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SPECTRA OF REGULAR QUANTUM GRAPHSYu. Dabaghian *, R. V. Jensen, R. BlümelDepartment of Physis, Wesleyan UniversityMiddletown, CT 06459-0155, USASubmitted 18 Deember 2001We onsider a lass of simple quasi one-dimensional lassially nonintegrable systems that apture the essene ofthe periodi orbit struture of general hyperboli nonintegrable dynamial systems. Their behavior is su�ientlysimple to allow a detailed investigation of both lassial and quantum regimes. Despite their lassial haotiity,these systems exhibit a �nonintegrable analogue� of the Einstein�Brillouin�Keller quantization formula thatprovides their spetra expliitly, state by state, by means of onvergent periodi orbit expansions.PACS: 05.45.Mt, 03.65.Sq, 02.30.Lt1. INTRODUCTIONVery few quantum systems an be solved expliitly.Among them are the standard textbook examples, suhas the harmoni osillator or the hydrogen atom [1℄. Inall of these ases, the spetrum of the quantum sys-tem is obtained as an expliit analytial formula of theform �En = : : : �, where n is the quantum numberof the system. This proedure already fails for someof the simplest quantum systems, whih are still on-sidered elementary textbook problems. An exampleis a quantum partile in a box with a step potentialinside, as shown in Fig. 1. Even for the simple prob-lem in Fig. 1, expliit analytial solutions of the form�En = : : : � are no longer available beause the prob-lem leads to a transendental spetral equation. Thereommended method of solution is either numerial orgraphial [1�3℄. We reently found a way [4�6℄ of ob-taining expliit analytial solutions of a wide lass ofproblems suh as the one shown in Fig. 1, thus obtain-ing an expliit analytial solution of textbook problemsthat until now were relegated to numerial or graphi-al solution tehniques. Our methods are also a stepforward in the mathematial theory of almost periodifuntions [7℄, beause we obtain expliit formulas forthe zeros of a wide lass of almost periodi funtions.Furthermore, the lassial dynamis of the quantumsystems disussed in this paper is haoti. Beause itmay well be true in general that the quantized versionsof lassially haoti systems do not admit the existene*E-mail: ydabaghian�mail.wesleyan.edu
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Fig. 1. Sketh of a step potential in a box, a well-knowntextbook quantum problemof quantum numbers (see, e.g., [8, 9℄ for a detailed dis-ussion of this important point), our �En = : : : � spe-tral formulas, ontaining an expliit quantum numbern, may ome as a surprise. At this point, we feel thatit is important to stress that our results are not onje-tures, approximations or merely formal identities. Ourresults are exat, expliit, onvergent periodi orbit ex-pansions that an be ast into the form of mathematialtheorems. We will publish the rigorous mathematialunderpinnings of our results elsewhere [10℄.It is well known [11℄ that the periodi orbit theoryleads to ompletely di�erent approahes for quantizingintegrable and nonintegrable dynamial systems. Forintegrable systems, there is a simple proedure [11, 12℄that allows quantizing the ation variables individuallyfor eah degree of freedom. The situation is ompletely1399



Yu. Dabaghian, R. V. Jensen, R. Blümel ÆÝÒÔ, òîì 121, âûï. 6, 2002di�erent for the haoti ase, where the periodi orbittheory [11℄ allows evaluating only ertain global har-ateristis of the spetrum, e.g., the density of states�(E) = 1Xj=1 Æ (E �Ej) � ��(E) ++ 1� ImXp Tp(E) 1X�=1A�p(E) exp (i�Sp(E)) ; (1.1)typially with only semilassial auray [13℄. Here,��(E) is the average density of states, Sp(E), Tp(E),and Ap(E) are respetively the ation, the period, andthe weight fator of the prime periodi orbit labeledby p, and � is the repetition index. In this approah,individual energy levels are obtained indiretly as thesingularities of the sum in Eq. (1.1). As for the ideaof expressing them diretly in terms of the periodi or-bits, M. V. Berry wrote in 1991 [14℄: � : : : We do notknow how, or even whether, the losed orbit sum gen-erates the individual Æs in the level density for haotisystems. This is a serious � perhaps shoking � sit-uation, beause it means that we are ignorant of themehanism of quantization.�In the ase of quantum graphs, Berry's question anbe answered de�nitely. The periodi orbit sums repre-senting the spetral density of quantum graphs do pro-vide the individual levels in the form of Æ-spikes in (1.1)and only those [15, 16, 17, 18℄. In addition, we reentlyshowed [4, 5, 6℄ that the answer to Berry's question anbe taken one step forward: not only do periodi orbitexpansions for quantum graphs produe Æ-funtions forthe quantum states in the level density, but for er-tain lasses of quantum graphs there also exist expliitonvergent periodi orbit expansions for individual en-ergy levels. Beause they provide expliit formulas forthe energy levels of lassially haoti systems, theseperiodi orbit expansions may be onsidered as �non-integrable analogues� of the Einstein�Brillouin�Keller(EBK) quantization formula [11, 12℄ that applies to in-tegrable systems.This paper is organized as follows. In Se. 2, webrie�y review the theory of quantum graphs and extendthe theory by de�ning �dressed graphs�, i.e., quantumgraphs with arbitrary potentials on their bonds. InSe. 3, we de�ne an important lass of dressed quantumgraphs: regular quantum graphs. Based on a detailedstudy of their spetral properties in Se. 3, we deriveexpliit analytial spetral formulas for regular quan-tum graphs in Se. 4. In Se. 5, we present a variety ofregular quantum graphs illustrating the use and onver-gene of the spetral formulas. In Se. 6, we summarizeour results and onlude the paper.

