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THE THEORY OF SHOT NOISE IN THE SPACE-CHARGELIMITED DIFFUSIVE CONDUCTION REGIMEV. L. Gurevi
h *, M. I. Muradov **Solid State Physi
s Department, A. F. Io�e Institute194021, Sankt-Peterburg, RussiaSubmitted 18 De
ember 2001As is well known, �u
tuations from a stable stationary nonequilibrium state are des
ribed by the linearizedinhomogeneous Boltzmann�Langevin equation. The stationary state itself 
an be des
ribed by the nonlinearBoltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that there isa
tually a unique way to obtain a linear equation for the �u
tuations. As an example, we 
onsider an analyti
altheory of nonequilibrium shot noise in a di�usive 
ondu
tor under the spa
e-
harge limited regime. Our ap-proa
h is 
ompared to that in Ref. [11℄. We �nd some di�eren
e between the present theory and the approa
hin [11℄ and dis
uss a possible origin of the di�eren
e. We believe that it is related to the fundamentals of thetheory of �u
tuation phenomena in a nonequilibrium ele
tron gas.PACS: 72.70.+m, 72.10.-d, 74.40.+k1. INTRODUCTIONThe present paper is devoted to the theory ofshot noise in spa
e-
harge limited di�usive 
ondu
tionregime. The motivation 
an be formulated as follows.It is well known that �u
tuations from a stable sta-tionary nonequilibrium state are des
ribed by the lin-earized inhomogeneous Boltzmann�Langevin equation(see, e.g., [1�7℄). At the same time, the stationary stateitself is des
ribed by the nonlinear Boltzmann equa-tion. There are instan
es where the ways of lineariza-tion of the nonlinear Boltzmann equation seem to benot unique. We believe, however, that in ea
h su
h
ase, there is a unique way to obtain the linearizedBoltzmann equation for the �u
tuations and we givegeneral 
onsiderations to �nd this linearization and in-di
ate it for the parti
ular 
ase treated in the presentpaper.We develop a theory of nonequilibrium shot noisein a nondegenerate di�usive 
ondu
tor under spa
e-
harge limited regime. This regime is extensively dis-
ussed in the literature (see, e.g., Refs. [8, 9℄). The
urrent noise under su
h a regime was re
ently stud-ied by Monte Carlo simulation by Gonz�alez et al. [10℄.*E-mail: vadim.gurevi
h�pop.io�e.rssi.ru**E-mail: mag.muradov�pop.io�e.rssi.ru

Quite re
ently, the noise was analyti
ally studied underthe same 
onditions by S
homerus, Mish
henko, andBeenakker [11℄. Their general �nding was that be
auseof the Coulomb 
orrelation between ele
trons, the shotnoise is redu
ed below the 
lassi
al Poisson value. Theauthors of both Refs. [10℄ and [11℄ 
ame to the 
on-
lusion that under 
ertain 
onditions, the suppressionfa
tor in the nondegenerate 3D 
ase 
an be 
lose to 1=3:Later on, Nagaev [12℄ has shown in a spe
ial exam-ple that unlike the 1=3 noise redu
tion in degeneratesystems, the noise suppression by the Coulomb inter-a
tion is nonuniversal in nondegenerate systems. Thenoise suppression in su
h systems may depend on thedetails of the ele
tron s
attering.We agree with the 
on
lusion in [10, 11℄ that theredu
tion of the shot noise power in nondegenerate dif-fusive 
ondu
tors 
an sometimes be 
lose to the value1=3 theoreti
ally predi
ted for the three-dimensionaldegenerate ele
tron gas. As mentioned above, we alsoarrive at some 
on
lusions that may prove importantfor the general theory of �u
tuations in nonequilibriumsystems. As is well known, the �u
tuation phenomenain nonequilibrium stable systems are des
ribed by alinearized Boltzmann equation. We use the exampleanalyzed in detail in the present paper to show thatthe linearization must be performed with 
are. In par-ti
ular, there is a di�eren
e between the analyti
al pro-1194
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e-
harge limited di�usive : : :
edures used in Ref. [11℄ and in the present paper forthe 
al
ulation of the shot noise power. We dis
uss theorigin of this di�eren
e and its impli
ations. Be
ausethe point leading to the dis
repan
y is very subtle, itdemands a rather detailed analysis, whi
h we performin the present paper partly repeating the 
al
ulations inRef. [11℄ with some modi�
ations. Our starting pointis the Boltzmann equation formulated for the des
rip-tion of the stationary state; it is then applied to theanalysis of �u
tuations.2. BOLTZMANN EQUATIONSWe 
onsider the simplest model, used in Ref. [11℄,for the di�usion-
ontrolled and spa
e-
harge limitedtransport. As the starting point, we use the Boltzmannequation in the presen
e of an ele
tri
 �eld,� ��t + Jp� fp = 0; (2.1)Jpfp � �v ��r + eE ��p + Ip� fp; (2.2)where we have introdu
ed the 
ollision integral Ip de-s
ribing the ele
tron s
attering,Ipfp =Xp0 (Wp0pfp �Wpp0fp0) (2.3)(we deal with the nondegenerate statisti
s, and there-fore, fp � 1).Splitting the distribution fun
tion into the even andodd parts with respe
t to p, we obtainf�p = 12 (fp � f�p) :We assume that the 
ollision operator a
ting on theeven (odd) part of the distribution fun
tion gives aneven (odd) fun
tion. This 
an be the 
ase either be-
ause of the 
entral symmetry of the 
rystal itself andthe s
atterers or be
ause of the possibility to use theBorn approximation in 
al
ulating the s
attering prob-ability. The �rst split equation is�f�p�t + v�f+p�r + eE�f+p�p = �Ipf�p : (2.4)Being interested in relatively small frequen
ies of �u
-tuations !�p � 1, where �p is the 
hara
teristi
 valueof I�1p , we 
an negle
t the time derivative and expressf�p as f�p = �I�1p �v�f+p�r + eE � v�f+p�"p � : (2.5)

