
ÆÝÒÔ, 2002, òîì 121, âûï. 5, ñòð. 1194�1203  2002
THE THEORY OF SHOT NOISE IN THE SPACE-CHARGELIMITED DIFFUSIVE CONDUCTION REGIMEV. L. Gurevih *, M. I. Muradov **Solid State Physis Department, A. F. Io�e Institute194021, Sankt-Peterburg, RussiaSubmitted 18 Deember 2001As is well known, �utuations from a stable stationary nonequilibrium state are desribed by the linearizedinhomogeneous Boltzmann�Langevin equation. The stationary state itself an be desribed by the nonlinearBoltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that there isatually a unique way to obtain a linear equation for the �utuations. As an example, we onsider an analytialtheory of nonequilibrium shot noise in a di�usive ondutor under the spae-harge limited regime. Our ap-proah is ompared to that in Ref. [11℄. We �nd some di�erene between the present theory and the approahin [11℄ and disuss a possible origin of the di�erene. We believe that it is related to the fundamentals of thetheory of �utuation phenomena in a nonequilibrium eletron gas.PACS: 72.70.+m, 72.10.-d, 74.40.+k1. INTRODUCTIONThe present paper is devoted to the theory ofshot noise in spae-harge limited di�usive ondutionregime. The motivation an be formulated as follows.It is well known that �utuations from a stable sta-tionary nonequilibrium state are desribed by the lin-earized inhomogeneous Boltzmann�Langevin equation(see, e.g., [1�7℄). At the same time, the stationary stateitself is desribed by the nonlinear Boltzmann equa-tion. There are instanes where the ways of lineariza-tion of the nonlinear Boltzmann equation seem to benot unique. We believe, however, that in eah suhase, there is a unique way to obtain the linearizedBoltzmann equation for the �utuations and we givegeneral onsiderations to �nd this linearization and in-diate it for the partiular ase treated in the presentpaper.We develop a theory of nonequilibrium shot noisein a nondegenerate di�usive ondutor under spae-harge limited regime. This regime is extensively dis-ussed in the literature (see, e.g., Refs. [8, 9℄). Theurrent noise under suh a regime was reently stud-ied by Monte Carlo simulation by Gonz�alez et al. [10℄.*E-mail: vadim.gurevih�pop.io�e.rssi.ru**E-mail: mag.muradov�pop.io�e.rssi.ru

Quite reently, the noise was analytially studied underthe same onditions by Shomerus, Mishhenko, andBeenakker [11℄. Their general �nding was that beauseof the Coulomb orrelation between eletrons, the shotnoise is redued below the lassial Poisson value. Theauthors of both Refs. [10℄ and [11℄ ame to the on-lusion that under ertain onditions, the suppressionfator in the nondegenerate 3D ase an be lose to 1=3:Later on, Nagaev [12℄ has shown in a speial exam-ple that unlike the 1=3 noise redution in degeneratesystems, the noise suppression by the Coulomb inter-ation is nonuniversal in nondegenerate systems. Thenoise suppression in suh systems may depend on thedetails of the eletron sattering.We agree with the onlusion in [10, 11℄ that theredution of the shot noise power in nondegenerate dif-fusive ondutors an sometimes be lose to the value1=3 theoretially predited for the three-dimensionaldegenerate eletron gas. As mentioned above, we alsoarrive at some onlusions that may prove importantfor the general theory of �utuations in nonequilibriumsystems. As is well known, the �utuation phenomenain nonequilibrium stable systems are desribed by alinearized Boltzmann equation. We use the exampleanalyzed in detail in the present paper to show thatthe linearization must be performed with are. In par-tiular, there is a di�erene between the analytial pro-1194



