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FERMIONIC MICROSTATES WITHINTHE PAINLEVÉ�GULLSTRAND BLACK HOLEP. Huhtala a, G. E. Volovik *a;ba Low Temperature Laboratory, Helsinki University of TehnologyFIN-02015 HUT, Finlandb Landau Institute for Theoretial Physis117940, Mosow, RussiaSubmitted 10 Deember 2001We onsider the quantum vauum of a fermioni �eld in the presene of a blak-hole bakground as a pos-sible andidate for the stabilized blak hole. The stable vauum state (as well as thermal equilibrium statesat an arbitrary temperature) an exist if we use the Painlevé�Gullstrand desription of the blak hole and thesuperluminal dispersion of the partile spetrum at high energy, whih is introdued in the free-falling frame.This hoie is inspired by the analogy between the quantum vauum and the ground state of quantum liquid,in whih the event horizon for the low-energy fermioni quasipartiles an also arise. The quantum vauumis haraterized by the Fermi surfae that appears behind the event horizon. We do not onsider the bakreation, and therefore, there is no guarantee that the stable blak hole exists. But if it does exist, the Fermisurfae behind the horizon would be the neessary attribute of its vauum state. We also onsider the exatdisrete spetrum of fermions inside the horizon, whih allows us to disuss the problem of fermion zero modes.PACS: 04.70.-s, 05.30.Fk1. INTRODUCTIONIn 1981, Unruh proposed to study the blak holephysis using its soni analogue [1℄. Originally sug-gested for lassial liquids, this was later extended toquantum systems suh as super�uids and Bose onden-sates [2�4℄. The main advantage of the quantum liq-uids and gases is that in many respets, they are simi-lar to the quantum vauum of fermioni and bosoni�elds. This analogy forms a view on the quantumvauum as a speial type of ondensed matter � the�ether� � where the physial laws that we have atpresent an arise emergently as the energy or temper-ature of the �ether� dereases [5℄. A partiular se-nario of the emergent formation of the e�etive gravitytogether with gauge �elds and hiral fermions an befound in the reent review paper [6℄.Aording to the topology in the momentum spae,there are three types (universality lasses) of thefermioni vaua. One of them has the trivial topol-ogy and its fermioni exitations are therefore fully*E-mail: volovik�boojum.hut.�

gapped (massive fermions). The other two have a non-trivial momentum-spae topology haraterized by er-tain topologial invariants in the momentum spae [6℄.One of the two nontrivial universality lasses ontainssystems with Fermi points; their exitations are hiralfermions, whose energy vanishes at points in the mo-mentum spae. Another lass represents systems witha wider manifold of zeroes: their gapless fermioni ex-itations are onentrated in the viinity of the 2D sur-fae in momentum spae, the Fermi surfae. This lassontains Fermi liquids.Here, we disuss the properties of the quantum va-uum in the presene of the event horizon. We assumethat in the absene of the horizon, the fermioni va-uum belongs either to the trivial lass (suh as the Stan-dard Model below the eletroweak transition, where allfermions are massive) or to the lass of Fermi points(suh as the Standard Model above the eletroweaktransition, with its exitations being hiral masslessfermions).In the presene of a horizon, the region behind thehorizon beomes the ergoregion: partiles aquire neg-ative energy there. In the true vauum state, these995



