ИССЛЕДОВАНИЕ КОЛЕБАТЕЛЬНЫХ СПЕКТРОВ NH₄CI И NH₄Br ПРИ ВЫСОКИХ ДАВЛЕНИЯХ

В. П. Глазков^b, Д. П. Козленко^{a*}, Б. Н. Савенко^a,

В. А. Соменков b , Г. Ф. Сыры x^{b} , А. С. Телепнев a,c

^а Объединенный институт ядерных исследований 141980, Дубна, Россия

^b Российский научный центр «Курчатовский институт» 123182, Москва, Россия

^с Институт физики высоких давлений Российской академии наук 142092, Троицк, Московская обл., Россия

Поступила в редакцию 20 ноября 2001 г.

Методом неупругого некогерентного рассеяния нейтронов исследованы колебательные спектры NH₄Cl при давлениях до 2.6 ГПа и NH₄Br при давлениях до 7 ГПа. Установлено, что линейная барическая зависимость либрационной моды изменяет свой наклон в области выше давления перехода из неупорядоченной кубической фазы в упорядоченную кубическую фазу со структурой типа CsCl. Наклон барической зависимости поперечной оптической трансляционной моды остается неизменным. В одномерном приближении приведены оценки параметров Грюнайзена и рассчитана форма потенциальной функции для либрационных колебаний в неупорядоченной и упорядоченной кубических фазах со структурой типа CsCl. Показано, что наблюдаемые эффекты связаны с большим ангармонизмом потенциала в неупорядоченной фазе.

PACS: 33.15.Hp, 61.12.-q, 62.50.+p, 63.20.-e

1. ВВЕДЕНИЕ

Изучение влияния высоких давлений на галогениды аммония представляет интерес для выяснения взаимосвязи между изменениями в структуре и динамике и фазовыми переходами, происходящими при уменьшении объема [1]. Одним из важных вопросов исследования динамики галогенидов аммония является изучение влияния высокого давления на либрационные и трансляционные моды ионов аммония и изменения их поведения при фазовых переходах [2]. Ответ на эти вопросы можно получить при изучении колебательных спектров кристаллов при высоких давлениях методами оптической и нейтронной спектроскопии. Методы оптической спектроскопии слабо чувствительны к либрационной моде, информация о которой может быть получена только из обертонов и комбинационных мод. В противоположность этому, метод нейтронной спектроскопии позволяет определять положение либрационного пика непосредственно. Однако возможность проведения экспериментов по неупругому рассеянию нейтронов при достаточно высоких давлениях появилась сравнительно недавно, благодаря развитию техники наковален.

В нормальных условиях NH₄Cl и NH₄Br имеют кубическую структуру типа CsCl, ионы аммония в которой ориентационно разупорядочены между двумя эквивалентными позициями — фаза II. С повышением давления при $P \approx 1$ ГПа в NH₄Cl и $P \approx 3$ ГПа в NH₄Br происходит фазовый переход в кубическую фазу IV со структурой типа CsCl, ионы аммония в которой упорядочены параллельно друг другу [3]. Колебательные спектры NH₄Cl и NH₄Br при высоких давлениях исследовались методами рамановской [4,5] и нейтронной спектроскопии [2,6,7]. В работе [2] исследовались колебательные спектры NH₄Cl при давлениях до 4 ГПа. Были получены зависимости частот либрационной и поперечной опти-

^{*}E-mail: denk@nf.jinr.ru

ческой трансляционной мод от давления в ориентационно упорядоченной кубической фазе IV. В то же время влияние давления на поведение либрационной моды в ориентационно неупорядоченной фазе П NH₄Cl, существующей при давлениях ниже 1 ГПа, изучено недостаточно. В [7] обнаружено расщепление либрационного пика вблизи точки ориентационного фазового перехода II-IV в NH₄Br при высоких давлениях. Подобный эффект наблюдался также и в NH₄Cl вблизи точки этого перехода при низкой температуре и нормальном давлении [8]. Данные рамановской спектроскопии [5] указывали на то, что зависимость частоты либрационной моды от давления меняет свой характер в результате ориентационного фазового перехода из неупорядоченной фазы II в упорядоченную фазу IV. Предполагалось, что этот эффект связан с сильным ангармонизмом межатомного потенциала в неупорядоченной фазе II [5,6].