ÆÝÒÔ, òîì 121, âûï. 5, 2002 The theory of shot noise in the spae-harge limited di�usive : : :edures used in Ref. [11℄ and in the present paper forthe alulation of the shot noise power. We disuss theorigin of this di�erene and its impliations. Beausethe point leading to the disrepany is very subtle, itdemands a rather detailed analysis, whih we performin the present paper partly repeating the alulations inRef. [11℄ with some modi�ations. Our starting pointis the Boltzmann equation formulated for the desrip-tion of the stationary state; it is then applied to theanalysis of �utuations.2. BOLTZMANN EQUATIONSWe onsider the simplest model, used in Ref. [11℄,for the di�usion-ontrolled and spae-harge limitedtransport. As the starting point, we use the Boltzmannequation in the presene of an eletri �eld,� ��t + Jp� fp = 0; (2.1)Jpfp � �v ��r + eE ��p + Ip� fp; (2.2)where we have introdued the ollision integral Ip de-sribing the eletron sattering,Ipfp =Xp0 (Wp0pfp �Wpp0fp0) (2.3)(we deal with the nondegenerate statistis, and there-fore, fp � 1).Splitting the distribution funtion into the even andodd parts with respet to p, we obtainf�p = 12 (fp � f�p) :We assume that the ollision operator ating on theeven (odd) part of the distribution funtion gives aneven (odd) funtion. This an be the ase either be-ause of the entral symmetry of the rystal itself andthe satterers or beause of the possibility to use theBorn approximation in alulating the sattering prob-ability. The �rst split equation is�f�p�t + v�f+p�r + eE�f+p�p = �Ipf�p : (2.4)Being interested in relatively small frequenies of �u-tuations !�p � 1, where �p is the harateristi valueof I�1p , we an neglet the time derivative and expressf�p as f�p = �I�1p �v�f+p�r + eE � v�f+p�"p � : (2.5)

Inserting this expression into the seond split equationfor f+p � f("; r; t) and averaging over the onstant-energy surfae in the quasimomentum spae, we ar-rive at�(")�f�t �� ��x� + eE� ��"� �(")D��(")��� ��x� + eE� ��"� f == �Xp Æ("� "p)I(inel)p f; (2.6)where the term in the right-hand side desribes the in-elasti ollisions, while the density of states �(") andthe di�usion tensor D��(") are de�ned as�(")D��(") =Xp Æ("� "p)v�I�1p v� ;�(") =Xp Æ("� "p): (2.7)The eletri �eld obeys the Poisson equation�rE = 4�e [n(r; t)� neq ℄ ;n(r; t) = 1Z0 d"�(")f("; r; t); (2.8)where � is the dieletri suseptibility and neq is theequilibrium onentration (equal to the onentrationof donors). In what follows, we neglet neq omparedto the nonequilibrium onentration n.The part of the distribution funtion ontributingto the urrent onsists of two terms that are propor-tional to the spatial and energy derivatives of f("; r; t)respetively,j� = eXp vf�p == �e�(")D��(")� ��x� + eE� ��"� f: (2.9)We onsider the ase where D�" � L2, where L isthe sample length and �" is the energy relaxation time(of the order hI(inel)p i�1). In the right-hand side ofEq. (2.6), we an then omit the term that desribes theenergy relaxation. Under the same onditions, we ob-tain the Boltzmann equation for the �utuations of thedistribution funtion (we remind the reader that herewe onsider low-frequeny �utuations with! � Ip � 1=�p;1195



V. L. Gurevih, M. I. Muradov ÆÝÒÔ, òîì 121, âûï. 5, 2002where �p is the harateristi time of elasti ollisions),� ��x�+eE� ��"� Æj�!+eÆE�! ��"j� = ey!("; x); (2.10)Æj�! = eXp v�Æf�p = g�! � e�(")D��(")���� ��x� + eE� ��"� Æf! + eÆE�! ��"f� ; (2.11)and the soure of the urrent �utuations g�! is relatedto the Langevin fores y!p asg�! = eXp Æ("� "p)v�I�1p y!p ; (2.12)y!("; x) =Xp Æ("� "p)y!p = 0: (2.13)The last equality is a onsequene of the elastiityof sattering, whih leads to the partile onservationwithin the onstant-energy surfae in the quasimomen-tum spae.The orrelation funtion of the Langevin fores iswell known [7℄,hyp(r)yp0(r0)i! = (Jp + Jp0)Ærr0Æpp0fp: (2.14)Integrating Eq. (2.10) over ", we obtain the ontinuityequationA ddx 1Z0 d" Æj!("; x) = ddxÆJ!(x) = 0; (2.15)whih implies that the low-frequeny urrent �utua-tions are spatially homogeneous.3. THE DISTRIBUTION FUNCTIONWe onsider a semiondutor with a uniformross-setion A onneting two idential metallieletrodes. The length L of the sample is assumed tobe muh larger than the elasti sattering length l andmuh smaller than the inelasti one. We use the 1Dversions of the Boltzmann equations desribing thedistribution funtion evolution along the d urrentdiretion.To obtain the stationary solution of Eq. (2.6) in theaepted approximation, we rewrite it as� ��x + eE ��"� j("; x) = Æ(x)j("): (3.1)

