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As is well known, fluctuations from a stable stationary nonequilibrium state are described by the linearized
inhomogeneous Boltzmann—Langevin equation. The stationary state itself can be described by the nonlinear
Boltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that there is
actually a unique way to obtain a linear equation for the fluctuations. As an example, we consider an analytical
theory of nonequilibrium shot noise in a diffusive conductor under the space-charge limited regime. Our ap-
proach is compared to that in Ref. [11]. We find some difference between the present theory and the approach
in [11] and discuss a possible origin of the difference. We believe that it is related to the fundamentals of the
theory of fluctuation phenomena in a nonequilibrium electron gas.

PACS: 72.70.4+m, 72.10.-d, 74.40.+k
1. INTRODUCTION

The present paper is devoted to the theory of
shot noise in space-charge limited diffusive conduction
regime. The motivation can be formulated as follows.
It is well known that fluctuations from a stable sta-
tionary nonequilibrium state are described by the lin-
earized inhomogeneous Boltzmann-Langevin equation
(see, e.g., [1-7]). At the same time, the stationary state
itself is described by the nonlinear Boltzmann equa-
tion. There are instances where the ways of lineariza-
tion of the nonlinear Boltzmann equation seem to be
not unique. We believe, however, that in each such
case, there is a unique way to obtain the linearized
Boltzmann equation for the fluctuations and we give
general considerations to find this linearization and in-
dicate it for the particular case treated in the present
paper.

We develop a theory of nonequilibrium shot noise
in a nondegenerate diffusive conductor under space-
charge limited regime. This regime is extensively dis-
cussed in the literature (see, e.g., Refs. [8, 9]). The
current noise under such a regime was recently stud-
ied by Monte Carlo simulation by Gonzélez et al. [10].
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* % . . .
E-mail: mag.muradov@pop.ioffe.rssi.ru

Quite recently, the noise was analytically studied under
the same conditions by Schomerus, Mishchenko, and
Beenakker [11]. Their general finding was that because
of the Coulomb correlation between electrons, the shot
noise is reduced below the classical Poisson value. The
authors of both Refs. [10] and [11] came to the con-
clusion that under certain conditions, the suppression
factor in the nondegenerate 3D case can be close to 1/3.

Later on, Nagaev [12] has shown in a special exam-
ple that unlike the 1/3 noise reduction in degenerate
systems, the noise suppression by the Coulomb inter-
action is nonuniversal in nondegenerate systems. The
noise suppression in such systems may depend on the
details of the electron scattering.

We agree with the conclusion in [10, 11] that the
reduction of the shot noise power in nondegenerate dif-
fusive conductors can sometimes be close to the value
1/3 theoretically predicted for the three-dimensional
degenerate electron gas. As mentioned above, we also
arrive at some conclusions that may prove important
for the general theory of fluctuations in nonequilibrium
systems. As is well known, the fluctuation phenomena
in nonequilibrium stable systems are described by a
linearized Boltzmann equation. We use the example
analyzed in detail in the present paper to show that
the linearization must be performed with care. In par-
ticular, there is a difference between the analytical pro-
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cedures used in Ref. [11] and in the present paper for
the calculation of the shot noise power. We discuss the
origin of this difference and its implications. Because
the point leading to the discrepancy is very subtle, it
demands a rather detailed analysis, which we perform
in the present paper partly repeating the calculations in
Ref. [11] with some modifications. Our starting point
is the Boltzmann equation formulated for the descrip-
tion of the stationary state; it is then applied to the
analysis of fluctuations.

2. BOLTZMANN EQUATIONS

We consider the simplest model, used in Ref. [11],
for the diffusion-controlled and space-charge limited
transport. As the starting point, we use the Boltzmann
equation in the presence of an electric field,

0
(5 + %) fo =0 (21)
0 0
jpfp = <Va + QE% + Ip> fp', (22)

where we have introduced the collision integral I, de-
scribing the electron scattering,

Infp = Z (Wo'pfo = Wop' for)

p'

(2.3)

(we deal with the nondegenerate statistics, and there-
fore, fp < 1).

