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We investigate, theoretically and numerically, properties of dispersion-managed (DM) solitons in fiber lines
with the dispersion compensation period L much shorter than the amplification distance Z,. We present the
path-averaged theory of DM transmission lines with a short-scale management in the case of asymmetric maps.
Applying a quasi-identical transformation, we demonstrate that the path-averaged dynamics in such systems

can be described by an integrable model in some limits.

PACS: 42.65.Tg, 42.81.Dp

1. INTRODUCTION

Realization of the soliton-based optical data trans-
mission has clearly demonstrated how results of the
fundamental soliton theory (see, e.g., [1-12]) can be
successfully used in very important practical applica-
tions. The dispersion management technique proposed
recently allows the increase of the bit-rate per channel
and the suppression of the interchannel interaction in
WDM systems in comparison with the traditional soli-
ton transmission [13]. The dispersion-managed (DM)
soliton is a novel type of an optical information car-
rier with many attractive properties (see, e.g., [15-57]
and references therein) combining features of the tradi-
tional fundamental soliton and the dispersion-managed
non-return-to-zero transmission. The power of the DM
soliton is enhanced [19] compared to the corresponding
fundamental soliton. This increases the signal-to-noise
ratio, reduces the Gordon—Haus jitter, and therefore
improves the transmission system performance. How-
ever, in the systems (transmission regimes) limited by
nonlinear pulse interactions rather than by noise, the
enhanced soliton power can become a less attractive
feature. For instance, the data transmission with high
bit-rates of 40 Gb/s per channel and more requires a
dense pulse packing, and consequently, short soliton
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widths. The DM soliton energy increases with the
decrease of the pulse width (or in other words, with
the increase of the map strength). The average power
of the traditional soliton signal increases with the in-
crease of the bit-rate (assuming the soliton width to be
a fraction of the time slot) as the square of the bit-rate.
For the DM soliton, this growth is even more drastic,
and for short pulses, the DM soliton power can there-
fore become too high to be realized in practice [55].
Additionally, soliton interaction becomes an important
issue as the signal power increases [55]. The energy
control by the corresponding reduction of the average
dispersion is limited by fluctuations of the dispersion
along the fiber and by higher-order dispersive effects.
Therefore, in designing soliton-based (and also general
return-to-zero signal) transmission systems, the soliton
power must be kept sufficiently large for the signal-to-
noise ratio requirement and suppressed jitter, and at
the same time, not too large to avoid the strong soliton
interaction and to meet the telecommunication stan-
dards on the signal power. One way to find such an
optimum for a high bit-rate DM transmission is to use
a chirped-return-to-zero signal [55,56] with less power
than the DM soliton power in the corresponding sys-
tem. Even though such carriers are not stable in a ri-
gorous mathematical sense and emit radiation as they
propagate, they can be successfully used in practical

1040



MITD, Tom 121, BHIm. 5, 2002

The theory of optical communication lines ...

systems. A challenge for the soliton theory, however,
is to find high-bit-rate (> 40 Gb/s per channel) trans-
mission regimes with a truly periodic soliton-like signal
propagation. The short-scale dispersion management
is a means of controlling the DM soliton energy while
keeping the average dispersion not too small and taking
advantage of the four-wave-mixing (FWM) suppression
in the WDM transmission by a high local dispersion.

The traditional dispersion management for long-
haul transmission assumes the amplification distance
to be much shorter than the dispersion compensation
period (see, e.g., [14]). Another important applica-
tion is the implementation of dispersion-compensating
schemes in the existing terrestrial fiber links based on
the standard monomode fibers, which typically requires
rather close spacing of the dispersion compensating
fibers because of the high dispersion of the standard
monomode fibers at 1.55 yum. In this case, the ampli-
fication distance is typically of the order of the com-
pensation period. The existing technologies make it
possible to manufacture fibers with the continuous al-
ternation of positive and negative dispersion sections
of few kilometers long without any splicing [27]. The
fundamental properties of the optical signal transmis-
sion in this regime are less studied compared to other
regimes. In this paper, we investigate the optical pulse
transmission in DM fiber systems with the compensa-
tion length that is much shorter than the amplification
distance [41]. We examine the case of an asymmetric
dispersion map. Compared to lossless models, the sys-
tems with different periods of the amplification (Z,)
and dispersion compensation (L) possess an important
new degree of freedom, the parameter L/Z,. A short-
scale dispersion compensation (L < Z,) leads to a re-
duction of the DM soliton power if we fix all system
parameters and the pulse width and vary only L/Z,.
Below, we show that the short-scale management can
be considered as a possibility of an advantageous prac-
tical realization of the weak-map regime.