2. DYNAMICAL NETWORKSWe onsider a partile moving on a quasi one-dimensional network of bonds and verties. These net-works are known as graphs in the mathematial liter-ature. They were and still are the subjet of inten-sive investigations in all areas of siene ranging frommathematis over omputer siene to hemistry andphysis. An example of a simple graph with �ve ver-ties and seven bonds is shown in Fig. 2. The parti-le satters randomly at every vertex Vi along di�erentbonds Bij that meet at that vertex. We assume thatthe graph ontains a �nite number of bonds and ver-ties (NB and NV respetively). The key assumptionabout the dynamis of the partile is that the turningpoints of any partile trajetory on the graph oinidewith the verties of the graph, and the shape of thetrajetories is therefore uniquely determined by the ge-ometry of the graph. The trajetories of the partile aresimply the joint sequenes of graph bonds, whih areeasily desribed and enumerated. For instane, everytrajetory an be represented by a sequene ofNB sym-bols, eah of whih orresponds to a ertain bond [19℄.Beause the trajetories orrespond to various bond se-quenes, every trajetory is desribed by a ode wordonsisting of NB symbols.We �dress� the bonds Bij of the graph with poten-tials Uij(x), whih may a�et the way a partile movesalong the bonds. However, it is required that thesedressings do not violate the geometry of the partiletrajetories, i.e., do not add turning points other thanthe original verties of the graph. This ondition isrequired to hold at all energies. To omply with this
V5

V4

V1

V3

V2Fig. 2. Sample graph with �ve verties and sevenbonds1400



ÆÝÒÔ, òîì 121, âûï. 6, 2002 Spetra of regular quantum graphsrequirement, the bond potentials are allowed to dependon the energy E of the partile, i.e., Uij = Uij(x;E),suh that E > Uij(x;E) is ful�lled for all E and alli; j. This in fat leads to many additional simpli�a-tions that have a deep physial meaning in the ontextof the semilassial periodi orbit theory [4�6; 19�21℄.The shapes of the trajetories, and in partiular ofthe periodi orbits, beome inreasingly ompliatedas their lengths grow. This makes them similar to thegeneri (dynamial) haoti systems. In fat, the num-ber of possible periodi orbits inreases exponentiallywith their lengths, (or, equivalently, the number of ver-tex satterings) with a rate whih depends only on thetopology of the graph. Every graph � an be hara-terized by its topologial entropy (the global averagerate of the exponential proliferation of periodi orbits)�� = liml!1 ln [#(l)℄l ; (2.1)where l haraterizes the lengths of the periodi orbitsin terms of the lengths of their ode words and #(l) isthe total number of periodi orbits of the length � l [9℄.Beause the phase spae of the system is bounded, thedynamis of the partile is mixing [16℄, and hene, thestruture of the periodi orbit set on dynamial net-works losely imitates the behavior of the losed tra-jetories of generi haoti systems [22, 23℄. On theother hand, dynamial networks an be easily quan-tized [4�6; 17�19; 24℄, whih makes them very onve-nient models for studying various aspets of quantumhaology.The details of the lassial dynamis on graphs aredisussed in numerous publiations [16, 25℄. Below,we investigate the quantum-mehanial desription ofthese systems. In partiular, we disuss their spetrain the ontext of the periodi orbit theory. We nowbrie�y outline some details of the graph quantizationproedure that are used in the subsequent disussion.A quantum graph system is a quantum partile thatmoves on a one-dimensional network � dressed withthe potentials Uij(x;E). Below, we onsider the aseof saling potentials disussed in [6; 26�28℄,Uij(E) = �ijE; �ij = �ji; (2.2)where �ij are onstants. This hoie of the dressing po-tentials allows us to avoid ertain mathematial om-pliations, whih are irrelevant for the physial ontextof our disussion. For more details on saling potentialsand their relevane to the semilassial periodi orbitanalysis, see [4, 6, 19℄.

The Shrödinger equation for graphs with poten-tials (2.2) an be written as�̂2ij ij(x) = �2ijE ij(x); (2.3)where �̂ij = �i ddx �Aij (2.4)is the generalized momentum operator and�2ij = 1� �ij :The oordinate 0 � x � Lij is measured along Bijfrom i to j and Lij = Lji is the length of the bond.The magneti �eld vetor potential Aij = �Aji is as-sumed to be a onstant real matrix; it an be used asa tool for breaking the time-reversal symmetry.Classially, the partile an travel along the bondBij if its energy is above the saled potential height,E > Uij(E) (�ij < 1). In this ase, the solution ofEq. (2.3) on the bond Bij is a ombination of freewaves, ij(x) = aij exp (i (��ijk +Aij)x)p�ijk ++ bij exp (i (�ijk +Aij) x)p�ijk ; (2.5)where k = pE and the fators (�ijk)�1=2 are intro-dued to separate the physially meaningful �ux am-plitudes from the oe�ients aij and bij . In the oppo-site ase where �ij > 1, the bond Bij arries a linearombination of tunneling solutions. Due to the salingassumption, there is no transition between these twoases as a funtion of E. From now on, we assumethat the energy E is kept above the maximum saledpotential height,�ij < 1; i; j = 1; : : : ; NV : (2.6)At every vertex Vi, the bond wave funtions satisfy theboundary onditions ij(x = 0) = 'iCij ;NVXj=1Cij �̂ij ij(x)jx=0 = �i�i'i (2.7)for all i; j = 1; : : : ; NV . Here, Cij is the onnetivitymatrix of the graph, 'i is the value of the wave fun-tion at the vertex Vi, and �i are free parameters of theproblem, saled as �i = �0i k (see the Appendix). Wenote that the double-indexed saling onstants �ij re-fer to the bonds, whereas the single-indexed onstants1401



Yu. Dabaghian, R. V. Jensen, R. Blümel ÆÝÒÔ, òîì 121, âûï. 6, 2002�i refer to the sattering strengths at the verties. Webelieve that this notation is natural and does not leadto onfusion.Conditions (2.7) are onsistent only for a disreteset of energy levels En = k2n that de�ne the spetrumof the dressed quantum graph problem (2.3) and (2.7).As shown in [6; 16�18; 24℄ (see the Appendix), usingthe sattering quantization approah [29℄ allows one toobtain the spetral equation for any quantum graphproblem in the form�(k) = det[1� S(k)℄ = 0; (2.8)where S(k) is the �nite unitary graph sattering ma-trix [16℄. The indies that de�ne the matrix elementsSIJ of the matrix S orrespond to the graph bonds. Itis important that the bond BI � Bij is onsidered tobe di�erent from the (geometrially idential) reversedbond BI0 � Bji; the bonds of the graph are there-fore direted [4�6; 16; 18℄. Hene, the dimensionality ofthe sattering matrix is 2NB � 2NB. It is shown inthe Appendix that S = TD(k), where T is a onstant2NB � 2NB unitary matrix and D is the diagonal uni-tary matrix with the matrix elementsDIJ = ÆIJ exp (i (�Ik +AI)LI) ;I = 1; : : : ; 2NB: (2.9)Beause �(k) is a omplex funtion, it is onvenient tode�ne the spetrum via the zeros of its absolute value,j�(k)j = exp (�i�0(k))�(k); (2.10)where �0(k) is the omplex phase of �(k). The loga-rithmi derivative of j�(k)j produes a delta-peak foreah of its roots,� 1� Im lim�!0 ddk ln j det [1� S (k + i�)℄ j == 1Xn=1 Æ(k � kn); (2.11)whih, by de�nition, is the density of the momentumstates �(k) [6℄. On the other hand, using (2.10) and ex-panding the logarithm of determinant (2.8), the densityof states an be written as�(k) = 1� d�0(k)dk + 1� Im ddk 1Xn=1 1n Tr [S(k)℄n : (2.12)It an then be easily seen from the struture of thesattering matrix S [16, 24℄ that the matrix elementsof its n-th power are de�ned on onneted sequenes ofn bonds and the trae of Sn generates terms de�ned onlosed onneted sequenes of n bonds [6, 17, 24, 25℄.

