РАВНОВЕСНЫЕ ДИФФУЗИОННЫЕ ПРОЦЕССЫ МЕЖДУ ОБЪЕМОМ И ПОВЕРХНОСТЬЮ (100) ТАНТАЛА С УЧАСТИЕМ АТОМОВ КИСЛОРОДА

Н. Р. Галль^{*}, Е. В. Рутьков, А. Я. Тонтегоде

Физико-технический институт им. А. Ф. Иоффе Российской академии наук 194021, Санкт-Петербург, Россия

Поступила в редакцию 24 декабря 2001 г.

Методом высокотемпературной оже-спектроскопии с записью спектров непосредственно с нагретого образца вплоть до 2500 К изучен диффузионный обмен атомами кислорода между объемом и поверхностью (100) тантала на самых ранних стадиях адсорбции кислорода. Определена разность потенциальных барьеров для диффузии в объем и из объема и показано, что процессы носят равновесный характер в интервале температур 1000–2000 К; при более высоких температурах начинается активная термодесорбция.

PACS: 61.46.+w, 68.35.Bs

1. ВВЕДЕНИЕ

Исследованию взаимодействия газов, особенно кислорода, с поверхностями тугоплавких металлов, в частности Та, посвящено множество работ, начиная с классических исследований Ленгмюра [1]. Получены надежные данные о растворимости кислорода, его объемной диффузии и образующихся окислах [2–4], а также о закономерностях адсорбции и десорбции [5–10]. Многие из них вошли в справочники, например в [11]. При этом немало важных вопросов не решено по настоящее время, среди них закономерности высокотемпературной адсорбции кислорода и диффузионного обмена атомами кислорода между поверхностью металла и его объемом.

Ранее мы детально изучили равновесную диффузию атомов углерода между поверхностью (100) и объемом ряда металлов: W [12], Mo [13], Ta [14]. Кислород, так же как и углерод, — примесь внедрения, и их объемная диффузия протекает схожим образом [15], однако в адсорбированном состоянии обе эти примеси ведут себя существенно по-разному. В частности, поверхностный кислород не растворяется в объеме вольфрама и молибдена [7], но хорошо растворяется в тантале, который и был выбран в качестве подложки. В настоящей работе мы рассмотрим лишь самые ранние стадии проникновения кислорода в объем тантала, задолго до образования объемных окислов.

2. МЕТОДЫ ЭКСПЕРИМЕНТА

Эксперименты проводились в сверхвысоковакуумном электронном оже-спектрометре высокого разрешения ($\Delta E/E < 0.1$ %) с призменным энергоанализатором [16]. Оже-спектры измерялись непосредственно на сильно нагретых, вплоть до 2200 К, образцах, что имело принципиальное значение при изучении равновесных процессов в системе тантал-кислород при средних и высоких температурах. Чувствительность оже-спектрометра к характерным примесям (C, O, ...) составляла порядка 10^{-2} монослоя. Для измерений использовался оже-пик кислорода с энергией E = 504 эВ и триплет оже-пиков тантала с E = 160-179 эВ.

В качестве образцов использовались тонкие танталовые ленты $1 \times 0.05 \times 40 \text{ мм}^3$. Ленты тщательно очищались от возможных примесей, в том числе и от кислорода, прогревом сначала в атмосфере кислорода при $P_{O_2} \approx 1 \cdot 10^{-3}$ Па и T = 1800 K около 60 мин и затем в сверхвысоковакуумных условиях ($P \approx 1 \cdot 10^{-8}$ Па) при T = 2700 K в течение несколь-

^{*}E-mail: gall@ms.ioffe.rssi.ru

ких минут при пропускании через ленты переменного тока. После такой термической обработки текстура лент на более чем 99.5 % была выражена гранью (100). Измерения на растровом электронном микроскопе показали, что средний размер зерен на поверхности составляет приблизительно 10 мкм. Ленточные образцы были однородны по работе выхода, и ее величина составляла $e\varphi = 4.1$ эВ, что типично для грани (100) тантала [17]. Очищенные образцы давали только оже-пики, характерные для чистого тантала. Охлаждение образцов, как медленное, так и быстрое, сбросом тока накала, не приводило к выходу каких-либо примесей на поверхность. После серии измерений лента регенерировалась с помощью высокотемпературного (~ 2400 K) прогрева, и свойства ее поверхности восстанавливались. Все полученные результаты хорошо воспроизводились после регенерации лент и при смене образцов. Для калибровки рядом с танталовой лентой устанавливалась вольфрамовая с гранью (100) на поверхности, которая очищалась и текстурировалась по методике, описанной в 12.