Inserting this expression into the se
ond split equationfor f+p � f("; r; t) and averaging over the 
onstant-energy surfa
e in the quasimomentum spa
e, we ar-rive at�(")�f�t �� ��x� + eE� ��"� �(")D��(")��� ��x� + eE� ��"� f == �Xp Æ("� "p)I(inel)p f; (2.6)where the term in the right-hand side des
ribes the in-elasti
 
ollisions, while the density of states �(") andthe di�usion tensor D��(") are de�ned as�(")D��(") =Xp Æ("� "p)v�I�1p v� ;�(") =Xp Æ("� "p): (2.7)The ele
tri
 �eld obeys the Poisson equation�rE = 4�e [n(r; t)� neq ℄ ;n(r; t) = 1Z0 d"�(")f("; r; t); (2.8)where � is the diele
tri
 sus
eptibility and neq is theequilibrium 
on
entration (equal to the 
on
entrationof donors). In what follows, we negle
t neq 
omparedto the nonequilibrium 
on
entration n.The part of the distribution fun
tion 
ontributingto the 
urrent 
onsists of two terms that are propor-tional to the spatial and energy derivatives of f("; r; t)respe
tively,j� = eXp vf�p == �e�(")D��(")� ��x� + eE� ��"� f: (2.9)We 
onsider the 
ase where D�" � L2, where L isthe sample length and �" is the energy relaxation time(of the order hI(inel)p i�1). In the right-hand side ofEq. (2.6), we 
an then omit the term that des
ribes theenergy relaxation. Under the same 
onditions, we ob-tain the Boltzmann equation for the �u
tuations of thedistribution fun
tion (we remind the reader that herewe 
onsider low-frequen
y �u
tuations with! � Ip � 1=�p;1195
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hara
teristi
 time of elasti
 
ollisions),� ��x�+eE� ��"� Æj�!+eÆE�! ��"j� = ey!("; x); (2.10)Æj�! = eXp v�Æf�p = g�! � e�(")D��(")���� ��x� + eE� ��"� Æf! + eÆE�! ��"f� ; (2.11)and the sour
e of the 
urrent �u
tuations g�! is relatedto the Langevin for
es y!p asg�! = eXp Æ("� "p)v�I�1p y!p ; (2.12)y!("; x) =Xp Æ("� "p)y!p = 0: (2.13)The last equality is a 
onsequen
e of the elasti
ityof s
attering, whi
h leads to the parti
le 
onservationwithin the 
onstant-energy surfa
e in the quasimomen-tum spa
e.The 
orrelation fun
tion of the Langevin for
es iswell known [7℄,hyp(r)yp0(r0)i! = (Jp + Jp0)Ærr0Æpp0fp: (2.14)Integrating Eq. (2.10) over ", we obtain the 
ontinuityequationA ddx 1Z0 d" Æj!("; x) = ddxÆJ!(x) = 0; (2.15)whi
h implies that the low-frequen
y 
urrent �u
tua-tions are spatially homogeneous.3. THE DISTRIBUTION FUNCTIONWe 
onsider a semi
ondu
tor with a uniform
ross-se
tion A 
onne
ting two identi
al metalli
ele
trodes. The length L of the sample is assumed tobe mu
h larger than the elasti
 s
attering length l andmu
h smaller than the inelasti
 one. We use the 1Dversions of the Boltzmann equations des
ribing thedistribution fun
tion evolution along the d
 