P. Huhtala, G. E. Volovik ÆÝÒÔ, òîì 121, âûï. 5, 2002negative-energy levels must be oupied, whih meansthat the old vauum must be reonstrued by �llingthese levels. We do not study the proess of �lling,whih an be the smooth Hawking radiation proess [7℄or some other more violent proess; we disuss thestruture of the true vauum state assuming that thisstate an be reahed without destroying the horizon.In other words, we assume that the stable blak holean exist as a �nal ground state of the gravitational ol-lapse. We �nd that behind the horizon, the fermionivauum belongs to the lass of the Fermi surfae.The main soures for the appearane of the Fermisurfae originate in the following properties of the eventhorizon. First, the emergene of Plank physis in theviinity of (and behind) the horizon. The event horizonserves as a magnifying glass through whih the phe-nomena at the Plank length sale ould be visualized.At some sales, the Lorentz invariane � a property ofthe low-energy physis � inevitably beomes invalidand deviations from the linear (relativisti) spetrumbeome important. This violation of the Lorentz in-variane is now popular in the literature [1; 9�13℄. Itleads to either subluminal or superluminal propagationat high energy, e.g.,E2(p) = 2p2(1� p2=p2p);where pp is the Plank momentum. In aordanewith the ondensed matter analogy, we assume thatthe high-energy (quasi)partiles are superluminal, i.e.,the sign is the plus. Beause of the superluminal dis-persion, there is a bottom in the Dira sea, and theproess of �lling the negative-energy levels is thereforelimited. When all of these levels are oupied, we ometo a global vauum state (or the global thermodynam-ial equilibrium with a positive heat apaity, if thetemperature is �nite). Thus, the superluminal disper-sion of the partile energy gives rise to the energetistability of the vauum in the presene of a blak hole.The seond important onsequene of the eventhorizon, due to whih the vauum belongs to the lassof systems with the Fermi surfae, is that the horizonviolates the time reversal symmetry of the system: theinoming and outgoing partiles have di�erent trajeto-ries. In ondensed matter, the appearane of the Fermisurfae due to the violation of the time reversal sym-metry is a typial phenomenon (see, e.g., [8℄ and alsoSe. 12.4 in Ref. [6℄).In Refs. [4, 14℄, a stable blak hole is also onsid-ered that exhibits a �nite positive heat apaity, an ar-bitrary temperature, and no Hawking radiation. But itis assumed there that the time reversal symmetry is notbroken in the �nal state (or is atually restored in the

�nal state). The existene of suh a stable blak holewith the unbroken time reversal symmetry is also sup-ported by the ondensed matter analogies [4, 15, 16℄,in whih stable in�nite-redshift surfaes arise. An ex-ample of the in�nite-redshift surfae with no time re-versal symmetry breaking is also provided by the ex-tremal blak hole, whose ondensed matter analogueis disussed in Se. 12.6 of review [6℄. In all these ex-amples, the Fermi surfae does not appear. The blakhole ground states with the time reversal symmetry arein some sense exeptional (in the same manner as theextremal blak hole), and we do not disuss them here.2. STATIONARY METRIC WITH THEEXPLICITLY VIOLATED TIME REVERSALSYMMETRYThe vauum an be well-de�ned only if the met-ri is stationary. In general relativity, the stationarymetri for the blak hole is provided in the Painlevé�Gullstrand spaetime [17℄. The line element of thePainlevé�Gullstrand metri isds2 = �2dt2 + (dr� vdt)2 == �(2 � v2)dt2 � 2vdrdt+ dr2 ; (1)where v(r) = �r̂rrhr ; rh = 2MG2 : (2)Here, M is the mass of the hole, rh is the radius ofthe horizon, and G is the Newton gravitational on-stant; the minus sign in Eq. (2) gives the metri for theblak hole, while the plus sign haraterizes the whitehole. The time reversal operation t ! �t transformsthe blak hole into the white whole. The stationaryproperty of this metri and the fat that it desribesthe spaetime in both the exterior and interior regions,are very attrative features that were explored start-ing from Ref. [18℄ (see [19�21℄; an extension of thePainlevé�Gullstrand spaetime to the rotating blakhole an be found in Ref. [22℄).In the ase of the blak hole, the �eld v(r) has asimple interpretation: it is the veloity of the observerwho freely falls along the radius towards the enter ofthe blak hole with zero initial veloity at in�nity. Themotion of the observer obeys the Newtonian laws allthe way through the horizon,d2rdt2 = �GMr2 ; (3)996