Температура ленты измерялась микропирометром, а в непирометрической области — с помощью линейной экстраполяции зависимости температуры от тока накала. Точность измерения в пирометрической области составляла ±20 K, а температурная однородность лент была лучше чем ±10 K.

Кислород напускался из источника, в котором использовалось термическое разложение бихромата цезия, непосредственно в рабочую камеру прибора до давления $(1-5) \cdot 10^{-6}$ Па при T = 300 К до образования субмонослойных поверхностных покрытий, после чего кислород немедленно откачивался. В условиях, когда объемные окислы не образовывались, весь кислород, продиффундировавший в объем подложки, находился там в виде твердого раствора с концентрацией не выше 1–0.1 ат.% [9,18]. Его вкладом в полный оже-сигнал пренебрегали, считая, что весь оже-сигнал кислорода формируется лишь атомами О, адсорбированными на поверхности.

3. ОБРАЗОВАНИЕ ПОВЕРХНОСТНОГО ОКСИДА ТАНТАЛА

Установлено (см. [5–10] и имеющуюся там библиографию), что экспозиция грани (100) тантала в атмосфере кислорода при комнатной температуре приводит к диссоциативной адсорбции кислорода, как и в случае грани (100) вольфрама [18]. Применяемый нами метод оже-спектроскопии показывает, что концентрация поверхностного кислорода при его напуске в камеру при T = 300 К быстро достигает насыщения. Это совпадает с данными работы [7], где та же система изучалась методом температурной вспышки. Для определения абсолютной концентрации поверхностного кислорода на поверхности (100) тантала на вспомогательной вольфрамовой ленте при T = 300 К создавали по известной методике поверхностный оксид с концентрацией кислорода $N_{\rm O}^{\rm W} = 9 \cdot 10^{14}$ ат/см² [19].

Сравнивая интенсивности оже-пиков кислорода на поверхностях (100) тантала, $I_{\rm O}^{\rm Ta}$, и вольфрама, $I_{\rm O}^{\rm W}$, в одном опыте, мы могли определить абсолютную концентрацию кислорода на поверхности тантала:

$$N_{\rm O}^{\rm Ta} = N_{\rm O}^{\rm W} \frac{I_{\rm O}^{\rm Ta}}{I_{\rm O}^{\rm W}}$$

В расчетах мы пренебрегали вторичными эффектами, связанными со свойствами подложки, в частности, различиями в коэффициентах быстрых обратно рассеянных электронов [20], ввиду того что Та и W, являясь соседями в периодической таблице, имеют близкие плотности и атомные концентрации.

Кислород адсорбировали до насыщения при комнатной температуре, откачивали, после чего систему кратковременно прогревали до 1000 К и охлаждали, выключая ток накала. Оказалось, что концентрация атомов О на поверхности при этом равна $N_{\rm O}^{\rm Ta} = (7 \pm 1) \cdot 10^{14} \, {\rm сm}^{-2}$. Полученная величина $N_{\rm O}^{\rm Ta}$ больше поверхностной концентрации кислорода на тантале, определенной в работе [7], в которой система Та/О изучалась методом температурной вспышки. Там было показано, что насыщение поверхности кислородом при 300 К соответствовало концентрации порядка 4 · 10¹⁴ см⁻². Эту концентрацию определяли по сложной методике, требующей точного знания сечений ионизации электронами атомов Та и молекул ТаО и ряда технических характеристик используемого масс-спектрометра, что, на наш взгляд, привело лишь к оценочной величине поверхностного покрытия кислородом тантала.