urrentdire
tion.To obtain the stationary solution of Eq. (2.6) in thea

epted approximation, we rewrite it as� ��x + eE ��"� j("; x) = Æ(x)j("): (3.1)

We here assume that the 
urrent density at x = 0,j("), is nonvanishing only for " > 0. In the absen
e oftunneling, j(") must have the property thatj(")! 0 as T ! 0 (3.2)at the 
onta
t x = 0, with T being the temperature.This 
ondition must be valid, irrespe
tive of whether aS
hottky barrier or an Ohmi
 
onta
t o

urs. Evident-ly, the total 
urrent J given by Eq. (3.3) below musthave the same property.The solution of Eq. (3.1) is a fun
tion of the totalenergy E , E = "+ U(x);where U(x) = e'(x) � e'(0):It 
an be found using, e.g., the inverse di�erential op-erator 1�x�(x) = xZ0 d��(�):We havej("; x) = 1�x + eE(x)�" Æ(x)j(") == exp[e'(x)�"℄ 1�x exp[�e'(x)�"℄Æ(x)j(") = j(E)and j("; x) takes nonzero values at a given x only if" > �U(x) (E � 0). The total 
urrent through thesample isJ = A 1Z0 d" j("; x) == A 1Z�U(x) d" j["+ U(x)℄ = A 1Z0 dE j(E): (3.3)From Eq. (2.9), we now obtainf("; x) = � 1�x + eE(x)�" j("; x)e�(") + f ["+ U(x)℄; (3.4)or f("; x) = �j[E ℄ xZ0 d� 1e�[E � U(�)℄ + f [E ℄; (3.5)where �(") � �(")D("):1196
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e-
harge limited di�usive : : :We have taken the boundary 
ondition at the sour
einto a

ount. Equation (3.5) 
an be rewritten asf [E � U(x); x℄ = 24f [E � U(L)℄ xZ0 d� 1�[E � U(�)℄ ++f(E) LZx d� 1�[E � U(�)℄35�� 24 LZ0 d� 1�[E � U(�)℄35�1 ; (3.6)where j(") is expressed through the di�eren
e of thedistribution fun
tions at x = 0 and x = L,j(E) LZ0 dx 1e�[E � U(x)℄ = f(E)� f [E � U(L)℄: (3.7)An advantage of the form 
hosen for Eq. (3.6) isits physi
al transparen
y. The �rst term in the right-hand side gives the 
ontribution of the right boundaryand the se
ond term gives the 
ontribution of the leftboundary. The solution 
learly demonstrates that thethermally ex
ited 
arriers inje
ted from the 
onta
t atx = L make a negligible 
ontribution to the distribu-tion fun
tion f [E � U(x); x℄, be
ausef(E) � f [E � U(L)℄ (E � 0)for the parameter jU(L)j=kBT is assumed to be large.Negle
ting this term in our solution of Eq. (3.6), wearrive at the solution already obtained in [11℄ by as-suming absorbing boundary 
onditions at the 
urrentdrain. 4. THE FIELD DISTRIBUTIONWe use the Poisson equation to determine the self-
onsistent ele
tri
 �eld that 
an be expressed throughthe obtained distribution fun
tion. We 
onsider thevalues of x su
h that x > x", where�U(x") � E � kBT;