These periodi onneted sequenes of n bonds Bijan be viewed as the periodi orbits traed by a lassi-al point partile moving on the graph. We note thatthe phase of the exponential in (2.9) is exatly the a-tion of a lassial point partile trajetory traversingthe bond BI ,SI = ZBI (�Ik +AI) dx = (�Ik +AI )LI : (2.13)Therefore, the semilassial transition amplitudesexp(iSI) between the verties onneted by the bondBI determine the sattering matrix S(k). As aonsequene [4�6; 16; 19℄, the �losed bond sequeneexpansion� (2.12) an be expliitly written as aperiodi orbit expansion in terms of phases (2.13),�(k) = ��(k) + 1� ReXp S0p 1X�=1A�p exp(i�S0pk); (2.14)where S0p is the k-independent �ation length� of theorbit p, Sp =Xp �ijLijk � S0p k; (2.15)and Ap is its weight ontaining the onstant fatorexp(iPp AijLij). Beause of the saling assumption(see the Appendix), the weight fator Ap is k-indepen-dent. The �rst term in this expression orresponds tothe average density of states of the momentum ��(k),��(k) = 1� d�0(k)dk ; (2.16)while the periodi orbit sum in (2.14) desribes the �u-tuations around the average.The periodi orbit expansion for the stairase fun-tion N(k) = 1Xn=1�(k � kn) (2.17)an be obtained by diret integration of (2.11)and (2.14). We obtainN(k) = �N(k) + ~N(k); (2.18)where the �rst term�N(k) = kZ0 ��(k0) dk0 + �N(0) (2.19)represents the average behavior of the stairase and~N(k) = Im 1�Xp 1X�=1 A�p� exp(i�S0pk) (2.20)1402



ÆÝÒÔ, òîì 121, âûï. 6, 2002 Spetra of regular quantum graphsdesribes zero-mean osillations around the average.As disussed in the Introdution (see also[4�6; 16; 25℄), quantum graphs are haoti in thelassial limit. The lassial sattering probabilitiesare obtained in the limit as ~ ! 0 from the quantummehanial transition amplitudes [4�6℄ (see the Ap-pendix). In the saling ase, they are k-independent,and therefore, the quantum sattering amplitudesdo not depend on ~ at all. They determine thequantum and the lassial sattering probabilitiessimultaneously.3. REGULAR GRAPHS AND THEIR SPECTRAThe spetral determinant is a polynomial of degree2NB of the matrix elements of S. It was shown in [6℄that the total phase of this polynomial is�0(k) = 12 Im ln detS(k) = kS0 � �0; (3.1)where S0 =X(ij) Lij�ijis the total ation length of the graph � and0 = NB +NV2 + 1� NVXi=1 artg��0ivi � ; (3.2)where vi =Xj Cij �ij : (3.3)The average density of states is therefore a onstant,�� = 1� ddk�0(k) = S0� ; (3.4)and the average stairase funtion in Eq. (2.19) is�N(k) = S0� k + �N(0): (3.5)The spetral equation j�(k)j = 0 an be written asos (S0k � �0) = N�Xi=1 ai os(Sik � �i); (3.6)where the frequenies Si < S0 are ombinations of theredued lassial ations S0ij = �ijLij , and 0, i areonstants. The number N� of terms in (3.6) is boundedby N� � 3NB [6℄.The frequeny S0 in �0(k) is the largest frequenyin expansion (3.6). While it is the only harateristi

of the graph ontained in the left-hand side of (3.6),the right-hand side�(k) � N�Xi=1 ai os(Sik � �i); (3.7)ontains the omplete information about the graph sys-tem. We all �(k) the harateristi funtion of thegraph.A graph � is alled regular [4�6℄ if its harateristifuntion �(k) satis�esN�Xi=1 jaij � � < 1: (3.8)For regular graphs, spetral equation (3.6) an besolved formally [4�6℄ to yield the impliit equation ofits eigenvalues,kn = �S0 [n+ �+ 0℄ + 1S0 ��( aros[�(kn)℄ for n+ � even;� � aros[�(kn)℄ for n+ � odd; (3.9)where � is a �xed integer, hosen suh that k1 is the�rst positive solution of (3.6). The index n 2 N labelsthe roots of (3.6) in their natural order.The impliit form in Eq. (3.9) immediately impliesthat beause the seond term in (3.9) is bounded by�=S0, the deviations of solutions to this equation fromthe points k̂n = �S0 (n+ �+ 0 + 1) (3.10)never exeed �=S0 in absolute value for any n. Thequantities k̂n are very important in what follows be-ause they determine the root struture of (3.6).The roots kn an be deomposed into an averagepart �kn and a �utuating part ~kn. From (3.9), we ob-tain kn = �kn + ~kn; (3.11)where �kn = �S0 �n+ �+ 0 + 12� ; (3.12)and ~kn = (�1)n+�S0 naros[�(kn)℄� �2o : (3.13)1403