Так же, как и на поверхности (100) вольфрама, максимальное количество кислорода на поверхности (100) тантала несколько меньше, чем поверхностная концентрация атомов тантала $N^{\text{Ta}} = 9.3 \cdot 10^{14} \text{ см}^{-2}$. Возможно, это связано с тем фактом, что в случае диссоциативной адсорбции требуются два находящихся рядом свободных адсорбционных центра, например, для грани (100) ОЦК металлов две ямки с координационным числом четыре на поверхности подложки. При этом в конце процесса адсорбции молекул кислорода на поверхности останутся «одиночные» ямки, окруженные уже адсорбированным кислородом и в соответствии с нашей моделью непригодные для адсорбции. Компьютерное моделирование адсорбции кислорода в предположении о случайном месте падения молекулы на поверхность и отсутствии поверхностной миграции показывает, что в конце процесса 15–20 % одиночных центров (ямок) останутся свободными, что хорошо согласуется с экспериментом. Для удобства концентрацию $N_{\rm O}^{\rm Ta} = 7 \cdot 10^{14}$ см⁻² мы приняли за степень покрытия $\theta_{\rm O} = 1$ и считали полученное адсорбционное состояние кислородо-дефицитным поверхностным оксидом (ПО) тантала.

4. ТЕРМОДЕСОРБЦИЯ КИСЛОРОДА С ПОВЕРХНОСТИ ТАНТАЛА

Из приведенных в литературе масс-спектрометрических измерений известно, что термодесорбция кислорода с поверхности тантала наблюдается только при весьма высоких температурах [7]. При этом удаление кислорода происходит только путем десорбции молекул TaO [7], в отличие от случая вольфрама, где кислород десорбируется в виде отдельных атомов [20]. В [7] определены кинетические параметры десорбции кислорода: энергия активации $E_{des} = 5.7$ эВ и предэкспоненциальный множитель в уравнении Аррениуса $\tau_0 = 2 \cdot 10^{-12}$ с, которые позволяют определить абсолютные величины потока десорбции.

Наши измерения, выполненные методом электронной оже-спектроскопии (ЭОС), полностью подтвердили эти данные. Мы измеряли скорость уменьшения оже-сигнала кислорода при прогреве ПО на поверхности (100) тантала при высоких температурах. Результаты представлены на рис. 1. Так, например, при T = 2350 К требуется около 60 с для полного удаления кислорода из ПО.

В другой серии опытов ПО создавался на вспомогательной танталовой ленте, по своим свойствам полностью аналогичной рабочей и расположенной параллельно ей на расстоянии примерно 20 мм так, чтобы ее поверхность оказалась под углом 45° к поверхности рабочей ленты. При десорбции примесей с поверхности вспомогательной ленты часть слетевших атомов адсорбировалась на рабочей поверхности и регистрировалась с помощью ЭОС. Чтобы следить за десорбцией как кислорода, так и тантала, в качестве рабочей использовалась поверхность вспомогательной вольфрамовой ленты. Детально условия эксперимента описаны в нашей работе [21].

Оказалось, что оже-сигнал десорбированного

Рис.1. Зависимость интенсивности оже-сигнала кислорода на поверхности (100) тантала от времени отжига при различных температурах: T = 2250 (1), 2300 (2), 2350 (3) К. Начальная концентрация поверхностного кислорода $N_{\rm O} = 7 \cdot 10^{14}$ см⁻². Оже-спектры кислорода записывались после быстрого (меньше 1 с) охлаждения танталовой ленты до комнатной температуры выключением тока накала

кислорода начинает наблюдаться лишь при прогреве вспомогательной ленты до температуры выше 2100 К. Одновременно появляется и оже-сигнал тантала, причем оба они растут синхронно при всех температурах десорбции. Коэффициент переноса вещества с ленты на ленту рассчитывался, исходя из их геометрического расположения, в предположении, что угловое распределение десорбирующихся частиц подчиняется закону косинуса, и составлял приблизительно 2.5 %, как и в [21]. С помощью этого значения мы рассчитали абсолютные скорости десорбции кислорода при температурах в интервале 2100–2400 K, которые хорошо совпали с полученными в работе [7].