� �4�e2 d2Udx2 = 1Z0 dE �[E � U(x)℄�� f [E � U(x); x℄ = 1Z0 dE �[E � U(x)℄j(E) �� LZx d�e�[E � U(�)℄ �� �[�U(x)℄ JeA LZx d�� [�U(�)℄ : (4.1)We �nally obtain� �4�e2 1�[�U(x)℄ d2Udx2 = JeA LZx d�� [�U(�)℄ : (4.2)We now 
he
k that for large x, this equation is 
on-sistent with the requirement of a uniform total 
urrent.Assuming �(") = �0"d=2�1and D(") = D0"s+1;we integrate Eq. (2.9) over the transverse 
oordinatesand energy, with the resultJA = �e ddx 1Z0 d" �(")D(")f("; x) ++ eD0�(d+ 2s)16� [�U(x)℄s ddxE2(x): (4.3)We integrate the se
ond term by parts and take intoa

ount that at x > xE , we 
an negle
t E 
ompared tojU(x)j and use Poisson equation (2.8). The �rst termin Eq. (4.3) 
an be simpli�ed in the same way1)1Z�U(x) d" �(")D(")f("; x) == 1Z0 dE �[E � U(x)℄D[E � U(x)℄f(E � U(x); x) == D[�U(x)℄ 1Z0 dE �[E � U(x)℄f(E � U(x); x) == D[�U(x)℄ �4�e ddxE: (4.4)1) We note that in view of Eq. (3.5), the distribution fun
tionf("; x) takes nonzero values only for " > �U(x).1197
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h, M. I. Muradov ÆÝÒÔ, òîì 121, âûï. 5, 2002In the se
ond equality, we used that E � jU(x)j. In-serting Eq. (4.4) in Eq. (4.3), we obtain the simpli�edequation4�jJ jD0�A = ddx �[�U ℄s+1 dEdx �++ jej2s+ d4 [�U ℄s dE2dx : (4.5)It 
an be used to verify the self-
onsisten
y of our ap-proa
h. Indeed, multiplying Eq. (4.2) by Us+d=2 andtaking the derivative, we arrive at Eq. (4.5) that hasbeen obtained from the equation for the 
urrent. Adimensionless version of Eq. (4.5) is�s�d� 22 �0�00 � ��000� = 1; (4.6)where the dimensionless potential � is related to ' by' = � 4�jJ jL3D0�Ajejs+1�1=(s+2) �(x=L): (4.7)5. THE CURRENT AND FIELDFLUCTUATIONSIn what follows, we 
onsider the parti
ular 
aseswhere s = 0; D(") = D0";s = �1=2; D(") = D0"1=2;and s = 1=2; D(") = D0"3=2:We begin with investigating the 
ase of the energy-independent s
attering time, s = 0. This 
ase 
an berelated to the s
attering of ele
trons by neutral impuri-ties, su
h as hydrogen-like shallow donor and a

eptorstates. The s
attering is analogous to the s
atteringof ele
tron by a hydrogen atom [13℄ (with the e�e
tiveBohr radius aB). The s
attering 
ross-se
tion turns outto be about 2�~=paB times larger than the geometri-
al 
ross-se
tion �a2B (that would result in an energy-independent s
attering time).In the 
ase of defe
ts with deep energy levels, ween
ounter a short-range s
attering potential with thes
attering length about the atomi
 length. The s
at-tering 
ross-se
tion does not depend on the energy. Asa result, the s
attering rate is proportional to the ele
-tron density of states "1=2 and the di�usion 
oe�
ientv2� is proportional to "1=2, i.e., s = �1=2. (This is oneof the main s
attering me
hanisms in metals be
ause

