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FERMIONIC MICROSTATES WITHINTHE PAINLEVÉ�GULLSTRAND BLACK HOLEP. Huhtala a, G. E. Volovik *a;ba Low Temperature Laboratory, Helsinki University of Te
hnologyFIN-02015 HUT, Finlandb Landau Institute for Theoreti
al Physi
s117940, Mos
ow, RussiaSubmitted 10 De
ember 2001We 
onsider the quantum va
uum of a fermioni
 �eld in the presen
e of a bla
k-hole ba
kground as a pos-sible 
andidate for the stabilized bla
k hole. The stable va
uum state (as well as thermal equilibrium statesat an arbitrary temperature) 
an exist if we use the Painlevé�Gullstrand des
ription of the bla
k hole and thesuperluminal dispersion of the parti
le spe
trum at high energy, whi
h is introdu
ed in the free-falling frame.This 
hoi
e is inspired by the analogy between the quantum va
uum and the ground state of quantum liquid,in whi
h the event horizon for the low-energy fermioni
 quasiparti
les 
an also arise. The quantum va
uumis 
hara
terized by the Fermi surfa
e that appears behind the event horizon. We do not 
onsider the ba
krea
tion, and therefore, there is no guarantee that the stable bla
k hole exists. But if it does exist, the Fermisurfa
e behind the horizon would be the ne
essary attribute of its va
uum state. We also 
onsider the exa
tdis
rete spe
trum of fermions inside the horizon, whi
h allows us to dis
uss the problem of fermion zero modes.PACS: 04.70.-s, 05.30.Fk1. INTRODUCTIONIn 1981, Unruh proposed to study the bla
k holephysi
s using its soni
 analogue [1℄. Originally sug-gested for 
lassi
al liquids, this was later extended toquantum systems su
h as super�uids and Bose 
onden-sates [2�4℄. The main advantage of the quantum liq-uids and gases is that in many respe
ts, they are simi-lar to the quantum va
uum of fermioni
 and bosoni
�elds. This analogy forms a view on the quantumva
uum as a spe
ial type of 
ondensed matter � the�ether� � where the physi
al laws that we have atpresent 
an arise emergently as the energy or temper-ature of the �ether� de
reases [5℄. A parti
ular s
e-nario of the emergent formation of the e�e
tive gravitytogether with gauge �elds and 
hiral fermions 
an befound in the re
ent review paper [6℄.A

ording to the topology in the momentum spa
e,there are three types (universality 
lasses) of thefermioni
 va
ua. One of them has the trivial topol-ogy and its fermioni
 ex
itations are therefore fully*E-mail: volovik�boojum.hut.�

gapped (massive fermions). The other two have a non-trivial momentum-spa
e topology 
hara
terized by 
er-tain topologi
al invariants in the momentum spa
e [6℄.One of the two nontrivial universality 
lasses 
ontainssystems with Fermi points; their ex
itations are 
hiralfermions, whose energy vanishes at points in the mo-mentum spa
e. Another 
lass represents systems witha wider manifold of zeroes: their gapless fermioni
 ex-
itations are 
on
entrated in the vi
inity of the 2D sur-fa
e in momentum spa
e, the Fermi surfa
e. This 
lass
ontains Fermi liquids.Here, we dis
uss the properties of the quantum va
-uum in the presen
e of the event horizon. We assumethat in the absen
e of the horizon, the fermioni
 va
-uum belongs either to the trivial 
lass (su
h as the Stan-dard Model below the ele
troweak transition, where allfermions are massive) or to the 
lass of Fermi points(su
h as the Standard Model above the ele
troweaktransition, with its ex
itations being 
hiral masslessfermions).In the presen
e of a horizon, the region behind thehorizon be
omes the ergoregion: parti
les a
quire neg-ative energy there. In the true va
uum state, these995
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upied, whi
h meansthat the old va
uum must be re
onstru
ed by �llingthese levels. We do not study the pro
ess of �lling,whi
h 
an be the smooth Hawking radiation pro
ess [7℄or some other more violent pro
ess; we dis
uss thestru
ture of the true va
uum state assuming that thisstate 
an be rea
hed without destroying the horizon.In other words, we assume that the stable bla
k hole
an exist as a �nal ground state of the gravitational 
ol-lapse. We �nd that behind the horizon, the fermioni
va
uum belongs to the 
lass of the Fermi surfa
e.The main sour
es for the appearan
e of the Fermisurfa
e originate in the following properties of the eventhorizon. First, the emergen
e of Plan
k physi
s in thevi
inity of (and behind) the horizon. The event horizonserves as a magnifying glass through whi
h the phe-nomena at the Plan
k length s
ale 
ould be visualized.At some s
ales, the Lorentz invarian
e � a property ofthe low-energy physi
s � inevitably be
omes invalidand deviations from the linear (relativisti
) spe
trumbe
ome important. This violation of the Lorentz in-varian
e is now popular in the literature [1; 9�13℄. Itleads to either subluminal or superluminal propagationat high energy, e.g.,E2(p) = 
2p2(1� p2=p2p);where pp is the Plan
k momentum. In a

