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SPECTRA OF REGULAR QUANTUM GRAPHSYu. Dabaghian *, R. V. Jensen, R. BlümelDepartment of Physi
s, Wesleyan UniversityMiddletown, CT 06459-0155, USASubmitted 18 De
ember 2001We 
onsider a 
lass of simple quasi one-dimensional 
lassi
ally nonintegrable systems that 
apture the essen
e ofthe periodi
 orbit stru
ture of general hyperboli
 nonintegrable dynami
al systems. Their behavior is su�
ientlysimple to allow a detailed investigation of both 
lassi
al and quantum regimes. Despite their 
lassi
al 
haoti
ity,these systems exhibit a �nonintegrable analogue� of the Einstein�Brillouin�Keller quantization formula thatprovides their spe
tra expli
itly, state by state, by means of 
onvergent periodi
 orbit expansions.PACS: 05.45.Mt, 03.65.Sq, 02.30.Lt1. INTRODUCTIONVery few quantum systems 
an be solved expli
itly.Among them are the standard textbook examples, su
has the harmoni
 os
illator or the hydrogen atom [1℄. Inall of these 
ases, the spe
trum of the quantum sys-tem is obtained as an expli
it analyti
al formula of theform �En = : : : �, where n is the quantum numberof the system. This pro
edure already fails for someof the simplest quantum systems, whi
h are still 
on-sidered elementary textbook problems. An exampleis a quantum parti
le in a box with a step potentialinside, as shown in Fig. 1. Even for the simple prob-lem in Fig. 1, expli
it analyti
al solutions of the form�En = : : : � are no longer available be
ause the prob-lem leads to a trans
endental spe
tral equation. There
ommended method of solution is either numeri
al orgraphi
al [1�3℄. We re
ently found a way [4�6℄ of ob-taining expli
it analyti
al solutions of a wide 
lass ofproblems su
h as the one shown in Fig. 1, thus obtain-ing an expli
it analyti
al solution of textbook problemsthat until now were relegated to numeri
al or graphi-
al solution te
hniques. Our methods are also a stepforward in the mathemati
al theory of almost periodi
fun
tions [7℄, be
ause we obtain expli
it formulas forthe zeros of a wide 
lass of almost periodi
 fun
tions.Furthermore, the 
lassi
al dynami
s of the quantumsystems dis
ussed in this paper is 
haoti
. Be
ause itmay well be true in general that the quantized versionsof 
lassi
ally 
haoti
 systems do not admit the existen
e*E-mail: ydabaghian�mail.wesleyan.edu
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Fig. 1. Sket
h of a step potential in a box, a well-knowntextbook quantum problemof quantum numbers (see, e.g., [8, 9℄ for a detailed dis-
ussion of this important point), our �En = : : : � spe
-tral formulas, 
ontaining an expli
it quantum numbern, may 
ome as a surprise. At this point, we feel thatit is important to stress that our results are not 
onje
-tures, approximations or merely formal identities. Ourresults are exa
t, expli
it, 
onvergent periodi
 orbit ex-pansions that 
an be 
ast into the form of mathemati
altheorems. We will publish the rigorous mathemati
alunderpinnings of our results elsewhere [10℄.It is well known [11℄ that the periodi
 orbit theoryleads to 
ompletely di�erent approa
hes for quantizingintegrable and nonintegrable dynami
al systems. Forintegrable systems, there is a simple pro
edure [11, 12℄that allows quantizing the a
tion variables individuallyfor ea
h degree of freedom. The situation is 
ompletely1399
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haoti
 
ase, where the periodi
 orbittheory [11℄ allows evaluating only 
ertain global 
har-a
teristi
s of the spe
trum, e.g., the density of states�(E) = 1Xj=1 Æ (E �Ej) � ��(E) ++ 1� ImXp Tp(E) 1X�=1A�p(E) exp (i�Sp(E)) ; (1.1)typi
ally with only semi
lassi
al a

ura
y [13℄. Here,��(E) is the average density of states, Sp(E), Tp(E),and Ap(E) are respe
tively the a
tion, the period, andthe weight fa
tor of the prime periodi
 orbit labeledby p, and � is the repetition index. In this approa
h,individual energy levels are obtained indire
tly as thesingularities of the sum in Eq. (1.1). As for the ideaof expressing them dire
tly in terms of the periodi
 or-bits, M. V. Berry wrote in 1991 [14℄: � : : : We do notknow how, or even whether, the 
losed orbit sum gen-erates the individual Æs in the level density for 
haoti
systems. This is a serious � perhaps sho
king � sit-uation, be
ause it means that we are ignorant of theme
hanism of quantization.�In the 
ase of quantum graphs, Berry's question 
anbe answered de�nitely. The periodi
 orbit sums repre-senting the spe
tral density of quantum graphs do pro-vide the individual levels in the form of Æ-spikes in (1.1)and only those [15, 16, 17, 18℄. In addition, we re
entlyshowed [4, 5, 6℄ that the answer to Berry's question 
anbe taken one step forward: not only do periodi
 orbitexpansions for quantum graphs produ
e Æ-fun
tions forthe quantum states in the level density, but for 
er-tain 
lasses of quantum graphs there also exist expli
it
onvergent periodi
 orbit expansions for individual en-ergy levels. Be
ause they provide expli
it formulas forthe energy levels of 
lassi
ally 
haoti
 systems, theseperiodi
 orbit expansions may be 
onsidered as �non-integrable analogues� of the Einstein�Brillouin�Keller(EBK) quantization formula [11, 12℄ that applies to in-tegrable systems.This paper is organized as follows. In Se
. 2, webrie�y review the theory of quantum graphs and extendthe theory by de�ning �dressed graphs�, i.e., quantumgraphs with arbitrary potentials on their bonds. InSe
. 3, we de�ne an important 
lass of dressed quantumgraphs: regular quantum graphs. Based on a detailedstudy of their spe
tral properties in Se
. 3, we deriveexpli
it analyti
al spe
tral formulas for regular quan-tum graphs in Se
. 4. In Se
. 5, we present a variety ofregular quantum graphs illustrating the use and 
onver-gen
e of the spe
tral formulas. In Se
. 6, we summarizeour results and 
on
lude the paper.

