssign. It seems that this is their �rst presentation.4.3. Solutions with monotoni
ally growing f(u)As is 
lear from the aforesaid, the interval 0 < 
 < 3of the existen
e of nontrivial solutions with monotoni-
ally growing f(u) splits into two qualitatively di�erentregions separated by 
 = 1.In the interval 0 < 
 < 1, the solutions have spatialasymptoti
s (37); a

ording to our general 
lassi�
a-tion, they belong to 
lass (a0). The spheri
al radiusr(u) = eF
(u) varies from zero to in�nity, f(u) growsfrom zero to unity, and A(u) de
reases from unity toits limiting positive value (
f. Eq. (37))A���r!1 = 1� 
�2 ;� = drd� �����!1 = 1� 
2 1Z0 f 02(�)r(�)d�; (55)

and the energy integral (9) diverges.In the interval 1 < 
 < 3, solutions with mono-toni
ally growing f(u) belong to 
lass (a1). Insteadof a spatial asymptoti
s, there is a horizon and theKantowski�Sa
hs 
osmology outside it. The fun
tionsA and r inside and outside the horizon are presented inFig. 5 for 
 = 2. In the presen
e of a global monopole,the 
osmologi
al expansion is slower than the de Sit-ter one, Eq. (36). As � ! 1, the radius r(�) growslinearly, while A tends to the negative 
onstant value�(
 � 1)=�2.Within the horizon, f(u) monotoni
ally grows fromzero at u = �1 to a value fh = fh;0(
) on the horizon,u!1, see Fig. 2a. As a fun
tion of 
, the value fh;0 off on the horizon de
reases from unity at 
 = 1 to zeroat 
 = 
0 = 3, see Fig. 3. Integral (9) taken over thestati
 region 
onverges, and we 
an 
on
lude that at1 < 
 < 3, the gravitational �eld is su�
iently strongto suppress the Goldstone divergen
e and to lo
alizethe monopole. At 
 > 3, gravity is probably so strongthat it restores the high symmetry of the system.Outside the horizon, the �eld f as a fun
tion of theproper time � grows from fh;0 on the horizon to unity3) As 
 ! 
n � 0, the general equation (41) has the same solution as (49), with a0 � 1. To �nd the dependen
e a0(
), we musttake the next terms that are nonlinear in f into a

ount.4) We re
all that in view of the substitution (40), the distan
es are measured in the units (p��)�1 .467 3*
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tion of thespheri
al radius r for 
 = 0:001as � !1. Introdu
ing the proper radial length l insidethe horizon by the relation dl = d�=pA, we 
an as
er-tain that the fun
tions f(l(�)) at � < h and f(�(�)) at� > h are two parts of a single smooth 
urve (Fig. 6).When the parameter 
 is 
lose to its 
riti
al value
 = 1 separating the (a0) and (a1) bran
hes of thesolution, i.e., when 0 < 
 � 1� 1; (56)the horizon radius rh;0 and the s
alar �eld value on thehorizon fh;0 
an be found analyti
ally under 
ertain ad-ditional assumptions on the system behavior that fol-low from the results of numeri
al analysis. In parti
-ular, there is an �intermediate� region of the u range,1 � u � u0 = 
onst, where the �rst term f 00 in thes
alar �eld equation (41) is very small, whereas thefun
tion e2(F0+F
) is quite large (despite the fa
t thatthis fun
tion eventually vanishes as u ! 1). In this
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ρFig. 5. The fun
tions A(�) and r(�) form uni�edsmooth 
urves in the regions inside (solid 
urves) andoutside (dashed) the horizon; 
 = 2