ordan
ewith the 
ondensed matter analogy, we assume thatthe high-energy (quasi)parti
les are superluminal, i.e.,the sign is the plus. Be
ause of the superluminal dis-persion, there is a bottom in the Dira
 sea, and thepro
ess of �lling the negative-energy levels is thereforelimited. When all of these levels are o

upied, we 
ometo a global va
uum state (or the global thermodynam-i
al equilibrium with a positive heat 
apa
ity, if thetemperature is �nite). Thus, the superluminal disper-sion of the parti
le energy gives rise to the energeti
stability of the va
uum in the presen
e of a bla
k hole.The se
ond important 
onsequen
e of the eventhorizon, due to whi
h the va
uum belongs to the 
lassof systems with the Fermi surfa
e, is that the horizonviolates the time reversal symmetry of the system: thein
oming and outgoing parti
les have di�erent traje
to-ries. In 
ondensed matter, the appearan
e of the Fermisurfa
e due to the violation of the time reversal sym-metry is a typi
al phenomenon (see, e.g., [8℄ and alsoSe
. 12.4 in Ref. [6℄).In Refs. [4, 14℄, a stable bla
k hole is also 
onsid-ered that exhibits a �nite positive heat 
apa
ity, an ar-bitrary temperature, and no Hawking radiation. But itis assumed there that the time reversal symmetry is notbroken in the �nal state (or is a
tually restored in the