2. DYNAMICAL NETWORKSWe 
onsider a parti
le moving on a quasi one-dimensional network of bonds and verti
es. These net-works are known as graphs in the mathemati
al liter-ature. They were and still are the subje
t of inten-sive investigations in all areas of s
ien
e ranging frommathemati
s over 
omputer s
ien
e to 
hemistry andphysi
s. An example of a simple graph with �ve ver-ti
es and seven bonds is shown in Fig. 2. The parti-
le s
atters randomly at every vertex Vi along di�erentbonds Bij that meet at that vertex. We assume thatthe graph 
ontains a �nite number of bonds and ver-ti
es (NB and NV respe
tively). The key assumptionabout the dynami
s of the parti
le is that the turningpoints of any parti
le traje
tory on the graph 
oin
idewith the verti
es of the graph, and the shape of thetraje
tories is therefore uniquely determined by the ge-ometry of the graph. The traje
tories of the parti
le aresimply the joint sequen
es of graph bonds, whi
h areeasily des
ribed and enumerated. For instan
e, everytraje
tory 
an be represented by a sequen
e ofNB sym-bols, ea
h of whi
h 
orresponds to a 
ertain bond [19℄.Be
ause the traje
tories 
orrespond to various bond se-quen
es, every traje
tory is des
ribed by a 
ode word
onsisting of NB symbols.We �dress� the bonds Bij of the graph with poten-tials Uij(x), whi
h may a�e
t the way a parti
le movesalong the bonds. However, it is required that thesedressings do not violate the geometry of the parti
letraje
tories, i.e., do not add turning points other thanthe original verti
es of the graph. This 
ondition isrequired to hold at all energies. To 
omply with this
V5

V4

V1

V3

V2Fig. 2. Sample graph with �ve verti
es and sevenbonds1400
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tra of regular quantum graphsrequirement, the bond potentials are allowed to dependon the energy E of the parti
le, i.e., Uij = Uij(x;E),su
h that E > Uij(x;E) is ful�lled for all E and alli; j. This in fa
t leads to many additional simpli�
a-tions that have a deep physi
al meaning in the 
ontextof the semi
lassi
al periodi
 orbit theory [4�6; 19�21℄.The shapes of the traje
tories, and in parti
ular ofthe periodi
 orbits, be
ome in
reasingly 
ompli
atedas their lengths grow. This makes them similar to thegeneri
 (dynami
al) 
haoti
 systems. In fa
t, the num-ber of possible periodi
 orbits in
reases exponentiallywith their lengths, (or, equivalently, the number of ver-tex s
atterings) with a rate whi
h depends only on thetopology of the graph. Every graph � 
an be 
hara
-terized by its topologi
al entropy (the global averagerate of the exponential proliferation of periodi
 orbits)�� = liml!1 ln [#(l)℄l ; (2.1)where l 
hara
terizes the lengths of the periodi
 orbitsin terms of the lengths of their 
ode words and #(l) isthe total number of periodi
 orbits of the length � l [9℄.Be
ause the phase spa
e of the system is bounded, thedynami
s of the parti
le is mixing [16℄, and hen
e, thestru
ture of the periodi
 orbit set on dynami
al net-works 
losely imitates the behavior of the 
losed tra-je
tories of generi
 
haoti
 systems [22, 23℄. On theother hand, dynami
al networks 
an be easily quan-tized [4�6; 17�19; 24℄, whi
h makes them very 
onve-nient models for studying various aspe
ts of quantum
haology.The details of the 
lassi
al dynami
s on graphs aredis
ussed in numerous publi
ations [16, 25℄. Below,we investigate the quantum-me
hani
al des
ription ofthese systems. In parti
ular, we dis
uss their spe
train the 
ontext of the periodi
 orbit theory. We nowbrie�y outline some details of the graph quantizationpro
edure that are used in the subsequent dis
ussion.A quantum graph system is a quantum parti
le thatmoves on a one-dimensional network � dressed withthe potentials Uij(x;E). Below, we 
onsider the 
aseof s
aling potentials dis
ussed in [6; 26�28℄,Uij(E) = �ijE; �ij = �ji; (2.2)where �ij are 
onstants. This 
hoi
e of the dressing po-tentials allows us to avoid 
ertain mathemati
al 
om-pli
ations, whi
h are irrelevant for the physi
al 
ontextof our dis
ussion. For more details on s
aling potentialsand their relevan
e to the semi
lassi
al periodi
 orbitanalysis, see [4, 6, 19℄.

The S
hrödinger equation for graphs with poten-tials (2.2) 
an be written as�̂2ij ij(x) = �2ijE ij(x); (2.3)where �̂ij = �i ddx �Aij (2.4)is the generalized momentum operator and�2ij = 1� �ij :The 
oordinate 0 � x � Lij is measured along Bijfrom i to j and Lij = Lji is the length of the bond.The magneti
 �eld ve
tor potential Aij = �Aji is as-sumed to be a 
onstant real matrix; it 
an be used asa tool for breaking the time-reversal symmetry.Classi
ally, the parti
le 
an travel along the bondBij if its energy is above the s
aled potential height,E > Uij(E) (�ij < 1). In this 
ase, the solution ofEq. (2.3) on the bond Bij is a 
ombination of freewaves, ij(x) = aij exp (i (��ijk +Aij)x)p�ijk ++ bij exp (i (�ijk +Aij) x)p�ijk ; (2.5)where k = pE and the fa
tors (�ijk)�1=2 are intro-du
ed to separate the physi
ally meaningful �ux am-plitudes from the 
oe�
ients aij and bij . In the oppo-site 
ase where �ij > 1, the bond Bij 
arries a linear
ombination of tunneling solutions. Due to the s
alingassumption, there is no transition between these two
ases as a fun
tion of E. From now on, we assumethat the energy E is kept above the maximum s
aledpotential height,�ij < 1; i; j = 1; : : : ; NV : (2.6)At every vertex Vi, the bond wave fun
tions satisfy theboundary 
onditions ij(x = 0) = 'iCij ;NVXj=1Cij �̂ij ij(x)jx=0 = �i�i'i (2.7)for all i; j = 1; : : : ; NV . Here, Cij is the 
onne
tivitymatrix of the graph, 'i is the value of the wave fun
-tion at the vertex Vi, and �i are free parameters of theproblem, s
aled as �i = �0i k (see the Appendix). Wenote that the double-indexed s
aling 
onstants �ij re-fer to the bonds, whereas the single-indexed 
onstants1401
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attering strengths at the verti
es. Webelieve that this notation is natural and does not leadto 
onfusion.Conditions (2.7) are 
onsistent only for a dis
reteset of energy levels En = k2n that de�ne the spe
trumof the dressed quantum graph problem (2.3) and (2.7).As shown in [6; 16�18; 24℄ (see the Appendix), usingthe s
attering quantization approa
h [29℄ allows one toobtain the spe
tral equation for any quantum graphproblem in the form�(k) = det[1� S(k)℄ = 0; (2.8)where S(k) is the �nite unitary graph s
attering ma-trix [16℄. The indi
es that de�ne the matrix elementsSIJ of the matrix S 
orrespond to the graph bonds. Itis important that the bond BI � Bij is 
onsidered tobe di�erent from the (geometri
ally identi
al) reversedbond BI0 � Bji; the bonds of the graph are there-fore dire
ted [4�6; 16; 18℄. Hen
e, the dimensionality ofthe s
attering matrix is 2NB � 2NB. It is shown inthe Appendix that S = TD(k), where T is a 
onstant2NB � 2NB unitary matrix and D is the diagonal uni-tary matrix with the matrix elementsDIJ = ÆIJ exp (i (�Ik +AI)LI) ;I = 1; : : : ; 2NB: (2.9)Be
ause �(k) is a 
omplex fun
tion, it is 
onvenient tode�ne the spe
trum via the zeros of its absolute value,j�(k)j = exp (�i�0(k))�(k); (2.10)where �0(k) is the 
omplex phase of �(k). The loga-rithmi
 derivative of j�(k)j produ
es a delta-peak forea
h of its roots,� 1� Im lim�!0 ddk ln j det [1� S (k + i�)℄ j == 1Xn=1 Æ(k � kn); (2.11)whi
h, by de�nition, is the density of the momentumstates �(k) [6℄. On the other hand, using (2.10) and ex-panding the logarithm of determinant (2.8), the densityof states 
an be written as�(k) = 1� d�0(k)dk + 1� Im ddk 1Xn=1 1n Tr [S(k)℄n : (2.12)It 
an then be easily seen from the stru
ture of thes
attering matrix S [16, 24℄ that the matrix elementsof its n-th power are de�ned on 
onne
ted sequen
es ofn bonds and the tra
e of Sn generates terms de�ned on
losed 
onne
ted sequen
es of n bonds [6, 17, 24, 25℄.