Splitting the distribution function into the even and
odd parts with respect to p, we obtain

ff;t = %(fpiffp)-

We assume that the collision operator acting on the
even (odd) part of the distribution function gives an
even (odd) function. This can be the case either be-
cause of the central symmetry of the crystal itself and
the scatterers or because of the possibility to use the
Born approximation in calculating the scattering prob-
ability. The first split equation is

ofy ot
ot "V or

Ofy
+eE ap =-Ipfy-

(2.4)

Being interested in relatively small frequencies of fluc-
tuations wtp, <K 1, where 7, is the characteristic value
of I;l, we can neglect the time derivative and express
fp as

fo=-I1;! <v% + ¢E - V8f§> : (2.5)

r r or Oep

Inserting this expression into the second split equation
for fI;L ~ f(e,r,t) and averaging over the constant-
energy surface in the quasimomentum space, we ar-
rive at

of _

v(e) ot

0 0
<8xa + eEa£> v(e)Dap(e) %

0 0
X (8—%+6Eﬁg> f—

== 0 —ep) ™, (26)

where the term in the right-hand side describes the in-
elastic collisions, while the density of states v(¢) and
the diffusion tensor D,s(e) are defined as

v(2)Dap(e) = Z 5(e — sp)vafglvg.,

(2.7)
v(e) = (s —ep).
p
The electric field obeys the Poisson equation
KVE = 4re[n(r,t) — n],
7 2.8
n(e,t) = [ (@) er ), (28)
0

where k is the dielectric susceptibility and n®? is the
equilibrium concentration (equal to the concentration
of donors). In what follows, we neglect n? compared
to the nonequilibrium concentration n.

The part of the distribution function contributing
to the current consists of two terms that are propor-
tional to the spatial and energy derivatives of f(e,r,t)
respectively,

Ja :ezvfp_ =
p

0 0
= —ev(e)Dys(e) <% + eELa%) fo (2.9
We consider the case where Dr. > L2, where L is
the sample length and 7. is the energy relaxation time

g1
(of the order [Ié,mel)] ). In the right-hand side of

Eq. (2.6), we can then omit the term that describes the
energy relaxation. Under the same conditions, we ob-
tain the Boltzmann equation for the fluctuations of the
distribution function (we remind the reader that here
we consider low-frequency fluctuations with

wL Iy~ 1/1p,
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where 73, is the characteristic time of elastic collisions),

d 9\ a 00 . _
<E+6Ea%> 5]0.) +66Ew 86]a = eyw(svx)v (210)

070 = eZvaéfI: = g2 —ev(e)Dyp(e) %
P
0 13} 0
_— - B8
X <[6x5 +eFg 85} 0f, + edE] 66f> ,  (2.11)

and the source of the current fluctuations g2 is related
to the Langevin forces y; as
98 = eZé(a—ap)valglyg, (2.12)
P

Yole,2) =Y 6(e —ep)ys =0,

P

(2.13)

The last equality is a consequence of the elasticity
of scattering, which leads to the particle conservation
within the constant-energy surface in the quasimomen-
tum space.

The correlation function of the Langevin forces is
well known [7],

(p()yp (t')0 = (Jp + Tp')der dpp' fo- (2.14)

Integrating Eq. (2.10) over £, we obtain the continuity
equation

- (2.15)

o0
d d
A% /ds 0jw(e,z) = —dJ,(x) =0,
0
which implies that the low-frequency current fluctua-
tions are spatially homogeneous.

3. THE DISTRIBUTION FUNCTION

We consider a semiconductor with a uniform
cross-section A connecting two identical metallic
electrodes. The length L of the sample is assumed to
be much larger than the elastic scattering length [ and
much smaller than the inelastic one. We use the 1D
versions of the Boltzmann equations describing the
distribution function evolution along the dc current
direction.