�nal state). The existen
e of su
h a stable bla
k holewith the unbroken time reversal symmetry is also sup-ported by the 
ondensed matter analogies [4, 15, 16℄,in whi
h stable in�nite-redshift surfa
es arise. An ex-ample of the in�nite-redshift surfa
e with no time re-versal symmetry breaking is also provided by the ex-tremal bla
k hole, whose 
ondensed matter analogueis dis
ussed in Se
. 12.6 of review [6℄. In all these ex-amples, the Fermi surfa
e does not appear. The bla
khole ground states with the time reversal symmetry arein some sense ex
eptional (in the same manner as theextremal bla
k hole), and we do not dis
uss them here.2. STATIONARY METRIC WITH THEEXPLICITLY VIOLATED TIME REVERSALSYMMETRYThe va
uum 
an be well-de�ned only if the met-ri
 is stationary. In general relativity, the stationarymetri
 for the bla
k hole is provided in the Painlevé�Gullstrand spa
etime [17℄. The line element of thePainlevé�Gullstrand metri
 isds2 = �
2dt2 + (dr� vdt)2 == �(
2 � v2)dt2 � 2vdrdt+ dr2 ; (1)where v(r) = �r̂
rrhr ; rh = 2MG
2 : (2)Here, M is the mass of the hole, rh is the radius ofthe horizon, and G is the Newton gravitational 
on-stant; the minus sign in Eq. (2) gives the metri
 for thebla
k hole, while the plus sign 
hara
terizes the whitehole. The time reversal operation t ! �t transformsthe bla
k hole into the white whole. The stationaryproperty of this metri
 and the fa
t that it des
ribesthe spa
etime in both the exterior and interior regions,are very attra
tive features that were explored start-ing from Ref. [18℄ (see [19�21℄; an extension of thePainlevé�Gullstrand spa
etime to the rotating bla
khole 
an be found in Ref. [22℄).In the 
ase of the bla
k hole, the �eld v(r) has asimple interpretation: it is the velo
ity of the observerwho freely falls along the radius towards the 
enter ofthe bla
k hole with zero initial velo
ity at in�nity. Themotion of the observer obeys the Newtonian laws allthe way through the horizon,d2rdt2 = �GMr2 ; (3)996
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rostates within the Painlevé�Gullstrand bla
k holeand his velo
ity is therefore given byv(r) � drdt = �r̂r2GMr : (4)The time 
oordinate t is the lo
al proper time for theobserver who drags the inertial 
oordinate frame withhim.As was �rst noti
ed by Unruh [1℄, the e�e
tive met-ri
 of type (1) is experien
ed by quasiparti
les propa-gating in moving �uids. The �eld v(r) is then the ve-lo
ity �eld of the liquid and 
 is the �maximum attain-able velo
ity� of quasiparti
les in the low-energy limit,for example the speed of sound in the 
ase of phonons(see also [23�26; 6℄). The horizon 
ould be produ
ed inliquids when the �ow velo
ity be
omes greater than 
.The bla
k hole and the white hole 
an be reprodu
edby the liquid �owing radially inward and outward, re-spe
tively. This is an expli
it realization of the time re-versal symmetry breaking by a �owing liquid: the timereversal operation reverses the dire
tion of the �ow ofthe �va
uum�, T v(r) = �v(r):This Painlevé�Gullstrand spa
etime, although notstati
, is stationary. That is why the energy ~E of a(quasi)parti
le in this spa
etime is determined in boththe exterior and the interior regions. It 
an be obtainedas the solution of the equationg��p�p� +m2 = 0with p0 = � ~E, whi
h gives~E(p) = E(p) + p � v(r) ; (5)where E(p) is the energy of the parti
le in the free-falling frame, E2(p) = p2
2 +m2 : (6)For the �soni
� bla
k hole, it is the energy of the quasi-parti
le in the frame 
omoving with the super�uid va
-uum.We now 
onsider a massless (quasi)parti
le movingin the radial dire
tion from the bla
k hole horizon toin�nity, i.e., with a positive radial momentum pr. Be-
ause the metri
 is stationary, the energy of a parti
lein the Painlevé�Gullstrand frame (or of a quasiparti-
le in the laboratory frame) is 
onserved and we have~E = 
onst. Its energy in the free-falling (super�uid
omoving) frame is then given byE(p) = 
pr = ~E1 + v(r)=
 = ~E1�prh=r : (7)

This energy, whi
h is very big near the horizon, de-
reases as the (quasi)parti
le moves away from the hori-zon. This is the gravitational red shift superimposedon the Doppler e�e
t [27℄, be
ause the emitter is freelyfalling with the velo
ity v = vs(r). The frequen
y ofthe spe
tral line measured by the observer at in�nity is~! = !p�g00 p1� v2=
21� v=
 = !�1�rrhr � ; (8)where ! is the nominal frequen
y of this line. Thesurfa
e r = rh is the in�nite redshift surfa
e, and theenergy in Eq. (7) diverges there. This means that ifwe observe parti
les 
oming to us from a very 
losevi
inity of the horizon, these outgoing parti
les origi-nally had a huge energy approa
hing the Plan
k energys
ale. The event horizon 
an therefore serve as a mag-nifying glass that allows us to see what happens at thePlan
k length s
ale. At some point, the low-energy rel-ativisti
 approximation inevitably be
omes invalid andthe Lorentz invarian
e is violated.In quantum liquids, the nonlinear dispersion entersthe velo
ity-independent energy E(p) in the super�uid
omoving frame. Taking the analogy with quantum liq-uids into a

ount, we assume that in our va
uum, thePlan
k physi
s also enters the energy in the free-fallingframe. The energy spe
trum of parti
les is thereforegiven by Eq. (5), whereE2(p) = m2 + p2
2�1� p2p2p� : (9)As for the in
oming massless parti
le, its radial mo-mentum pr < 0, and its energy in the 
omoving frameis therefore given byE(p) = �
pr = ~E1� v(r)=
 = ~E1 +prh=r : (10)It has no pathology at the horizon: the observer fallingfreely a
ross the horizon sees no in
onvenien
es whenhe 
rosses the horizon, and the Plan
k physi
s is there-fore not evoked here.The pathology reappears when one tries to 
on-stru
t the thermal global equilibrium state (or the va
-uum state) in the presen
e of a horizon. In the globalequilibrium, a