These periodi
 
onne
ted sequen
es of n bonds Bij
an be viewed as the periodi
 orbits tra
ed by a 
lassi-
al point parti
le moving on the graph. We note thatthe phase of the exponential in (2.9) is exa
tly the a
-tion of a 
lassi
al point parti
le traje
tory traversingthe bond BI ,SI = ZBI (�Ik +AI) dx = (�Ik +AI )LI : (2.13)Therefore, the semi
lassi
al transition amplitudesexp(iSI) between the verti
es 
onne
ted by the bondBI determine the s
attering matrix S(k). As a
onsequen
e [4�6; 16; 19℄, the �
losed bond sequen
eexpansion� (2.12) 
an be expli
itly written as aperiodi
 orbit expansion in terms of phases (2.13),�(k) = ��(k) + 1� ReXp S0p 1X�=1A�p exp(i�S0pk); (2.14)where S0p is the k-independent �a
tion length� of theorbit p, Sp =Xp �ijLijk � S0p k; (2.15)and Ap is its weight 
ontaining the 
onstant fa
torexp(iPp AijLij). Be
ause of the s
aling assumption(see the Appendix), the weight fa
tor Ap is k-indepen-dent. The �rst term in this expression 
orresponds tothe average density of states of the momentum ��(k),��(k) = 1� d�0(k)dk ; (2.16)while the periodi
 orbit sum in (2.14) des
ribes the �u
-tuations around the average.The periodi
 orbit expansion for the stair
ase fun
-tion N(k) = 1Xn=1�(k � kn) (2.17)
an be obtained by dire
t integration of (2.11)and (2.14). We obtainN(k) = �N(k) + ~N(k); (2.18)where the �rst term�N(k) = kZ0 ��(k0) dk0 + �N(0) (2.19)represents the average behavior of the stair
ase and~N(k) = Im 1�Xp 1X�=1 A�p� exp(i�S0pk) (2.20)1402



ÆÝÒÔ, òîì 121, âûï. 6, 2002 Spe
tra of regular quantum graphsdes
ribes zero-mean os
illations around the average.As dis
ussed in the Introdu
tion (see also[4�6; 16; 25℄), quantum graphs are 
haoti
 in the
lassi
al limit. The 
lassi
al s
attering probabilitiesare obtained in the limit as ~ ! 0 from the quantumme
hani
al transition amplitudes [4�6℄ (see the Ap-pendix). In the s
aling 
ase, they are k-independent,and therefore, the quantum s
attering amplitudesdo not depend on ~ at all. They determine thequantum and the 
lassi
al s
attering probabilitiessimultaneously.3. REGULAR GRAPHS AND THEIR SPECTRAThe spe
tral determinant is a polynomial of degree2NB of the matrix elements of S. It was shown in [6℄that the total phase of this polynomial is�0(k) = 12 Im ln detS(k) = kS0 � �
0; (3.1)where S0 =X(ij) Lij�ijis the total a
tion length of the graph � and
0 = NB +NV2 + 1� NVXi=1 ar
tg��0ivi � ; (3.2)where vi =Xj Cij �ij : (3.3)The average density of states is therefore a 
onstant,�� = 1� ddk�0(k) = S0� ; (3.4)and the average stair
ase fun
tion in Eq. (2.19) is�N(k) = S0� k + �N(0): (3.5)The spe
tral equation j�(k)j = 0 
an be written as
os (S0k � �
0) = N�Xi=1 ai 
os(Sik � �
i); (3.6)where the frequen
ies Si < S0 are 
ombinations of theredu
ed 
lassi
al a
tions S0ij = �ijLij , and 
0, 
i are
onstants. The number N� of terms in (3.6) is boundedby N� � 3NB [6℄.The frequen
y S0 in �0(k) is the largest frequen
yin expansion (3.6). While it is the only 
hara
teristi


of the graph 
ontained in the left-hand side of (3.6),the right-hand side�(k) � N�Xi=1 ai 
os(Sik � �
i); (3.7)
ontains the 
omplete information about the graph sys-tem. We 
all �(k) the 
hara
teristi
 fun
tion of thegraph.A graph � is 
alled regular [4�6℄ if its 
hara
teristi
fun
tion �(k) satis�esN�Xi=1 jaij � � < 1: (3.8)For regular graphs, spe
tral equation (3.6) 
an besolved formally [4�6℄ to yield the impli
it equation ofits eigenvalues,kn = �S0 [n+ �+ 
0℄ + 1S0 ��( ar

os[�(kn)℄ for n+ � even;� � ar

os[�(kn)℄ for n+ � odd; (3.9)where � is a �xed integer, 
hosen su
h that k1 is the�rst positive solution of (3.6). The index n 2 N labelsthe roots of (3.6) in their natural order.The impli
it form in Eq. (3.9) immediately impliesthat be
ause the se
ond term in (3.9) is bounded by�=S0, the deviations of solutions to this equation fromthe points k̂n = �S0 (n+ �+ 
0 + 1) (3.10)never ex
eed �=S0 in absolute value for any n. Thequantities k̂n are very important in what follows be-
ause they determine the root stru
ture of (3.6).The roots kn 
an be de
omposed into an averagepart �kn and a �u
tuating part ~kn. From (3.9), we ob-tain kn = �kn + ~kn; (3.11)where �kn = �S0 �n+ �+ 
0 + 12� ; (3.12)and ~kn = (�1)n+�S0 nar