the s
attering length is then determined by the s
reen-ing radius, whi
h is of the order of the interatomi
 dis-tan
e.) The 
ases where s = �1=2 (whi
h in parti
ulardes
ribes elasti
 s
attering by a
ousti
 phonons) ands = 1=2 are dis
ussed in the end of this se
tion.5.1. Energy-independent s
attering timeIntegrating Eq. (2.11) over ", we obtain1A (ÆJ!�G!) = �e ddx 1Z�U(x) d" �(")D(")Æf!("; x)++ eD0d�8� ddxE(x)ÆE!(x): (5.1)We note that be
ause of Eq. (2.10), the Fourier trans-form of the 
urrent �u
tuations ÆJ! is spatially homo-geneous. Here, G! is the 
urrent �u
tuation sour
eintegrated over the energy and transverse 
oordinates,G!(x) = 1Z0 d" dr?g!("; r); (5.2)hG(x)G(x0)i! == e2 1Z0 d" 1Z0 d"0Xp;p0 Æ("� "p)Æ("0 � "p0)vxvx0 �� 1Ip 1Ip0 Z dr?dr0?hypyp0i!: (5.3)The part of the distribution fun
tion that is odd withrespe
t to p! �p vanishes after inserting it into 
or-relation fun
tion (2.14) of the Langevin for
es and sub-sequently integrating over p and p0. As a result, we areleft with the integral of the even fun
tionhG(x)G(x0)i! = Æxx0hG2(x)i! ; (5.4)hG2(x)i! = 2e2A 1Z0 d"f("; x)Xp Æ("� "p)vx 1Ip vx == 2e2A 1Z0 d" �(")D(")f("; x): (5.5)The se
ond term in the right-hand side of Eq. (5.1) 
anbe simpli�ed in the same way as Eq. (4.4),1Z0 d" �(")D(")Æf!("; x) == D(�U(x)) �4�e ddxÆE!; (5.6)1198
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e-
harge limited di�usive : : :and we �nally obtain the equation for ÆE!ddx �U(x) ddxÆE!(x)� + ed2 ddxE(x)ÆE!(x) == 4�AD0� (ÆJ! �G!): (5.7)In order to justify the simpli�
ation in Eq. (5.6), wenow show that Æf!("; x) is also a fun
tion takingnonzero values only at " > �U(x). Indeed, fromEq. (2.10) and Eq. (2.11), we 
an obtain the solutionsÆj! ["� U(x); x℄ = ÆU!(x) ��"j(") + �j(")!; (5.8)Æf!["�U(x); x℄ = LZx d� eÆE!(�) ��"f ["�U(�); �℄�� LZx d� g!["� U(�); �℄� Æj!["� U(�); �℄e�["� U(�)℄ ; (5.9)whi
h show that Æf has the aforementioned property.Here, �j(") are the �u
tuations of the 
urrent at theleft boundary x = 0. The �u
tuations of the distribu-tion fun
tion �f(") at the right boundary are assumedto be zero. If we assume �(") to be a 
onstant (indepen-dent of the energy), taking Eqs. (5.8) and (5.9) and theequation Æf!("; 0) = 0 into a

ount, we immediatelyarrive at the result�J = 1L LZ0 dx Z d"g["� U(x); x℄ (5.10)obtained by Nagaev [12℄.5.2. Comparison with the approa
h in Ref. [4℄We now embark on setting forth the 
ru
ial pointof the paper. Equation (5.7) does not 
oin
ide with theequation for the �eld �u
tuations obtained in [11℄ bydire
tly linearizing Eq. (4.5) for s = 0,ddx �ÆU!(x) ddxE(x)�+ ddx �U(x) ddxÆE!(x)�++ ed2 ddxE(x)ÆE!(x) = 4�AD0� (ÆJ! �G!): (5.11)The origin of this dis
repan
y must be understood.

First, we temporarily adopt the s
heme of Ref. [11℄and re
onsider Eq. (4.3) for the 
urrentJA = �e ddx 1Z�U(x) d" �(")D(")f("; x) ++ 32D0e2E(x) 1Z�U(x) d"�(")f("; x): (5.12)For the total 
urrent (the d.
. 
urrent plus �u
tua-tions), the equation readsJ + ÆJ �GA = �e ddx �� 1Z�U(x)�ÆU(x) d" �(")D(")[f("; x) + Æf("; x)℄ ++ 32D0e2[E(x) + ÆE(x)℄ �� 1Z�U(x)�ÆU(x) d"�(")[f("; x) + Æf("; x)℄: (5.13)Taking Eq. (5.12) into a

