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We consider the quantum vacuum of a fermionic field in the presence of a black-hole background as a pos-
sible candidate for the stabilized black hole. The stable vacuum state (as well as thermal equilibrium states
at an arbitrary temperature) can exist if we use the Painlevé—Gullstrand description of the black hole and the
superluminal dispersion of the particle spectrum at high energy, which is introduced in the free-falling frame.
This choice is inspired by the analogy between the quantum vacuum and the ground state of quantum liquid,
in which the event horizon for the low-energy fermionic quasiparticles can also arise. The quantum vacuum
is characterized by the Fermi surface that appears behind the event horizon. We do not consider the back
reaction, and therefore, there is no guarantee that the stable black hole exists. But if it does exist, the Fermi
surface behind the horizon would be the necessary attribute of its vacuum state. We also consider the exact
discrete spectrum of fermions inside the horizon, which allows us to discuss the problem of fermion zero modes.
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1. INTRODUCTION

In 1981, Unruh proposed to study the black hole
physics using its sonic analogue [1]. Originally sug-
gested for classical liquids, this was later extended to
quantum systems such as superfluids and Bose conden-
sates [2 4]. The main advantage of the quantum lig-
uids and gases is that in many respects, they are simi-
lar to the quantum vacuum of fermionic and bosonic
fields. This analogy forms a view on the quantum
vacuum as a special type of condensed matter — the
«ethery — where the physical laws that we have at
present can arise emergently as the energy or temper-
ature of the «ethers» decreases [5]. A particular sce-
nario of the emergent formation of the effective gravity
together with gauge fields and chiral fermions can be
found in the recent review paper [6].

According to the topology in the momentum space,
there are three types (universality classes) of the
fermionic vacua. Omne of them has the trivial topol-
ogy and its fermionic excitations are therefore fully
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gapped (massive fermions). The other two have a non-
trivial momentum-space topology characterized by cer-
tain topological invariants in the momentum space [6].
One of the two nontrivial universality classes contains
systems with Fermi points; their excitations are chiral
fermions, whose energy vanishes at points in the mo-
mentum space. Another class represents systems with
a wider manifold of zeroes: their gapless fermionic ex-
citations are concentrated in the vicinity of the 2D sur-
face in momentum space, the Fermi surface. This class
contains Fermi liquids.

Here, we discuss the properties of the quantum vac-
uum in the presence of the event horizon. We assume
that in the absence of the horizon, the fermionic vac-
uum belongs either to the trivial class (such as the Stan-
dard Model below the electroweak transition, where all
fermions are massive) or to the class of Fermi points
(such as the Standard Model above the electroweak
transition, with its excitations being chiral massless
fermions).

In the presence of a horizon, the region behind the
horizon becomes the ergoregion: particles acquire neg-
ative energy there. In the true vacuum state, these



negative-energy levels must be occupied, which means
that the old vacuum must be reconstruced by filling
these levels. We do not study the process of filling,
which can be the smooth Hawking radiation process [7]
or some other more violent process; we discuss the
structure of the true vacuum state assuming that this
state can be reached without destroying the horizon.
In other words, we assume that the stable black hole
can exist as a final ground state of the gravitational col-
lapse. We find that behind the horizon, the fermionic
vacuum belongs to the class of the Fermi surface.

The main sources for the appearance of the Fermi
surface originate in the following properties of the event
horizon. First, the emergence of Planck physics in the
vicinity of (and behind) the horizon. The event horizon
serves as a magnifying glass through which the phe-
nomena at the Planck length scale could be visualized.
At some scales, the Lorentz invariance — a property of
the low-energy physics inevitably becomes invalid
and deviations from the linear (relativistic) spectrum
become important. This violation of the Lorentz in-
variance is now popular in the literature [1,9 13]. It
leads to either subluminal or superluminal propagation
at high energy, e.g.,

E*(p) = p*(1+£p°/p)).

where p, is the Planck momentum.
with the condensed matter analogy, we assume that
the high-energy (quasi)particles are superluminal, i.e.,
the sign is the plus. Because of the superluminal dis-
persion, there is a bottom in the Dirac sea, and the
process of filling the negative-energy levels is therefore
limited. When all of these levels are occupied, we come
to a global vacuum state (or the global thermodynam-
ical equilibrium with a positive heat capacity, if the
temperature is finite). Thus, the superluminal disper-

In accordance

sion of the particle energy gives rise to the energetic
stability of the vacuum in the presence of a black hole.