os[�(kn)℄� �2o : (3.13)1403



Yu. Dabaghian, R. V. Jensen, R. Blümel ÆÝÒÔ, òîì 121, âûï. 6, 2002We note that the 
onstant �+ 
0 
an be related to theinitial value �N(0) of the average stair
ase fun
tion inEq. (3.5). We now 
onsider the integrallimn!1 1̂kn k̂nZ0 N(k0)dk0: (3.14)The integration in (3.14) 
an be easily performed be-
ause the fun
tion N(k) has simple form (2.17),1̂kn k̂nZ0 N(k0)dk0 = n� 1̂kn nXi=1 ki; (3.15)sin
e there are n roots to the left of k̂n. The �u
tua-tions of both N(k) and kn around their average valueshave zero mean, and in the limit of n� 1 we 
an there-fore use �N(k) and �kn instead of N(k) and kn in (3.15)and write1̂kn k̂nZ0 �N(k0)dk0 = n� 1̂kn nXi=1 �ki; n� 1: (3.16)Using the expli
it forms of k̂n, �kn, and �N(k), we obtain�N(0) + 12(n+ �+ 
0 + 1) == nn+ �+ 
0 + 1 �n2 + �+ 
0 + 1� : (3.17)Expanding the right-hand side and keeping terms upto the order 1=n yields�N(0) + 12(n+ �+ 
0 + 1) == n��1� �+ 
0 + 1n ��n2 + �+ 
0 + 1� : (3.18)The terms proportional to n 
an
el. Comparing the
onstants in (3.18) yields�N(0) = �(�+ 
0 + 1): (3.19)It 
an be veri�ed by dire
t substitution that�N(k̂n) = n; (3.20)whi
h implies that fun
tion (3.10) is the inverse of av-erage stair
ase fun
tion (3.5). The points k̂n 
an alsobe viewed as the interse
tion points of stair
ase fun
-tion (2.17) and its average (3.5),�N(k̂n) = N(k̂n) = n; (3.21)

k
0 50 100 150 200

−5

0

5

10

15

20

25

30
N

Fig. 3. The exa
t spe
tral stair
ase fun
tion N(k) andits average �N(k) for the s
aling step potential shownin Fig. 1 with b = 0:3 and � = 1=2. The average �N(k)
rosses every �stair� of N(k) (pier
ing average) at theequally spa
ed separating points k̂nand hen
e, the �u
tuations ~N(k) of the spe
tral stair-
ase vanish at the points k̂n,~N(k̂n) = Im 1�Xp 1X�=1 A�p� exp(i�S0p k̂n) = 0: (3.22)Geometri
ally, Eq. (3.22) means that the average stair-
ase fun
tion �N(k) interse
ts every step of the stair
asefun
tion N(k). We therefore 
all �N(k) the pier
ing av-erage. This is illustrated in Fig. 3, whi
h shows thespe
tral stair
ase fun
tion N(k) for the s
aling steppotential shown in Fig. 1 and dis
ussed in more detailin Se
. 5, Example 1, below. We used the parameters� = 1=2 and b = 0:3. Also shown is the average stair-
ase �N(k) for this 
ase. It 
learly pier
es all the steps ofN(k), providing an example of a system with a pier
ingaverage.Be
ause�(k) 
ontains only frequen
ies smaller thanS0, every open interval In = (k̂n�1; k̂n) 
ontains onlyone root of (3.6), namely kn, and therefore, k̂n playthe role of separating points between adja
ent roots[4�6; 10℄. Moreover, be
ause of (3.8), the �allowedzones� Rn � In where the roots kn 
an be found nar-row tokn 2 Rn � � �S0 (n+ �+ 
0 + u) ;�S0 (n+ �+ 
0 + 1� u)� ; (3.23)where u = ar

os�=S0. Correspondingly, there are for-1404



ÆÝÒÔ, òîì 121, âûï. 6, 2002 Spe
tra of regular quantum graphsbidden regions Fn,Fn � � �S0 (n+ �+ 
0 � u) ;�S0 (n+ �+ 
0 + 1 + u)� (3.24)where roots of (3.6) never appear. In the limit as �! 1(u! 0), the allowed zonesRn tend to o

upy the entireroot interval, Rn ! In.4. SPECTRAL FORMULASOn
e the existen
e of separating points k̂n has beenestablished, it is possible to obtain an exa
t periodi
orbit expansion separately for every root of (2.8). Thederivation is based on the identitykn = k̂nZk̂n�1 k�(k)dk: (4.1)Substituting exa
t periodi
 orbit expansion (2.14) for�(k) in (4.1) yieldskn = k̂nZk̂n�1 kS0� dk ++ 1� k̂nZk̂n�1 kReXp S0p 1X�=1A�p exp(i�S0pk)dk == �S0 �n+ �+ 
0 + 12�++ k̂n Im 1�Xp 1X�=1 A�p� exp(i�S0p k̂n)�� k̂n�1 Im 1�Xp 1X�=1 A�p� exp(i�S0p k̂n�1) ++Re 1�Xp 1S0p �� 1X�=1 A�p�2 �exp(i�S0p k̂n)� exp(i�S0p k̂n�1)� : (4.2)

Using (3.22), we simplify (4.2) tokn = �S0 �n+ �+ 
0 + 12��� 1� ImXp 2S0p 1X�=1 A�p�2 sin h�!p2 i�� exp �i�!p�n+ �+ 
0 + 12�� ; (4.3)where !p = �S0p=S0. The series expansion for kn inEq. (4.3) is more than a formal identity. It is rigor-ously 
onvergent, however it 
onverges only 
ondition-ally, whi
h means that the result of the summation de-pends on how the summation is performed. Indeed,a

ording to the well-known Riemann reordering theo-rem, one 
an obtain any result by rearranging the termsof a 
onditionally 
onvergent series [30℄. For the proper
onvergen
e of (4.3) to the exa
t roots of spe
tral equa-tion (3.6), we must therefore spe
ify how the terms in(4.3) are to be summed.The mathemati
al details of the 
onvergen
e prop-erties of (4.3) are presented in [10℄. We here mentionthe main result, whi
h states that the terms in (4.3)must be summed a

ording to the length of the sym-boli
 
odes [6, 19℄ of the periodi
 orbits, and not a
-
ording to their a
tion lengths. If (4.3) is summed inthis way, it not only 
onverges, but also 
onverges tothe exa
t roots kn of spe
tral equation (3.6).Equation (4.3) therefore provides an expli
it rep-resentation of the roots of spe
tral equation (2.8) interms of the geometri
 
hara
teristi
s of the graph. Ina

ordan
e with (3.12), the �rst term in (4.3) is the av-erage value �kn and the following periodi
 orbit sum isan expli
it expression for the �u
tuation of the root ~kn.This method is not limited to obtaining expli
it ana-lyti
al periodi
 orbit expansions for kn. In fa
t, usingthe identity f(kn) = k̂nZk̂n�1 f(k)�(k)dk; (4.4)we 
an obtain periodi
 orbit expansions for any fun
-tion of the eigenvalues f (kn), for instan
e for the en-ergy E = k2.In the simplest 
ase where �0i = 0, Aij = 0, andImAp = 0, we havekn = �S0n�� 2�Xp 1S0p 1X�=1 A�p�2 sin�12�!p� sin(�!pn): (4.5)1405