We here assume that the urrent density at x = 0,j("), is nonvanishing only for " > 0. In the absene oftunneling, j(") must have the property thatj(")! 0 as T ! 0 (3.2)at the ontat x = 0, with T being the temperature.This ondition must be valid, irrespetive of whether aShottky barrier or an Ohmi ontat ours. Evident-ly, the total urrent J given by Eq. (3.3) below musthave the same property.The solution of Eq. (3.1) is a funtion of the totalenergy E , E = "+ U(x);where U(x) = e'(x) � e'(0):It an be found using, e.g., the inverse di�erential op-erator 1�x�(x) = xZ0 d��(�):We havej("; x) = 1�x + eE(x)�" Æ(x)j(") == exp[e'(x)�"℄ 1�x exp[�e'(x)�"℄Æ(x)j(") = j(E)and j("; x) takes nonzero values at a given x only if" > �U(x) (E � 0). The total urrent through thesample isJ = A 1Z0 d" j("; x) == A 1Z�U(x) d" j["+ U(x)℄ = A 1Z0 dE j(E): (3.3)From Eq. (2.9), we now obtainf("; x) = � 1�x + eE(x)�" j("; x)e�(") + f ["+ U(x)℄; (3.4)or f("; x) = �j[E ℄ xZ0 d� 1e�[E � U(�)℄ + f [E ℄; (3.5)where �(") � �(")D("):1196



ÆÝÒÔ, òîì 121, âûï. 5, 2002 The theory of shot noise in the spae-harge limited di�usive : : :We have taken the boundary ondition at the soureinto aount. Equation (3.5) an be rewritten asf [E � U(x); x℄ = 24f [E � U(L)℄ xZ0 d� 1�[E � U(�)℄ ++f(E) LZx d� 1�[E � U(�)℄35�� 24 LZ0 d� 1�[E � U(�)℄35�1 ; (3.6)where j(") is expressed through the di�erene of thedistribution funtions at x = 0 and x = L,j(E) LZ0 dx 1e�[E � U(x)℄ = f(E)� f [E � U(L)℄: (3.7)An advantage of the form hosen for Eq. (3.6) isits physial transpareny. The �rst term in the right-hand side gives the ontribution of the right boundaryand the seond term gives the ontribution of the leftboundary. The solution learly demonstrates that thethermally exited arriers injeted from the ontat atx = L make a negligible ontribution to the distribu-tion funtion f [E � U(x); x℄, beausef(E) � f [E � U(L)℄ (E � 0)for the parameter jU(L)j=kBT is assumed to be large.Negleting this term in our solution of Eq. (3.6), wearrive at the solution already obtained in [11℄ by as-suming absorbing boundary onditions at the urrentdrain. 4. THE FIELD DISTRIBUTIONWe use the Poisson equation to determine the self-onsistent eletri �eld that an be expressed throughthe obtained distribution funtion. We onsider thevalues of x suh that x > x", where�U(x") � E � kBT;