To obtain the stationary solution of Eq. (2.6) in the
accepted approximation, we rewrite it as

(24¢E%>ﬂa@=&@ﬂd

-~ (3.1)

We here assume that the current density at z = 0,
j(g), is nonvanishing only for £ > 0. In the absence of
tunneling, j(¢) must have the property that
jle)—=0 as T —0 (3.2)

at the contact x = 0, with T being the temperature.
This condition must be valid, irrespective of whether a
Schottky barrier or an Ohmic contact occurs. Evident-
ly, the total current J given by Eq. (3.3) below must
have the same property.

The solution of Eq. (3.1) is a function of the total
energy &,

£=c+U(z),

where
U2) = ep(a) — e(0).

It can be found using, e.g., the inverse differential op-

erator
xr

1
580 = [ ded(e).

0

We have

i) = o @)

=ﬂ@WW%%HWﬂWﬂWW@Zﬂ@

and j(e,z) takes nonzero values at a given x only if
e > —U(z) (€ > 0). The total current through the
sample is

J:A/daj(a,x) =
0

=A dejle+U(z)]=A [ dEj(&). (3.3)
/ /
From Eq. (2.9), we now obtain
f@aﬂ:—ax+;%@&i§é?+fk+U@» (3.4)
or
fe) = =il6) [t + f1E). (35)
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We have taken the boundary condition at the source

into account. Equation (3.5) can be rewritten as

O [ 1
fl€=U(x),z] = | f[€ = U(L)] dfw +
[L O/ [ (©)]
1) / “NE —1U<f>] g
T ; B
|| e

0

where j(¢) is expressed through the difference of the
distribution functions at x =0 and z = L,

L

6) [t = £6) = £ - V(D)

0

(3.7)

An advantage of the form chosen for Eq. (3.6) is
its physical transparency. The first term in the right-
hand side gives the contribution of the right boundary
and the second term gives the contribution of the left
boundary. The solution clearly demonstrates that the
thermally excited carriers injected from the contact at
x = L make a negligible contribution to the distribu-
tion function f[€ — U(x), x], because

F&) > flE-U)] (€ =0)

for the parameter |U(L)|/kpT is assumed to be large.
Neglecting this term in our solution of Eq. (3.6), we
arrive at the solution already obtained in [11] by as-
suming absorbing boundary conditions at the current
drain.

4. THE FIELD DISTRIBUTION

We use the Poisson equation to determine the self-
consistent electric field that can be expressed through
the obtained distribution function. We consider the
values of x such that x > zz, where

~U(xz) > & ~ kpT,

k  d*U T

We finally obtain

L
K 1 PUJ d¢

_— = — . 4.2
dre? v[-U(x)] dz?  eA ] N[-U(&)] (42)
T
We now check that for large z, this equation is con-
sistent with the requirement of a uniform total current.
Assuming

v(e) = vpe?/?*!

and
D(é‘) = D[)<€s_~_1 s

we integrate Eq. (2.9) over the transverse coordinates
and energy, with the result

% _ _e% /dau(E)D(s)f(ax) +
eDor(d + 2s) s d 1o

We integrate the second term by parts and take into
account that at * > zz, we can neglect £ compared to
|U(x)| and use Poisson equation (2.8). The first term
in Eq. (4.3) can be simplified in the same way")

/ dev(e)D(e) f (e, ) =

—U(z)
- / 4€ VIE — U(x)]DIE — U@ (€ — Ula).x) =
0

o0

= DI-U(a) [ devle - U@ (€ - Ula).a) =

= DU~ L.