5. ТЕРМОСТАБИЛЬНОСТЬ ПОВЕРХНОСТНОГО ОКСИДА ТАНТАЛА

Приведенные выше данные позволили заключить, что при T < 2100 К атомы кислорода не покидают систему. Термодесорбционная спектроскопия, примененная в работах [7, 22], «слепа» в большой области температур 300–2200 К и дает информацию только о скорости десорбции вещества, но не о его поверхностной концентрации. Метод ЭОС в тради-

Рис.2. Зависимость равновесной степени покрытия кислорода на поверхности (100) тантала от температуры ленты. Начальная степень покрытия $\theta_{\rm O}=1.0~(1),~0.82~(2),~0.61~(3),~0.38~(4).~\theta_{\rm O}=1$ соответствует $N_{\rm O}=7\cdot10^{14}~{\rm cm}^{-2}$

ционном виде, когда после отжига системы O/Ta температура быстро сбрасывается и спектры записываются при комнатной температуре, не дает информацию о высокотемпературном состоянии адсорбированного слоя из-за возможности быстрых диффузионных процессов. Физическая картина процессов на поверхности стала ясна только при записи оже-спектров кислорода непосредственно на нагретом образце.

Оказалось, что при прогреве до $T \approx 1000 \text{ K}$ оже-сигнал кислорода остается неизменным. Интенсивность оже-сигнала подложки также постоянна, но уменьшена адсорбированным кислородом всего приблизительно в 1.1 раза и в данной работе мало информативна. Прогрев выше 1000 К приводил к постепенному уменьшению интенсивности оже-сигнала кислорода (рис. 2, кривая 1). При охлаждении ленты получаем те же точки на кривой, что и при прямом нагреве, т.е. система ведет себя полностью обратимо. Никаких временных задержек в изменениях интенсивности оже-сигнала кислорода для каждой T = const обнаружено не было. Это значит, что покрытие кислородом при смене температуры изменяется крайне быстро. Подобное положение возможно лишь тогда, когда имеется диффузионное равновесие во всей системе: во-первых, между поверхностью и объемом тантала, когда поток кислорода с поверхности ν_{S1} равен обратному потоку ν_{1S} (рис. 3), и, во-вторых, между любыми плоскостями

Рис. 3. Схематический разрез образца тантала с растворенными и адсорбированными атомами кислорода

внутри объема металла, когда потоки мигрирующих атомов кислорода равны друг другу. При этом мы пренебрегаем возможными отличиями свойств первого приповерхностного слоя от свойств объема металла [21] и считаем весь объем однородным.

Наблюдаемое равновесие неудивительно ввиду малой энергии активации объемной диффузии кислорода в тантале $E_0 = 1.2$ эВ [11] и примененных в опытах тонких лентах. Действительно, используя литературные данные для коэффициента диффузии кислорода в тантале

$$D = D_0 \exp\left(-\frac{E_0}{kT}\right) = 1.9 \cdot 10^{-2} \exp\left(-1.2\frac{eV}{kT}\right)$$

[11], получаем, что время прохода атома кислорода, например, от середины ленты до поверхности при T=1100-1200 K менее 1 с, а при T>1300 K — уже менее 0.1 с.

Отметим, что в равновесии концентрация кислорода на поверхности N_S намного больше, чем его концентрация N_i в любой плоскости междоузлий, в том числе и в первом приповерхностном слое N_1 , ответственном за выход атомов из объема на поверхность (рис. 3). Действительно, например, при T = 1600 К имеем на поверхности $\theta = 0.5$, т.е. $N_S = 3.5 \cdot 10^{14}$ см⁻², в то время как в первом приповерхностном слое

$$N_i = \frac{7 \cdot 10^{14} - 3.5 \cdot 10^{14}}{m/2} = 2.3 \cdot 10^9 \text{ cm}^{-2}.$$

Здесь $m \approx 3 \cdot 10^5$ — число межатомных плоскостей в нашей танталовой ленте (учтено, что кислород адсорбируется с двух сторон ленты). Большая разница в концентрациях N_S и N_1 указывает, видимо, на существенную разницу в величинах энергетических барьеров для растворения E_{S1} и выделения E_{1S} кислорода в системе O/(100)Ta.

Если часть находящегося в системе кислорода удалить путем его десорбции при $T \ge 2300$ K, то равновесные кривые будут расположены ниже начальной кривой 1 на рис. 2, качественно воспроизводя ее форму. При этом весь находящийся в системе кислород оказывается на поверхности при T < 1000 K, что позволяет рассчитывать полный баланс атомов О и для этих случаев.