The second important consequence of the event
horizon, due to which the vacuum belongs to the class
of systems with the Fermi surface, is that the horizon
violates the time reversal symmetry of the system: the
incoming and outgoing particles have different trajecto-
ries. In condensed matter, the appearance of the Fermi
surface due to the violation of the time reversal sym-
metry is a typical phenomenon (see, e.g., [8] and also
Sec. 12.4 in Ref. [6]).

In Refs. [4, 14], a stable black hole is also consid-
ered that exhibits a finite positive heat capacity, an ar-
bitrary temperature, and no Hawking radiation. But it
is assumed there that the time reversal symmetry is not
broken in the final state (or is actually restored in the
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final state). The existence of such a stable black hole
with the unbroken time reversal symmetry is also sup-
ported by the condensed matter analogies [4, 15, 16],
in which stable infinite-redshift surfaces arise. An ex-
ample of the infinite-redshift surface with no time re-
versal symmetry breaking is also provided by the ex-
tremal black hole, whose condensed matter analogue
is discussed in Sec. 12.6 of review [6]. In all these ex-
amples, the Fermi surface does not appear. The black
hole ground states with the time reversal symmetry are
in some sense exceptional (in the same manner as the
extremal black hole), and we do not discuss them here.

2. STATIONARY METRIC WITH THE
EXPLICITLY VIOLATED TIME REVERSAL
SYMMETRY

The vacuum can be well-defined only if the met-
ric is stationary. In general relativity, the stationary
metric for the black hole is provided in the Painlevé
Gullstrand spacetime [17]. The line element of the
Painlevé Gullstrand metric is

ds* = —c*dt* + (dr — vdt)® =
= —(c* —v?)dt? — 2vdrdt + dr* , (1)
where
. [Th 2M
v(r) = irc,/T, == (2)

Here, M is the mass of the hole, rj is the radius of
the horizon, and G is the Newton gravitational con-
stant; the minus sign in Eq. (2) gives the metric for the
black hole, while the plus sign characterizes the white
hole. The time reversal operation t — —t transforms
the black hole into the white whole. The stationary
property of this metric and the fact that it describes
the spacetime in both the exterior and interior regions,
are very attractive features that were explored start-
ing from Ref. [18] (see [19 21]; an extension of the
Painlevé Gullstrand spacetime to the rotating black
hole can be found in Ref. [22]).

In the case of the black hole, the field v(r) has a
simple interpretation: it is the velocity of the observer
who freely falls along the radius towards the center of
the black hole with zero initial velocity at infinity. The
motion of the observer obeys the Newtonian laws all
the way through the horizon,

d?r _
dez

GM
2

(3)



and his velocity is therefore given by

[2G M
-

The time coordinate t is the local proper time for the
observer who drags the inertial coordinate frame with
him.

As was first noticed by Unruh [1], the effective met-
ric of type (1) is experienced by quasiparticles propa-
gating in moving fluids. The field v(r) is then the ve-
locity field of the liquid and ¢ is the «maximum attain-
able velocity» of quasiparticles in the low-energy limit,
for example the speed of sound in the case of phonons
(see also [23 26,6]). The horizon could be produced in
liquids when the flow velocity becomes greater than c.
The black hole and the white hole can be reproduced
by the liquid flowing radially inward and outward, re-
spectively. This is an explicit realization of the time re-
versal symmetry breaking by a flowing liquid: the time
reversal operation reverses the direction of the flow of
the «vacuumy,

(4)

Tv(r)

This Painlevée—Gullstrand spacetime, although not
static, is stationary. That is why the energy E of a
(quasi)particle in this spacetime is determined in both
the exterior and the interior regions. It can be obtained
as the solution of the equation

—v(r).

gu”pupl/ + m2 =0
with py = — E, which gives
E(p) (5)

where E(p) is the energy of the particle in the free-
falling frame,

E(p)+p-v(r),

E*(p) = p* +m? . (6)
For the «sonicy black hole, it is the energy of the quasi-
particle in the frame comoving with the superfluid vac-
uum.