Yu. Dabaghian, R. V. Jensen, R. Blümel ÆÝÒÔ, òîì 121, âûï. 6, 2002We note that the onstant �+ 0 an be related to theinitial value �N(0) of the average stairase funtion inEq. (3.5). We now onsider the integrallimn!1 1̂kn k̂nZ0 N(k0)dk0: (3.14)The integration in (3.14) an be easily performed be-ause the funtion N(k) has simple form (2.17),1̂kn k̂nZ0 N(k0)dk0 = n� 1̂kn nXi=1 ki; (3.15)sine there are n roots to the left of k̂n. The �utua-tions of both N(k) and kn around their average valueshave zero mean, and in the limit of n� 1 we an there-fore use �N(k) and �kn instead of N(k) and kn in (3.15)and write1̂kn k̂nZ0 �N(k0)dk0 = n� 1̂kn nXi=1 �ki; n� 1: (3.16)Using the expliit forms of k̂n, �kn, and �N(k), we obtain�N(0) + 12(n+ �+ 0 + 1) == nn+ �+ 0 + 1 �n2 + �+ 0 + 1� : (3.17)Expanding the right-hand side and keeping terms upto the order 1=n yields�N(0) + 12(n+ �+ 0 + 1) == n��1� �+ 0 + 1n ��n2 + �+ 0 + 1� : (3.18)The terms proportional to n anel. Comparing theonstants in (3.18) yields�N(0) = �(�+ 0 + 1): (3.19)It an be veri�ed by diret substitution that�N(k̂n) = n; (3.20)whih implies that funtion (3.10) is the inverse of av-erage stairase funtion (3.5). The points k̂n an alsobe viewed as the intersetion points of stairase fun-tion (2.17) and its average (3.5),�N(k̂n) = N(k̂n) = n; (3.21)
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Fig. 3. The exat spetral stairase funtion N(k) andits average �N(k) for the saling step potential shownin Fig. 1 with b = 0:3 and � = 1=2. The average �N(k)rosses every �stair� of N(k) (piering average) at theequally spaed separating points k̂nand hene, the �utuations ~N(k) of the spetral stair-ase vanish at the points k̂n,~N(k̂n) = Im 1�Xp 1X�=1 A�p� exp(i�S0p k̂n) = 0: (3.22)Geometrially, Eq. (3.22) means that the average stair-ase funtion �N(k) intersets every step of the stairasefuntion N(k). We therefore all �N(k) the piering av-erage. This is illustrated in Fig. 3, whih shows thespetral stairase funtion N(k) for the saling steppotential shown in Fig. 1 and disussed in more detailin Se. 5, Example 1, below. We used the parameters� = 1=2 and b = 0:3. Also shown is the average stair-ase �N(k) for this ase. It learly pieres all the steps ofN(k), providing an example of a system with a pieringaverage.Beause�(k) ontains only frequenies smaller thanS0, every open interval In = (k̂n�1; k̂n) ontains onlyone root of (3.6), namely kn, and therefore, k̂n playthe role of separating points between adjaent roots[4�6; 10℄. Moreover, beause of (3.8), the �allowedzones� Rn � In where the roots kn an be found nar-row tokn 2 Rn � � �S0 (n+ �+ 0 + u) ;�S0 (n+ �+ 0 + 1� u)� ; (3.23)where u = aros�=S0. Correspondingly, there are for-1404



ÆÝÒÔ, òîì 121, âûï. 6, 2002 Spetra of regular quantum graphsbidden regions Fn,Fn � � �S0 (n+ �+ 0 � u) ;�S0 (n+ �+ 0 + 1 + u)� (3.24)where roots of (3.6) never appear. In the limit as �! 1(u! 0), the allowed zonesRn tend to oupy the entireroot interval, Rn ! In.4. SPECTRAL FORMULASOne the existene of separating points k̂n has beenestablished, it is possible to obtain an exat periodiorbit expansion separately for every root of (2.8). Thederivation is based on the identitykn = k̂nZk̂n�1 k�(k)dk: (4.1)Substituting exat periodi orbit expansion (2.14) for�(k) in (4.1) yieldskn = k̂nZk̂n�1 kS0� dk ++ 1� k̂nZk̂n�1 kReXp S0p 1X�=1A�p exp(i�S0pk)dk == �S0 �n+ �+ 0 + 12�++ k̂n Im 1�Xp 1X�=1 A�p� exp(i�S0p k̂n)�� k̂n�1 Im 1�Xp 1X�=1 A�p� exp(i�S0p k̂n�1) ++Re 1�Xp 1S0p �� 1X�=1 A�p�2 �exp(i�S0p k̂n)� exp(i�S0p k̂n�1)� : (4.2)

Using (3.22), we simplify (4.2) tokn = �S0 �n+ �+ 0 + 12��� 1� ImXp 2S0p 1X�=1 A�p�2 sin h�!p2 i�� exp �i�!p�n+ �+ 0 + 12�� ; (4.3)where !p = �S0p=S0. The series expansion for kn inEq. (4.3) is more than a formal identity. It is rigor-ously onvergent, however it onverges only ondition-ally, whih means that the result of the summation de-pends on how the summation is performed. Indeed,aording to the well-known Riemann reordering theo-rem, one an obtain any result by rearranging the termsof a onditionally onvergent series [30℄. For the properonvergene of (4.3) to the exat roots of spetral equa-tion (3.6), we must therefore speify how the terms in(4.3) are to be summed.The mathematial details of the onvergene prop-erties of (4.3) are presented in [10℄. We here mentionthe main result, whih states that the terms in (4.3)must be summed aording to the length of the sym-boli odes [6, 19℄ of the periodi orbits, and not a-ording to their ation lengths. If (4.3) is summed inthis way, it not only onverges, but also onverges tothe exat roots kn of spetral equation (3.6).Equation (4.3) therefore provides an expliit rep-resentation of the roots of spetral equation (2.8) interms of the geometri harateristis of the graph. Inaordane with (3.12), the �rst term in (4.3) is the av-erage value �kn and the following periodi orbit sum isan expliit expression for the �utuation of the root ~kn.This method is not limited to obtaining expliit ana-lytial periodi orbit expansions for kn. In fat, usingthe identity f(kn) = k̂nZk̂n�1 f(k)�(k)dk; (4.4)we an obtain periodi orbit expansions for any fun-tion of the eigenvalues f (kn), for instane for the en-ergy E = k2.In the simplest ase where �0i = 0, Aij = 0, andImAp = 0, we havekn = �S0n�� 2�Xp 1S0p 1X�=1 A�p�2 sin�12�!p� sin(�!pn): (4.5)1405