Yu. Dabaghian, R. V. Jensen, R. Blümel ÆÝÒÔ, òîì 121, âûï. 6, 2002We note that k�n = �kn in this 
ase.Both the EBK theory and formula (4.3) allow usto 
ompute energy eigenvalues expli
itly. In this sense,formula (4.3) may be regarded as an analogue of theEBK quantization formula [11, 12℄ for a 
haoti
 sys-tem. The 
omplexity of this expansion, stru
turallysimilar to (1.1), re�e
ts the geometri
al 
omplexity ofthe periodi
 orbit set for graph systems.Finally, for expli
it 
al
ulations (see Se
. 5), it re-mains to determine the expli
it form of the expansion
oe�
ients Ap. For some simple graphs, this was donein [16, 19℄. In the Appendix, we solve the problem forgeneral dressed graphs. We show that every passage ofan orbit p from a bond Bij to Bij0 through a vertexVi 
ontributes a fa
tor �ji;ij0 (a matrix element of thematrix T , see the Appendix) to the weight Ap of theorbit, Ap =Y �(i)jj0 ; (4.6)where the produ
t is taken over the sequen
e of thebonds tra
ed by the orbit p.5. EXAMPLESIn (3.8), we provided the de�nition of regular quan-tum graphs; in (3.9)�(3.24), we then dis
ussed analyti-
al properties of their spe
tra. The dis
ussion of regularquantum graphs 
ulminated in Se
. 4 with the deriva-tion of expli
it spe
tral formulas for individual quan-tum states of regular quantum graphs. However, theabove de�nition of regular quantum graphs does notimply that regular quantum graphs a
tually exist. Ex-amples 1�3, dis
ussed below, provide spe
i�
 instan
esof quantum graphs that are regular for all 
hoi
es oftheir parameters. Examples 4 and 5 present quantumgraphs that exhibit both regular and irregular regimes.Finally, examples 6 and 7 provide illustrations of a new
lass of quantum graphs, marginal quantum graphs, forwhi
h N�Xi=1 jaij = 1:Ex
ept for spe
ial 
hoi
es of their dressing potentials,these graphs 
an still be a

ommodated within themathemati
al framework set up in Se
s. 3 and 4 andalso admit an expli
it representation of their spe
tra ina

ordan
e with the spe
tral formulas derived in Se
. 4.

Example 1: S
aling step potential in a box. We
onsider a parti
le 
on�ned to a box 0 < x < 1 
on-taining the s
aling step potential (see Figs. 1 and 4a)U(x) = ( 0 for 0 < x � b;�23E for b < x < 1: (5.1)This is equivalent to a three-vertex linear 
hain graph(Fig. 4a 0) with �2 = 0, Aij = 0, and the Diri
hletboundary 
onditions at V1 and V3. This example isalso dis
ussed in [4, 5, 6, 19, 31℄. In this 
ase, spe
tralequation (3.6) 
an be written as [4, 5℄sin �k(S021 + S023)� = r sin �k(S021 � S023)� ; (5.2)where r = 1� �231 + �23 < 1 (5.3)is the re�e
tion 
oe�
ient at the vertex V2. Regular-ity 
ondition (3.8) is therefore automati
ally satis�edand this graph is always regular. In Se
. 4, we alreadydis
ussed the 
onvergen
e properties of (4.3), in
lud-ing the fa
t that a rigorous mathemati
al proof for the
onvergen
e of (4.3) exists [10℄. Here, we present solidnumeri
al eviden
e for the 
onvergen
e of (4.3) in the
ontext of s
aling step potential (5.1). As dis
ussedin [4, 5, 6, 19℄, every periodi
 orbit in potential (5.1)
an be des
ribed by a binary 
ode word. Figure 5 showsthe relative error�(l)n = jk(l)n � knjkn ; n = 1; 10; 100of the result k(l)n predi
ted by (4.3) 
ompared to thenumeri
ally obtained exa
t result kn as a fun
tion ofthe binary 
ode length l of the orbits used in expan-sion (4.3). We used b = 0:3 and � = 1=2. Figure 5also demonstrates that using all periodi
 orbits up tothe binary 
ode length l � 150, we obtain an a

ura
yon the order 10�4�10�7 for the roots kn of (5.2). Al-though the 
onvergen
e of the series is slow (a

ordingto Fig. 5, it is approximately of the order 1=l2 on aver-age), one 
an obtain a su�
iently good estimate for theroots using all orbits of the 
ode length 20 and smaller.Example 2: S
aling Æ fun
tion in a box. Thispotential, shown in Fig. 4b, is again equivalent to athree-vertex quantum graph. This time, however, thepotentials on the bonds are identi
ally zero, whereasthe vertex V2 is dressed with a s
aling Æ fun
tion ofstrength �2 = �02k > 0:1406
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Fig. 4. Colle
tion of potentials and their asso
iated linear quantum graphs that serve as examples to illustrate the 
on
ept ofregular quantum graphs. a � S
aling step potential in a box and its asso
iated three-vertex linear graph (a 0). b � S
alingÆ fun
tion in a box and its 
orresponding three-vertex linear graph (b 0). Combined s
aling Æ fun
tion and step potential ina box (
) with its linear three-vertex quantum graph (
 0). Two s
aling steps (d) and two s
aling Æ fun
tions (e) in a boxtogether with their asso
iated four-vertex dressed linear quantum graphs (d 0) and (e 0), respe
tivelyWe apply the Diri
hlet boundary 
onditions at the openends. In this 
ase, spe
tral equation (3.6) be
omes
os �k(S021 + S023)� �
0� == �jrj 
os �k(S021 � S023)� ; (5.4)where 
0 = 1� 1� ar
sin 2p4 + (�02)2! (5.5)and the re�e
tion 
oe�
ient r is given byr = �022i� �02 : (5.6)Be
ause jrj < 1, the 
hara
teristi
 fun
tion of (5.4) alsosatis�es regularity 
ondition (3.8). Therefore, the s
al-ing Æ fun
tion in a box is another example of a regularquantum graph.