We now consider a massless (quasi)particle moving
in the radial direction from the black hole horizon to
infinity, i.e., with a positive radial momentum p,. Be-
cause the metric is stationary, the energy of a particle
in the Painlevé—Gullstrand frame (or of a quasiparti-
cle in the laboratory frame) is conserved and we have
E = const. Its energy in the free-falling (superfluid
comoving) frame is then given by
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This energy, which is very big near the horizon, de-
creases as the (quasi)particle moves away from the hori-
zon. This is the gravitational red shift superimposed
on the Doppler effect [27], because the emitter is freely
falling with the velocity v = vs(r). The frequency of
the spectral line measured by the observer at infinity is

r

where w is the nominal frequency of this line. The
surface 7 = rp, is the infinite redshift surface, and the
energy in Eq. (7) diverges there. This means that if
we observe particles coming to us from a very close
vicinity of the horizon, these outgoing particles origi-
nally had a huge energy approaching the Planck energy
scale. The event horizon can therefore serve as a mag-
nifying glass that allows us to see what happens at the
Planck length scale. At some point, the low-energy rel-
ativistic approximation inevitably becomes invalid and
the Lorentz invariance is violated.

In quantum liquids, the nonlinear dispersion enters
the velocity-independent energy E(p) in the superfluid
comoving frame. Taking the analogy with quantum lig-
uids into account, we assume that in our vacuum, the
Planck physics also enters the energy in the free-falling
frame. The energy spectrum of particles is therefore
given by Eq. (5), where

2
1+ 2

5)

p

B2 (p) = m? + g2 ( 9)

As for the incoming massless particle, its radial mo-
mentum p, < 0, and its energy in the comoving frame
is therefore given by

E
1—wv(r)/c

B
S Lkmfr

It has no pathology at the horizon: the observer falling
freely across the horizon sees no inconveniences when
he crosses the horizon, and the Planck physics is there-
fore not evoked here.

E(p) = —cpr = (10)

The pathology reappears when one tries to con-
struct the thermal global equilibrium state (or the vac-
uum state) in the presence of a horizon. In the global
equilibrium, according to the Tolman law, the temper-
ature measured by an observer in the comoving frame
diverges at the horizon,

T(r)

_ TTolman TTolman
\/—gog(l‘) \/1—’02/02
At some point, this temperature again becomes so high

that the Planck physics becomes relevant. In the pres-
ence of a horizon, the global equilibrium is possible

(11)




only for the superluminal dispersion, i.e., for the plus
sign in Eq. (9). The reason is as follows. Behind the
horizon, at r < rp, the frame-dragging velocity exceeds
the speed of light. In the relativistic domain, this im-
plies that the radial coordinate r becomes time-like,
because a (quasi)particle can move along the r coordi-
nate in only one direction behind the horizon, towards
the singularity. However, with the plus sign for the en-
ergy spectrum in Eq. (9), the (quasi)particles can go
back and forth even behind the horizon. The space-
like nature of the r coordinate is therefore restored by
the superluminal dispersion and the global equilibrium
becomes possible.

Finally, the condensed matter analogue of the for-
mation of quantum field theory as an emergent phe-
nomenon at low energy suggests that our vacuum is
fermionic, while all the bosonic degrees of freedom can
be obtained as collective modes of the fermionic vac-
uum. It is the Pauli principle for fermions that al-
lows us to construct a stable vacuum in the presence
of a horizon. Thus, there are three main necessary
conditions for the existence of a stable vacuum with
the broken time reversal symmetry in the presence of
a black hole: the vacuum is fermionic, its fermionic ex-
citations have superluminal dispersion, and the black
hole is described by the Painlevé Gullstrand metric.
All the three conditions are motivated by the quantum
liquid similarities.