�2 4 6 800:20:40:60:81:0 f
�hFig. 6. The fun
tion f(�) inside (solid 
urve) and out-side (dashed 
urve) the horizon; 
 = 2region, the expression in square bra
kets in (41) musttherefore be small, i.e.,e2F
(1� f2) � 2:This relation 
an be used for further estimates. Theresults are ln rh;0 � ln[1=(
 � 1)℄� 1;fh;0 � 1� C(
 � 1)2; (57)where the 
onstant C 
an be found by 
omparison withthe numeri
al results; our estimate is C � 0:2.The behavior of the solution in the 
riti
al regime,
 = 1, 
an be 
hara
terized as a globally stati
 modelwith a �horizon at in�nity� [8℄, be
ause A ! 0 asr !1.The fa
t that monotoni
 solutions with horizons areabsent for 
 < 1 be
omes evident from the analysis of468
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Fig. 7. The fun
tion F
(u) for di�erent values of 
.At 
 < 1, there is a limiting value umax of u su
h thatF
 !1 as u! umax(
) (dotted 
urves). As 
 ! 1,the value umax(
) ! 1 (dashed 
urve); for 
 > 1,the fun
tion F
(u) tends to a �nite 
onstant value asu!1 (solid 
urves)the in�e
tion point u = uinf of the fun
tion F
(u).A horizon, whenever it exists, 
orresponds to u ! 1,where F
 remains �nite. Be
ause it behaves logarith-mi
ally as u ! �1, there is (at least one) in�e
tionpoint where the se
ond-order derivative is zero, and itfollows from Eq. (43) that1� 
f2 � 
4 e2F
(f2 � 1)2 = 0; u = uinf :This is a quadrati
 equation for 1� f2, and hen
e,1� f2 = 2e�2F
 �1�r1� 
 � 1
 e2F
 � : (58)A monotoni
ally growing fun
tion f(u) 
orresponds togreater values of f , i.e., to the �minus� bran
h of (58)(as is 
on�rmed by numeri
al results). But the right-hand side of (58) is then negative for 
 < 1, leading tof2 > 1, whi
h 
annot o

ur be
ause f2 = 1 is the max-imum attainable value for the solutions under study.Therefore, for 
 < 1, all solutions with monotoni
allygrowing f(u) belong to 
lass (a0) and possess a spatialasymptoti
s with a solid angle de�
it and a divergent�eld energy.Numeri
al integration 
on�rms these 
on
lusions.The di�erent behavior of F
(u) for 
 < 1 and 
 > 1 isshown in Fig. 7.

4.4. Solutions with f(u) 
hanging its signFor 
 < 
1 = 2=3, there are solutions with thefun
tion f(�) 
hanging its sign on
e, see Fig. 2b. For
 < 
2 = 0:3, there are solutions with f(�) 
hangingits sign twi
e, see Fig. 2
, et
. Unlike the monotoni
solutions dis
ussed in Se
. 4.3, all of them possess ahorizon and in agreement with the general inferen
esin Se
. 4.1, belong to 
lass (
1). This implies that be-ginning with a regular 
enter, the spheri
al radius r(�)�rst grows, then passes its maximum rmax at some �1,and then de
reases to zero at �nite � = �2, whi
h is asingularity. The horizon o

urs at some � = h < �2,whi
h 
an be greater or smaller than �1, but in any
ase, the singularity o

urs in a T -region and is of the
osmologi
al nature. The dependen
e r(�) before andafter the horizon is a single smooth 
urve (Fig. 8a).Beyond the horizon, jA(�)j grows from zero at � = 0(the horizon) to in�nity as � ! �s = �(�2) (the singu-larity) as a fun
tion of the proper time � of a 
omovingobserver, see Fig. 8b. Beyond the horizon, the s
alar�eld magnitude jf j �rst grows and then slightly variesaround unity. Approa
hing the singularity, f(�(�))
hanges its sign and �nally jf(�(�))j ! 1 as � ! �s,see Fig. 8
.5. CONCLUSION AND DISCUSSIONWe have performed a general study of the proper-ties of stati
 global monopoles in general relativity. Wehave shown that independently of the shape of the sym-metry breaking potential, the metri
 
an 
ontain eitherno horizon or one simple horizon, and in the latter 
ase,the global stru
ture of spa
e-time is the same as thatof the de Sitter spa
e-time. Outside the horizon, thegeometry 
orresponds to homogeneous anisotropi
 