ount, we obtain the linearizedequationÆJ �GA = �e ddx 1Z�U(x) d" �(")D(")Æf("; x) ++ 32D0e2E(x)8><>: 1Z�U(x) d"�(")Æf("; x) ++ÆU ÆÆU(x) 1Z�U(x) d"�(")f("; x)9>=>;++ 32D0e2ÆE(x) 1Z�U(x) d"�(")f("; x)�� e ddxÆU ÆÆU(x) 1Z�U(x) d" �(")D(")f("; x): (5.14)If one linearized the Poisson equation in the spirit ofRef. [11℄ one would see that the term in the 
urly bra
k-ets in Eq. (5.14) would 
oin
ide with (�=4�e)(dÆE=dx),1199
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h, M. I. Muradov ÆÝÒÔ, òîì 121, âûï. 5, 2002and therefore,�4�e dÆEdx = 1Z�U(x) d"�(")Æf("; x) ++ ÆU ÆÆU(x) 1Z�U(x) d"�(")f("; x): (5.15)Simplifying the �rst, third, and fourth terms in theright-hand side of Eq. (5.14) with the help of Eq. (5.6)and inserting (�=4�e)(dÆE=dx) instead of the term inthe 
urly bra
kets, we arrive atÆJ �GA = e ddx �D0U(x) �4� dÆEdx �++ 32D0e �4� ddxEÆE ++ eD0 �4� ddxÆU ÆÆU �U dEdx � : (5.16)We 
an see that the last term in the right-hand side ofthis equation 
oin
ides with the �rst term in the left-hand side of Eq. (5.11). To avoid 
onfusion, we notethat we believe Eq. (5.15) to be also wrong. We havewritten it here only for the detailed 
omparison withthe approa
h in Ref. [11℄. We believe that the 
orre
tPoisson equation for the �u
tuation �eld is�4�e dÆEdx = 1Z�U(x) d"�(")Æf("; x): (5.17)In Eq. (4.3) for the d.
. 
urrent, we now add the termsthat a
tually vanish be
ause they are proportional tothe integrals of the distribution fun
tion over " with theupper limit �U(x), whereas the distribution fun
tionf("; x) = 0 for " < �U(x). The point is that when we
al
ulate the �u
tuations by the repla
ementU(x)! U(x) + ÆU(x);

they give a nonvanishing result. We haveJA = �e ddx �U(x)Z0 d" �(")D(")f("; x) �� e ddx 1Z�U(x) d" �(")D(")f("; x) ++ 32D0e2E(x) �U(x)Z0 d"�(")f("; x) ++ 32D0e2E(x) 1Z�U(x) d"�(")f("; x): (5.18)Rewriting this equation for the total 
urrent, we obtainJ + ÆJ �GA == �e ddx �U(x)�ÆUZ0 d" �(")D(")[f("; x) + Æf("; x)℄�� e ddx 1Z�U(x)�ÆU(x) d" �(")D(")[f("; x) + Æf("; x)℄ ++ 32D0e2[E(x) + ÆE(x)℄ �� �U(x)�ÆU(x)Z0 d"�(")[f("; x) + Æf("; x)℄ ++ 32D0e2[E(x) + ÆE(x)℄ �� 1Z�U(x)�ÆU(x) d"�(")[f("; x) + Æf("; x)℄: (5.19)Linearizing this equation and using relations similar toÆU(x) ÆÆU(x) 1Z�U(x) d" �(")D(")f("; x) == � �U(x)�ÆU(x)Z�U(x) d" �(")D(")f("; x); (5.20)we arrive at Eq. (5.1) that has been derived above. Wesee that the 
ontributions to Eq. (5.19) that are linearin ÆU 
an
el be
ause of the terms that vanish in theequation for the d.
. 
urrent but must be taken intoa

ount in 
onsidering �u
tuations. This is why thelinearization of Eq. (4.5) leads to Eq. (5.11) that we1200
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e-
harge limited di�usive : : :believe to be wrong be
ause it does not take all thesour
es of �u
tuations into a

ount, or in other words,all the terms in Eq. (5.18) 
ontaining U(x).The solution of Eq. (5.7) with the boundary 
ondi-tions E(x)ÆE!(x) jx!0 ! 0;U(x) ddxÆE!(x) ����x! 0 ! 0 (5.21)is given by� AD0�4� ÆE!(x) = Ud=2(x) �� 24C + xZ0 d�Ud=2+1(�) �Z0 d� (ÆJ! �G(�)!)35 ; (5.22)where C is the integration 
onstant. Requiring a non-�u
tuating applied voltageLZ0 dx ÆE! = 0;we obtain from Eq. (5.22) that the 
onstant isC = LZ0 dx� (x) (L) � 1� 1Ud=2+1(x) �� xZ0 d�(ÆJ! �G!(�)); (5.23)where  (x) = xZ0 d� Ud=2(�): (5.24)We now require ddxÆE!(x)����x=L = 0 (5.25)at the right boundary and obtainÆJ! = 1Z LZ0 dx�(x)G!(x); (5.26)whereZ = L+ dU 0(L)Ud=2(L)2 (L) LZ0 dx x (x)Ud=2+1(x) ; (5.27)