Example 3: Combined s
aling step and s
alingÆ-potential in a box (Fig. 4
). This is equivalent toa three-vertex dressed linear graph (Fig. 4
 0) with�2 = �02k > 0. Spe
tral equation (3.6) then be
omes
os �k(S021 + S023)� �
0� == a1 
os �k(S021 � S023)� �
1� ; (5.7)where
0 = 1� 1� ar
sin �12 + �23p(�12 + �23)2 + (�02)2! ;
1 = 1� 1� ar
sin �12 � �23p(�12 � �23)2 + (�02)2! ; (5.8)and the 
oe�
ient a1 isa1 =s (�21 � �23)2 + (�02)2(�21 + �23)2 + (�02)2 < 1: (5.9)1407
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Fig. 5. Comparison between the exa
t eigenvalues knand the kn values 
omputed via (4.3) for the s
alingstep potential in Fig. 1. Shown is the relative error�(l)n = jk(l)n � knj=kn, n = 1; 10; 100, of the resultk(l)n predi
ted by (4.3) 
ompared to the numeri
ally ob-tained exa
t result kn as a fun
tion of the binary 
odelength l of the orbits used in expansion (4.3). We usedb = 0:3 and � = 1=2Therefore, the 
hara
teristi
 fun
tion of (5.7) on
eagain satis�es the regularity 
ondition for any lin-ear three-vertex graph with nontrivial bond potentials(�221 + �223 6= 0) [6℄.Quantum graphs that are regular for all of their pa-rameter values are quite ex
eptional. In general, quan-tum graphs may have a regular regime for a 
ertainrange of the parameter values or the regular regimemay not exist at all. The following example illustratesthis point.Example 4: Two s
aling steps in a box (Fig. 4d).As an example of a graph that has both a regularand an irregular regime, we 
onsider a quantum par-ti
le in a box with two s
aling steps (Fig. 4d), whi
his equivalent to the four-vertex linear graph shown inFig. 4d 0. Be
ause there are no Æ fun
tions present, wehave �2 = �3 = 0. We assume the Diri
hlet boundary
onditions at the dead ends of this graph. In this 
ase,spe
tral equation (3.6) is given bysin(S0k) = �r2 sin(kS1)�� r2r3 sin(kS2) + r3 sin(kS3); (5.10)whereS0 = S021+S023+S034; S1 = S023+S034�S021;S2 = S021+S034�S023; S3 = S021+S023�S034; (5.11)and r2 = �12 � �23�12 + �23 ; r3 = �23 � �34�23 + �34 (5.12)
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−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
r3

r2Fig. 6. Four-vertex linear 
hain graph (a) and the 
or-responding spa
e (r2; r3) of re�e
tion 
oe�
ients (b).The shaded region in the (r2; r3) spa
e 
orresponds tothe regular regime of the quantum graph shown in (a).This demonstrates that the subset of regular quantumgraphs within the set of all four-vertex linear quantumgraphs is non-empty and has a �nite measureare the re�e
tion 
oe�
ients at the 
orresponding ver-ti
es Vi. For jr3j+ jr2r3j+ jr2j < 1; (5.13)the four-vertex linear graph (Figs. 4d 0 and 6a) isregular. Regularity 
ondition (5.13) is ful�lled in adiamond-shaped region of the (r2; r3) parameter spa
eshown as the shaded area in Fig. 6b. The di�eren
ebetween the regular and the irregular regimes is 
learlyre�e
ted in the stair
ase fun
tions. Figure 7a showsthe stair
ase fun
tion N(k) together with the averagestair
ase �N(k) in the regular regime for the parameter
ombination r2 = 0:2 and r3 = 0:3. The pier
ing-average 
ondition is 
learly satis�ed. Figure 7b showsthe stair
ase fun
tion N(k) together with the averagestair
ase �N(k) in the irregular regime for the param-eter 
ombination r2 = 0:98 and r3 = 0:99. In this
ase, the pier
ing-average 
ondition is 
learly violated,
onsistently with the irregular nature of this regime.Example 5: Two s
aling Æ fun
tions in a box(Fig. 4e). This potential is equivalent to the four-vertexgraph shown in Fig. 4e 0 with�2 = �02k > 0; �3 = �03k > 0;and the Diri
hlet boundary 
onditions at the dead ends1408
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16Fig. 7. The exa
t spe
tral stair
ase fun
tion N(k) andits average �N(k) for the regular r2 = 0:2, r3 = 0:3 (a)and the irregular r2 = 0:98, r3 = 0:99 (b) regimes ofthe four-vertex linear graph shown in Fig. 6a. In theregular regime (a), the average stair
ase fun
tion �N(k)pier
es every step of N(k). This is not the 
ase in (b),
hara
teristi
 of the irregular regimeV1 and V4. In this 
ase, spe
tral equation (3.6) isgiven by
os(kS0 � �
0) = a1 
os(kS1 � �
1) ++ a2 
os(kS2 � �
2) + a3 
os(kS3 � �
3); (5.14)wherea1 = �02p4 + (�02)2 ; a2 = �03p4 + (�03)2 ;a3 = �02�03p[4 + (�02)2℄[4 + (�03)2℄ (5.15)

λ21

λ12

V1

V2Fig. 8. Two-vertex 
ir
ular graph. In the mathemati-
ally positive sense, �12 is the s
aling 
oe�
ient of thebond 
onne
ting the vertex V1 with the vertex V2, �21is the s
aling 
oe�
ient of the bond 
onne
ting V2 withV1. This labelling is possible only in the absen
e of amagneti
 �eld (Aij = 0), where the sense of traversalof a bond is irrelevantand
0 = 1� ar
sin �02�03 � 4p[4 + (�02)2℄[4 + (�03)2℄! ;
1 = 1� ar
sina2;
2 = 1� ar
sina1;
3 = 12 : (5.16)
The sum of the amplitudes in (5.15) ranges between0 and 3, and therefore, this system has regular andirregular regimes. The regular regime 
orresponds toa �nite area in the (�02; �03) parameter spa
e. All lin-ear 
hain graphs with a �nite number of verti
es andthe Diri
hlet boundary 
onditions at the two dead-endverti
es at the beginning and at the end of the graphhave a �nite-measure regular regime and an irregularregime. This fa
t is proved in [10℄.Graphs of a new type are marginal quantum graphs.A marginal quantum graph is de�ned byN�Xi=1 jaij = 1: (5.17)For marginal quantum graphs, apart from a small setof �spe
ial� graphs, expli
it spe
tral formulas still ex-ist. Expli
it examples are provided by 
ir
ular graphs(see Example 6) and star graphs (see Example 7).Example 6: S
aling step potential in a box withperiodi
 boundary 
onditions. This system is identi
al13 ÆÝÒÔ, âûï. 6 1409
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ir
ular graph shown in Fig. 8. Inthe 
ase of a 
ir
ular graph, a minor notational problemarises be
ause starting from a vertex V1, e.g., the ver-tex V2 
an be dire
tly rea
hed via two di�erent bonds.For the purposes of this example, we solve the prob-lem as follows. We �rst introdu
e a positive sense ofrotation, i.e., mathemati
ally positive, or 
ounter
lo
k-wise, for the 
ir
ular graph in Fig. 8. We then intro-du
e the s
aling 
oe�
ient �12 referring to the bondthat 
onne
ts the vertex V1 with the vertex V2 travers-ing the graph in the mathemati
ally positive sense. Weintrodu
e the s
aling 
oe�
ient �21 that refers to thebond 
onne
ting V2 with V1, again in the mathemati-
ally positive sense. We use the same notation for thetwo redu
ed a
tions S012 and S021 referring to the twodi�erent bonds (in the mathemati
ally positive sense),respe
tively. This notation is not 
onfusing here, be-
ause no magneti
 �eld is swit
hed on (Aij = 0). Withthis notation, the spe
tral equation is given by
os(kS0) = a1 + a2 
os(kS2); (5.18)where S0 = S012 + S021; S1 = S012 + S021;a1 = 4�12�21(�12 + �21)2 (5.19)and a2 = ��12 � �21�12 + �21�2 : (5.20)We note that a1 + a2 = 1. Condition (5.17) is satis-�ed and the 
ir
ular quantum graph with a s
aling steppotential is marginal.Although the stri
t inequality in Eq. (3.8) is vio-lated, it is important to note that even in the marginal
ase, the separating points k̂n are still not solutionsto (5.18) in general. This o