Yu. Dabaghian, R. V. Jensen, R. Blümel ÆÝÒÔ, òîì 121, âûï. 6, 2002We note that k�n = �kn in this ase.Both the EBK theory and formula (4.3) allow usto ompute energy eigenvalues expliitly. In this sense,formula (4.3) may be regarded as an analogue of theEBK quantization formula [11, 12℄ for a haoti sys-tem. The omplexity of this expansion, struturallysimilar to (1.1), re�ets the geometrial omplexity ofthe periodi orbit set for graph systems.Finally, for expliit alulations (see Se. 5), it re-mains to determine the expliit form of the expansionoe�ients Ap. For some simple graphs, this was donein [16, 19℄. In the Appendix, we solve the problem forgeneral dressed graphs. We show that every passage ofan orbit p from a bond Bij to Bij0 through a vertexVi ontributes a fator �ji;ij0 (a matrix element of thematrix T , see the Appendix) to the weight Ap of theorbit, Ap =Y �(i)jj0 ; (4.6)where the produt is taken over the sequene of thebonds traed by the orbit p.5. EXAMPLESIn (3.8), we provided the de�nition of regular quan-tum graphs; in (3.9)�(3.24), we then disussed analyti-al properties of their spetra. The disussion of regularquantum graphs ulminated in Se. 4 with the deriva-tion of expliit spetral formulas for individual quan-tum states of regular quantum graphs. However, theabove de�nition of regular quantum graphs does notimply that regular quantum graphs atually exist. Ex-amples 1�3, disussed below, provide spei� instanesof quantum graphs that are regular for all hoies oftheir parameters. Examples 4 and 5 present quantumgraphs that exhibit both regular and irregular regimes.Finally, examples 6 and 7 provide illustrations of a newlass of quantum graphs, marginal quantum graphs, forwhih N�Xi=1 jaij = 1:Exept for speial hoies of their dressing potentials,these graphs an still be aommodated within themathematial framework set up in Ses. 3 and 4 andalso admit an expliit representation of their spetra inaordane with the spetral formulas derived in Se. 4.

Example 1: Saling step potential in a box. Weonsider a partile on�ned to a box 0 < x < 1 on-taining the saling step potential (see Figs. 1 and 4a)U(x) = ( 0 for 0 < x � b;�23E for b < x < 1: (5.1)This is equivalent to a three-vertex linear hain graph(Fig. 4a 0) with �2 = 0, Aij = 0, and the Dirihletboundary onditions at V1 and V3. This example isalso disussed in [4, 5, 6, 19, 31℄. In this ase, spetralequation (3.6) an be written as [4, 5℄sin �k(S021 + S023)� = r sin �k(S021 � S023)� ; (5.2)where r = 1� �231 + �23 < 1 (5.3)is the re�etion oe�ient at the vertex V2. Regular-ity ondition (3.8) is therefore automatially satis�edand this graph is always regular. In Se. 4, we alreadydisussed the onvergene properties of (4.3), inlud-ing the fat that a rigorous mathematial proof for theonvergene of (4.3) exists [10℄. Here, we present solidnumerial evidene for the onvergene of (4.3) in theontext of saling step potential (5.1). As disussedin [4, 5, 6, 19℄, every periodi orbit in potential (5.1)an be desribed by a binary ode word. Figure 5 showsthe relative error�(l)n = jk(l)n � knjkn ; n = 1; 10; 100of the result k(l)n predited by (4.3) ompared to thenumerially obtained exat result kn as a funtion ofthe binary ode length l of the orbits used in expan-sion (4.3). We used b = 0:3 and � = 1=2. Figure 5also demonstrates that using all periodi orbits up tothe binary ode length l � 150, we obtain an aurayon the order 10�4�10�7 for the roots kn of (5.2). Al-though the onvergene of the series is slow (aordingto Fig. 5, it is approximately of the order 1=l2 on aver-age), one an obtain a su�iently good estimate for theroots using all orbits of the ode length 20 and smaller.Example 2: Saling Æ funtion in a box. Thispotential, shown in Fig. 4b, is again equivalent to athree-vertex quantum graph. This time, however, thepotentials on the bonds are identially zero, whereasthe vertex V2 is dressed with a saling Æ funtion ofstrength �2 = �02k > 0:1406
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Fig. 4. Colletion of potentials and their assoiated linear quantum graphs that serve as examples to illustrate the onept ofregular quantum graphs. a � Saling step potential in a box and its assoiated three-vertex linear graph (a 0). b � SalingÆ funtion in a box and its orresponding three-vertex linear graph (b 0). Combined saling Æ funtion and step potential ina box () with its linear three-vertex quantum graph ( 0). Two saling steps (d) and two saling Æ funtions (e) in a boxtogether with their assoiated four-vertex dressed linear quantum graphs (d 0) and (e 0), respetivelyWe apply the Dirihlet boundary onditions at the openends. In this ase, spetral equation (3.6) beomesos �k(S021 + S023)� �0� == �jrj os �k(S021 � S023)� ; (5.4)where 0 = 1� 1� arsin 2p4 + (�02)2! (5.5)and the re�etion oe�ient r is given byr = �022i� �02 : (5.6)Beause jrj < 1, the harateristi funtion of (5.4) alsosatis�es regularity ondition (3.8). Therefore, the sal-ing Æ funtion in a box is another example of a regularquantum graph.