� �4�e2 d2Udx2 = 1Z0 dE �[E � U(x)℄�� f [E � U(x); x℄ = 1Z0 dE �[E � U(x)℄j(E) �� LZx d�e�[E � U(�)℄ �� �[�U(x)℄ JeA LZx d�� [�U(�)℄ : (4.1)We �nally obtain� �4�e2 1�[�U(x)℄ d2Udx2 = JeA LZx d�� [�U(�)℄ : (4.2)We now hek that for large x, this equation is on-sistent with the requirement of a uniform total urrent.Assuming �(") = �0"d=2�1and D(") = D0"s+1;we integrate Eq. (2.9) over the transverse oordinatesand energy, with the resultJA = �e ddx 1Z0 d" �(")D(")f("; x) ++ eD0�(d+ 2s)16� [�U(x)℄s ddxE2(x): (4.3)We integrate the seond term by parts and take intoaount that at x > xE , we an neglet E ompared tojU(x)j and use Poisson equation (2.8). The �rst termin Eq. (4.3) an be simpli�ed in the same way1)1Z�U(x) d" �(")D(")f("; x) == 1Z0 dE �[E � U(x)℄D[E � U(x)℄f(E � U(x); x) == D[�U(x)℄ 1Z0 dE �[E � U(x)℄f(E � U(x); x) == D[�U(x)℄ �4�e ddxE: (4.4)1) We note that in view of Eq. (3.5), the distribution funtionf("; x) takes nonzero values only for " > �U(x).1197



V. L. Gurevih, M. I. Muradov ÆÝÒÔ, òîì 121, âûï. 5, 2002In the seond equality, we used that E � jU(x)j. In-serting Eq. (4.4) in Eq. (4.3), we obtain the simpli�edequation4�jJ jD0�A = ddx �[�U ℄s+1 dEdx �++ jej2s+ d4 [�U ℄s dE2dx : (4.5)It an be used to verify the self-onsisteny of our ap-proah. Indeed, multiplying Eq. (4.2) by Us+d=2 andtaking the derivative, we arrive at Eq. (4.5) that hasbeen obtained from the equation for the urrent. Adimensionless version of Eq. (4.5) is�s�d� 22 �0�00 � ��000� = 1; (4.6)where the dimensionless potential � is related to ' by' = � 4�jJ jL3D0�Ajejs+1�1=(s+2) �(x=L): (4.7)5. THE CURRENT AND FIELDFLUCTUATIONSIn what follows, we onsider the partiular aseswhere s = 0; D(") = D0";s = �1=2; D(") = D0"1=2;and s = 1=2; D(") = D0"3=2:We begin with investigating the ase of the energy-independent sattering time, s = 0. This ase an berelated to the sattering of eletrons by neutral impuri-ties, suh as hydrogen-like shallow donor and aeptorstates. The sattering is analogous to the satteringof eletron by a hydrogen atom [13℄ (with the e�etiveBohr radius aB). The sattering ross-setion turns outto be about 2�~=paB times larger than the geometri-al ross-setion �a2B (that would result in an energy-independent sattering time).In the ase of defets with deep energy levels, weenounter a short-range sattering potential with thesattering length about the atomi length. The sat-tering ross-setion does not depend on the energy. Asa result, the sattering rate is proportional to the ele-tron density of states "1=2 and the di�usion oe�ientv2� is proportional to "1=2, i.e., s = �1=2. (This is oneof the main sattering mehanisms in metals beause