ÆÝÒÔ, òîì 121, âûï. 5, 2002 Fermioni mirostates within the Painlevé�Gullstrand blak holeand his veloity is therefore given byv(r) � drdt = �r̂r2GMr : (4)The time oordinate t is the loal proper time for theobserver who drags the inertial oordinate frame withhim.As was �rst notied by Unruh [1℄, the e�etive met-ri of type (1) is experiened by quasipartiles propa-gating in moving �uids. The �eld v(r) is then the ve-loity �eld of the liquid and  is the �maximum attain-able veloity� of quasipartiles in the low-energy limit,for example the speed of sound in the ase of phonons(see also [23�26; 6℄). The horizon ould be produed inliquids when the �ow veloity beomes greater than .The blak hole and the white hole an be reproduedby the liquid �owing radially inward and outward, re-spetively. This is an expliit realization of the time re-versal symmetry breaking by a �owing liquid: the timereversal operation reverses the diretion of the �ow ofthe �vauum�, T v(r) = �v(r):This Painlevé�Gullstrand spaetime, although notstati, is stationary. That is why the energy ~E of a(quasi)partile in this spaetime is determined in boththe exterior and the interior regions. It an be obtainedas the solution of the equationg��p�p� +m2 = 0with p0 = � ~E, whih gives~E(p) = E(p) + p � v(r) ; (5)where E(p) is the energy of the partile in the free-falling frame, E2(p) = p22 +m2 : (6)For the �soni� blak hole, it is the energy of the quasi-partile in the frame omoving with the super�uid va-uum.We now onsider a massless (quasi)partile movingin the radial diretion from the blak hole horizon toin�nity, i.e., with a positive radial momentum pr. Be-ause the metri is stationary, the energy of a partilein the Painlevé�Gullstrand frame (or of a quasiparti-le in the laboratory frame) is onserved and we have~E = onst. Its energy in the free-falling (super�uidomoving) frame is then given byE(p) = pr = ~E1 + v(r)= = ~E1�prh=r : (7)

This energy, whih is very big near the horizon, de-reases as the (quasi)partile moves away from the hori-zon. This is the gravitational red shift superimposedon the Doppler e�et [27℄, beause the emitter is freelyfalling with the veloity v = vs(r). The frequeny ofthe spetral line measured by the observer at in�nity is~! = !p�g00 p1� v2=21� v= = !�1�rrhr � ; (8)where ! is the nominal frequeny of this line. Thesurfae r = rh is the in�nite redshift surfae, and theenergy in Eq. (7) diverges there. This means that ifwe observe partiles oming to us from a very loseviinity of the horizon, these outgoing partiles origi-nally had a huge energy approahing the Plank energysale. The event horizon an therefore serve as a mag-nifying glass that allows us to see what happens at thePlank length sale. At some point, the low-energy rel-ativisti approximation inevitably beomes invalid andthe Lorentz invariane is violated.In quantum liquids, the nonlinear dispersion entersthe veloity-independent energy E(p) in the super�uidomoving frame. Taking the analogy with quantum liq-uids into aount, we assume that in our vauum, thePlank physis also enters the energy in the free-fallingframe. The energy spetrum of partiles is thereforegiven by Eq. (5), whereE2(p) = m2 + p22�1� p2p2p� : (9)As for the inoming massless partile, its radial mo-mentum pr < 0, and its energy in the omoving frameis therefore given byE(p) = �pr = ~E1� v(r)= = ~E1 +prh=r : (10)It has no pathology at the horizon: the observer fallingfreely aross the horizon sees no inonvenienes whenhe rosses the horizon, and the Plank physis is there-fore not evoked here.The pathology reappears when one tries to on-strut the thermal global equilibrium state (or the va-uum state) in the presene of a horizon. In the globalequilibrium, aording to the Tolman law, the temper-ature measured by an observer in the omoving framediverges at the horizon,T (r) = TTolmanp�g00(r) = TTolmanp1� v2=2 : (11)At some point, this temperature again beomes so highthat the Plank physis beomes relevant. In the pres-ene of a horizon, the global equilibrium is possible997