3. THE DIRAC EQUATION IN THE
PAINLEVE-GULLSTRAND METRIC

In Ref. [28], fermions were considered in the semi-
classical approximation. Here, we extend this analy-
sis to the exact quantum-mechanical one. In the pres-
ence of a nontrivial gravitational background, fermions
are described by the tetrad formalism. We here follow
Ref. [29]. The metric g,, can be written in terms of
the tetrad e}, as

uv = €},€Tab, (12)
where 7% = diag(—1,1,1,1). The Dirac equation in a
curved spacetime is
(i(y*E“D, —m)® =0, D, =0, + iwwwavb,
(13)
where the dual tetrad field £} obeys

Guv = €peyiian,  Elieq =08, EVE/"™ =g", (14)

eZ = gul/nabEP’;/7 evb = eyNab = Guv By . (15)

and the torsion field is

Wu;ab = Eclz,”bcvuei = Egvlt (QV{IEI?) =
== E(l;v#e,,b = Eau (8”61,(, - quevb) . (].6)

The vielbeins corresponding to the general «flow» met-
ric in Eq. (1) are

a __ sa ~a ~a __
euféu—l—ew €y =

'8¢ 65, (17)

The only nonzero correction to the tetrad field 4y, for
Minkowski spacetime is

eb =0 #0.

For the Painlevé Gullstrand metric of the black hole in
spherical coordinates, we have

ep = (1,0,0,0), e, = (v,1,0,0), (18)
2 _ 3 _ i
e, = (0,0,7,0), e, =(0,0,0,rsin6),
where v(r) = —r~'/?, assuming that ¢ = rj, = 1.

The violation of the Lorentz invariance at high en-
ergy can be introduced by adding a nonlinear y5-term
that leads to the superluminal dipersion. As a re-
sult, we obtain the Dirac equation in the Painlevé—
Gullstrand metric [22], which is now modified by a non-
Lorentzian term,

iV = —ica'0;V +myV + Hy¥ + H, ¥, (19)

Here, H, and H, are the respective Hamiltoinians com-
ing from the Planck physics and from the gravitational
field,

c . rn [ 3
Hy=——~:0? H,=ic\/]—(—+0,]. (20
p=dh Hy=io™ (F4a). (0

The v matrices that we use are given by

and

) ) . (22)

After the multiplication by rp,/he, we obtain a di-
mensionless form and write h = ¢ = r, = 1 and
po = pprn/hi> 1.

. 0
Y5 = 1017273 = ( ;
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4. FERMIONIC EIGENSTATES IN THE
PAINLEVE-GULLSTRAND BLACK HOLE

Because J; is a timelike Killing vector in the Pain-
levé—Gullstrand black hole, the energy E is a well-
defined quantity and the variables ¢ and r can be sep-

arated by writing

oo OF) ) imr (23)
x(r)
The r-equations are now given by
g 1,
Ep=0-px+mo—i—p°x+Hyo.
w (24)
Ex =0-p¢ —mx +73p—p2¢+ Hyx,
0
where p; = —i0;. Using the spherical symmetry, we

introduce spherical harmonics in the standard way.
These are eigenstates of the operators J and .J., where
J is the total angular momentum,

(

and L; is the orbital angular momentum operator in
R3. Because we are interested in the states with high
momenta J ~ pg > mr,/h, we can neglect the mass
term. We then obtain the ansatz

1
Ji:Li+Si:Li+§

0

Oi

i

: (25)

Gg.05 = B X
r
< ((fF)+f DA )= (1) Q1) (26)
XJ,Js =
1 -
= 5 (g (=T )+ (M) +g~ (1) Qsa) . (27)
where the spherical harmonics are given by
J+J.
27 Yir -1
0 = i
J—J3
T}/LJ3+1/2
(28)
J—Js+1
—1/ WYH-LJrl/z
Qg1 =

T+ J; + 1 '
WE+1,.]3+1/2

999

with [ = J—1/2. The radial functions satisfy the equa-

tions
_ + 1
E(f >— i8r<0 >+
gt 1 0
.l+1< 0 1) I+1
+1 + 3
r -1 0 Por
1 I+1)2 -1 0
+—<8§+(+2)>< >+
Po r 0 1
civir(o- V(7).
) " " 4’/“ g+ ’
g~ 1 0
‘l+1< 0 1) 1+1
+1 —
r -1 0 por?
1 I+1)2 1 0
+—<8§+#>< >+
Po r 0 -1