urs only for spe
ial pa-rameter 
ombinations, and therefore for spe
ial quan-tum graphs for whi
h the equation(�1)n+�+1 = a1 + a2 
os(k̂nS2) (5.21)is exa
tly satis�ed for some n. Be
ause the sequen
ek̂n is 
ountable and Eq. (5.21) involves irrational fre-quen
y ratios and irrational 
oe�
ients in general, thisequation is only a

identally satis�ed for some n for ameasure zero set of graph parameters. Hen
e, in gen-eral, even for marginal quantum graphs, the points k̂nstill serve as separating points and the roots of the spe
-tral equation 
an still be obtained via expansion (4.3).

V2

V1

V3

V4

Fig. 9. S
aling star graph with three bonds and fourverti
esExample 7: Star graph. Another example of amarginal quantum graph is provided by the star graphshown in Fig. 9. We 
onsider the 
ase with three di�er-ent s
aling potentials on its three bonds and the Diri
h-let boundary 
onditions at the three dead ends. Thespe
tral equation is given by
os(S0k) = a1 
os(S1k) ++ a2 
os(S2k) + a3 
os(S3k); (5.22)whereS0 = S014+S024+S034; S1 = S014�S024+S034;S2 = S014�S024�S034; S3 = S014+S024�S034; (5.23)and a1 = �14 � �24 + �34�14 + �24 + �34 ;a2 = ��14 + �24 + �34�14 + �24 + �34 ;a3 = �14 + �24 � �34�14 + �24 + �34 : (5.24)It is straightforward to verify that3Xi=1 jaij = 1independently of the sign of ea
h ai in (5.24). Con-dition (5.17) is therefore satis�ed and the star graph1410



ÆÝÒÔ, òîì 121, âûï. 6, 2002 Spe
tra of regular quantum graphs

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

a0

V2 V4

a2 a4

a
U1

· · ·

U2

. . .

b
V5V1 V3 Vn−1

Un

anan−1a1 a3 a5

U0

U3

Un−1

Fig. 10. Sket
h of a pie
ewise 
onstant potential(�Manhattan potential�) (a) and its asso
iated lineargraph (b)shown in Fig. 9 is another example of a marginal quan-tum graph. As dis
ussed in the 
ontext of Example 6,with the ex
eption of a set of measure zero of the star-graph parameter spa
e, spe
tral expansion (4.3) is stillvalid and 
an be used to obtain ea
h of the star-grapheigenvalues individually, and independently of all theother eigenvalues.6. SUMMARY, DISCUSSION, ANDCONCLUSIONSExa
t periodi
 orbit expansions for the global den-sity of states are known for many 
haoti
 systems [15,32, 33℄. However, Eq. (4.3) is the �rst example of anexpli
it expression for the individual quantum-me
ha-ni
al levels obtained as a fun
tion of the level indexn for a 
lassi
ally 
haoti
 system. Additional expli
itquantization formulas may be found for other quantumgraph systems, or even for quantum systems unrelatedto quantum graphs as long as two essential require-ments are ful�lled. First, an exa
t periodi
 orbit ex-pansion for the density of states must exist. Se
ond,it must be determined that one of the system levels,k�, is the only one in an interval k̂0� < k� < k̂00� . Thenone 
an always obtain the 
orresponding periodi
 orbitexpansion for k�, k� = k̂00�Ẑk0� k�(k)dk; (6.1)

based on the periodi
 orbit expansion for �(k).It is reasonable to expe
t that generi
ally there existseparating points k̂0� and k̂00� that separate every k� fromits neighbors, su
h that k� is the only root of the spe
-tral equation in the interval [k̂0�; k̂00� ℄. Hen
e, expansionssimilar to (4.3) do exist in general. However, knowingthe positions of the separators k0� and k00� around a par-ti
ular level k� does not help �nding the separators forthe other levels. The most important task in obtain-ing a general expression for all the levels of a quantum
haoti
 system is therefore to �nd a global fun
tion forthe separating points similar to (3.10), whi
h naturallyenumerates the separators. Therefore, even though itmight be possible to �nd the separators for a parti
ularquantum level k� for some systems and then to obtaina periodi
 orbit expansion for this level in a

ordan
ewith (6.1), the expansion would work only for the levelk� and would not represent a formula that 
an be usedto obtain other levels.The problem of �nding a global expression for theseparating points as a fun
tion of their ordering in-dex n is dire
tly related to another well-known prob-lem of spe
tral theory of di�erential operators, namelythe problem of approximating stair
ase fun
tion (2.17)by a smooth average �N(k). Indeed, suppose that thereexists a separating point k̂0n, i.e., a solution of the equa-tion �N(k̂0) = N(k); (6.2)between every two roots of the spe
tral equation (simi-lar to (3.20) and (3.21)). Be
ause �N(k) is a monotoni
fun
tion, the separating points 
an then be found byinverting Eq. (6.2), k̂N = k(N); (6.3)where the value of the stair
ase fun
tion plays the roleof the separator index k̂N . Equation (6.3) generalizesEq. (3.10), whi
h 
an be used in (6.1) to obtain theperiodi
 orbit expansions for all the roots.The smooth 
urve de�ned by (6.3) with N 
onsid-ered a 
ontinuous variable interse
ts every stair of spe
-tral stair
ase fun
tion (2.17). Unfortunately, �nding asmooth fun
tion that approximates the spe
tral stair-
ase fun
tion for a general di�erential operator withgeneri
 boundary 
onditions is a rather 
ompli
atedtask. It was proven by Weyl in 1912 that one 
anapproximate �N(k) by the phase-spa
e volume of thesystem in question,�N(E) � Z �(E �H(x; p))dDxdDp(2�~)D ; (6.4)1411 13*
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e, how-ever this average is 
ertainly not guaranteed to satisfythe �pier
ing average� 
ondition (6.2). Sin
e Weyl, thisproblem has been addressed by numerous resear
hers(see, e.g., [34℄), who su