the sattering length is then determined by the sreen-ing radius, whih is of the order of the interatomi dis-tane.) The ases where s = �1=2 (whih in partiulardesribes elasti sattering by aousti phonons) ands = 1=2 are disussed in the end of this setion.5.1. Energy-independent sattering timeIntegrating Eq. (2.11) over ", we obtain1A (ÆJ!�G!) = �e ddx 1Z�U(x) d" �(")D(")Æf!("; x)++ eD0d�8� ddxE(x)ÆE!(x): (5.1)We note that beause of Eq. (2.10), the Fourier trans-form of the urrent �utuations ÆJ! is spatially homo-geneous. Here, G! is the urrent �utuation soureintegrated over the energy and transverse oordinates,G!(x) = 1Z0 d" dr?g!("; r); (5.2)hG(x)G(x0)i! == e2 1Z0 d" 1Z0 d"0Xp;p0 Æ("� "p)Æ("0 � "p0)vxvx0 �� 1Ip 1Ip0 Z dr?dr0?hypyp0i!: (5.3)The part of the distribution funtion that is odd withrespet to p! �p vanishes after inserting it into or-relation funtion (2.14) of the Langevin fores and sub-sequently integrating over p and p0. As a result, we areleft with the integral of the even funtionhG(x)G(x0)i! = Æxx0hG2(x)i! ; (5.4)hG2(x)i! = 2e2A 1Z0 d"f("; x)Xp Æ("� "p)vx 1Ip vx == 2e2A 1Z0 d" �(")D(")f("; x): (5.5)The seond term in the right-hand side of Eq. (5.1) anbe simpli�ed in the same way as Eq. (4.4),1Z0 d" �(")D(")Æf!("; x) == D(�U(x)) �4�e ddxÆE!; (5.6)1198



ÆÝÒÔ, òîì 121, âûï. 5, 2002 The theory of shot noise in the spae-harge limited di�usive : : :and we �nally obtain the equation for ÆE!ddx �U(x) ddxÆE!(x)� + ed2 ddxE(x)ÆE!(x) == 4�AD0� (ÆJ! �G!): (5.7)In order to justify the simpli�ation in Eq. (5.6), wenow show that Æf!("; x) is also a funtion takingnonzero values only at " > �U(x). Indeed, fromEq. (2.10) and Eq. (2.11), we an obtain the solutionsÆj! ["� U(x); x℄ = ÆU!(x) ��"j(") + �j(")!; (5.8)Æf!["�U(x); x℄ = LZx d� eÆE!(�) ��"f ["�U(�); �℄�� LZx d� g!["� U(�); �℄� Æj!["� U(�); �℄e�["� U(�)℄ ; (5.9)whih show that Æf has the aforementioned property.Here, �j(") are the �utuations of the urrent at theleft boundary x = 0. The �utuations of the distribu-tion funtion �f(") at the right boundary are assumedto be zero. If we assume �(") to be a onstant (indepen-dent of the energy), taking Eqs. (5.8) and (5.9) and theequation Æf!("; 0) = 0 into aount, we immediatelyarrive at the result�J = 1L LZ0 dx Z d"g["� U(x); x℄ (5.10)obtained by Nagaev [12℄.5.2. Comparison with the approah in Ref. [4℄We now embark on setting forth the ruial pointof the paper. Equation (5.7) does not oinide with theequation for the �eld �utuations obtained in [11℄ bydiretly linearizing Eq. (4.5) for s = 0,ddx �ÆU!(x) ddxE(x)�+ ddx �U(x) ddxÆE!(x)�++ ed2 ddxE(x)ÆE!(x) = 4�AD0� (ÆJ! �G!): (5.11)The origin of this disrepany must be understood.

First, we temporarily adopt the sheme of Ref. [11℄and reonsider Eq. (4.3) for the urrentJA = �e ddx 1Z�U(x) d" �(")D(")f("; x) ++ 32D0e2E(x) 1Z�U(x) d"�(")f("; x): (5.12)For the total urrent (the d.. urrent plus �utua-tions), the equation readsJ + ÆJ �GA = �e ddx �� 1Z�U(x)�ÆU(x) d" �(")D(")[f("; x) + Æf("; x)℄ ++ 32D0e2[E(x) + ÆE(x)℄ �� 1Z�U(x)�ÆU(x) d"�(")[f("; x) + Æf("; x)℄: (5.13)Taking Eq. (5.12) into aount, we obtain the linearizedequationÆJ �GA = �e ddx 1Z�U(x) d" �(")D(")Æf("; x) ++ 32D0e2E(x)8><>: 1Z�U(x) d"�(")Æf("; x) ++ÆU ÆÆU(x) 1Z�U(x) d"�(")f("; x)9>=>;++ 32D0e2ÆE(x) 1Z�U(x) d"�(")f("; x)�� e ddxÆU ÆÆU(x) 1Z�U(x) d" �(")D(")f("; x): (5.14)If one linearized the Poisson equation in the spirit ofRef. [11℄ one would see that the term in the urly brak-ets in Eq. (5.14) would oinide with (�=4�e)(dÆE=dx),1199