os-mologi
al models of the Kantowski�Sa
hs type, wherespatial se
tions have the topology R � S2. In general,all possible solutions 
an be divided into six 
lasseswith di�erent qualitative behaviors. This 
lassi�
ationis obtained without any assumptions about V (�). Solu-tions with given V (�) 
ontain some of these 
lasses, notne
essarily all of them. This qualitative analysis givesa 
omplete pi
ture of what 
an be expe
ted of globalmonopole systems with parti
ular symmetry breakingpotentials.Our analyti
al and numeri
al analysis for the Mexi-
an hat potential 
on�rms the previous results of otherauthors 
on
erning the 
on�gurations with the mono-toni
ally growing Higgs �eld magnitude f . Amongother things, we have analyti
ally obtained the upper469
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-tions (a) r(�), (b) jA(�)j, and (
) f(�) for 
 = 0:5before (solid lines) and after (dashed lines) the hori-zonlimit 
0 = 3 for the existen
e of stati
 monopole solu-tions, previously found numeri
ally by Liebling [8℄. Wehave also found and analyzed a new family of solutionswith the �eld fun
tion f 
hanging its sign, whi
h wehave not met in the existing literature.Of parti
ular interest 
an be the 
lass-(a1) solu-tions with a stati
 nonsingular monopole 
ore and theKantowski�Sa
hs 
osmologi
al model outside the hori-zon. Its anisotropi
 evolution is determined by the

fun
tions of the proper time jA(�)j (the squared s
alefa
tor in the R dire
tion), r(�) (the s
ale fa
tor in thetwo S2 dire
tions), and the �eld magnitude f(�). For a
omoving observer in the T -region, the expansion startswith a rapid growth of jA(�)j from zero to �nite val-ues, resembling in�ation, and ends with A ! 
onstas � ! 1. The expansion in the S2 dire
tions de-s
ribed by r(�) is 
omparatively uniform and linear atlate times, i.e., mu
h slower than 
h2(�=rh) 
orrespond-ing to de Sitter's spa
e-time, see (35). We stress thatall su
h models with the de Sitter-like 
ausal stru
-ture (i.e., with a stati
 
ore and expansion beyond thehorizon) drasti
ally di�er from the standard Big Bangmodels in that the expansion starts from a nonsingu-lar surfa
e and 
osmologi
al 
omoving observers 
anre
eive information in the form of parti
les and lightquanta from the stati
 region situated in the absolutepast with respe
t to them. Moreover, the stati
 
oreis nonsingular in our 
ase, and it therefore provides anexample of an entirely nonsingular 
osmology in thespirit of papers by Gliner and Dymnikova [27�30℄.The nonzero symmetry-breaking potential plays therole of a time-dependent 
osmologi
al 
onstant, a kindof hidden va
uum matter. Be
ause the �eld fun
tion ftends to unity as � ! 1, the potential vanishes andthe �hidden va
uum matter� disappears.The la
k of isotropization at late times does notseem to be a fatal short
oming of the model for tworeasons. First, if the model is used to des
ribe thenear-Plan
k epo
h of the Universe evolution, then atthe next stage, the anisotropy 
an probably be dampedby diverse parti
le 
reation, and the further stages withlower energy densities may 
onform to the standard pi
-ture (with possible further phase transitions). Se
ond,if we add a 
omparatively small positive quantity � topotential (10) (�slightly raise the Mexi
an hat�), thismust 
hange nothing but the late-time asymptoti
s,whi
h then be
omes the de Sitter one 
orresponding tothe 
osmologi
al 
onstant �. In our view, these ideasdeserve a further study.Evidently, the present simple model 
annot bedire
tly applied to our Universe. It would be too naiveto expe
t that a ma
ros
opi
 des
ription based on asimple toy model of a global monopole with only onedimensionless parameter 
 
an explain all the varietyof early-Universe phenomena. Nevertheless, it maybe 
onsidered as an argument in favor of the ideathat the standard Big Bang might be repla
ed with anonsingular stati
 
ore and a horizon appearing as aresult of some symmetry-breaking phase transition atthe Plan
k energy s
ale.470
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