eeded in giving many im-proved estimates for �N(k) but none of them a priorisatisfy (6.2).The important feature of the regular quantumgraph systems is that there exists a global pier
ing aver-age (3.10), whi
h uniformly enumerates all the pointsseparating one root from another, and it is thereforepossible to obtain formula (4.3) as a fun
tion of the in-dex n. In other words, the index n in (4.3) is a quantumnumber, and expression (4.3) for the energy levels of a
haoti
 system in terms of 
lassi
al periodi
 orbits 
antherefore be 
onsidered as a nonintegrable analogue ofthe EBK quantization s
heme [11, 12℄.It should be mentioned that despite the existen
e ofa quantum number n in (4.3), the a
tual dependen
e ofthe energy levels on the value of its quantum numberis quite di�erent from the simple EBK s
heme forintegrable systems. The expansion of the �u
tuatingpart of roots (3.11) involves an intri
ate, 
ondition-ally 
onvergent series and is rather �
haoti
�. Thedi�eren
e in 
omplexity of formulas (4.3) and theEBK formula apparently re�e
ts the 
omplexity ofthe geometry of the periodi
 orbits of the 
lassi
ally
haoti
 quantum graphs.Y. D. and R. B. gratefully a
knowledge �nan-
ial support by NSF grants PHY-9900730 andPHY-9984075; Y. D. and R. V. J. by NSF grantPHY-9900746. APPENDIXFor 
ompleteness, we here present a simple deriva-tion of the spe
tral determinant in Eq. (2.8), startingfrom the boundary 
onditions at the vertex Vi, ij(x)jx=0 = 'iCij (A.1)andNVXj=1Cij �i ddxij +Aij� ij(xij)jx=0 = �i'i: (A.2)We represent the wave fun
tion ij(x) == 1p�ijk (aij exp(�i�ijkx) + bij exp(i�ijkx)) (A.3)

that satis�es these boundary 
onditions as a superpo-sition of the partial waves (i)jj0 (xj) = Æjj0 exp(i (��ijk +Aij)xj)p�ijk ++ �ji;ij0 exp(i (�ijk +Aij)xj)p�ijk (A.4)s
attering on the verti
es of the graph. We thus have ij(xj) = NVXj0=1 aij0 (i)j;j0 (xj) == aijp�ijk exp(�i (�ijk �Ai;j)xj) ++ exp(i (�ijk +Ai;j)xj)p�ijk NVXj0=1 aij0�ji;ij0 ; (A.5)with the appropriate weights aij0 
orresponding to thein
oming �ux on the bond Bj0i towards the vertex Vi.Comparing this expression with (A.3) yieldsbij = NVXj0=1�ji;ij0aij0 : (A.6)Substituting (A.5) into boundary 
onditions (A.1)and (A.2) at the vertex Vi, we obtain the respe
tiverelationsNVXj0=1 aij0p�ijk (Æjj0 + �ji;ij0 ) = 'iCij (A.7)and NVXj;j0=1Cijaij0p�ijk (Æjj0 � �ji;ij0 ) = i�i'i: (A.8)Inserting (A.7) in (A.8), we obtainCij NVXl;j0=1Cilaij0p�ilk �Ælj0 � �(i)l;j0� == i�i NVXj0=1 aij0p�ijk (Æjj0 + �ji;ij0 ) : (A.9)In the 
ase of the linear s
aling �i = k�0i , this yieldsNVXj0=1 aij0Cij NVXl=1 Cilp�il (Ælj0 � �li;ij0 ) == i�0i NVXj0=1 aij0p�ij (Æjj0 + �ji;ij0 ) : (A.10)1412
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tra of regular quantum graphsComparing the 
oe�
ients in front of aij0 , we obtainCij NVXl=1 CilÆlj0p�il � Cij NVXl=1 Cilp�il�(i)l;j0 �� i�0i Æjj0p�ij = i�0ip�ij �ji;ij0 ; (A.11)or after performing the summation over l,CijCij0p�ij0 � Cij�ii;j0 �� i�0i Æjj0p�ij = i�0ip�ij �ji;ij0 ; (A.12)where �ii;j0 = NVXl=1 Cilp�il�li;ij0 :Multiplying both sides by Cij�ij and summing overj yieldsviCij0p�ij0 � vi�ii;j0 � i�0iCij0p�ij0 == i�0i�ii;j0 ; (A.13)where vi =Xj Cij�ij :Hen
e, vi � i�0ivi + i�0i Cij0p�ij0 = �ii;j0 ; (A.14)whi
h 
an be used in (A.12) to obtainCijCij0p�ij0 � Cij vi � i�0ivi + i�0i Cij0p�ij0 � i�0i Æjj0p�ij == i�0ip�ij �ji;ij0 (A.15)or �ji;ij0 =  �Æjj0 + 2p�ij�ij0vi + i�0i !CjiCij0 : (A.16)We see that in the s
aling 
ase, the matrix ele-ments �ji;ij0 of the vertex s
attering matrix � are k-independent 
onstants.The matrix element �ji;ij has the meaning of there�e
tion 
oe�
ient from the vertex Vi along the bondBij and the elements �ji;ij0 , j 6= j0 are the transmis-sion 
oe�
ients for transitions between di�erent bonds.Equation (A.6) 
an be written asb = ~Ta; (A.17)

where ~T � ~Tij;nm = ÆinCjiCnm�ji;im: (A.18)In the symmetri
 basis  ji (Lij � x) =  ij(x), wehave ji (Lij�x) = aji exp [(i (��ijk+Aji) (Lij�x)℄p�ijk ++ bji exp [i (�ijk +Aji) (Lij � x)℄p�ijk =  ij(x); (A.19)and the 
oe�
ients aij and bij are therefore related asaji = bij exp [i (�ijk +Aij)Lij ℄ ;bji = aij exp [i (��ijk +Aij)Lij ℄ : (A.20)The 
oe�
ients aij and aji (bij and bji) are 
onsideredto be di�erent, and the bonds of the graph are therefore�dire
ted�.Equations (A.20) 
an be written in the matrix forma = P ~D(k)b; (A.21)where a and b are 2NB-dimensional ve
tors of 
oe�-
ients and ~D is a diagonal matrix in the 2NB � 2NBspa
e of dire
ted bonds,~Dij;pq(k) = ÆipÆjq exp [i (�ijk +Aij)Lij ℄ ; (A.22)and P =  0 1NB1NB 0 ! ; (A.23)where 1NB is the NB-dimensional unit matrix. Thepairs of indi
es (ij), (pq) identifying the bonds of thegraph � play the role of the indi
es of the matrix ~D(k).Equations (A.21) and (A.17) together result ina = S(k)a; (A.24)with the matrix S(k) (the total graph s
attering ma-trix) given by S(k) = D(k)T; (A.25)where D = P ~DP and T = P ~T .REFERENCES1. L. D. Landau and E. M. Lifshitz, Quantum Me
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