4.4
4dme dx (4.4)

1) We note that in view of Eq. (3.5), the distribution function
f(e,2) takes nonzero values only for ¢ > —U(x).
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In the second equality, we used that & < |U(z)|. In-
serting Eq. (4.4) in Eq. (4.3), we obtain the simplified
equation

dr|J] d s41dE
D(]KJA dx <[ ul dz *

2s+d dE?
=0l ——

+ |e] (4.5)

It can be used to verify the self-consistency of our ap-
proach. Indeed, multiplying Eq. (4.2) by U*t%/2 and
taking the derivative, we arrive at Eq. (4.5) that has
been obtained from the equation for the current. A
dimensionless version of Eq. (4.5) is

d_
X <TXX xx”’) =1,

where the dimensionless potential y is related to ¢ by

(4.6)

A7l JIL3 /(5+2)
¥ = <D0T||e|s+1> x(z/L). (4.7)

5. THE CURRENT AND FIELD
FLUCTUATIONS

In what follows, we consider the particular cases
where

s=0, D(e) = Dye;
s=—1/2, D(e) = Doe'/?;
and
s=1/2, D(e) = Do/

We begin with investigating the case of the energy-
independent scattering time, s = 0. This case can be
related to the scattering of electrons by neutral impuri-
ties, such as hydrogen-like shallow donor and acceptor
states. The scattering is analogous to the scattering
of electron by a hydrogen atom [13] (with the effective
Bohr radius ap). The scattering cross-section turns out
to be about 2wfi/pap times larger than the geometri-
cal cross-section wa% (that would result in an energy-
independent scattering time).

In the case of defects with deep energy levels, we
encounter a short-range scattering potential with the
scattering length about the atomic length. The scat-
tering cross-section does not depend on the energy. As
a result, the scattering rate is proportional to the elec-
tron density of states ¢'/2 and the diffusion coefficient
v is proportional to €'/2, i.e., s = —1/2. (This is one
of the main scattering mechanisms in metals because

the scattering length is then determined by the screen-
ing radius, which is of the order of the interatomic dis-
tance.) The cases where s = —1/2 (which in particular
describes elastic scattering by acoustic phonons) and
s = 1/2 are discussed in the end of this section.

5.1. Energy-independent scattering time
Integrating Eq. (2.11) over ¢, we obtain

A(6J -G,) =— di / (€)0fu(e,x)+
~U(a)
8(7’:1“ %E(x)éEw(x). (5.1)

We note that because of Eq. (2.10), the Fourier trans-
form of the current fluctuations §.J,, is spatially homo-
geneous. Here, G, is the current fluctuation source
integrated over the energy and transverse coordinates,

= /dadrlgw(a,r), (5.2)
0
(G(2)G(2"))
e2/d5/d D 8(e = ep)d(e’ — pr)vava’ X
0 0 p.p'
1
<ypyp> (5.3)

The part of the distrlbutlon function that is odd with
respect to p — —p vanishes after inserting it into cor-
relation function (2.14) of the Langevin forces and sub-
sequently integrating over p and p’. As a result, we are
left with the integral of the even function

(G(2)G(2"))w = 0pa (G (2))u, (5-4)

(G*(z))s —262A/dafax26a—ap Iivz—

= 262A/d61/ Vf(e,x). (5.5)
The second term in the right-hand side of Eq. (5.1) can
be simplified in the same way as Eq. (4.4),
/dazx (e)0fu(e,x) =
= D(-U) = Lo, (56)
N 4re dx ’
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and we finally obtain the equation for § E,,

% <U(m)%5Ew(x)> + eg %E(l‘)(sz (x) =
4n
= ADOR((U“’_G”)' (5.7)

In order to justify the simplification in Eq. (5.6), we
now show that df,(e,z) is also a function taking
nonzero values only at ¢ > —U(z). Indeed, from
Eq. (2.10) and Eq. (2.11), we can obtain the solutions

Siale ~ Ulw).a] = 6 () S5(2) + Aj(edur (5.8)
F 0
SLle-Ule).al = [ d SB35 le-U(©).9)-
L
Gule — U(€).€] - bl — U(€). €
-] AR~ U] - 09

which show that §f has the aforementioned property.
Here, Aj(e) are the fluctuations of the current at the
left boundary @ = 0. The fluctuations of the distribu-
tion function A f() at the right boundary are assumed
to be zero. If we assume A(e) to be a constant (indepen-
dent of the energy), taking Eqs. (5.8) and (5.9) and the
equation df,(s,0) = 0 into account, we immediately
arrive at the result

(5.10)

h

AJ = l/Ld:v/dsg[g—U(:v),:v]
0

obtained by Nagaev [12].