ording to the Tolman law, the temper-ature measured by an observer in the 
omoving framediverges at the horizon,T (r) = TTolmanp�g00(r) = TTolmanp1� v2=
2 : (11)At some point, this temperature again be
omes so highthat the Plan
k physi
s be
omes relevant. In the pres-en
e of a horizon, the global equilibrium is possible997



P. Huhtala, G. E. Volovik ÆÝÒÔ, òîì 121, âûï. 5, 2002only for the superluminal dispersion, i.e., for the plussign in Eq. (9). The reason is as follows. Behind thehorizon, at r < rh, the frame-dragging velo
ity ex
eedsthe speed of light. In the relativisti
 domain, this im-plies that the radial 
oordinate r be
omes time-like,be
ause a (quasi)parti
le 
an move along the r 
oordi-nate in only one dire
tion behind the horizon, towardsthe singularity. However, with the plus sign for the en-ergy spe
trum in Eq. (9), the (quasi)parti
les 
an goba
k and forth even behind the horizon. The spa
e-like nature of the r 
oordinate is therefore restored bythe superluminal dispersion and the global equilibriumbe
omes possible.Finally, the 
ondensed matter analogue of the for-mation of quantum �eld theory as an emergent phe-nomenon at low energy suggests that our va
uum isfermioni
, while all the bosoni
 degrees of freedom 
anbe obtained as 
olle
tive modes of the fermioni
 va
-uum. It is the Pauli prin
iple for fermions that al-lows us to 
onstru
t a stable va
uum in the presen
eof a horizon. Thus, there are three main ne
essary
onditions for the existen
e of a stable va
uum withthe broken time reversal symmetry in the presen
e ofa bla
k hole: the va
uum is fermioni
, its fermioni
 ex-
itations have superluminal dispersion, and the bla
khole is des
ribed by the Painlevé�Gullstrand metri
.All the three 
onditions are motivated by the quantumliquid similarities.3. THE DIRAC EQUATION IN THEPAINLEVÉ�GULLSTRAND METRICIn Ref. [28℄, fermions were 
onsidered in the semi-
lassi
al approximation. Here, we extend this analy-sis to the exa
t quantum-me
hani
al one. In the pres-en
e of a nontrivial gravitational ba
kground, fermionsare des
ribed by the tetrad formalism. We here followRef. [29℄. The metri
 g�� 
an be written in terms ofthe tetrad ea� as g�� = ea�eb��ab; (12)where �ab = diag(�1; 1; 1; 1). The Dira
 equation in a
urved spa
etime is(i
aE�aD� �m)	 = 0; D� = �� + 14!�;ab
a
b;(13)where the dual tetrad �eld E�b obeysg�� = ea�eb��ab; E�a ea� = Æ�� ; E�aE�b �ab = g�� ; (14)ea� = g���abE�b ; e�b = ea��ab = g��E�b ; (15)