P. Huhtala, G. E. Volovik ÆÝÒÔ, òîì 121, âûï. 5, 2002only for the superluminal dispersion, i.e., for the plussign in Eq. (9). The reason is as follows. Behind thehorizon, at r < rh, the frame-dragging veloity exeedsthe speed of light. In the relativisti domain, this im-plies that the radial oordinate r beomes time-like,beause a (quasi)partile an move along the r oordi-nate in only one diretion behind the horizon, towardsthe singularity. However, with the plus sign for the en-ergy spetrum in Eq. (9), the (quasi)partiles an gobak and forth even behind the horizon. The spae-like nature of the r oordinate is therefore restored bythe superluminal dispersion and the global equilibriumbeomes possible.Finally, the ondensed matter analogue of the for-mation of quantum �eld theory as an emergent phe-nomenon at low energy suggests that our vauum isfermioni, while all the bosoni degrees of freedom anbe obtained as olletive modes of the fermioni va-uum. It is the Pauli priniple for fermions that al-lows us to onstrut a stable vauum in the preseneof a horizon. Thus, there are three main neessaryonditions for the existene of a stable vauum withthe broken time reversal symmetry in the presene ofa blak hole: the vauum is fermioni, its fermioni ex-itations have superluminal dispersion, and the blakhole is desribed by the Painlevé�Gullstrand metri.All the three onditions are motivated by the quantumliquid similarities.3. THE DIRAC EQUATION IN THEPAINLEVÉ�GULLSTRAND METRICIn Ref. [28℄, fermions were onsidered in the semi-lassial approximation. Here, we extend this analy-sis to the exat quantum-mehanial one. In the pres-ene of a nontrivial gravitational bakground, fermionsare desribed by the tetrad formalism. We here followRef. [29℄. The metri g�� an be written in terms ofthe tetrad ea� as g�� = ea�eb��ab; (12)where �ab = diag(�1; 1; 1; 1). The Dira equation in aurved spaetime is(iaE�aD� �m)	 = 0; D� = �� + 14!�;abab;(13)where the dual tetrad �eld E�b obeysg�� = ea�eb��ab; E�a ea� = Æ�� ; E�aE�b �ab = g�� ; (14)ea� = g���abE�b ; e�b = ea��ab = g��E�b ; (15)

and the torsion �eld is!�;ab = E�a�br�e� = E�ar� (g��E�b ) == E�ar�e�b = E�a ���e�b � ���eb� : (16)The vielbeins orresponding to the general ��ow� met-ri in Eq. (1) areea� = Æa� + ~ea�; ~ea� = viÆai Æ0�: (17)The only nonzero orretion to the tetrad �eld Æa� forMinkowski spaetime is~ei0 = vi 6= 0:For the Painlevé�Gullstrand metri of the blak hole inspherial oordinates, we havee0� = (1; 0; 0; 0); e1� = (v; 1; 0; 0);e2� = (0; 0; r; 0); e3� = (0; 0; 0; r sin �); (18)where v(r) = �r�1=2, assuming that  = rh = 1.The violation of the Lorentz invariane at high en-ergy an be introdued by adding a nonlinear 5-termthat leads to the superluminal dipersion. As a re-sult, we obtain the Dira equation in the Painlevé�Gullstrand metri [22℄, whih is now modi�ed by a non-Lorentzian term,i�t	 = �i�i�i	+m0	+Hp	+Hg	: (19)Here, Hp andHg are the respetive Hamiltoinians om-ing from the Plank physis and from the gravitational�eld,Hp = � pp 5�2i ; Hg = irrhr � 34r + �r� : (20)The  matries that we use are given by�i =  0 �i�i 0 ! ; 0 =  1 00 �1 ! (21)and 5 = i0123 =  0 �ii 0 ! : (22)After the multipliation by rh=~, we obtain a di-mensionless form and write ~ =  = rh = 1 andp0 = pprh=~� 1.998



ÆÝÒÔ, òîì 121, âûï. 5, 2002 Fermioni mirostates within the Painlevé�Gullstrand blak hole4. FERMIONIC EIGENSTATES IN THEPAINLEVÉ�GULLSTRAND BLACK HOLEBeause �t is a timelike Killing vetor in the Pain-levé�Gullstrand blak hole, the energy ~E is a well-de�ned quantity and the variables t and r an be sep-arated by writing	 =  �(r)�(r) ! e�i ~Et: (23)The r-equations are now given by~E� = � � p�+m�� i 1p0 p2�+Hg�;~E� = � � p��m�+ i 1p0 p2�+Hg�; (24)where pi = �i�i. Using the spherial symmetry, weintrodue spherial harmonis in the standard way.These are eigenstates of the operators J2 and Jz, whereJ is the total angular momentum,Ji = Li + Si = Li + 12  �i 00 �i ! ; (25)and Li is the orbital angular momentum operator inR3. Beause we are interested in the states with highmomenta J � p0 � mrh=~, we an neglet the massterm. We then obtain the ansatz�J;J3 = 12r �� �(f+(r)+f�(r))
l+(f+(r)�f�(r))
l+1� ; (26)�J;J3 == 12r �(g+(r)�f+(r))
l+(g+(r)+g�(r))
l+1� ; (27)where the spherial harmonis are given by
l = 0BBB� rJ + Jz2J Yl;Jz�1=2rJ � J32J Yl;J3+1=2 1CCCA ;