Цель данной работы — изучение поведения колебательных мод в родственных кристаллах NH₄Cl и NH₄Br в широком диапазоне давлений выше и ниже давления ориентационного фазового перехода II–IV методом неупругого некогерентного рассеяния нейтронов.

2. ПОСТАНОВКА ЭКСПЕРИМЕНТА

Эксперименты были выполнены при комнатной температуре на спектрометре ДН-12 [9] на импульсном высокопоточном реакторе ИБР-2 в ЛНФ ОИЯИ (г. Дубна). Кристалл NH₄Cl исследовался при давлении до 2.6 ГПа, полученном с помощью камеры высокого давления с сапфировыми наковальнями [10]. Объем образца составлял $V \approx 5 \text{ мм}^3$. Давление в камере измерялось по сдвигу рубиновой линии люминесценции с точностью 0.05 ГПа. Кристалл NH₄Br исследовался при давлении до 7 ГПа, полученном с помощью камеры высокого давления, сконструированной в ИФВД РАН Ю. А. Садковым и С. М. Стишовым, с наковальнями из карбида вольфрама типа «Тороид», оригинальная конструкция которых для дифракционных исследований была предложена ранее Л. Г. Хвостанцевым и Л. Ф. Верещагиным [11]. Объем образца составлял $V \approx 100 \text{ мм}^3$. Давление в камере определялось на основе известного уравнения состояния [12] для NH₄Br по изменению параметра элементарной ячейки, значение которого определялось из дополнительных дифракционных экспериментов. Для анализа передач энергии использовался охлаждаемый бериллиевый фильтр [13] в случае NH₄Cl и обычный бериллиевый фильтр в

случае $\rm NH_4Br$, установленные под углом рассеяния $2\theta = 90^\circ$. Конечная энергия регистрируемых нейтронов составляла E = 4 мэВ. Характерное время измерения одного спектра составляло 12 ч для $\rm NH_4Cl$ и 50 ч для $\rm NH_4Br$.

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Спектры обобщенной плотности колебательных состояний G(E) в NH₄Cl и NH₄Br при различных давлениях показаны на рис. 1 и 2. Они содержат два пика, отвечающих поперечной оптической трансляционной (TO) и либрационной (L) модам. С увеличением давления частоты этих мод возрастают с различным наклоном (рис. 3). Полученная зависимость частоты L-моды от давления в NH₄Cl несколько отличается от данных рамановской спектроскопии [5], а зависимости частот L- и TO-мод от давления в NH₄Br хорошо согласуются с результатами предыдущих нейтронных исследований в области меньших давлений [7].

Вблизи точки фазового перехода из ориентационно неупорядоченной кубической фазы II в упорядоченную кубическую фазу IV в NH₄Cl ($P_{tr} \approx 1 \ \Gamma \Pi a$) и NH₄Br ($P_{tr} \approx 3 \ \Gamma \Pi a$) происходит изменение наклона зависимости *L*-моды от давления, более заметное для хлорида аммония (рис. 3). При этом зависимость *TO*-моды в обоих соединениях в области фаз II и IV близка к линейной и не имеет каких-либо особенностей вблизи точки фазового перехода. Заметных изменений формы пика либрационной моды в NH₄Cl и NH₄Br во всем исследуемом интервале давлений в пределах энергетического разрешения так-

Рис.1. Обобщенная плотность колебательных состояний NH₄Cl при различных давлениях. Форма пиков описана гауссианом, фон — линейным полиномом

Рис.2. Обобщенная плотность колебательных состояний NH₄Br при различных давлениях. Форма пиков описана гауссианом, фон — линейным полиномом

Рис. 3. Зависимости частот *L*- (вверху) и *TO*-мод (внизу) от давления в фазах II и IV NH₄CI и NH₄Br, интерполированные линейными функциями: ●, ■ данные настоящей работы; ○ — рамановские данные [5], □ — нейтронные данные [7]

Рис. 4. Зависимость полуширины либрационного пика в NH₄CI от давления

же не наблюдалось. Анализ поведения полуширины либрационного пика w от давления (рис. 4) в NH₄Cl показал, что по мере приближения к точке фазового перехода в упорядоченную фазу происходит уменьшение ее значения, а в области этой фазы w остается примерно постоянной.