and the torsion �eld is!�;ab = E�a�b
r�e
� = E�ar� (g��E�b ) == E�ar�e�b = E�a ���e�b � �
��e
b� : (16)The vielbeins 
orresponding to the general ��ow� met-ri
 in Eq. (1) areea� = Æa� + ~ea�; ~ea� = viÆai Æ0�: (17)The only nonzero 
orre
tion to the tetrad �eld Æa� forMinkowski spa
etime is~ei0 = vi 6= 0:For the Painlevé�Gullstrand metri
 of the bla
k hole inspheri
al 
oordinates, we havee0� = (1; 0; 0; 0); e1� = (v; 1; 0; 0);e2� = (0; 0; r; 0); e3� = (0; 0; 0; r sin �); (18)where v(r) = �r�1=2, assuming that 
 = rh = 1.The violation of the Lorentz invarian
e at high en-ergy 
an be introdu
ed by adding a nonlinear 
5-termthat leads to the superluminal dipersion. As a re-sult, we obtain the Dira
 equation in the Painlevé�Gullstrand metri
 [22℄, whi
h is now modi�ed by a non-Lorentzian term,i�t	 = �i
�i�i	+m
0	+Hp	+Hg	: (19)Here, Hp andHg are the respe
tive Hamiltoinians 
om-ing from the Plan
k physi
s and from the gravitational�eld,Hp = � 
pp 
5�2i ; Hg = i
rrhr � 34r + �r� : (20)The 
 matri
es that we use are given by�i =  0 �i�i 0 ! ; 
0 =  1 00 �1 ! (21)and 
5 = i
0
1
2
3 =  0 �ii 0 ! : (22)After the multipli
ation by rh=~
, we obtain a di-mensionless form and write ~ = 
 = rh = 1 andp0 = pprh=~� 1.998
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 mi
rostates within the Painlevé�Gullstrand bla
k hole4. FERMIONIC EIGENSTATES IN THEPAINLEVÉ�GULLSTRAND BLACK HOLEBe
ause �t is a timelike Killing ve
tor in the Pain-levé�Gullstrand bla
k hole, the energy ~E is a well-de�ned quantity and the variables t and r 
an be sep-arated by writing	 =  �(r)�(r) ! e�i ~Et: (23)The r-equations are now given by~E� = � � p�+m�� i 1p0 p2�+Hg�;~E� = � � p��m�+ i 1p0 p2�+Hg�; (24)where pi = �i�i. Using the spheri
al symmetry, weintrodu
e spheri
al harmoni
s in the standard way.These are eigenstates of the operators J2 and Jz, whereJ is the total angular momentum,Ji = Li + Si = Li + 12  �i 00 �i ! ; (25)and Li is the orbital angular momentum operator inR3. Be
ause we are interested in the states with highmomenta J � p0 � mrh=~, we 
an negle
t the massterm. We then obtain the ansatz�J;J3 = 12r �� �(f+(r)+f�(r))
l+(f+(r)�f�(r))
l+1� ; (26)�J;J3 == 12r �(g+(r)�f+(r))
l+(g+(r)+g�(r))
l+1� ; (27)where the spheri
al harmoni
s are given by
l = 0BBB� rJ + Jz2J Yl;Jz�1=2rJ � J32J Yl;J3+1=2 1CCCA ;

l+1 = 0BBB� �rJ � J3 + 12J + 2 Yl+1;J3�1=2rJ + J3 + 12J + 2 Yl+1;J3+1=2 1CCCA ; (28)