Example 3: Combined saling step and salingÆ-potential in a box (Fig. 4). This is equivalent toa three-vertex dressed linear graph (Fig. 4 0) with�2 = �02k > 0. Spetral equation (3.6) then beomesos �k(S021 + S023)� �0� == a1 os �k(S021 � S023)� �1� ; (5.7)where0 = 1� 1� arsin �12 + �23p(�12 + �23)2 + (�02)2! ;1 = 1� 1� arsin �12 � �23p(�12 � �23)2 + (�02)2! ; (5.8)and the oe�ient a1 isa1 =s (�21 � �23)2 + (�02)2(�21 + �23)2 + (�02)2 < 1: (5.9)1407
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Fig. 5. Comparison between the exat eigenvalues knand the kn values omputed via (4.3) for the salingstep potential in Fig. 1. Shown is the relative error�(l)n = jk(l)n � knj=kn, n = 1; 10; 100, of the resultk(l)n predited by (4.3) ompared to the numerially ob-tained exat result kn as a funtion of the binary odelength l of the orbits used in expansion (4.3). We usedb = 0:3 and � = 1=2Therefore, the harateristi funtion of (5.7) oneagain satis�es the regularity ondition for any lin-ear three-vertex graph with nontrivial bond potentials(�221 + �223 6= 0) [6℄.Quantum graphs that are regular for all of their pa-rameter values are quite exeptional. In general, quan-tum graphs may have a regular regime for a ertainrange of the parameter values or the regular regimemay not exist at all. The following example illustratesthis point.Example 4: Two saling steps in a box (Fig. 4d).As an example of a graph that has both a regularand an irregular regime, we onsider a quantum par-tile in a box with two saling steps (Fig. 4d), whihis equivalent to the four-vertex linear graph shown inFig. 4d 0. Beause there are no Æ funtions present, wehave �2 = �3 = 0. We assume the Dirihlet boundaryonditions at the dead ends of this graph. In this ase,spetral equation (3.6) is given bysin(S0k) = �r2 sin(kS1)�� r2r3 sin(kS2) + r3 sin(kS3); (5.10)whereS0 = S021+S023+S034; S1 = S023+S034�S021;S2 = S021+S034�S023; S3 = S021+S023�S034; (5.11)and r2 = �12 � �23�12 + �23 ; r3 = �23 � �34�23 + �34 (5.12)
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r2Fig. 6. Four-vertex linear hain graph (a) and the or-responding spae (r2; r3) of re�etion oe�ients (b).The shaded region in the (r2; r3) spae orresponds tothe regular regime of the quantum graph shown in (a).This demonstrates that the subset of regular quantumgraphs within the set of all four-vertex linear quantumgraphs is non-empty and has a �nite measureare the re�etion oe�ients at the orresponding ver-ties Vi. For jr3j+ jr2r3j+ jr2j < 1; (5.13)the four-vertex linear graph (Figs. 4d 0 and 6a) isregular. Regularity ondition (5.13) is ful�lled in adiamond-shaped region of the (r2; r3) parameter spaeshown as the shaded area in Fig. 6b. The di�erenebetween the regular and the irregular regimes is learlyre�eted in the stairase funtions. Figure 7a showsthe stairase funtion N(k) together with the averagestairase �N(k) in the regular regime for the parameterombination r2 = 0:2 and r3 = 0:3. The piering-average ondition is learly satis�ed. Figure 7b showsthe stairase funtion N(k) together with the averagestairase �N(k) in the irregular regime for the param-eter ombination r2 = 0:98 and r3 = 0:99. In thisase, the piering-average ondition is learly violated,onsistently with the irregular nature of this regime.Example 5: Two saling Æ funtions in a box(Fig. 4e). This potential is equivalent to the four-vertexgraph shown in Fig. 4e 0 with�2 = �02k > 0; �3 = �03k > 0;and the Dirihlet boundary onditions at the dead ends1408
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16Fig. 7. The exat spetral stairase funtion N(k) andits average �N(k) for the regular r2 = 0:2, r3 = 0:3 (a)and the irregular r2 = 0:98, r3 = 0:99 (b) regimes ofthe four-vertex linear graph shown in Fig. 6a. In theregular regime (a), the average stairase funtion �N(k)pieres every step of N(k). This is not the ase in (b),harateristi of the irregular regimeV1 and V4. In this ase, spetral equation (3.6) isgiven byos(kS0 � �0) = a1 os(kS1 � �1) ++ a2 os(kS2 � �2) + a3 os(kS3 � �3); (5.14)wherea1 = �02p4 + (�02)2 ; a2 = �03p4 + (�03)2 ;a3 = �02�03p[4 + (�02)2℄[4 + (�03)2℄ (5.15)
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V2Fig. 8. Two-vertex irular graph. In the mathemati-ally positive sense, �12 is the saling oe�ient of thebond onneting the vertex V1 with the vertex V2, �21is the saling oe�ient of the bond onneting V2 withV1. This labelling is possible only in the absene of amagneti �eld (Aij = 0), where the sense of traversalof a bond is irrelevantand0 = 1� arsin �02�03 � 4p[4 + (�02)2℄[4 + (�03)2℄! ;1 = 1� arsina2;2 = 1� arsina1;3 = 12 : (5.16)
The sum of the amplitudes in (5.15) ranges between0 and 3, and therefore, this system has regular andirregular regimes. The regular regime orresponds toa �nite area in the (�02; �03) parameter spae. All lin-ear hain graphs with a �nite number of verties andthe Dirihlet boundary onditions at the two dead-endverties at the beginning and at the end of the graphhave a �nite-measure regular regime and an irregularregime. This fat is proved in [10℄.Graphs of a new type are marginal quantum graphs.A marginal quantum graph is de�ned byN�Xi=1 jaij = 1: (5.17)For marginal quantum graphs, apart from a small setof �speial� graphs, expliit spetral formulas still ex-ist. Expliit examples are provided by irular graphs(see Example 6) and star graphs (see Example 7).Example 6: Saling step potential in a box withperiodi boundary onditions. This system is idential13 ÆÝÒÔ, âûï. 6 1409