2. THE BASIC MODEL

We first recall the basic equations and the notation.
The optical pulse propagation in a cascaded transmis-
sion system with varying dispersion is governed by

27m2
Ao Aess

N
—y(2) + 7k Y 6(z — %)]E =
k=1

OE  ND(z) O°E

E|’E =
0z dney  Ot2 |E]

iG()E, (1)
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where z is the propagation distance in [km], ¢ is the
retarded time in [ps], |[E|> = P is the optical power
in [W], and D(z) is the group velocity dispersion mea-
sured in ps/nm-km. We assume a periodic dispersion
management with the period L, D(z + L) = D(z);
zr are the amplifier locations. We consider a peri-
odic amplification with the period Z,. If v = 4
is constant between two adjacent amplifiers, then
rp = [exp(yxZa) — 1] is the amplification coefficient
after the fiber span between the k-th and (k — 1)-th
amplifier, ny is the nonlinear refractive index, Aeps is
the effective fiber area, v = 0.05In 10« (with a mea-
sured in dB/km) is the fiber loss of the corresponding
fiber, ¢; is the speed of light, and Ag = 1.55um is the
carrier wavelength. We consider the general case where
L and Z, are rational and commensurable, namely,
nZ, = mL = Zy with integer n and m. In this paper,
we focus on the systems with the short-scale manage-
ment with n =1, m > 1, and Zy = Z, = mL. It is
customary to pass from the original optical field E(z,t)

to
= E(z,t)exp /G(z' dz'
0

The evolution of the scaled envelope A is then given
by the nonlinear Schrédinger (NLS) equation with pe-
riodic coefficients

A(z,t)

iA, +d(2) Ay + ec(2)|APA =0, (2)
where
ec(z) = 27rn2 /G’ )dz'"]
Eff
(3)
A3D(2)
d(z) = ==
(2) 4dmey

3. THE PATH-AVERAGED MODEL

In this section, we briefly recall the derivation of
the path-average model [28, 42] describing the change
of the signal waveform over one compensation period.
Equation (3) governing the z-evolution of an optical
pulse can be written in the Hamiltonian form

0A 6H

il ot _ _ 2
i = 5qr = —d)Au —ec)APA (4)

with the Hamiltonian

H= /{ ) A _$|A4}dt. (5)
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The true breathing soliton is a solution of Eq. (3)
of the form

A(z,t) = exp(ikz)F(z,t)

with a periodic function F'(z + Zg,t) = F(z,t). It is in-
teresting to find a systematic way to describe a family
of periodic solutions F' with different quasi-momenta k.
The basic idea suggested in [28] is to use the small pa-
rameter € to derive a path-averaged model that gives a
regular description of the breathing soliton in the lead-
ing order in €. Averaging cannot be performed directly
in Eq. (1) in the case of large variations

d > (d),

where
d(z) =d+ (d) with (d)=0.

However, a path-averaged propagation equation can be
obtained in the frequency domain [28]. We show that
in some important limits, the averaged equation for the
periodic breathing pulse can be transformed to the in-
tegrable NLS equation.

First, to eliminate the periodic dependence of the
linear part, we follow [28] in applying the so-called
Floquet—Lyapunov transformation

dR(2)

Ao = duep{-iwtR(2)}, S =d() - (d), (6)

where A, = A(z,w) is the Fourier transform of

Az, t) = /Aw exp[—iwt]dw.

An important observation used in what follows is that
for a fixed amplitude of d, the amplitude of the varia-
tion of R decreases as m = Z,/L increases. It can be
easily found that

max[R(z)] o< 1/m.

In the new variables, the equation becomes

Do,
za;i —(d)w’ b, +6/Gw123(z)5(w+w1 — Wy —w3) X
X ¢I¢2¢3dwldo.)2do.)3 = 0, (7)
where

Gui23(2) = c(2) exp{iAQR(z)}
is Z,-periodic and

AQ = w? +wi —wi —wi.