=
o

0, — +—

I

4r

+im< ) (30)

Taking the complex conjugation of (29), we obtain
Eq. (30) with the reversed sign of energy. This im-
plies that the matrices cannot be diagonalized simulta-
neously unless £ = 0, and therefore, either (f*,¢g%) or
(f~.g~) is nonzero for the eigenstate with E # 0.
Equations (29) and (30) are the starting point for
our analysis of the fermionic vacuum and excitations.

5. FERMIONS IN THE SEMICLASSICAL
APPROXIMATION

In the classical limit, with (f,g) o exp (i [ p,dr),
we obtain the energy spectrum

2 2 2\ 2
- D l 1 l
(B4 2s) =nr e () o

where we neglected small terms of the relative order
1/po. We are interested in the states with the lowest
energy, because they give the main contribution to ther-
modynamics. For a given [, the energy of the fermion
becomes zero at the following values of the radial mo-

mentum:
2(r,E=0,1)= L 21— )fl2:|:
prT7 - 7’_2Tp0 r TQ
1\/ pRI2
+ =/ oph(1l —r)2 - 2 (32
—\gpe - - B (s2)



Fig. 1. Fermi surface F(p) = 0 at two positions inside
the black hole: » = 2r, /3 and r =1, /3

This coincides with Eq. (13) in [28], where the semiclas-
sical approximation was used from the very beginning.

Within the completely classical analysis, with
p1 = l/r representing the transverse momentum of
the fermion, Eq. (31) at E = 0 gives the closed 2D
surface in the 3D momentum space. This surface, on
which the energy of particles is zero, represents the
Fermi surface; it exists only inside the horizon, i.e., at
r <rp (r <1). Figure 1 demonstrates the Fermi sur-
face E(p) = 0 at two values of the radius r behind the
horizon: r = 2r,/3 and r = r,/3. The area of the
Fermi surface increases with decreasing r.

In the true ground state, all the levels inside the
Fermi surface (i.e., those with E(p) < 0) must be oc-
cupied. Of course, this reconstruction of the vacuum
involving the Planck energy scale can have tremendous
consequences for the black hole itself. These cannot be
described by the phenomenological low-energy physics.
Nevertheless, we can claim that if the horizon survives
the vacuum reconstruction, the Fermi surface also sur-
vives because of its topological robustness. In this case,
the statistical physics of the black hole microstates is
entirely determined by the fermionic states in the vicin-
ity of the Fermi surface. In particular, the entropy and
the heat capacity of the black hole are linear in the
temperature T,

™
S=C= ?N(O)T, (33)
where N(0) is the density of states at £ = 0. From
the general dimensionality arguments together with the
fact that the density of states must be proportional to
the volume of the Fermi liquid, we obtain
P

N(0) = NpEE (34)

where Ny is the number of fermionic species and 7 is
a dimensionless constant of order of unity. In our over-
simplified model, v = 4/357 [28].

In the interior region, the equation of state is

p=poxT?

Incidentally, this coincides with the equation of state
of the perfect fluid inside the horizon required to ob-
tain the Bekenstein—-Hawking entropy (see Refs. [30, 31]
and [14]). In the Sakharov induced gravity [32], the
Planck momentum and the gravitational constant are
related by Npp? ~ he® /G. This actually implies that
the microscopic parameters of the system, the fermion
number Np and the Planck momentum p,, are com-
bined to form the phenomenological parameter of the
effective theory, the gravitational constant G. If we as-
sume that only the thermal fermions are gravitating,
we obtain

M~ /de ~ T2MB3G2.

This gives estimates for the temperature and entropy
of the black hole,

T~1/GM, S~GM?

which are in correspondence with the Hawking
Bekenstein entropy and the Hawking temperature.
Only the phenomenological parameters GG and ¢ are in-
volved here, while the microscopic parameters Nr and
pp drop out. This is in agreement with the observation
made by Jacobson [33] that the black hole entropy
and the gravitational constant are renormalized such
that the relation between them is preserved. All this
means that statistical properties of the black hole can
be produced by the Fermi liquid in the interior of the
black hole.