�(x) = 1 + dU 0(L)Ud=2(L)2 (L) LZx d�  (�)Ud=2+1(�) : (5.28)The noise power P is then given byP = 2Z2 LZ0 dx�2(x)hG2(x)i! : (5.29)In a

ordan
e with Eq. (5.5), we havehG2(x)i! = 2e2A 1Z0 d" �(")D(")f("; x) == 2e2AD0U(x) �4�e d2Udx2 : (5.30)We �nally arrive atP = 4AD0�4�Z2 LZ0 dx�2(x)U(x)d2Udx2 : (5.31)The potential distribution 
an be found following themethod in Ref. [11℄, i.e., by solving Eq. (4.5) withboundary 
ondition (4.2) at x = L. Using Eqs. (5.24),(5.27), (5.28), and (5.31), we 
al
ulate the suppressionfa
tor P=PPoisson. For physi
ally relevant di�erent val-ues of the dimensionality d, we obtainPPPoisson = 8><>: 0:3188 for d = 3;0:4512 for d = 2;0:682 for d = 1: (5.32)In this parti
ular 
ase, our results therefore di�er fromthose 
al
ulated in Refs. [11℄ both analyti
ally (whi
his of prin
ipal importan
e in our opinion) and numeri-
ally (although in this parti
ular 
ase, the di�eren
e isnot great). Naturally, there is essentially no di�eren
efrom the results 
al
ulated within an ensemble MonteCarlo s
heme in Ref. [10℄.5.3. Energy-dependent s
attering timeWe here 
al
ulate the noise power for s = � 1=2 andd = 3. The equation for the �u
tuations is� 4��D0A (ÆJ! �G!) = ddx �(�U)s+1 dÆE!dx ��� e2s+ d2 (�U)s ddx (EÆE!) : (5.33)Introdu
ing the dimensionless potential � by Eq. (4.7)and the �u
tuation of the �eld �E byÆE(x) = 1L � 4�jJ jL3�D0Ajejs+1�1=(s+2)�E �xL� ; (5.34)14 ÆÝÒÔ, âûï. 5 1201
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h, M. I. Muradov ÆÝÒÔ, òîì 121, âûï. 5, 2002we 
an rewrite Eq. (5.33) as�E00 +�1� d2� �0� �E0 ��s+ d2� �00� �E == 1�s+1 (G� ÆJ)jJ j : (5.35)Setting s = �1=2 and d = 3, we obtain�E00 � 12 �0� �E0 � �00� �E = ��1=2 (G� ÆJ)jJ j : (5.36)This equation di�ers from that derived in Ref. [11℄,while the equation for the potential � 
oin
ides with12�1=2�0�00 � �1=2�000 = 1: (5.37)To 
al
ulate the Green's fun
tion of Eq. (5.36), we needthe fun
tion  1(x) obeying the homogeneous equation 001 � 12 �0�  01 � �00�  1 = 0 (5.38)and satisfying the boundary 
ondition  01jx=0 = 0. These
ond fun
tion  2 satisfying the boundary 
ondition 02jx=L = 0 
an be expressed through the fun
tions �and  1 as 2(x) = � 1 24 �1=2(1) 1(1) 01(1) + 1Zx d� �1=2(�) 21(�) 35 : (5.39)The solution of Eq. (5.36) 
an be written using theGreen's fun
tionG(x; x0) = 1�1=2(x0) �� [�(x�x0) 1(x0) 2(x)+�(x0�x) 1(x) 2(x0)℄ (5.40)as �E = 1Z0 dx0G(x; x0) (G(x0)� ÆJ)�1=2(x0)jJ j : (5.41)Requiring a non�u
tuating applied voltage, we obtainÆJ = 1Z 1Z0 dx G(x)�(x) �(x); (5.42)where�(x) =  1(x) 1Zx d�  2(�) +  2(x) xZ0 d�  1(�); (5.43)