We note that G123 depends only on the specific com-
bination of the frequencies given by the resonance sur-
face AQ. Both the Fourier transform and Floquet—
Lyapunov transform (6) are canonical and the trans-
formed Hamiltonian H is given by

H= <d>/w2 ‘¢w|2dw_s/%5(w+w1—W2—w3)x
X ¢, 01 ¢2¢3dwdw dwsdws.  (8)

It is important that e and (d) are small, and Eq. (7)
therefore has the so-called Bogolubov standard form
and the averaging procedure can then be applied. We
now apply the Hamiltonian averaging [50, 51]. We
change the variables as

Ouw = Pu +€/Vw1235(w +w —wy —ws3) X
X 1 papadwydwadws + . ..,

where

Vi2s(z) =1 /[GwIQS(T) — To123)dr + iV,123(0),
0

(Vi23) =0

with
1
Ti23 = (Gui23) = /Gwlzg(z)dz =

_ / o(z) exp{iAQR(:)}dz.  (9)

In the leading order in €, the path-averaged evolution
of signal in the DM line is governed by the Gabitov—
Turitsyn model [28]

pu
0z

i —<d>w2gow—|—e/Twlggé(w—l—wl—wg—o.)g) X

X Py papzdwidwadws = 0. (10)

The Hamiltonian averaging introduced here repre-
sents a regular way to calculate the next-order correc-
tions to the averaged model. We note that Eq. (10)
possesses a remarkable property. The matrix element
To123 = T(AQ) is a function of AQ and on the resonant
surface given by

wHwi—ws—w3 =0, AQ = w2+wf—wg—w§ =0,
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both T,123 and its derivative with respect to AQ are
regular. This observation allows us to make a quasi-
identical transformation that eliminates the variable
part of the matrix element T,,123,

—a _L/To—TwmsX
Po = e T AQ

X ajasazd(w + w1 — we — wsz)dwidwadws, (11)

where Ty = T'(0). This transformation has no singu-
larities. If the integral part in this transformation is
small compared to a,, then in the leading order we
obtain

ia(;ﬂ —(d)w?a, + e/ng(w +w; —we —ws) X
z

X aasazdwydwadws = 0. (12)

This is nothing else but the integrable nonlinear
Schridinger equation written in the frequency domain.
Obviously, this transformation is quasi-identical only if
the integral in Eq. (11) is small compared to a,,. This
is not true in the general case and that is why the path-
averaged DM soliton given by the solution of Eq. (10)
then has a form different from the cosh-shaped NLS
equation soliton [28,43,49]. A comprehensive analysis
of the DM soliton solutions of the Gabitov—Turitsyn
equation has been published in [46-48]. The first high-
precision numerical solution of the Gabitov—Turitsyn
equation was presented in [48]. We note that if the
kernel function in Eq. (11) is small,

To — Tu123(AQ)

Sag) = |

<1, (13)
then the averaged model can be reduced to the NLS
equation. In other words, this is a condition on the
functions ¢(z) and d(z) that makes the quasi-identical
transformation possible. The path-averaged DM soli-
ton propagation in systems satisfying requirement (13)
is close to the dynamics of the traditional soliton and
at the same time preserves all the advantages of the
suppression of FWM by a high local dispersion.

4. SYSTEMS WITH A SHORT-SCALE
MANAGEMENT

In this section, we calculate the matrix element
T,123 for systems with a short-scale management
(L < Z,) and demonstrate that a path-averaged prop-
agation (even with large variations of the dispersion)
can be described by the integrable NLS equation in
this regime. The matrix element 7" plays an important

role in the description of the FWM [52]. To be spe-
cific, we consider a two-step dispersion map with the
amplification distance Z, = Zy (n = 1) and dispersion
compensation period L = Z,/m km. The dispersion is

d(z) = d+ (d)
if
k z k+a
m 7, m
and p
a
() =~ + (d)
if
k+a z k+1
SZ. S Tm
where & = 0,1,2,...,m — 1 and the parameter

a € (0,1) describes the position of the step. The mean-
free function R defined above can be found as