Yu. Dabaghian, R. V. Jensen, R. Blümel ÆÝÒÔ, òîì 121, âûï. 6, 2002with the two-vertex irular graph shown in Fig. 8. Inthe ase of a irular graph, a minor notational problemarises beause starting from a vertex V1, e.g., the ver-tex V2 an be diretly reahed via two di�erent bonds.For the purposes of this example, we solve the prob-lem as follows. We �rst introdue a positive sense ofrotation, i.e., mathematially positive, or ounterlok-wise, for the irular graph in Fig. 8. We then intro-due the saling oe�ient �12 referring to the bondthat onnets the vertex V1 with the vertex V2 travers-ing the graph in the mathematially positive sense. Weintrodue the saling oe�ient �21 that refers to thebond onneting V2 with V1, again in the mathemati-ally positive sense. We use the same notation for thetwo redued ations S012 and S021 referring to the twodi�erent bonds (in the mathematially positive sense),respetively. This notation is not onfusing here, be-ause no magneti �eld is swithed on (Aij = 0). Withthis notation, the spetral equation is given byos(kS0) = a1 + a2 os(kS2); (5.18)where S0 = S012 + S021; S1 = S012 + S021;a1 = 4�12�21(�12 + �21)2 (5.19)and a2 = ��12 � �21�12 + �21�2 : (5.20)We note that a1 + a2 = 1. Condition (5.17) is satis-�ed and the irular quantum graph with a saling steppotential is marginal.Although the strit inequality in Eq. (3.8) is vio-lated, it is important to note that even in the marginalase, the separating points k̂n are still not solutionsto (5.18) in general. This ours only for speial pa-rameter ombinations, and therefore for speial quan-tum graphs for whih the equation(�1)n+�+1 = a1 + a2 os(k̂nS2) (5.21)is exatly satis�ed for some n. Beause the sequenek̂n is ountable and Eq. (5.21) involves irrational fre-queny ratios and irrational oe�ients in general, thisequation is only aidentally satis�ed for some n for ameasure zero set of graph parameters. Hene, in gen-eral, even for marginal quantum graphs, the points k̂nstill serve as separating points and the roots of the spe-tral equation an still be obtained via expansion (4.3).
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Fig. 9. Saling star graph with three bonds and fourvertiesExample 7: Star graph. Another example of amarginal quantum graph is provided by the star graphshown in Fig. 9. We onsider the ase with three di�er-ent saling potentials on its three bonds and the Dirih-let boundary onditions at the three dead ends. Thespetral equation is given byos(S0k) = a1 os(S1k) ++ a2 os(S2k) + a3 os(S3k); (5.22)whereS0 = S014+S024+S034; S1 = S014�S024+S034;S2 = S014�S024�S034; S3 = S014+S024�S034; (5.23)and a1 = �14 � �24 + �34�14 + �24 + �34 ;a2 = ��14 + �24 + �34�14 + �24 + �34 ;a3 = �14 + �24 � �34�14 + �24 + �34 : (5.24)It is straightforward to verify that3Xi=1 jaij = 1independently of the sign of eah ai in (5.24). Con-dition (5.17) is therefore satis�ed and the star graph1410
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Fig. 10. Sketh of a pieewise onstant potential(�Manhattan potential�) (a) and its assoiated lineargraph (b)shown in Fig. 9 is another example of a marginal quan-tum graph. As disussed in the ontext of Example 6,with the exeption of a set of measure zero of the star-graph parameter spae, spetral expansion (4.3) is stillvalid and an be used to obtain eah of the star-grapheigenvalues individually, and independently of all theother eigenvalues.6. SUMMARY, DISCUSSION, ANDCONCLUSIONSExat periodi orbit expansions for the global den-sity of states are known for many haoti systems [15,32, 33℄. However, Eq. (4.3) is the �rst example of anexpliit expression for the individual quantum-meha-nial levels obtained as a funtion of the level indexn for a lassially haoti system. Additional expliitquantization formulas may be found for other quantumgraph systems, or even for quantum systems unrelatedto quantum graphs as long as two essential require-ments are ful�lled. First, an exat periodi orbit ex-pansion for the density of states must exist. Seond,it must be determined that one of the system levels,k�, is the only one in an interval k̂0� < k� < k̂00� . Thenone an always obtain the orresponding periodi orbitexpansion for k�, k� = k̂00�Ẑk0� k�(k)dk; (6.1)

based on the periodi orbit expansion for �(k).It is reasonable to expet that generially there existseparating points k̂0� and k̂00� that separate every k� fromits neighbors, suh that k� is the only root of the spe-tral equation in the interval [k̂0�; k̂00� ℄. Hene, expansionssimilar to (4.3) do exist in general. However, knowingthe positions of the separators k0� and k00� around a par-tiular level k� does not help �nding the separators forthe other levels. The most important task in obtain-ing a general expression for all the levels of a quantumhaoti system is therefore to �nd a global funtion forthe separating points similar to (3.10), whih naturallyenumerates the separators. Therefore, even though itmight be possible to �nd the separators for a partiularquantum level k� for some systems and then to obtaina periodi orbit expansion for this level in aordanewith (6.1), the expansion would work only for the levelk� and would not represent a formula that an be usedto obtain other levels.The problem of �nding a global expression for theseparating points as a funtion of their ordering in-dex n is diretly related to another well-known prob-lem of spetral theory of di�erential operators, namelythe problem of approximating stairase funtion (2.17)by a smooth average �N(k). Indeed, suppose that thereexists a separating point k̂0n, i.e., a solution of the equa-tion �N(k̂0) = N(k); (6.2)between every two roots of the spetral equation (simi-lar to (3.20) and (3.21)). Beause �N(k) is a monotonifuntion, the separating points an then be found byinverting Eq. (6.2), k̂N = k(N); (6.3)where the value of the stairase funtion plays the roleof the separator index k̂N . Equation (6.3) generalizesEq. (3.10), whih an be used in (6.1) to obtain theperiodi orbit expansions for all the roots.The smooth urve de�ned by (6.3) with N onsid-ered a ontinuous variable intersets every stair of spe-tral stairase funtion (2.17). Unfortunately, �nding asmooth funtion that approximates the spetral stair-ase funtion for a general di�erential operator withgeneri boundary onditions is a rather ompliatedtask. It was proven by Weyl in 1912 that one anapproximate �N(k) by the phase-spae volume of thesystem in question,�N(E) � Z �(E �H(x; p))dDxdDp(2�~)D ; (6.4)1411 13*