5.2. Comparison with the approach in Ref. [4]

We now embark on setting forth the crucial point
of the paper. Equation (5.7) does not coincide with the
equation for the field fluctuations obtained in [11] by
directly linearizing Eq. (4.5) for s = 0,

% {5Uw(az)%E(x)] + % [U(az)%éEw(x)} +
d d 47
+ eE%E(x)éEw(x) = m(&]w -G,). (5.11)

The origin of this discrepancy must be understood.

First, we temporarily adopt the scheme of Ref. [11]
and reconsider Eq. (4.3) for the current

+ 3 Doe?B() / dev(e) f(e.x).  (5.12)
Uz

For the total current (the d.c. current plus fluctua-
tions), the equation reads

J+o6J-G  d
= e X
% / dev(e)D(e)[f(e,x) +f(e,x)] +

—U(z)—0U(x)

+ §D062[E($) +0E(z)] x

o

<

—U(z)—0U(x)

dev(e)[f(e,z) +0f(s,2)]. (5.13)

Taking Eq. (5.12) into account, we obtain the linearized
equation

If one linearized the Poisson equation in the spirit of
Ref. [11] one would see that the term in the curly brack-
ets in Eq. (5.14) would coincide with (k/4mwe)(d0E /dzx),
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and therefore,

do r
ﬁd—fz / dev(e)df(e,z) +
—U(z)
6 oo
40U s / dev(e) f(e.x).  (5.15)

—U(a)

Simplifying the first, third, and fourth terms in the
right-hand side of Eq. (5.14) with the help of Eq. (5.6)
and inserting (k/4me)(d0E/dx) instead of the term in
the curly brackets, we arrive at

3 Kk d
Kk d 1) dE

We can see that the last term in the right-hand side of
this equation coincides with the first term in the left-
hand side of Eq. (5.11). To avoid confusion, we note
that we believe Eq. (5.15) to be also wrong. We have
written it here only for the detailed comparison with
the approach in Ref. [11]. We believe that the correct
Poisson equation for the fluctuation field is

oo

/ dev(e)df(e, z).

—U(z)

k dOE

v e 1
dre dx (5.17)

In Eq. (4.3) for the d.c. current, we now add the terms
that actually vanish because they are proportional to
the integrals of the distribution function over £ with the
upper limit —U(x), whereas the distribution function
f(e,2) =0 for e < =U(2). The point is that when we
calculate the fluctuations by the replacement

U(z) = U(x) + oU(z),

they give a nonvanishing result. We have

J__ 4a /
A eda/:

et / de v(e)D(e) f (e, ) +

—U(x)
dev(e)D(e)f(e,x) —

+%D062E(1‘) / dev(e)f(e,z) +

o

(5.18)

+2D062E(5€) / dev(e) f(e, x).
Uz

dev(e)D(e)[f(e,2) +6f(e,2)] —
dev(e)D(e)[f(e,2) + 6 f(e,2)] +
+ =Doe’[E(z) + 6E(x)] x

« / dev(e)[f(e,z) +0f(e,2)] +

o

+ 2D062[E($) +0E(x)] x

oo

<

—U(z)—0U(x)

dev(e)[f(e,z) +0f(s,2)]. (5.19)

Linearizing this equation and using relations similar to

o

5U () 6U6(x) / de v(e)D(e) f (e, 7) =
—U(z)
—U(z)=6U(z)
= - / dev(e)D(e)f(e,2), (5.20)
—U(z)

we arrive at Eq. (5.1) that has been derived above. We
see that the contributions to Eq. (5.19) that are linear
in 60U cancel because of the terms that vanish in the
equation for the d.c. current but must be taken into
account in considering fluctuations. This is why the
linearization of Eq. (4.5) leads to Eq. (5.11) that we
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believe to be wrong because it does not take all the
sources of fluctuations into account, or in other words,
all the terms in Eq. (5.18) containing U (x).