l+1 = 0BBB� �rJ � J3 + 12J + 2 Yl+1;J3�1=2rJ + J3 + 12J + 2 Yl+1;J3+1=2 1CCCA ; (28)

with l = J�1=2. The radial funtions satisfy the equa-tions~E f+g+ ! = "i�r  0 11 0 !++ i l+ 1r  0 1�1 0 !+ l + 1p0r2 ++ 1p0 ���2r + (l + 1)2r2 � �1 00 1 !++ ip1=r��r � 14r�# f+g+ ! ; (29)~E f�g� ! = "i�r  0 11 0 !++ i l+ 1r  0 1�1 0 !� l + 1p0r2 ++ 1p0 ���2r + (l + 1)2r2 � 1 00 �1 !++ ip1=r��r � 14r�# f�g� ! : (30)Taking the omplex onjugation of (29), we obtainEq. (30) with the reversed sign of energy. This im-plies that the matries annot be diagonalized simulta-neously unless ~E = 0, and therefore, either (f+; g+) or(f�; g�) is nonzero for the eigenstate with ~E 6= 0.Equations (29) and (30) are the starting point forour analysis of the fermioni vauum and exitations.5. FERMIONS IN THE SEMICLASSICALAPPROXIMATIONIn the lassial limit, with (f; g) / exp (i R prdr),we obtain the energy spetrum� ~E + prpr�2 = p2r + l2r2 + 1p20 �p2r + l2r2�2 ; (31)where we negleted small terms of the relative order1=p0. We are interested in the states with the lowestenergy, beause they give the main ontribution to ther-modynamis. For a given l, the energy of the fermionbeomes zero at the following values of the radial mo-mentum:p2r(r; ~E = 0; l) = 12r p20(1� r)� l2r2 �� 1rr14p40(1� r)2 � p20l2r : (32)999
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Fig. 1. Fermi surfae ~E(p) = 0 at two positions insidethe blak hole: r = 2rh=3 and r = rh=3This oinides with Eq. (13) in [28℄, where the semilas-sial approximation was used from the very beginning.Within the ompletely lassial analysis, withp? = l=r representing the transverse momentum ofthe fermion, Eq. (31) at ~E = 0 gives the losed 2Dsurfae in the 3D momentum spae. This surfae, onwhih the energy of partiles is zero, represents theFermi surfae; it exists only inside the horizon, i.e., atr < rh (r < 1). Figure 1 demonstrates the Fermi sur-fae ~E(p) = 0 at two values of the radius r behind thehorizon: r = 2rh=3 and r = rh=3. The area of theFermi surfae inreases with dereasing r.In the true ground state, all the levels inside theFermi surfae (i.e., those with ~E(p) < 0) must be o-upied. Of ourse, this reonstrution of the vauuminvolving the Plank energy sale an have tremendousonsequenes for the blak hole itself. These annot bedesribed by the phenomenologial low-energy physis.Nevertheless, we an laim that if the horizon survivesthe vauum reonstrution, the Fermi surfae also sur-vives beause of its topologial robustness. In this ase,the statistial physis of the blak hole mirostates isentirely determined by the fermioni states in the viin-ity of the Fermi surfae. In partiular, the entropy andthe heat apaity of the blak hole are linear in thetemperature T , S = C = �23 N(0)T; (33)where N(0) is the density of states at ~E = 0. Fromthe general dimensionality arguments together with thefat that the density of states must be proportional tothe volume of the Fermi liquid, we obtainN(0) = NF p2pr3h~3 ; (34)