Представленные в таблице вместе со значениями производных $d\omega_i/dP$ параметры Грюнайзена $\gamma_i = -(d \ln \omega_i/d \ln V)_T$ для *L*- и *TO*-мод NH₄Cl и NH₄Br рассчитаны для неупорядоченной фазы II при нормальном давлении и упорядоченной фазы IV соответственно при P = 1.5 ГПа и P = 3 ГПа. При вычислениях использовались следующие значения модуля всестороннего сжатия *B*:

NH₄Cl :
$$B(P = 0) = 17.9$$
 ΓΠa,
 $B(P = 1.5$ ΓΠa) = 26.0 ΓΠa;

NH₄Br :
$$B(P = 0) = 16.4 \ \Gamma \Pi a$$
,

$$B(P = 3.0 \ \Gamma \Pi a) = 30.8 \ \Gamma \Pi a \ [3].$$

Полученные значения параметров Грюнайзена либрационной моды γ_L несколько отличаются от величин [5], определенных методом рамановской спектроскопии (таблица). Вследствие ориентационного фазового перехода, сопровождающегося упорядочением ионов NH₄⁺, в NH₄Cl происходит заметное уменьшение γ_L с 1.55 до 0.50. В NH₄Br изменение γ_L не столь значительно, эта величина уменьшается с 0.59 до 0.38.

Мода	Фаза	$P, \Gamma \Pi a$	$d\omega_i/dP,$ мэ ${ m B}/\Gamma\Pi{ m a}$	γ_i
$\mathrm{NH}_4\mathrm{Cl}$				
L	II	0	3.66	1.55(5)
	II, данные [5]	0	—	1.30(17)
	IV	1.5	0.92	0.50(4)
	IV, данные [5]	—	—	0.29(6)
TO	II, IV	0	2.57	2.30(5)
$\mathrm{NH}_{4}\mathrm{Br}$				
	II	0	1.35	0.59(5)
L	II, данные [5]	0	—	0.72(9)
	IV	3.0	0.52	0.38(5)
ТО	II, IV	0	1.93	1.75(5)

Параметры Грюнайзена *L*- и *TO*-мод в NH₄Cl и NH₄Br для фаз II и IV

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Данные факты можно объяснить, если предположить, что в неупорядоченных фазах NH_4Cl и NH_4Br межатомный потенциал имеет ярко выраженный ангармонический характер, причем степень ангармоничности больше для NH_4Cl , а при переходе в упорядоченную фазу форма потенциала становится ближе к гармонической за счет углубления потенциальной ямы (рис. 5). Для проверки этого предположения мы провели следующие простые оценки.

В случае малых колебаний вблизи минимума потенциальной энергии простейший одномерный ангармонический потенциал можно представить в виде

$$U(x) = \frac{m\omega^2 x^2}{2} + \alpha x^3 + \beta x^4,$$
 (1)

где m — масса осциллятора, ω — частота колебаний осциллятора в гармоническом приближении, α и β постоянные, определяющие степень искажения потенциала (1) по сравнению с гармоническим.