Yu. Dabaghian, R. V. Jensen, R. Blümel ÆÝÒÔ, òîì 121, âûï. 6, 2002where D is the dimensionality of the phase spae, how-ever this average is ertainly not guaranteed to satisfythe �piering average� ondition (6.2). Sine Weyl, thisproblem has been addressed by numerous researhers(see, e.g., [34℄), who sueeded in giving many im-proved estimates for �N(k) but none of them a priorisatisfy (6.2).The important feature of the regular quantumgraph systems is that there exists a global piering aver-age (3.10), whih uniformly enumerates all the pointsseparating one root from another, and it is thereforepossible to obtain formula (4.3) as a funtion of the in-dex n. In other words, the index n in (4.3) is a quantumnumber, and expression (4.3) for the energy levels of ahaoti system in terms of lassial periodi orbits antherefore be onsidered as a nonintegrable analogue ofthe EBK quantization sheme [11, 12℄.It should be mentioned that despite the existene ofa quantum number n in (4.3), the atual dependene ofthe energy levels on the value of its quantum numberis quite di�erent from the simple EBK sheme forintegrable systems. The expansion of the �utuatingpart of roots (3.11) involves an intriate, ondition-ally onvergent series and is rather �haoti�. Thedi�erene in omplexity of formulas (4.3) and theEBK formula apparently re�ets the omplexity ofthe geometry of the periodi orbits of the lassiallyhaoti quantum graphs.Y. D. and R. B. gratefully aknowledge �nan-ial support by NSF grants PHY-9900730 andPHY-9984075; Y. D. and R. V. J. by NSF grantPHY-9900746. APPENDIXFor ompleteness, we here present a simple deriva-tion of the spetral determinant in Eq. (2.8), startingfrom the boundary onditions at the vertex Vi, ij(x)jx=0 = 'iCij (A.1)andNVXj=1Cij �i ddxij +Aij� ij(xij)jx=0 = �i'i: (A.2)We represent the wave funtion ij(x) == 1p�ijk (aij exp(�i�ijkx) + bij exp(i�ijkx)) (A.3)

that satis�es these boundary onditions as a superpo-sition of the partial waves (i)jj0 (xj) = Æjj0 exp(i (��ijk +Aij)xj)p�ijk ++ �ji;ij0 exp(i (�ijk +Aij)xj)p�ijk (A.4)sattering on the verties of the graph. We thus have ij(xj) = NVXj0=1 aij0 (i)j;j0 (xj) == aijp�ijk exp(�i (�ijk �Ai;j)xj) ++ exp(i (�ijk +Ai;j)xj)p�ijk NVXj0=1 aij0�ji;ij0 ; (A.5)with the appropriate weights aij0 orresponding to theinoming �ux on the bond Bj0i towards the vertex Vi.Comparing this expression with (A.3) yieldsbij = NVXj0=1�ji;ij0aij0 : (A.6)Substituting (A.5) into boundary onditions (A.1)and (A.2) at the vertex Vi, we obtain the respetiverelationsNVXj0=1 aij0p�ijk (Æjj0 + �ji;ij0 ) = 'iCij (A.7)and NVXj;j0=1Cijaij0p�ijk (Æjj0 � �ji;ij0 ) = i�i'i: (A.8)Inserting (A.7) in (A.8), we obtainCij NVXl;j0=1Cilaij0p�ilk �Ælj0 � �(i)l;j0� == i�i NVXj0=1 aij0p�ijk (Æjj0 + �ji;ij0 ) : (A.9)In the ase of the linear saling �i = k�0i , this yieldsNVXj0=1 aij0Cij NVXl=1 Cilp�il (Ælj0 � �li;ij0 ) == i�0i NVXj0=1 aij0p�ij (Æjj0 + �ji;ij0 ) : (A.10)1412



ÆÝÒÔ, òîì 121, âûï. 6, 2002 Spetra of regular quantum graphsComparing the oe�ients in front of aij0 , we obtainCij NVXl=1 CilÆlj0p�il � Cij NVXl=1 Cilp�il�(i)l;j0 �� i�0i Æjj0p�ij = i�0ip�ij �ji;ij0 ; (A.11)or after performing the summation over l,CijCij0p�ij0 � Cij�ii;j0 �� i�0i Æjj0p�ij = i�0ip�ij �ji;ij0 ; (A.12)where �ii;j0 = NVXl=1 Cilp�il�li;ij0 :Multiplying both sides by Cij�ij and summing overj yieldsviCij0p�ij0 � vi�ii;j0 � i�0iCij0p�ij0 == i�0i�ii;j0 ; (A.13)where vi =Xj Cij�ij :Hene, vi � i�0ivi + i�0i Cij0p�ij0 = �ii;j0 ; (A.14)whih an be used in (A.12) to obtainCijCij0p�ij0 � Cij vi � i�0ivi + i�0i Cij0p�ij0 � i�0i Æjj0p�ij == i�0ip�ij �ji;ij0 (A.15)or �ji;ij0 =  �Æjj0 + 2p�ij�ij0vi + i�0i !CjiCij0 : (A.16)We see that in the saling ase, the matrix ele-ments �ji;ij0 of the vertex sattering matrix � are k-independent onstants.The matrix element �ji;ij has the meaning of there�etion oe�ient from the vertex Vi along the bondBij and the elements �ji;ij0 , j 6= j0 are the transmis-sion oe�ients for transitions between di�erent bonds.Equation (A.6) an be written asb = ~Ta; (A.17)

where ~T � ~Tij;nm = ÆinCjiCnm�ji;im: (A.18)In the symmetri basis  ji (Lij � x) =  ij(x), wehave ji (Lij�x) = aji exp [(i (��ijk+Aji) (Lij�x)℄p�ijk ++ bji exp [i (�ijk +Aji) (Lij � x)℄p�ijk =  ij(x); (A.19)and the oe�ients aij and bij are therefore related asaji = bij exp [i (�ijk +Aij)Lij ℄ ;bji = aij exp [i (��ijk +Aij)Lij ℄ : (A.20)The oe�ients aij and aji (bij and bji) are onsideredto be di�erent, and the bonds of the graph are therefore�direted�.Equations (A.20) an be written in the matrix forma = P ~D(k)b; (A.21)where a and b are 2NB-dimensional vetors of oe�-ients and ~D is a diagonal matrix in the 2NB � 2NBspae of direted bonds,~Dij;pq(k) = ÆipÆjq exp [i (�ijk +Aij)Lij ℄ ; (A.22)and P =  0 1NB1NB 0 ! ; (A.23)where 1NB is the NB-dimensional unit matrix. Thepairs of indies (ij), (pq) identifying the bonds of thegraph � play the role of the indies of the matrix ~D(k).Equations (A.21) and (A.17) together result ina = S(k)a; (A.24)with the matrix S(k) (the total graph sattering ma-trix) given by S(k) = D(k)T; (A.25)where D = P ~DP and T = P ~T .REFERENCES1. L. D. Landau and E. M. Lifshitz, Quantum Mehanis,Pergamon Press, Oxford, New York (1977).2. A. Messiah, Quantum Mehanis, North-Holland, Am-sterdam (1961).1413
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