R(z)=d(z — Z,k/m — aZ,](2m))

if

£<i<k+a

m Za m
and

(2) = da Z_Zak_(a+1)Za
T a-—1 m 2m

if

k+a z kE+1

<< —
m g m

Straightforward calculations show that in this system,
the matrix element 7,123 is

2vZq exp(27Za)

1dAS)

Toros = _ e
123 3y —idAQ

2vZ,/m
>< —
D@1 Zafm) — 1

exp [(2(1 — a)y + iadAQ) Z,/m] — 1
8 (2(1 —a)y + iadAQ)Z, /m H 8

X exp {—iadAQQZ—a} . (14)
m

To show a self-similar structure of this matrix element,
we rewrite T,,103 as

Tw123 = B(G) : F(aaXaY)7 (15)
G-1
B(G) = GlnG’
v X
Fla, X,Y) = [H X iy [1_ X1 (16)
" exp[(1—a)X +iaY]—1 ox _iaY
(1—a)X +iaY’ P\727 )
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Fig.1. Real (solid line) and imaginary (dashed line)

parts and the absolute value (dotted line) of the
function F(a,X,Y) are plotted for « = 0.5 and
X = 0.631n(10)dB

where the amplitude B is a function of only G =
= exp(2vZ,) and is independent of m. The shape
F(a,X,Y) is a function of the parameter a and specific
combinations of X = 2vZ,/m and Y = dAQZ,/m.
The real part (solid line), the imaginary part (dashed
line), and the absolute value (dotted line) of F'(a, X,Y)
are plotted in Fig. 1. Here, a = 0.21 dB/km,
Zo, = 60 km, m = 2, and @ = 0.5. Minima of the
function |F'| correspond to operation regimes with the
suppressed FWM [52]. In the d = 0 limit, we obvi-
ously recover results of the traditional path-averaged
(guiding-center) soliton theory [24-26].

In Fig. 2, the function |F(a, X,Y)| is plotted ver-
sus Y for the different a with the same parameters as
in Fig. 1. We now estimate the matrix element of the
quasi-identical transformation

Za )
1S(AQ)] < L / d@[exp(zigmz))—udz .
< max(B)(c) = 29 )

It can be seen that as m increases (with the other pa-
rameters fixed), the path-averaged model (10) govern-
ing the DM soliton propagation converges to the inte-
grable NLS equation with

: Ty
NN
W}“\"u """";;WWW

>

|

i I//
1 \\“‘\\\“‘\t‘\“‘v‘“.’f‘,,',,,,,,«ff,,ii/z’,”z/z”f/@,w///
I \‘\ ‘ l‘ N'N/;// \ //,,/ 0
s A
& 0: A ‘\“d" ‘::o ,'",w' /, // 4 .
0.2 m' /" 4

Fig.2. The function |F(a, X,Y)| versus Y for the sys-
tem with different a

It is obvious that in the limit of a very weak loss
(small ), we again obtain the lossless model approxi-
mation for T,
sin(aY’)

ay

Tw123 =

However, the increase of m (decrease of L) under the
fixed characteristic bandwidth of the signal makes the
oscillatory structure of the kernel insignificant. This
implies that if T(AQ) is practically concentrated in
some region, then the corresponding region in A is
larger for large m than for small m. For the pulses
with the same spectral width, this means that T is
much flatter for large m: as a matter of fact, the func-
tion T' can be well approximated by the value T'(0) for
large m (small L). As aresult, the NLS equation model
works rather well in this limit and the solution (of the
path-averaged model!) should be close to the cosh-like
soliton of the NLS equation. We note that although it
is known that the DM soliton shape is close to cosh for
the lossless model in the so-called weak map (S < 1)
limit [19, 28, 36, 34], this is not so obvious for a system
with loss and different periods of the amplification and
dispersion variations. In such a system, DM solitons
therefore possess the dual advantages of being chirped
(which is important for the suppression of the four-
wave mixing in WDM systems) and of having the in-
tegrable path-averaged dynamics, which allows the use
of well developed mathematical tools in studying prac-
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Fig. 3. Evolution of the soliton peak power (right top), chirp (left bottom), and full-width at half maximum (right bottom)
along one section is shown for the transmission system with the short-scale dispersion map (left top). Here, S = 2, the
amplification distance is 40 km, and the dispersion compensation period is 4 km

tical perturbations. This additionally implies that all
the control techniques developed for the improvement
of the traditional soliton transmission can be directly
used in these systems.