6. МОДЕЛЬ ДЛЯ РАСЧЕТА БАЛАНСА ЧАСТИЦ В СИСТЕМЕ

При каждой данной температуре поверхностная концентрация кислорода $N_S(T)$ определяется экспериментально методом ЭОС, а его концентрацию в любой межатомной плоскости тантала можно рассчитать:

$$N_i = \frac{N_S (300 \text{ K}) - N_S (T > 1000 \text{ K})}{m/2},$$

учитывая, что при T < 1000 К весь кислород находится на поверхности. Полное количество кислорода, растворенного в объеме ленты толщиной h = 0.05 мм, в расчете на 1 см²

$$N_{bulk} = N_i m_i$$

Проанализируем равновесные кривые, представленные на рис. 2. Если сделать сечение кривых вдоль оси у и для каждой T = const найти отношение N_{bulk}/N_S , получим важный результат — это отношение не зависит от полного количества кислорода в системе $(N_{bulk} + N_S)$, но сильно зависит от температуры подложки (рис. 4). Полученный результат указывает, видимо, на отсутствие зависимости энергетических барьеров растворения E_{S1} и выделения *E*_{1S} от концентрации кислорода на поверхности и в объеме тантала. В самом деле, концентрация кислорода в объеме подложки в интервале температур 1000-2000 К в наших опытах на 3-4 порядка меньше предельной концентрации n_{max} растворенного кислорода в тантале [9]. Например, при T = 1000 K: $n_{max} = 2.1$ ат.%, при T = 1900 К: $n_{max} = 5.0$ ат.%.

Обработаем кривые на рис. 2, сделав сечение вдоль оси x. Потоки растворения ν_{S1} и выделения ν_{1S} в случае равновесия равны друг другу и описываются известными выражениями [10]:

$$\nu_{S1} = N_S C_S \left(1 - \frac{N_1}{N_{1 max}} \right) \exp\left(-\frac{E_{S1}}{kT}\right),$$

$$\nu_{1S} = N_1 C_1 \left(1 - \frac{N_S}{N_{S max}} \right) \exp\left(-\frac{E_{1S}}{kT}\right),$$
(1)

Рис. 4. Зависимость отношения концентрации кислорода в объеме ленты $N_{bulk} = N_1 m$ к его концентрации на поверхности N_S от температуры (сечение по оси y на рис. 2: • – 1, × – 2, • – 3)

где C_S и C_1 — предэкспоненциальные множители. В наших опытах при малых концентрациях кислорода на поверхности и в объеме, далеких от предельно возможных (N_{1max} или N_{Smax}), можно считать ($1 - N_1/N_{1max}$) ≈ 1 и ($1 - N_S/N_{Smax}$) ≈ 1 .

Уравнение (1) при $\nu_{S1} = \nu_{1S}$ можно привести к виду

$$\frac{N_1}{N_S} = \frac{C_S}{C_1} \exp\left(-\frac{\Delta E}{kT}\right).$$
 (2)

Из наклона прямых $\ln N_1/N_S = f(1/kT)$ для каждого N_S = const мы нашли $\Delta E = E_{S1} - E_{1S} =$ = 0.85 ± 0.05 эВ, а из (2) — отношение $C_1/C_S =$ = 178 ± 20.

Преобразовав уравнение (2) с учетом известных величин ΔE , C_1/C_S и $N_1 = N_{bulk}/m$ к виду

$$\theta = \frac{1}{1 + \frac{C_S m}{2C_1} \exp\left(-\frac{0.85 \text{ }_{9}\text{B}}{kT}\right)},$$
(3)

увидим, что расчетная зависимость $\theta = f(T)$ очень хорошо совпадет с экспериментальной кривой (см. пунктирную кривую на рис. 2) во всем интервале температур. Это укрепляет уверенность в рассмотренной физической картине диффузионных процессов в системе O/(100)Та и в правильности полученных энергетических и кинетических параметров.

Важно отметить, что конкретные величины поверхностных концентраций кислорода $N_S = f(T)$ (но не физическая сущность или энергетика процессов) должны сильно зависеть от толщины h ленты за счет того, что меняется доля от общего количества кислорода, находящегося в объеме подложки, в растворенном состоянии. Так, при толщине ленты $h \sim 0.5$ мм, в десять раз большей использованной нами, и описанной выше процедуре проведения опытов равновесное поверхностное покрытие при высоких температурах почти на порядок уменьшится, и диагностика поверхностного кислорода методом ЭОС станет проблематичной, хотя все величины барьеров останутся прежними.