Рис. 5. Форма межатомного потенциала в неупорядоченной фазе II и упорядоченной фазе IV NH₄Cl и NH₄Br

Частота колебаний гармонического осциллятора определяется параметрами потенциальной ямы — высотой U_0 и шириной d:

$$\omega = \sqrt{2U_0/md^2} \,. \tag{2}$$

Тогда в рамках теории возмущений выражение для уровней энергии ангармонического осциллятора имеет вид [14]

$$E_n = \hbar \omega \left(n + \frac{1}{2} \right) - \frac{15}{4} \frac{\alpha^2}{\hbar \omega} \left(\frac{\hbar}{m \omega} \right)^3 \times \left(n^2 + n + \frac{11}{30} \right) + \frac{3}{2} \beta \left(\frac{\hbar}{m \omega} \right)^2 \left(n^2 + n + \frac{1}{2} \right).$$
(3)

В кубической структуре типа CsCl ионы аммония находятся в центре элементарной ячейки, при этом атомы водорода занимают положения (xxx) вдоль диагоналей куба. В неупорядоченной фазе II существуют два возможных эквивалентных положения для ионов NH₄⁺ и ионы аммония могут совершать реориентационные перескоки между ними [15, 16]. Следовательно, частота либрационных колебаний иона аммония соответствует частоте колебаний каждого из атомов Н в потенциальных яме, высота которой определяется величиной вращательного потенциального барьера U₀ для реориентаций ионов аммония, а ее ширина d имеет величину порядка расстояния между соседними эквивалентными позициями для атомов H, $d \sim l_{\text{H-H}}$ (рис. 5). Ориентационный фазовый переход, в результате которого происходит упорядочение ионов аммония, связан

с углублением одной из двух соседних потенциальных ям, так что энергетически выгодной становится только одна из двух эквивалентных в неупорядоченном состоянии ориентаций ионов аммония (рис. 5).

Частоте либрационной моды в NH_4Cl и NH_4Br соответствует переход между основным и первым возбужденным уровнем энергии ангармонического осциллятора. Рассматривая для простоты одномерные колебания атома H в описанной выше потенциальной яме, из (2) и (3) получаем

$$E_L = \hbar\omega_L = \frac{\hbar}{d}\sqrt{\frac{2U_0}{m}} - \frac{30}{16m}\left(\frac{\hbar\alpha d^2}{U_0}\right)^2 + \frac{6}{4}\frac{\beta\hbar^2 d^2}{mU_0}.$$
 (4)

Величину d в фазах II и IV NH₄Cl при нормальном давлении можно оценить по формуле (2) из известных значений частоты либрационной моды E_L [6] и значений энергии активации для реориентаций ионов аммония W [17], которые в классическом приближении соответствуют величинам вращательного потенциального барьера. Для фазы II при T = 290 К, $E_L = 42.3$ мэВ [6] и $W^{\rm II} = 18.84$ кДж/моль [17] имеем $d_{\rm II} = 0.952$ Å. Для фазы IV при T = 80 K, $E_L = 46.8$ мэВ [6] и $W^{
m IV}=23.03~{
m K}$ Дж/моль [17] получаем $d_{
m IV}=0.953~{
m \AA},$ примерно равное d_{II}. Поскольку охлаждение с 290 К до 80 К отвечает изменению параметра элементарной ячейки a NH₄Cl с 3.866 до 3.834 Å (линейный коэффициент теплового расширения $\alpha_L = 5 \cdot 10^{-5} \text{ K}^{-1} [18]),$ что эквивалентно приложению давления величиной P = 0.5 ГПа при комнатной температуре, значение d с хорошей точностью может считаться неизменным в исследуемом интервале давлений, $d_{\rm Cl} \approx 0.95$ Å. Аналогичный расчет для NH_4Br с использованием величин E_L , W^{II} и W^{IV} из [7,17] дает близкое значение $d_{\text{Br}} = 0.94 \text{ Å}$. Таким образом, изменение частоты либрационной моды при изменении давления (или уменьшении межатомного расстояния) определяется в основном изменением глубины потенциальной ямы U₀.

Зависимость высоты потенциального барьера U₀ от межатомного расстояния (или от давления) в простейшем приближении можно описать степенной функцией [19]

$$U_0(a) = M/a^C, (5)$$

где *а* — параметр элементарной ячейки, *M* и *C* — экспериментальные константы.