5. A SINGLE PULSE PROPAGATION

In this section, we consider numerical simulation
results for a single pulse propagation in systems with
a short-scale management. In contrast to the lossless
model, the evolution of soliton parameters over one pe-
riod is here asymmetric because of the loss. Rapid vari-
ations of the pulse width, peak power, and chirp are ac-
companied by the exponential decay of the power due
to the loss. Nevertheless, numerical simulations have
revealed that there exists a true periodic solution that
reproduces itself at the end of the compensation cell
(in this case, at the end of the amplification period).
For the DM soliton with the map strength S = 2, the
evolutions of its peak power (right top), chirp (left bot-

tom), and full width at half maximum (right bottom)
along one section are shown in Fig. 3 for a transmission
system with the short-scale dispersion map (left top).
The amplification distance is 40 km and the dispersion
compensation length is 4 km. The following parame-
ters were used in the simulations: the dispersion in the
two-step map +£16+0.1 ps/nm-km (see Fig. 3), the non-
linear coefficient o = 27ny/AgAeyr = 2.43 W=1km ™!,
and the fiber loss o = 0.21 dB/km.

The observed DM soliton is very stable and propa-
gates without radiation as seen in Fig. 4 (where system
parameters are the same as in Fig. 3). Figure 4 illus-
trates the chirp of the DM soliton versus the width.
The left and right figures show this dependence for the
first and the 140th sections, respectively.

An important feature of solitons in systems with
a short-scale dispersion management is the reduced
power. The DM soliton identified here has a reduced
power compared to the previously studied DM soliton
regimes (L > Z,) for the same width propagating in a
fiber system with the same average dispersion (with the
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Fig.4. Chirp versus width of the DM soliton for the first (left) and the 140th (right) sections

same parameters except the L/Z, ratio). This obser-
vation is illustrated by Fig. 5, where we present results
of the modelling based on the zero-mode Gaussian ap-
proximation of the DM soliton (in the expansion using
a complete basis of the chirped Gauss—Hermite func-
tions, see [57] for details). Using this approach, we
have built the evolution of the DM soliton peak power
dependence on the pulse width; the dispersion compen-
sation length was changed, but the average dispersion
and the amplification distance were kept the same. In
Fig. 5, the dependence of the DM soliton peak power on
the pulse width at the beginning of the compensation
section z = 0 is shown for different ratios of the dis-
persion period L = Z,/m to the amplification distance
Zo (40 km here): m = 10 (solid line), 1 (long-dashed
line), 0.5 (dashed line), 0.2 (dotted line), 0.1 (dashed-
dotted line). For control, we also show the peak power
dependence for the true DM soliton found numerically
(in the full model) in the case where m = 10 (squares)
and m = 0.2 (rhombuses).

We also note that the energy of the short-scale DM
soliton is very close to that of the conventional soliton
(although the pulse is chirped and experiences breath-
ing oscillations of the width and chirp during propa-
gation). This is because the effective map strength is

here small due to small L. It is seen from Fig. 5 that
the short-scale dispersion management (m = 10) in-
deed provides a reduced power of the DM soliton for
the same pulse width (and the same average dispersion
and the same other parameters except the ratio L/Z,).
Because the soliton power grows very rapidly with the
reduction of the pulse width (after the curves in Fig. 5
pass some «critical» turning points, for instance, for
m = 1 such a point is around 16 ps), this effect can
be very important for high-bit-rate transmissions using
short pulses.

6. SOLITON INTERACTION

The nonlinear pulse-to-pulse interaction is one the
main limiting factors in the high-bit-rate optical data
transmission. In this section, we present results on the
soliton interaction in systems with a short-scale man-
agement with the amplification period Z, = 60 km
and the dispersion compensation period L = 4 km
(m=15), L =6km (m = 10), and L = 12km (m = 5).
Numerical simulations in this section include the third-
order dispersion and Raman effects. An important ad-
vantage of operating close to the integrable limit (weak
maps) discussed above is that the well developed tech-
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Fig.5. The dependence of the DM soliton peak power
on the pulse width at the beginning of the compensa-
tion section z = 0 for different ratios of the dispersion
period L = Z,/m to the amplification distance Z,:
m = 10 (solid line), 1 (long-dashed line), 0.5 (dashed
line), 0.2 (dotted line), and 0.1 (dashed-dotted line).
The same dependences for the true DM soliton found
numerically (in the full model) are shown for m = 10
(squares) and m = 0.2 (rhombuses)