V. L. Gurevih, M. I. Muradov ÆÝÒÔ, òîì 121, âûï. 5, 2002and therefore,�4�e dÆEdx = 1Z�U(x) d"�(")Æf("; x) ++ ÆU ÆÆU(x) 1Z�U(x) d"�(")f("; x): (5.15)Simplifying the �rst, third, and fourth terms in theright-hand side of Eq. (5.14) with the help of Eq. (5.6)and inserting (�=4�e)(dÆE=dx) instead of the term inthe urly brakets, we arrive atÆJ �GA = e ddx �D0U(x) �4� dÆEdx �++ 32D0e �4� ddxEÆE ++ eD0 �4� ddxÆU ÆÆU �U dEdx � : (5.16)We an see that the last term in the right-hand side ofthis equation oinides with the �rst term in the left-hand side of Eq. (5.11). To avoid onfusion, we notethat we believe Eq. (5.15) to be also wrong. We havewritten it here only for the detailed omparison withthe approah in Ref. [11℄. We believe that the orretPoisson equation for the �utuation �eld is�4�e dÆEdx = 1Z�U(x) d"�(")Æf("; x): (5.17)In Eq. (4.3) for the d.. urrent, we now add the termsthat atually vanish beause they are proportional tothe integrals of the distribution funtion over " with theupper limit �U(x), whereas the distribution funtionf("; x) = 0 for " < �U(x). The point is that when wealulate the �utuations by the replaementU(x)! U(x) + ÆU(x);

they give a nonvanishing result. We haveJA = �e ddx �U(x)Z0 d" �(")D(")f("; x) �� e ddx 1Z�U(x) d" �(")D(")f("; x) ++ 32D0e2E(x) �U(x)Z0 d"�(")f("; x) ++ 32D0e2E(x) 1Z�U(x) d"�(")f("; x): (5.18)Rewriting this equation for the total urrent, we obtainJ + ÆJ �GA == �e ddx �U(x)�ÆUZ0 d" �(")D(")[f("; x) + Æf("; x)℄�� e ddx 1Z�U(x)�ÆU(x) d" �(")D(")[f("; x) + Æf("; x)℄ ++ 32D0e2[E(x) + ÆE(x)℄ �� �U(x)�ÆU(x)Z0 d"�(")[f("; x) + Æf("; x)℄ ++ 32D0e2[E(x) + ÆE(x)℄ �� 1Z�U(x)�ÆU(x) d"�(")[f("; x) + Æf("; x)℄: (5.19)Linearizing this equation and using relations similar toÆU(x) ÆÆU(x) 1Z�U(x) d" �(")D(")f("; x) == � �U(x)�ÆU(x)Z�U(x) d" �(")D(")f("; x); (5.20)we arrive at Eq. (5.1) that has been derived above. Wesee that the ontributions to Eq. (5.19) that are linearin ÆU anel beause of the terms that vanish in theequation for the d.. urrent but must be taken intoaount in onsidering �utuations. This is why thelinearization of Eq. (4.5) leads to Eq. (5.11) that we1200



ÆÝÒÔ, òîì 121, âûï. 5, 2002 The theory of shot noise in the spae-harge limited di�usive : : :believe to be wrong beause it does not take all thesoures of �utuations into aount, or in other words,all the terms in Eq. (5.18) ontaining U(x).The solution of Eq. (5.7) with the boundary ondi-tions E(x)ÆE!(x) jx!0 ! 0;U(x) ddxÆE!(x) ����x! 0 ! 0 (5.21)is given by� AD0�4� ÆE!(x) = Ud=2(x) �� 24C + xZ0 d�Ud=2+1(�) �Z0 d� (ÆJ! �G(�)!)35 ; (5.22)where C is the integration onstant. Requiring a non-�utuating applied voltageLZ0 dx ÆE! = 0;we obtain from Eq. (5.22) that the onstant isC = LZ0 dx� (x) (L) � 1� 1Ud=2+1(x) �� xZ0 d�(ÆJ! �G!(�)); (5.23)where  (x) = xZ0 d� Ud=2(�): (5.24)We now require ddxÆE!(x)����x=L = 0 (5.25)at the right boundary and obtainÆJ! = 1Z LZ0 dx�(x)G!(x); (5.26)whereZ = L+ dU 0(L)Ud=2(L)2 (L) LZ0 dx x (x)Ud=2+1(x) ; (5.27)