Интересно отметить, что качественно наблюдаемые в системе O/(100)Та равновесные кривые изменения поверхностной концентрации примеси такие же, как и в системах C/(100)W [12,23], C/(100)Mo [13] и C/(100)Ta [14]. Однако в «углеродных» системах поведение кривых существенно более сложно и, видимо, указывает на наличие зависимости энергий растворения и выделения от поверхностной и объемной концентраций примеси.

7. ВЫВОДЫ

Возможность «наблюдать» за поверхностным кислородом методом ЭОС непосредственно на горячем образце с учетом полного баланса частиц в системе позволила детально изучить равновесные диффузионные процессы между объемом и поверхностью (100) тантала с участием атомов кислорода на самых начальных стадиях адсорбции кислорода на тантале. В работе определена разность энергетических барьеров ΔE для растворения E_{S1} и выделения E_{1S} кислорода: $\Delta E = 0.85$ эВ. Получено аналитическое выражение для зависимости поверхностного покрытия кислородом от температуры подложки в широком интервале температур 1000-2000 К. Видимо, схожие равновесные кривые можно будет наблюдать и на поверхности других тугоплавких металлов, растворяющих кислород.

Работа выполнена при поддержке Государственной программы Министерства науки РФ «Поверхностные атомные структуры» (проект № 4.6.99).

ЛИТЕРАТУРА

- 1. I. Lengmuir, Chem. Rev. 13, 147 (1933).
- 2. J. K. Roberts, Proc. Roy. Soc. A 152, 445 (1935).
- J. L. Morrison and J. K. Roberts, Proc. Roy. Soc. A 173, 13 (1939).

- 4. П. Кофстад, Высокотемпературное окисление металлов, Мир, Москва (1962).
- 5. Р. Баррет, Диффузия в твердых телах Изд-во иностр. лит., Москва (1948).
- 6. Ю. Р. Эванс, Коррозия и окисление металлов, Машгиз, Москва (1962).
- 7. В. Н. Агеев, Н. И. Ионов, ФТТ **13**, 1557 (1971).
- M. W. Ruckman, S.-L. Qiu, and M. Strongin, Surf. Sci. 331–333, 401 (1995).
- K. Kukli, J. Aarik, A. Aidla, H. Siimon, M. Ritala, and M. Leskel, Appl. Surf. Sci. 112, 236 (1997).
- C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, Mat. Sci. Eng. Rep., R 22, 269 (1998).
- В. Г. Самсонов, И. М. Виницкий, *Тугоплавкие соединения. Справочник*, Металлургия, Москва (1976), с. 232-240.
- Н. Р. Галль, Е. В. Рутьков, А. Я. Тонтегоде, Изв. РАН, сер. физ. 62, 1980 (1998).
- 13. Н. Р. Галль, Е. В. Рутьков, А. Я. Тонтегоде, Письма в ЖЭТФ 73, 756 (2001).
- 14. N. R. Gall, E. V. Rut'kov, and A. Ya. Tontegode, Surf. Sci. 472, 187 (2001).
- **15**. Х. Дж. Гольдшмидт, *Сплавы внедрения*, Мир, Москва (1981), т. 2, с. 463.
- N. R. Gall, S. N. Mikhailov, E. V. Rut'kov, and A. Ya. Tontegode, Surf. Sci. 191, 185 (1987).
- В. С. Фоменко, Эмиссионные свойства материалов. Справочник, Наукова Думка, Киев (1981).
- Е. Фромм, Е. Гебхардт, Газы и углерод в металлах, Металлургия, Москва (1980).
- N. P. Vas'co, Yu. G. Ptushinskii, and B. A. Chuikov, Surf. Sci. 14, 448 (1970).
- 20. А. Йоши, Л. Е. Дэвис, В. Ц. Палмберг, в сб. Методы анализа поверхностей, под ред. А. Зандерны, Мир, Москва (1979).
- Н. Р. Галль, Е. В. Рутьков, А. Я. Тонтегоде, Письма в ЖТФ 25, 57 (1999).
- 22. В. Н. Агеев, Н. И. Ионов, ЖТФ 38, 1149 (1968).
- 23. K. J. Rawlings, S. D. Foulias, and B. J. Hopkins, Surf. Sci. 109, 513 (1981).