6. EXACT ENERGY LEVELS

Another problem that can be investigated using our
scheme is that of the fermion is zero modes: are there
fermionic modes that have exactly zero energy in the
exact quantum mechanical problem? If yes, this would
justify the conjectures that the black hole has a nonzero
entropy even at T = 0, and also that the area of the
black hole is a quantized quantity [34-36]. For this
reason, we now proceed to solving eigenvalue equa-
tions (29) and (30).

It is impossible to solve these equations analytically,
but one can choose the region of parameters where they
can be solved using the perturbation theory expansion
in the small parameter 1/py. To find this region, we

1000



0 0.2 0.4 0.6 0.8
r/rh

Fig.2. Closed trajectories of the radial motion inside
the black hole at zero energy E = 0 for different values
of the angular momentum [

consider semiclassical trajectories of the radial motion
p,(r) at E = 0 for different [, Eq. (32). These trajec-
tories are shown in Fig. 2 (we used py = 10000). If
is small compared to pq, these trajectories are highly
asymmetric: the incoming and outgoing particles expe-
rience essentially different motions. The conventional
relativistic particles with a small momentum compared
to the Planck momentum p,, can move only towards the
singularity. However, when they acquire a large mo-
mentum, the nonlinear dispersion allows them to move
away from the singularity. As a result, the trajectories
of particles become closed. This asymmetry reflects the
violation of the time reversal symmetry by the horizon.
However, as [ increases, the trajectories become
more and more symmetric. Near the maximum value

1) = 37%/2p,, (35)

they become perfectly elliptic and increasingly more
concentrated in the vicinity of the center point

rld = _, (36)

2
Pl = i\/;po- (37)

This implies that in vicinity of #(©) and p(®), the Hamil-

tonian describing the radial motion becomes that of os-

cillators. We can therefore expand the equations in the

vicinity of p(®) and r(¢) using the small parameter 1/po,
r=r 4+,

38
pr:p(c)fiam . ( )

It can be seen that the regions where x and d, are
concentrated

1
rox — < T(C)-, 8’1‘ X \/p(] < ‘p(C)‘v (39)
VPo

Po

become really small compared to r() and p(©) as pg in-
creases. As a result, after lengthy but straightforward
expansion of Eq. (29) near the point with p(®) > 0, we
obtain (keeping the terms of the order of unity) the
effective oscillator Hamiltonian

3 13po 5 22 ,
H, ——3\/j6l+ T+ —p +

+ RN (zp + pz) + ¥7 (40)

2V/3

where
61 =1 — (1 +1). (41)

Diagonalization gives the energy spectrum

~ 3 3 3V3
B = —3\/;(51+3nr—|— S+ Tf (42)

where n,, = 0,1, ... is the radial quantum number. Ac-
cordingly, the expansion near the point with p(®) < 0
and the same procedure for Eq. (30) give the other

three sets of the energy levels,

_ 3 3 3V3
B, = — — — — - 4
2 3\£ 5l — 3n, 5+ (43)

i 3 3 33 .
By = 3\/;51 +3n,+ 5 Tf = B, (44

and

. 3 3 3/3 -

Finally, in dimensionful units, we have the discrete lev-
els of fermions in the vicinity of the Fermi surface,

E(Jn,) = 5 x
Th

1 ppra 3 1 3 3V3
R (VA A= I RSy
X <\/§ o 3 5 <J+2> 3n 5+ ) (46)

where all the four signs must be taken into account.
This equation is valid for J smaller than but close to
the maximum value

J©) = pyr,/3V3h
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at which zero-energy states can still exist.