with l = J�1=2. The radial fun
tions satisfy the equa-tions~E f+g+ ! = "i�r  0 11 0 !++ i l+ 1r  0 1�1 0 !+ l + 1p0r2 ++ 1p0 ���2r + (l + 1)2r2 � �1 00 1 !++ ip1=r��r � 14r�# f+g+ ! ; (29)~E f�g� ! = "i�r  0 11 0 !++ i l+ 1r  0 1�1 0 !� l + 1p0r2 ++ 1p0 ���2r + (l + 1)2r2 � 1 00 �1 !++ ip1=r��r � 14r�# f�g� ! : (30)Taking the 
omplex 
onjugation of (29), we obtainEq. (30) with the reversed sign of energy. This im-plies that the matri
es 
annot be diagonalized simulta-neously unless ~E = 0, and therefore, either (f+; g+) or(f�; g�) is nonzero for the eigenstate with ~E 6= 0.Equations (29) and (30) are the starting point forour analysis of the fermioni
 va
uum and ex
itations.5. FERMIONS IN THE SEMICLASSICALAPPROXIMATIONIn the 
lassi
al limit, with (f; g) / exp (i R prdr),we obtain the energy spe
trum� ~E + prpr�2 = p2r + l2r2 + 1p20 �p2r + l2r2�2 ; (31)where we negle
ted small terms of the relative order1=p0. We are interested in the states with the lowestenergy, be
ause they give the main 
ontribution to ther-modynami
s. For a given l, the energy of the fermionbe
omes zero at the following values of the radial mo-mentum:p2r(r; ~E = 0; l) = 12r p20(1� r)� l2r2 �� 1rr14p40(1� r)2 � p20l2r : (32)999
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Fig. 1. Fermi surfa
e ~E(p) = 0 at two positions insidethe bla
k hole: r = 2rh=3 and r = rh=3This 
oin
ides with Eq. (13) in [28℄, where the semi
las-si
al approximation was used from the very beginning.Within the 
ompletely 
lassi
al analysis, withp? = l=r representing the transverse momentum ofthe fermion, Eq. (31) at ~E = 0 gives the 
losed 2Dsurfa
e in the 3D momentum spa
e. This surfa
e, onwhi
h the energy of parti
les is zero, represents theFermi surfa
e; it exists only inside the horizon, i.e., atr < rh (r < 1). Figure 1 demonstrates the Fermi sur-fa
e ~E(p) = 0 at two values of the radius r behind thehorizon: r = 2rh=3 and r = rh=3. The area of theFermi surfa
e in
reases with de
reasing r.In the true ground state, all the levels inside theFermi surfa
e (i.e., those with ~E(p) < 0) must be o
-
upied. Of 
ourse, this re
onstru
tion of the va
uuminvolving the Plan
k energy s
ale 
an have tremendous
onsequen
es for the bla
k hole itself. These 
annot bedes
ribed by the phenomenologi
al low-energy physi
s.Nevertheless, we 
an 
laim that if the horizon survivesthe va
uum re
onstru
tion, the Fermi surfa
e also sur-vives be
ause of its topologi
al robustness. In this 
ase,the statisti
al physi
s of the bla
k hole mi
rostates isentirely determined by the fermioni
 states in the vi
in-ity of the Fermi surfa
e. In parti
ular, the entropy andthe heat 
apa
ity of the bla
k hole are linear in thetemperature T , S = C = �23 N(0)T; (33)where N(0) is the density of states at ~E = 0. Fromthe general dimensionality arguments together with thefa
t that the density of states must be proportional tothe volume of the Fermi liquid, we obtainN(0) = 
NF p2pr3h~3
 ; (34)

where NF is the number of fermioni
 spe
ies and 
 isa dimensionless 
onstant of order of unity. In our over-simpli�ed model, 
 = 4=35� [28℄.In the interior region, the equation of state isp = � / T 2:In
identally, this 
oin
ides with the equation of stateof the perfe
t �uid inside the horizon required to ob-tain the Bekenstein�Hawking entropy (see Refs. [30, 31℄and [14℄). In the Sakharov indu
ed gravity [32℄, thePlan
k momentum and the gravitational 
onstant arerelated by NF p2p � ~
3=G. This a
tually implies thatthe mi
ros
opi
 parameters of the system, the fermionnumber NF and the Plan
k momentum pp, are 
om-bined to form the phenomenologi
al parameter of thee�e
tive theory, the gravitational 
onstant G. If we as-sume that only the thermal fermions are gravitating,we obtain M � Z dV � � T 2M3G2:This gives estimates for the temperature and entropyof the bla
k hole,T � 1=GM; S � GM2;whi
h are in 
orresponden
e with the Hawking�Bekenstein entropy and the Hawking temperature.Only the phenomenologi
al parameters G and 
 are in-volved here, while the mi
ros
opi
 parameters NF andpp drop out. This is in agreement with the observationmade by Ja
obson [33℄ that the bla
k hole entropyand the gravitational 
onstant are renormalized su
hthat the relation between them is preserved. All thismeans that statisti
al properties of the bla
k hole 
anbe produ
ed by the Fermi liquid in the interior of thebla
k hole.6. EXACT ENERGY LEVELSAnother problem that 
an be investigated using ours
heme is that of the fermion is zero modes: are therefermioni
 modes that have exa
tly zero energy in theexa
t quantum me
hani
al problem? If yes, this wouldjustify the 
onje
tures that the bla
k hole has a nonzeroentropy even at T = 0, and also that the area of thebla
k hole is a quantized quantity [34�36℄. For thisreason, we now pro
eed to solving eigenvalue equa-tions (29) and (30).It is impossible to solve these equations analyti
ally,but one 
an 
hoose the region of parameters where they
an be solved using the perturbation theory expansionin the small parameter 1=p0. To �nd this region, we1000
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r/rhFig. 2. Closed traje
tories of the radial motion insidethe bla
k hole at zero energy ~E = 0 for di�erent valuesof the angular momentum l
onsider semi
lassi
al traje
tories of the radial motionpr(r) at ~E = 0 for di�erent l, Eq. (32). These traje
-tories are shown in Fig. 2 (we used p0 = 10000). If lis small 
ompared to p0, these traje
tories are highlyasymmetri
: the in
oming and outgoing parti
les expe-rien
e essentially di�erent motions. The 
onventionalrelativisti
 parti
les with a small momentum 
omparedto the Plan
k momentum pp 
an move only towards thesingularity. However, when they a
quire a large mo-mentum, the nonlinear dispersion allows them to moveaway from the singularity. As a result, the traje
toriesof parti
les be
ome 
losed. This asymmetry re�e
ts theviolation of the time reversal symmetry by the horizon.However, as l in
reases, the traje
tories be
omemore and more symmetri
. Near the maximum valuel(
) = 3�3=2p0; (35)they be
ome perfe
tly ellipti
 and in
reasingly more
on
entrated in the vi
inity of the 
enter pointr(
) = 13 ; (36)p(
) = �r23p0: (37)This implies that in vi
inity of r(
) and p(
), the Hamil-tonian des
ribing the radial motion be
omes that of os-
illators. We 
an therefore expand the equations in thevi
inity of p(
) and r(
) using the small parameter 1=p0,r = r(
) + x;pr = p(
) � i�x : (38)