The solution of Eq. (5.7) with the boundary condi-
tions

E(2)0E,(x) |z—0 — 0,

d (5.21)
U(x)—0E,(x) —0
dx x—0
is given by
ADOI‘L o d/2
TS () = U (a)
z 13
x |C+ Ud/2+1 /dn 0, —GM)w)|, (5.22)

0

where C is the integration constant. Requiring a non-
fluctuating applied voltage

L
/dxdEw =0,
0

we obtain from Eq. (5.22) that the constant is

L
o= [ (55 ) e >

« [de0a. - 6u©). G2
0
where
0= [devg) (5.24)
0
We now require
i6E (z) =0 (5.25)
d‘r o x=L a .
at the right boundary and obtain
. L
0J, = E/dml’[( )Gy (), (5.26)
0
where
WLUA(L) [, zb)
x(x
Z=L+ 09 /ded/m(x), (5.27)
14 ZKDBT®, Beim. 5

dU' (L) Ud/2
II =1 . 2
The noise power P is then given by
) L
P=—5 [da 1 (2)(G? (7)) - (5.29)
0
In accordance with Eq. (5.5), we have
(G*(2))w = 262A/d61/ ,x) =
— 224D U(x)idQ—U (5.30)
N 0 dme dx?’ ’
We finally arrive at
4AD ‘ d*U
_ or 2 @y
= iz /dacH (2)U(x) el (5.31)
0

The potential distribution can be found following the
method in Ref. [11], i.e., by solving Eq. (4.5) with
boundary condition (4.2) at # = L. Using Eqs. (5.24),
(5.27), (5.28), and (5.31), we calculate the suppression
factor P/ Ppgisson. For physically relevant different val-
ues of the dimensionality d, we obtain

0.3188 for
= 0.4512 for
0.682  for

d=3,
d=2,
d=1.

P

PPoisson (532)
In this particular case, our results therefore differ from
those calculated in Refs. [11] both analytically (which
is of principal importance in our opinion) and numeri-
cally (although in this particular case, the difference is
not great). Naturally, there is essentially no difference
from the results calculated within an ensemble Monte
Carlo scheme in Ref. [10].

5.3. Energy-dependent scattering time

We here calculate the noise power for s = +1/2 and
d = 3. The equation for the fluctuations is

4 _d sp1dOE,,
RDOA((U“) Gu) = dz [( U) dx }

2s +d s d
2 (_U)%

Introducing the dimensionless potential x by Eq. (4.7)
and the fluctuation of the field AE by

)1/(”2) AE (%) . (5.34)

(ESE,). (5.33)

3
SE(z) = 1 < 4r|J|L

L \ kDoA|e[>+1
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we can rewrite Eq. (5.33) as

! "
AE" + (1 - 9) X;AE’ _ <s + g) X AE=

2 X
1 (G—4)
=T (5.35)
Setting s = —1/2 and d = 3, we obtain
! " —
Ap" = 2 A X g o 12G20T) g
2 x X ||

This equation differs from that derived in Ref. [11],
while the equation for the potential y coincides with

1 1/2 m
1/2><>< -x /X7 =1

(5.37)
To calculate the Green’s function of Eq. (5.36), we need
the function 1, (z) obeying the homogeneous equation

"
. ——zpl ~ Xy =0 (5.38)
X
and satisfying the boundary condition 9] |,—o = 0. The
second function 1y satisfying the boundary condition
Yhle—r, = 0 can be expressed through the functions x
and v as

102(96):—1/)1{ e /f XL

Gl (5.39)

The solution of Eq. (5.36) can be written using the
Green’s function

N 1
G(z,2') = e X
x [B(z—2" )1 (2")a () +0 (2"~ @)1 (2)¢h2(2)]  (5.40)
as
AE_O/d Gl a) s (5.41)

Requiring a nonfluctuating applied voltage, we obtain

1[G
5 = ZO/d ) 1), (5.42)

where
M(2) = v (2) / dE o (€) + o (x) / 41 (€), (5.43)