niques to suppress soliton interaction can be applied.
Figures 6 and 7 show the effect of the initial phase al-
ternation of neighboring solitons. Figure 6 shows the
propagation of two in-phase solitons initially separated
by 10 ps (100 Gb/s). The solitons collapse after ap-
proximately 500 km. In contrast, DM solitons with
the initial phase shift = can propagate over 5000 km
without fusion. Here, D = £2.4 + 0.0785 ps/nm-km,
Z, = 60 km, m = 15, the peak power of the single soli-
ton is 5.44 mW, and the pulse width is 2.93 ps at the
chirp-free point (0.56 km from the end of the map). We
recall that the interaction of DM solitons with larger S
is independent of the initial phase shift [33].

Figure 8 shows the normalized distance be-
tween the Gaussian pulses for different initial phase
shifts along the total distance z = 1018.5 km.
The initial distance is z = 12.5 ps (80 Gb/s)
and the maps are D = =£1.6 + 0.04 ps/nm-km,
D = £24 + 0.04 ps/nm-km, and D = =£3.2 +
+ 0.04 ps/nm-km, with the respective strengths
S = 1.06, 1.58, and 2.12. Figure 9 shows an improve-
ment of the system performance resulting from the
initial phase alternation. We plot the total trans-
mission distance versus the DM soliton energy (at
the beginning of the section) at 80 Gb/s. Here, the
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Fig.6. The interaction of two in-phase DM solitons

at 100 Gb/s. Here, D = +2.4 + 0.0785 ps/nm-km,

Z, = 60 km, and m = 15; solitons with the peak power

5.44 mW and the pulse width 2.93 ps are launched at a

chirp-free point located 0.56 km before the end of the
section

Power, m
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Fig.7. The same as in Fig. 6 but with the initial phase
alternation (out-of-phase solitons)

dispersion is D = £2.4 4+ 0.04 ps/nm-km, L = 6 km,
and Z, = 60 km. The total transmission distance
has been defined as the distance at which the @
factor becomes less than 6 for two test random 128-bit
patterns. The solid lines are for the initial signals
with a phase alternation and dashed lines are for the
in-phase input pulses. It can be seen that short-scale
dispersion-managed systems are quite attractive candi-
dates for the transmission optical data at ultra-high-bit
rates. Optimization of such lines will lead to a further
improvement of the system performance.

7. CONCLUSIONS

We have identified a stable optical pulse propa-
gation regime in fiber systems with the short-scale
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for different map strengths: S = 1.06 (solid line 1),

S = 1.58 (long-dashed line 2), and S = 2.12 (dashed
line 3). Here, Z, = 60 km and L = 6 km
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Fig.9. The transmission distance at 80Gb/s with

(solid line) and without (dashed line) the initial phase

alternation versus the DM soliton energy. Here,

D = 424 + 0.04 ps/nm-km, L = 6 km, and
Zq = 60 km

dispersion management when the compensation period
is much shorter than the amplification distance. In
systems with a short-scale management, the DM
soliton has a reduced power compared to the usual
DM soliton (L > Z,) of the same width (and the same
amplification distance and average dispersion). The
short-scale management is a means of controlling the
strength of the map (and consequently, pulse energy,
interactions, etc.) while keeping the average dispersion
finite and taking advantage of the FWM suppression
in WDM by a high local dispersion. We show that

the path-averaged dynamics of chirped DM solitons in
systems with a short-scale management for weak maps
is close to that in the integrable model. Therefore, DM
solitons in such systems possess the dual advantages of
being chirped (which is important for the suppression
of the four-wave mixing in WDM systems) and of
possessing the integrable path-averaged dynamics,
which allows the use of well developed mathematical
tools for studying practical perturbations.

We would like to thank S. K. Turitsyn for useful
discussions. The support of EPRSC and RFBR (grant
99-02-16688) is acknowledged.
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