�(x) = 1 + dU 0(L)Ud=2(L)2 (L) LZx d�  (�)Ud=2+1(�) : (5.28)The noise power P is then given byP = 2Z2 LZ0 dx�2(x)hG2(x)i! : (5.29)In aordane with Eq. (5.5), we havehG2(x)i! = 2e2A 1Z0 d" �(")D(")f("; x) == 2e2AD0U(x) �4�e d2Udx2 : (5.30)We �nally arrive atP = 4AD0�4�Z2 LZ0 dx�2(x)U(x)d2Udx2 : (5.31)The potential distribution an be found following themethod in Ref. [11℄, i.e., by solving Eq. (4.5) withboundary ondition (4.2) at x = L. Using Eqs. (5.24),(5.27), (5.28), and (5.31), we alulate the suppressionfator P=PPoisson. For physially relevant di�erent val-ues of the dimensionality d, we obtainPPPoisson = 8><>: 0:3188 for d = 3;0:4512 for d = 2;0:682 for d = 1: (5.32)In this partiular ase, our results therefore di�er fromthose alulated in Refs. [11℄ both analytially (whihis of prinipal importane in our opinion) and numeri-ally (although in this partiular ase, the di�erene isnot great). Naturally, there is essentially no di�erenefrom the results alulated within an ensemble MonteCarlo sheme in Ref. [10℄.5.3. Energy-dependent sattering timeWe here alulate the noise power for s = � 1=2 andd = 3. The equation for the �utuations is� 4��D0A (ÆJ! �G!) = ddx �(�U)s+1 dÆE!dx ��� e2s+ d2 (�U)s ddx (EÆE!) : (5.33)Introduing the dimensionless potential � by Eq. (4.7)and the �utuation of the �eld �E byÆE(x) = 1L � 4�jJ jL3�D0Ajejs+1�1=(s+2)�E �xL� ; (5.34)14 ÆÝÒÔ, âûï. 5 1201



V. L. Gurevih, M. I. Muradov ÆÝÒÔ, òîì 121, âûï. 5, 2002we an rewrite Eq. (5.33) as�E00 +�1� d2� �0� �E0 ��s+ d2� �00� �E == 1�s+1 (G� ÆJ)jJ j : (5.35)Setting s = �1=2 and d = 3, we obtain�E00 � 12 �0� �E0 � �00� �E = ��1=2 (G� ÆJ)jJ j : (5.36)This equation di�ers from that derived in Ref. [11℄,while the equation for the potential � oinides with12�1=2�0�00 � �1=2�000 = 1: (5.37)To alulate the Green's funtion of Eq. (5.36), we needthe funtion  1(x) obeying the homogeneous equation 001 � 12 �0�  01 � �00�  1 = 0 (5.38)and satisfying the boundary ondition  01jx=0 = 0. Theseond funtion  2 satisfying the boundary ondition 02jx=L = 0 an be expressed through the funtions �and  1 as 2(x) = � 1 24 �1=2(1) 1(1) 01(1) + 1Zx d� �1=2(�) 21(�) 35 : (5.39)The solution of Eq. (5.36) an be written using theGreen's funtionG(x; x0) = 1�1=2(x0) �� [�(x�x0) 1(x0) 2(x)+�(x0�x) 1(x) 2(x0)℄ (5.40)as �E = 1Z0 dx0G(x; x0) (G(x0)� ÆJ)�1=2(x0)jJ j : (5.41)Requiring a non�utuating applied voltage, we obtainÆJ = 1Z 1Z0 dx G(x)�(x) �(x); (5.42)where�(x) =  1(x) 1Zx d�  2(�) +  2(x) xZ0 d�  1(�); (5.43)