Предполагая, что в упорядоченной фазе IV форма межатомного потенциала близка к гармониче-

Рис. 6. Зависимость частоты либрационной моды от параметра элементарной ячейки в фазах II и IV NH₄Cl и NH₄Br. Сплошная и пунктирная линии расчет на основе функций, задаваемых выражениями (4) для фазы II и (5) для фазы IV

ской, из интерполяции функцией (5) зависимости частоты либрационной моды от параметра элементарной ячейки $E_L(a)$ (рис. 6), вычисленной на основе экспериментальных данных $E_L(P)$ и известных уравнений состояния для NH₄Cl и NH₄Br [12, 20], получаем следующие значения:

NH₄Cl: $M = 2.59(5) \cdot 10^6 \text{ кДж/моль}, \quad C = 3.56(1),$

NH₄Br : $M = 1.79(5) \cdot 10^6 \text{ кДж/моль}, \quad C = 3.40(1).$

Для расчета межатомного потенциала в фазе II необходимо определить величины параметров α и β . Из интерполяции экспериментальной зависимости $E_L(a)$ функцией (4) (рис. 6) с учетом выражения (5) и рассчитанных значений параметров M и C, получаем: $\alpha = 6.61 \cdot 10^{-20} \ \mbox{Дж}/\mbox{Å}^3$ и $\beta = 18.58 \cdot 10^{-20} \ \mbox{Дж}/\mbox{Å}^4$ для NH4Cl; $\alpha = 2.60 \cdot 10^{-20} \ \mbox{Дж}/\mbox{Å}^3$ и $\beta = 4.05 \cdot 10^{-20} \ \mbox{Дж}/\mbox{Å}^4$ для NH4Br. В вычислениях учитывалось, что при переходе происходит скачкообразное изменение глубины потенциальной ямы на величину $\Delta \approx 4 \ \mbox{кДж}/моль$ $в NH4 Cl и <math display="inline">\Delta \approx 2 \ \mbox{кДж}/моль в NH4 Br [17].$

Выражения (4) и (5) описывают поведение частоты либрационной моды как функции параметра элементарной ячейки. На их основе можно рассчитать параметры Грюнайзена в фазах II и IV, представив формулу для их вычисления в следующем виде:

$$\gamma_L = -\left(\frac{d\ln\omega_L}{d\ln V}\right)_T = -\frac{V}{\omega_L} \left(\frac{d\omega_L}{da}\right)_T / \left(\frac{dV}{da}\right)_T = \frac{a}{3\omega_L} \left(\frac{d\omega_L}{da}\right)_T, \quad (6)$$

где *а* — параметр элементарной ячейки. Рассчитанные значения параметров Грюнайзена составили $\gamma_L = 1.78$ для NH₄Cl и $\gamma_L = 0.89$ для NH₄Br в фазе II при $P = 0; \ \gamma_L = 0.59 \ (P = 1.5 \ \Gamma \Pi a)$ для $NH_4 Cl$ и $\gamma_L = 0.56 (P = 3.0 \ \Gamma\Pi a)$ для $NH_4 Br$ в фазе IV. Хотя эти величины несколько превышают экспериментальные значения (таблица), согласие можно считать удовлетворительным для простой оценки. Во всяком случае экспериментальная ситуация полностью описывается качественно. Для более точного расчета γ_L необходимо детальное рассмотрение вклада различных межатомных взаимодействий в потенциальную энергию NH₄Cl и NH₄Br в трехмерном случае. Отметим, что наблюдаемый эффект имеет место только для либрационной моды, ответственной за переход, и отсутствует (или неизмеримо мал) в случае трансляционной оптической моды из-за меньшей амплитуды и частоты колебаний. Выходящее за пределы разрешения изменение ширины либрационного пика в неупорядоченной фазе NH₄Cl связано, по-видимому, с изменением времени жизни возбуждений по мере приближения к давлению перехода в упорядоченное состояние. Отсутствие расщепления либрационного пика в упорядоченной фазе NH₄Cl вблизи точки перехода, наблюдавшегося в NH₄Br [7,8] и связанного с возбуждениями в двух потенциальных ямах при неполном порядке, обусловлено, очевидно, недостаточным энергетическим разрешением спектрометра ДН-12.