(5.44)

Expressing the correlation function (G?(z)) through ¥,
we obtain the power supression factor

1
_ 2 /
PPozsson Z 0

for the shot noise. We determine the potential y follow-
ing Ref. [11] and numerically find ¢, from Eq. (5.38).
The functions 5, IT and the constant Z can be found
from Eqs. (5.39), (5.43), and (5.44).
factor can be evaluated as

P
— =0.4257,
PPoisson

X (‘r) H2(l‘)

" ) (5.45)

The suppression

(5.46)

which is about 10 % larger than the result obtained in

Ref. [11]. The numerical simulation result in [10] for
s=—-1/21is
P
= 0420.44. (5.47)
Ppoisson

This interval is noticeably nearer to the value given by
Eq. (5.46) than the result in Ref. [11].

In the case where s = 1/2, the suppression factor
can be evaluated as

P

= 0.1974,
PPoisson

(5.48)

which is slightly smaller than the result in Ref. [10].

6. CONCLUSIONS

In summary, we have developed an analytical the-
ory of shot noise in a diffusive conductor under the
space charge limited regime. We find that the present
theory is different from the approach developed earlier
and indicate a possible origin of the difference.

We now make several concluding remarks. The cal-
culated nonequilibrium shot noise power in a nondegen-
erate diffusive semiconductor for two types of physically
relevant elastic scattering mechanisms turned out to be
very close to the ones obtained in numerical simulations
by the authors of Ref. [10]. The computed noise sup-
pression factor P/Ppyisson for the energy-independent
scattering time is also sufficiently close to the analytical
results obtained earlier by Schomerus et al. [11]. How-
ever, for the energy-dependent scattering, the numeri-
cal difference between our results and those in Ref. [11]
is considerable.
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We clarify once more why the authors of Ref. [11]
arrived at the equations that differ from ours. As an
example, we take the Poisson equation. According to
Ref. [11], one could write

n= / dev(e) f(e, x), (6.1)
—U(z)

where n and U are the exact total concentration and
potential energy and f is the total distribution func-
tion (the mean value plus the fluctuating part). The
linearization of this equation leads to the equations in
Ref. [11]. The authors of Ref. [11] could have argued
that because the voltages in the reservoirs do not fluc-
tuate and U is set to zero at the left boundary and
because the total energy & = ¢ + U remains positive,
the total distribution function is zero for ¢ < —U.

Our point is that Eq. (6.1) cannot be justifed for the
total values of these variables including the stationary
and fluctuating parts. This is readily seen from the
fact that the fluctuating part of the distribution func-
tion itself implicitly depends on the mean value of the
distribution function through the correlation function.
One should bear in mind that an equation involving
both the mean and the fluctuating quantities must be
regarded symbolically. Indeed, such an equation is in
fact equivalent to two equations, one for the mean val-
ues and the other for the fluctuating part. Regarded
literally, it can lead to confusion. For example, analyz-
ing the equation

n+on = / dev(e)(f +6f)

—U—-6U

one can come to the wrong conclusion that the mean
value 7 depends on such an average as U6 f.

We add several words about the boundary condi-
tions for the potential. The boundary conditions used
here are not applicable within the length

Ry = \/kV/4men(0)

near the electrodes. Because the nonequilibrium noise
power is a bulk property (we note, e.g., the integration
over the coordinate in Eq. (5.45)), this approximation
is justified since we assume that the sample length L is
much greater than Ry .

Being interested in the analysis of the fluctuation
phenomena in the simplest situation of the spa-
ce-charge limited diffusive conduction regime, we have

not taken the electron—electron collisions into account.
These collisions can lead to an additional elect-
ron—electron correlation [7] that must be considered in
analyzing a more general case.

The authors are grateful to K. E. Nagaev for com-
municating to them his views concerning the role of
boundary conditions at the contact between metal and
semiconductor for the space-charge limited diffusive
conduction.
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