Z = 1Z0 dx �(x)�(x) : (5.44)Expressing the orrelation funtion hG2(x)i through �,we obtain the power supression fatorPPPoisson = 2Z2 1Z0 dx �00(x)�3=2(x)�2(x) (5.45)for the shot noise. We determine the potential � follow-ing Ref. [11℄ and numerially �nd  1 from Eq. (5.38).The funtions  2, � and the onstant Z an be foundfrom Eqs. (5.39), (5.43), and (5.44). The suppressionfator an be evaluated asPPPoisson = 0:4257; (5.46)whih is about 10% larger than the result obtained inRef. [11℄. The numerial simulation result in [10℄ fors = �1=2 is PPPoisson = 0:42�0:44: (5.47)This interval is notieably nearer to the value given byEq. (5.46) than the result in Ref. [11℄.In the ase where s = 1=2, the suppression fatoran be evaluated as PPPoisson = 0:1974; (5.48)whih is slightly smaller than the result in Ref. [10℄.6. CONCLUSIONSIn summary, we have developed an analytial the-ory of shot noise in a di�usive ondutor under thespae harge limited regime. We �nd that the presenttheory is di�erent from the approah developed earlierand indiate a possible origin of the di�erene.We now make several onluding remarks. The al-ulated nonequilibrium shot noise power in a nondegen-erate di�usive semiondutor for two types of physiallyrelevant elasti sattering mehanisms turned out to bevery lose to the ones obtained in numerial simulationsby the authors of Ref. [10℄. The omputed noise sup-pression fator P=PPoisson for the energy-independentsattering time is also su�iently lose to the analytialresults obtained earlier by Shomerus et al. [11℄. How-ever, for the energy-dependent sattering, the numeri-al di�erene between our results and those in Ref. [11℄is onsiderable.1202



ÆÝÒÔ, òîì 121, âûï. 5, 2002 The theory of shot noise in the spae-harge limited di�usive : : :We larify one more why the authors of Ref. [11℄arrived at the equations that di�er from ours. As anexample, we take the Poisson equation. Aording toRef. [11℄, one ould writen = 1Z�U(x) d"�(")f("; x); (6.1)where n and U are the exat total onentration andpotential energy and f is the total distribution fun-tion (the mean value plus the �utuating part). Thelinearization of this equation leads to the equations inRef. [11℄. The authors of Ref. [11℄ ould have arguedthat beause the voltages in the reservoirs do not �u-tuate and U is set to zero at the left boundary andbeause the total energy E = " + U remains positive,the total distribution funtion is zero for " < �U .Our point is that Eq. (6.1) annot be justifed for thetotal values of these variables inluding the stationaryand �utuating parts. This is readily seen from thefat that the �utuating part of the distribution fun-tion itself impliitly depends on the mean value of thedistribution funtion through the orrelation funtion.One should bear in mind that an equation involvingboth the mean and the �utuating quantities must beregarded symbolially. Indeed, suh an equation is infat equivalent to two equations, one for the mean val-ues and the other for the �utuating part. Regardedliterally, it an lead to onfusion. For example, analyz-ing the equationn+ Æn = Z�U�ÆU d"�(")(f + Æf)one an ome to the wrong onlusion that the meanvalue n depends on suh an average as ÆUÆf .We add several words about the boundary ondi-tions for the potential. The boundary onditions usedhere are not appliable within the lengthRV =p�V=4�en(0)near the eletrodes. Beause the nonequilibrium noisepower is a bulk property (we note, e.g., the integrationover the oordinate in Eq. (5.45)), this approximationis justi�ed sine we assume that the sample length L ismuh greater than RV .Being interested in the analysis of the �utuationphenomena in the simplest situation of the spa-e-harge limited di�usive ondution regime, we have
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