where NF is the number of fermioni speies and  isa dimensionless onstant of order of unity. In our over-simpli�ed model,  = 4=35� [28℄.In the interior region, the equation of state isp = � / T 2:Inidentally, this oinides with the equation of stateof the perfet �uid inside the horizon required to ob-tain the Bekenstein�Hawking entropy (see Refs. [30, 31℄and [14℄). In the Sakharov indued gravity [32℄, thePlank momentum and the gravitational onstant arerelated by NF p2p � ~3=G. This atually implies thatthe mirosopi parameters of the system, the fermionnumber NF and the Plank momentum pp, are om-bined to form the phenomenologial parameter of thee�etive theory, the gravitational onstant G. If we as-sume that only the thermal fermions are gravitating,we obtain M � Z dV � � T 2M3G2:This gives estimates for the temperature and entropyof the blak hole,T � 1=GM; S � GM2;whih are in orrespondene with the Hawking�Bekenstein entropy and the Hawking temperature.Only the phenomenologial parameters G and  are in-volved here, while the mirosopi parameters NF andpp drop out. This is in agreement with the observationmade by Jaobson [33℄ that the blak hole entropyand the gravitational onstant are renormalized suhthat the relation between them is preserved. All thismeans that statistial properties of the blak hole anbe produed by the Fermi liquid in the interior of theblak hole.6. EXACT ENERGY LEVELSAnother problem that an be investigated using oursheme is that of the fermion is zero modes: are therefermioni modes that have exatly zero energy in theexat quantum mehanial problem? If yes, this wouldjustify the onjetures that the blak hole has a nonzeroentropy even at T = 0, and also that the area of theblak hole is a quantized quantity [34�36℄. For thisreason, we now proeed to solving eigenvalue equa-tions (29) and (30).It is impossible to solve these equations analytially,but one an hoose the region of parameters where theyan be solved using the perturbation theory expansionin the small parameter 1=p0. To �nd this region, we1000
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r/rhFig. 2. Closed trajetories of the radial motion insidethe blak hole at zero energy ~E = 0 for di�erent valuesof the angular momentum lonsider semilassial trajetories of the radial motionpr(r) at ~E = 0 for di�erent l, Eq. (32). These traje-tories are shown in Fig. 2 (we used p0 = 10000). If lis small ompared to p0, these trajetories are highlyasymmetri: the inoming and outgoing partiles expe-riene essentially di�erent motions. The onventionalrelativisti partiles with a small momentum omparedto the Plank momentum pp an move only towards thesingularity. However, when they aquire a large mo-mentum, the nonlinear dispersion allows them to moveaway from the singularity. As a result, the trajetoriesof partiles beome losed. This asymmetry re�ets theviolation of the time reversal symmetry by the horizon.However, as l inreases, the trajetories beomemore and more symmetri. Near the maximum valuel() = 3�3=2p0; (35)they beome perfetly ellipti and inreasingly moreonentrated in the viinity of the enter pointr() = 13 ; (36)p() = �r23p0: (37)This implies that in viinity of r() and p(), the Hamil-tonian desribing the radial motion beomes that of os-illators. We an therefore expand the equations in theviinity of p() and r() using the small parameter 1=p0,r = r() + x;pr = p() � i�x : (38)

It an be seen that the regions where x and �x areonentratedx / 1pp0 � r(); �x / pp0 � jp()j; (39)beome really small ompared to r() and p() as p0 in-reases. As a result, after lengthy but straightforwardexpansion of Eq. (29) near the point with p() > 0, weobtain (keeping the terms of the order of unity) thee�etive osillator HamiltonianHeff = �3r32Æl + 13p02p2x2 + 2p23p0 p2 ++ 52p3 (xp+ px) + 3p34 ; (40)where Æl � l() � (l + 1): (41)Diagonalization gives the energy spetrum~E1 = �3r32Æl + 3nr + 32 + 3p34 ; (42)where nr = 0; 1; : : : is the radial quantum number. A-ordingly, the expansion near the point with p() < 0and the same proedure for Eq. (30) give the otherthree sets of the energy levels,~E2 = 3r32Æl� 3nr � 32 + 3p34 ; (43)~E3 = �3r32Æl + 3nr + 32 � 3p34 = � ~E2 (44)and ~E4 = 3r32Æl � 3nr � 32 � 3p34 = � ~E1: (45)Finally, in dimensionful units, we have the disrete lev-els of fermions in the viinity of the Fermi surfae,~E(J; nr) = �~rh �� 1p2 pprh~ �3r32 �J+12��3nr�32�3p34 ! ; (46)where all the four signs must be taken into aount.This equation is valid for J smaller than but lose tothe maximum valueJ () = pprh=3p3~1001