Equation (46) allows us to conclude that the true
fermion zero modes exist in the presence of a black
hole. For general values of p,rj,, and hence, for the
general values of the black hole area A = 47r}, there
are no states with exactly zero energy. A zero-energy
eigenstate can be found for some special values of A.
However, because of the incommensurability between
the radial and orbital quantum numbers, the degen-
eracy of the E = 0 levels is small, and the fermion
zero modes cannot therefore produce the entropy at
T = 0 that is proportional to the area of the horizon.
Accordingly, there are no microscopic reasons for the
quantization of the area of the horizon.

There are no topological arguments ensuring the
On the
other hand, the momentum-space topology prescribes

existence of the exact fermion zero modes.

the existence of zero-energy fermion modes at the semi-
clasical level. These modes form a surface in the mo-
mentum space — the Fermi surface — in Fig. 1. The
existence of the Fermi surface is a robust property of
the fermionic vacuum; the Fermi surface survives when
the back reaction is introduced (of course, if the horizon
survives). It is the Fermi liquid whose thermal states
give rise to the entropy proportional to the area, as was
discussed in the previous section.

7. CONCLUSIONS

In deriving the fermionic microstates responsible for
the statistical mechanics of the black hole, we used
an analogy between quantum liquids and the quantum
vacuum, the ether. We know that there are two pre-
ferred reference frames in superfluids. One of them is
the «absolute» spacetime (z,t) of the laboratory frame,
which can be Galilean as well as Minkowskian with ¢
being the real speed of light. In the effective gravity
experienced by the low-energy excitations in quantum
liquids, the effective «acoustic» metric gz'f,”“s” appears
as a function of this «absolutey spacetime (z,¢). The
other preferred reference frame is the local frame, where
the metric is Minkowskian in the acoustic sense, i.e.,
with ¢ being the maximum attainable speed of low-
energy quasiparticles. This frame is comoving with the
superfluid condensate. In this frame, the energy spec-
trum does not depend on the velocity v of the conden-
sate and has the form given in Eq. (9). It is therefore
in this frame that the Planck energy physics is properly
introduced: if the energy becomes big in the superfluid
comoving frame, the acoustic Lorentz symmetry is vi-
olated.

As for the quantum vacuum, the attainable ener-
gies are still so low that we cannot select the preferred
reference frame. In particular, we cannot say in which
reference frame the Planck energy physics must be in-
troduced, and whether there is an absolute spacetime.
The magnifying glass of the event horizon can serve as
a possible source of spotting these reference frames.

In our low-energy corner, the Einstein action is co-
variant: it does not depend on the choice of the refer-
ence frame. That is why the Einstein equations can be
solved in any coordinate system. However, in the pres-
ence of a horizon or ergoregion, some of the solutions
are not, defined in the entire spacetime of the quantum
In these cases, the discrimination between
different solutions arises and one must choose between

vacuum.

them. In quantum liquids, the choice is natural because
the absolute coordinates are used from the very begin-
ning. But in general relativity, the ambiguity in the
presence of a horizon imposes the problem of properly
choosing the solution. This problem cannot be solved
within the effective theory, while the fundamental «mi-
croscopic» background is still not known, and one can
only guess the proper solution of Einstein equations
using which the vacuum state can be constructed.

It is clear that the Schwarzschild solution is not the
proper choice, in particular because the entire space-
time is not covered by the Schwarzschild coordinates.
According to the quantum liquid analogy, the Painlevé—
Gullstrand metric with the inward frame dragging can
be a reasonable choice. Its analogue can be really re-
produced (at least in principle) in quantum liquids.
The analogy also suggests that the Painlevé—Gullstrand
spacetime can be considered as the absolute one in
which the true vacuum must be determined. On the
other hand, the local frame of the free-falling observer
can be considered as an analogue of the superfluid co-
moving frame in which the Planck energy physics must
be introduced. We again warn that this choice cannot
be justified from the standpoint of the effective theory
alone.

If the Planck physics is in addition superluminal,
as is also suggested by the quantum liquid analogy,
the stable quantum vacuum can even be constructed
in the presence of a horizon. We argue that the main
property of such a quantum vacuum, distinguishing it
from the original vacuum of the Standard Model, is the
existence of the Fermi surface inside the horizon. The
statistical mechanics of the Fermi liquid formed inside
the horizon is responsible for the thermodynamics of
the black hole.
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