Z = 1Z0 dx �(x)�(x) : (5.44)Expressing the 
orrelation fun
tion hG2(x)i through �,we obtain the power supression fa
torPPPoisson = 2Z2 1Z0 dx �00(x)�3=2(x)�2(x) (5.45)for the shot noise. We determine the potential � follow-ing Ref. [11℄ and numeri
ally �nd  1 from Eq. (5.38).The fun
tions  2, � and the 
onstant Z 
an be foundfrom Eqs. (5.39), (5.43), and (5.44). The suppressionfa
tor 
an be evaluated asPPPoisson = 0:4257; (5.46)whi
h is about 10% larger than the result obtained inRef. [11℄. The numeri
al simulation result in [10℄ fors = �1=2 is PPPoisson = 0:42�0:44: (5.47)This interval is noti
eably nearer to the value given byEq. (5.46) than the result in Ref. [11℄.In the 
ase where s = 1=2, the suppression fa
tor
an be evaluated as PPPoisson = 0:1974; (5.48)whi
h is slightly smaller than the result in Ref. [10℄.6. CONCLUSIONSIn summary, we have developed an analyti
al the-ory of shot noise in a di�usive 
ondu
tor under thespa
e 
harge limited regime. We �nd that the presenttheory is di�erent from the approa
h developed earlierand indi
ate a possible origin of the di�eren
e.We now make several 
on
luding remarks. The 
al-
ulated nonequilibrium shot noise power in a nondegen-erate di�usive semi
ondu
tor for two types of physi
allyrelevant elasti
 s
attering me
hanisms turned out to bevery 
lose to the ones obtained in numeri
al simulationsby the authors of Ref. [10℄. The 
omputed noise sup-pression fa
tor P=PPoisson for the energy-independents
attering time is also su�
iently 
lose to the analyti
alresults obtained earlier by S
homerus et al. [11℄. How-ever, for the energy-dependent s
attering, the numeri-
al di�eren
e between our results and those in Ref. [11℄is 
onsiderable.1202



ÆÝÒÔ, òîì 121, âûï. 5, 2002 The theory of shot noise in the spa
e-
harge limited di�usive : : :We 
larify on
e more why the authors of Ref. [11℄arrived at the equations that di�er from ours. As anexample, we take the Poisson equation. A

ording toRef. [11℄, one 
ould writen = 1Z�U(x) d"�(")f("; x); (6.1)where n and U are the exa
t total 
on
entration andpotential energy and f is the total distribution fun
-tion (the mean value plus the �u
tuating part). Thelinearization of this equation leads to the equations inRef. [11℄. The authors of Ref. [11℄ 
ould have arguedthat be
ause the voltages in the reservoirs do not �u
-tuate and U is set to zero at the left boundary andbe
ause the total energy E = " + U remains positive,the total distribution fun
tion is zero for " < �U .Our point is that Eq. (6.1) 
annot be justifed for thetotal values of these variables in
luding the stationaryand �u
tuating parts. This is readily seen from thefa
t that the �u
tuating part of the distribution fun
-tion itself impli
itly depends on the mean value of thedistribution fun
tion through the 
orrelation fun
tion.One should bear in mind that an equation involvingboth the mean and the �u
tuating quantities must beregarded symboli
ally. Indeed, su
h an equation is infa
t equivalent to two equations, one for the mean val-ues and the other for the �u
tuating part. Regardedliterally, it 
an lead to 
onfusion. For example, analyz-ing the equationn+ Æn = Z�U�ÆU d"�(")(f + Æf)one 
an 
ome to the wrong 
on
lusion that the meanvalue n depends on su
h an average as ÆUÆf .We add several words about the boundary 
ondi-tions for the potential. The boundary 
onditions usedhere are not appli
able within the lengthRV =p�V=4�en(0)near the ele
trodes. Be
ause the nonequilibrium noisepower is a bulk property (we note, e.g., the integrationover the 
oordinate in Eq. (5.45)), this approximationis justi�ed sin
e we assume that the sample length L ismu
h greater than RV .Being interested in the analysis of the �u
tuationphenomena in the simplest situation of the spa-
e-
harge limited di�usive 
ondu
tion regime, we have

not taken the ele
tron�ele
tron 
ollisions into a

ount.These 
ollisions 
an lead to an additional ele
t-ron�ele
tron 
orrelation [7℄ that must be 
onsidered inanalyzing a more general 
ase.The authors are grateful to K. E. Nagaev for 
om-muni
ating to them his views 
on
erning the role ofboundary 
onditions at the 
onta
t between metal andsemi
ondu
tor for the spa
e-
harge limited di�usive
ondu
tion.This work was supported by the Russian Founda-tion for Basi
 Resear
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