P. Huhtala, G. E. Volovik ÆÝÒÔ, òîì 121, âûï. 5, 2002at whih zero-energy states an still exist.Equation (46) allows us to onlude that the truefermion zero modes exist in the presene of a blakhole. For general values of pprh, and hene, for thegeneral values of the blak hole area A = 4�r2h, thereare no states with exatly zero energy. A zero-energyeigenstate an be found for some speial values of A.However, beause of the inommensurability betweenthe radial and orbital quantum numbers, the degen-eray of the ~E = 0 levels is small, and the fermionzero modes annot therefore produe the entropy atT = 0 that is proportional to the area of the horizon.Aordingly, there are no mirosopi reasons for thequantization of the area of the horizon.There are no topologial arguments ensuring theexistene of the exat fermion zero modes. On theother hand, the momentum-spae topology presribesthe existene of zero-energy fermion modes at the semi-lasial level. These modes form a surfae in the mo-mentum spae � the Fermi surfae � in Fig. 1. Theexistene of the Fermi surfae is a robust property ofthe fermioni vauum; the Fermi surfae survives whenthe bak reation is introdued (of ourse, if the horizonsurvives). It is the Fermi liquid whose thermal statesgive rise to the entropy proportional to the area, as wasdisussed in the previous setion.7. CONCLUSIONSIn deriving the fermioni mirostates responsible forthe statistial mehanis of the blak hole, we usedan analogy between quantum liquids and the quantumvauum, the ether. We know that there are two pre-ferred referene frames in super�uids. One of them isthe �absolute� spaetime (x; t) of the laboratory frame,whih an be Galilean as well as Minkowskian with being the real speed of light. In the e�etive gravityexperiened by the low-energy exitations in quantumliquids, the e�etive �aousti� metri gaoust�� appearsas a funtion of this �absolute� spaetime (x; t). Theother preferred referene frame is the loal frame, wherethe metri is Minkowskian in the aousti sense, i.e.,with  being the maximum attainable speed of low-energy quasipartiles. This frame is omoving with thesuper�uid ondensate. In this frame, the energy spe-trum does not depend on the veloity v of the onden-sate and has the form given in Eq. (9). It is thereforein this frame that the Plank energy physis is properlyintrodued: if the energy beomes big in the super�uidomoving frame, the aousti Lorentz symmetry is vi-olated.

As for the quantum vauum, the attainable ener-gies are still so low that we annot selet the preferredreferene frame. In partiular, we annot say in whihreferene frame the Plank energy physis must be in-trodued, and whether there is an absolute spaetime.The magnifying glass of the event horizon an serve asa possible soure of spotting these referene frames.In our low-energy orner, the Einstein ation is o-variant: it does not depend on the hoie of the refer-ene frame. That is why the Einstein equations an besolved in any oordinate system. However, in the pres-ene of a horizon or ergoregion, some of the solutionsare not de�ned in the entire spaetime of the quantumvauum. In these ases, the disrimination betweendi�erent solutions arises and one must hoose betweenthem. In quantum liquids, the hoie is natural beausethe absolute oordinates are used from the very begin-ning. But in general relativity, the ambiguity in thepresene of a horizon imposes the problem of properlyhoosing the solution. This problem annot be solvedwithin the e�etive theory, while the fundamental �mi-rosopi� bakground is still not known, and one anonly guess the proper solution of Einstein equationsusing whih the vauum state an be onstruted.It is lear that the Shwarzshild solution is not theproper hoie, in partiular beause the entire spae-time is not overed by the Shwarzshild oordinates.Aording to the quantum liquid analogy, the Painlevé�Gullstrand metri with the inward frame dragging anbe a reasonable hoie. Its analogue an be really re-produed (at least in priniple) in quantum liquids.The analogy also suggests that the Painlevé�Gullstrandspaetime an be onsidered as the absolute one inwhih the true vauum must be determined. On theother hand, the loal frame of the free-falling observeran be onsidered as an analogue of the super�uid o-moving frame in whih the Plank energy physis mustbe introdued. We again warn that this hoie annotbe justi�ed from the standpoint of the e�etive theoryalone.If the Plank physis is in addition superluminal,as is also suggested by the quantum liquid analogy,the stable quantum vauum an even be onstrutedin the presene of a horizon. We argue that the mainproperty of suh a quantum vauum, distinguishing itfrom the original vauum of the Standard Model, is theexistene of the Fermi surfae inside the horizon. Thestatistial mehanis of the Fermi liquid formed insidethe horizon is responsible for the thermodynamis ofthe blak hole.G. E. V. thanks Jan Czerniawski and Pawel Mazur1002
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