It 
an be seen that the regions where x and �x are
on
entratedx / 1pp0 � r(
); �x / pp0 � jp(
)j; (39)be
ome really small 
ompared to r(
) and p(
) as p0 in-
reases. As a result, after lengthy but straightforwardexpansion of Eq. (29) near the point with p(
) > 0, weobtain (keeping the terms of the order of unity) thee�e
tive os
illator HamiltonianHeff = �3r32Æl + 13p02p2x2 + 2p23p0 p2 ++ 52p3 (xp+ px) + 3p34 ; (40)where Æl � l(
) � (l + 1): (41)Diagonalization gives the energy spe
trum~E1 = �3r32Æl + 3nr + 32 + 3p34 ; (42)where nr = 0; 1; : : : is the radial quantum number. A
-
ordingly, the expansion near the point with p(
) < 0and the same pro
edure for Eq. (30) give the otherthree sets of the energy levels,~E2 = 3r32Æl� 3nr � 32 + 3p34 ; (43)~E3 = �3r32Æl + 3nr + 32 � 3p34 = � ~E2 (44)and ~E4 = 3r32Æl � 3nr � 32 � 3p34 = � ~E1: (45)Finally, in dimensionful units, we have the dis
rete lev-els of fermions in the vi
inity of the Fermi surfa
e,~E(J; nr) = �~
rh �� 1p2 pprh~ �3r32 �J+12��3nr�32�3p34 ! ; (46)where all the four signs must be taken into a

ount.This equation is valid for J smaller than but 
lose tothe maximum valueJ (
) = pprh=3p3~1001
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h zero-energy states 
an still exist.Equation (46) allows us to 
on
lude that the truefermion zero modes exist in the presen
e of a bla
khole. For general values of pprh, and hen
e, for thegeneral values of the bla
k hole area A = 4�r2h, thereare no states with exa
tly zero energy. A zero-energyeigenstate 
an be found for some spe
ial values of A.However, be
ause of the in
ommensurability betweenthe radial and orbital quantum numbers, the degen-era
y of the ~E = 0 levels is small, and the fermionzero modes 
annot therefore produ
e the entropy atT = 0 that is proportional to the area of the horizon.A