5. ЗАКЛЮЧЕНИЕ

Результаты настоящей работы показывают, что ориентационный фазовый переход II-IV в NH₄Cl и NH₄Br приводит к заметному изменению характера поведения либрационной моды от давления, что проявляется в сильном изменении параметра Грюнайзена, и сужению либрационного пика. Такое поведение связано с тем, что упорядочение ионов аммония приводит к изменению вида вращательного потенциала с сильно ангармонического в неупорядоченной фазе II на близкий к гармоническому в упорядоченной фазе IV. Так как наблюдаемый эффект имеет, по-видимому, достаточно общий характер, можно ожидать его проявления и в других молекулярных кристаллах при ориентационных фазовых переходах, а также в изменении свойств, обусловленных ангармонизмом, в частности, в тепловом расширении.

Авторы признательны В. А. Сидорову за изготовление прокладок и помощь в калибровке камеры высокого давления.

Работа выполнена при финансовой поддержке РФФИ (проект 00-02-17199), Программы государственной поддержки ведущих научных школ (проекты 00-15-96778, 00-15-96712), а также ГНТП «Нейтронные исследования вещества».

ЛИТЕРАТУРА

- 1. Н. Парсонидж, Л. Стейвли, Беспорядок в кристаллах, Мир, Москва (1982), т. 1, с. 277.
- А. М. Балагуров, Д. П. Козленко, Б. Н. Савенко, В. П. Глазков, В. А. Соменков, ФТТ 40, 142 (1998).
- A. M. Balagurov, B. N. Savenko, A. V. Borman, V. P. Glazkov, I. N. Goncharenko, V. A. Somenkov, and G. F. Syrykh, High Press. Res. 14, 55 (1995).
- 4. A. M. Heyns, J. Phys. Chem. Sol. 41, 769 (1980).
- 5. Y. Ebisuzaki, J. Chem. Phys. 61, 3170 (1974).
- А. Н. Иванов, Д. Ф. Литвин, Я. Майер, И. Натканец, Л. С. Смирнов, Препринт ИТЭФ № 80-91, Москва (1991).
- V. P. Glazkov, V. A. Somenkov, G. F. Syrykh, and B. N. Savenko, High Press. Res. 17, 289 (2000).
- G. Venkataraman et al., J. Phys. Chem. Sol. 27, 1103 (1966).
- V. L. Aksenov, A. M. Balagurov, V. P. Glazkov, D. P. Kozlenko, I. V. Naumov, B. N. Savenko, D. V. Sheptyakov, V. A. Somenkov et al., Physica B 265, 258 (1999).
- 10. В. П. Глазков, И. В. Гончаренко, ФТВД 1, 56 (1991).
- 11. L. G. Khvostantsev, L. F. Vereshchagin, and A. P. Novikov, High Temp.-High Press. 9, 637 (1977).
- 12. O. Schulte and W. B. Holzapfel, High Press. Res. 4, 321 (1991).
- А. М. Балагуров, В. П. Глазков, Д. П. Козленко, Ю. М. Красников, И. В. Наумов, С. Л. Платонов, А. В. Пухов, Б. Н. Савенко, В. А. Соменков, Г. Ф. Сырых, Препринт ОИЯИ № Р13-97-312, Дубна (1997).
- 14. Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, т. 3: Квантовая механика, 4-е издание, Наука, Москва (1989), с. 165.

- 15. J. Töpler, D. R. Richter, and T. Springer, J. Chem. Phys. 69, 378 (1978).
- 16. R. E. Lechner, G. Badurek, A. J. Dianoux, H. Hervet, and F. Volino, J. Chem. Phys 73, 934 (1980).
- 17. P. S. Leung, T. I. Taylor, and W. W. Havens, Jr., J. Chem. Phys. 48, 4912 (1968).
- 18. B. B. Weiner and C. W. Garland, J. Chem. Phys. 56, 155 (1972).
- 19. В. П. Глазков, Д. П. Козленко, Б. Н. Савенко, В. А. Соменков, ЖЭТФ 117, 362 (2000).
- 20. S. N. Vaidya and G. C. Kennedy, J. Phys. Chem. Sol. 32, 951 (1971).