ordingly, there are no mi
ros
opi
 reasons for thequantization of the area of the horizon.There are no topologi
al arguments ensuring theexisten
e of the exa
t fermion zero modes. On theother hand, the momentum-spa
e topology pres
ribesthe existen
e of zero-energy fermion modes at the semi-
lasi
al level. These modes form a surfa
e in the mo-mentum spa
e � the Fermi surfa
e � in Fig. 1. Theexisten
e of the Fermi surfa
e is a robust property ofthe fermioni
 va
uum; the Fermi surfa
e survives whenthe ba
k rea
tion is introdu
ed (of 
ourse, if the horizonsurvives). It is the Fermi liquid whose thermal statesgive rise to the entropy proportional to the area, as wasdis
ussed in the previous se
tion.7. CONCLUSIONSIn deriving the fermioni
 mi
rostates responsible forthe statisti
al me
hani
s of the bla
k hole, we usedan analogy between quantum liquids and the quantumva
uum, the ether. We know that there are two pre-ferred referen
e frames in super�uids. One of them isthe �absolute� spa
etime (x; t) of the laboratory frame,whi
h 
an be Galilean as well as Minkowskian with 
being the real speed of light. In the e�e
tive gravityexperien
ed by the low-energy ex
itations in quantumliquids, the e�e
tive �a
ousti
� metri
 ga
oust
�� appearsas a fun
tion of this �absolute� spa
etime (x; t). Theother preferred referen
e frame is the lo
al frame, wherethe metri
 is Minkowskian in the a
ousti
 sense, i.e.,with 
 being the maximum attainable speed of low-energy quasiparti
les. This frame is 
omoving with thesuper�uid 
ondensate. In this frame, the energy spe
-trum does not depend on the velo
ity v of the 
onden-sate and has the form given in Eq. (9). It is thereforein this frame that the Plan
k energy physi
s is properlyintrodu
ed: if the energy be
omes big in the super�uid
omoving frame, the a
ousti
 Lorentz symmetry is vi-olated.

As for the quantum va
uum, the attainable ener-gies are still so low that we 
annot sele
t the preferredreferen
e frame. In parti
ular, we 
annot say in whi
hreferen
e frame the Plan
k energy physi
s must be in-trodu
ed, and whether there is an absolute spa
etime.The magnifying glass of the event horizon 
an serve asa possible sour
e of spotting these referen
e frames.In our low-energy 
orner, the Einstein a
tion is 
o-variant: it does not depend on the 
hoi
e of the refer-en
e frame. That is why the Einstein equations 
an besolved in any 
oordinate system. However, in the pres-en
e of a horizon or ergoregion, some of the solutionsare not de�ned in the entire spa
etime of the quantumva
uum. In these 
ases, the dis
rimination betweendi�erent solutions arises and one must 
hoose betweenthem. In quantum liquids, the 
hoi
e is natural be
ausethe absolute 
oordinates are used from the very begin-ning. But in general relativity, the ambiguity in thepresen
e of a horizon imposes the problem of properly
hoosing the solution. This problem 
annot be solvedwithin the e�e
tive theory, while the fundamental �mi-
ros
opi
� ba
kground is still not known, and one 
anonly guess the proper solution of Einstein equationsusing whi
h the va
uum state 
an be 
onstru
ted.It is 
lear that the S
hwarzs
hild solution is not theproper 
hoi
e, in parti
ular be
ause the entire spa
e-time is not 
overed by the S
hwarzs
hild 
oordinates.A

ording to the quantum liquid analogy, the Painlevé�Gullstrand metri
 with the inward frame dragging 
anbe a reasonable 
hoi
e. Its analogue 
an be really re-produ
ed (at least in prin
iple) in quantum liquids.The analogy also suggests that the Painlevé�Gullstrandspa
etime 
an be 
onsidered as the absolute one inwhi
h the true va
uum must be determined. On theother hand, the lo
al frame of the free-falling observer
an be 
onsidered as an analogue of the super�uid 
o-moving frame in whi
h the Plan
k energy physi
s mustbe introdu
ed. We again warn that this 
hoi
e 
annotbe justi�ed from the standpoint of the e�e
tive theoryalone.If the Plan
k physi
s is in addition superluminal,as is also suggested by the quantum liquid analogy,the stable quantum va
uum 
an even be 
onstru
tedin the presen
e of a horizon. We argue that the mainproperty of su
h a quantum va
uum, distinguishing itfrom the original va
uum of the Standard Model, is theexisten
e of the Fermi surfa
e inside the horizon. Thestatisti
al me
hani
s of the Fermi liquid formed insidethe horizon is responsible for the thermodynami
s ofthe bla
k hole.G. E. V. thanks Jan Czerniawski and Pawel Mazur1002
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