ВЫСОКОЧАСТОТНЫЙ ОТКЛИК ДВУХБАРЬЕРНЫХ НАНОСТРУКТУР

В. Ф. Елесин*

Московский государственный инженерно-физический институт 115409, Москва, Россия

Поступила в редакцию 13 декабря 2001 г.

В рамках последовательной квантовомеханической модели аналитически вычислен высокочастотный линейный отклик для резонансно-туннельного диода с несимметричными барьерами. Показано, что ток отклика исключительно чувствителен к асимметрии барьеров. Так, если «мощность» барьера коллектора α_1 становится меньше «мощности» эмиттера α_2 (например, из-за напряжения смещения), ток меняет знак при некоторой частоте, зависящей от параметров структуры. В обратной ситуации ($\alpha_1 \ge \alpha_2$) ток сохраняет знак во всем интервале частот. Таким образом, появляется принципиальная возможность согласовать полученные ранее экспериментальные и теоретические результаты. В то же время квантовый режим высокочастотной генерации резонансно-туннельного диода, предсказанный ранее для $\alpha_1 = \alpha_2$, реализуется для любых α_1 и α_2 . В этом режиме возможно достижение больших мощностей на частотах, значительно превышающих ширину резонансного уровня. В работе также показано, что механизм когерентного усиления в резонансно-туннельных диодах тесно связан с квантовой интерференцией резонансно-туннелирующих электронов и существенно отличается от обычно предполагаемого.

PACS: 73.20.Dx, 72.30.+q, 72.10.-d

1. ВВЕДЕНИЕ

Высокочастотные свойства двухбарьерных наноструктур, в частности резонансно-туннельного диода, остаются нерешенной теоретической проблемой. Общепринятая теория высокочастотного отклика и генерации в резонансно-туннельном диоде в настоящее время отсутствует, несмотря на интенсивные исследования и несомненный практический интерес. Более того, опубликованные работы содержат противоречивые результаты по частотной зависимости отклика даже в линейном по полю приближении.

Так, в теоретических работах [1–3] (численные методы), [4] (аналитическая модель), [5,6] (метод туннельного гамильтониана) утверждается, что ток поляризации (линейный отклик), описывающий усиление в резонансно-туннельном диоде, может изменять знак при некоторой частоте, примерно равной ширине резонансного уровня Г. Имеются и экспериментальные данные о смене знака [7]. Отсюда делается вывод о существовании предельной частоты усиления и генерации резонансно-туннельного диода. Такая точка зрения достаточно широко распространена (см., например, [8]).

С другой стороны, экспериментально достигнутая частота генерации 10^{12} с⁻¹ в [9] и теоретические результаты [10–14] свидетельствуют об обратном. Действительно, в [10–14] (см. также [15]) аналитически и численно показано, что ток остается знакопостоянным в широком интервале частот.

Оставляя пока работы [1–3], выполненные численными методами (см. ниже в Заключении и в [10]), укажем, что в упомянутых работах либо используется метод туннельного гамильтониана, либо уравнение Шредингера не решается явно. Вместе с тем система когерентных туннелирующих в резонансно-туннельный диод электронов, взаимодействующих с электромагнитным полем, требует последовательного квантовомеханического описания и открытых граничных условий. Это связано с явлением квантовой интерференции электронов, весьма чувствительной к энергии подводимых из коллектора электронов и к граничным условиям. Нам представляется, что применяемые в [4–6] подходы не

^{*}E-mail: VEF@supercon.mephi.ru

удовлетворяют перечисленным требованиям. Напротив, использованная в работах [10–14] модель является достаточно строгой.

Однако в [10-14] предполагалась полная симметрия барьеров. Как оказывается, асимметрия барьеров эмиттера и коллектора (всегда наблюдающаяся экспериментально и, видимо, в численных расчетах [1-3] из-за поля смещения) может радикально изменить частотную зависимость.

Цель настоящей работы — обобщить результаты [10] на более общие граничные условия, чтобы попытаться согласованно объяснить известные теоретические и экспериментальные результаты. В работе в рамках модели [10] найдено точное аналитическое решение и простые выражения для токов поляризации. Показано, что отклик исключительно чувствителен к разнице параметров барьеров. Так, если «мощность» барьера коллектора α_1 становится меньше мощности барьера эмиттера α_2 (т.е. $\alpha_1 < \alpha_2$), ток изменяет знак при некоторой частоте, зависящей от параметров барьеров. В обратной ситуации ($\alpha_1 \geq \alpha_2$) ток сохраняет знак во всем интервале частот. Таким образом, появляется, по крайней мере, принципиальная возможность согласовать экспериментальные [7,8] и теоретические численные [1–3, 11–13] и аналитические результаты [10]. Отметим, что согласно [4-6] отклик проявляет слабую зависимость от разности $\alpha_2 - \alpha_1$, еще раз демонстрируя неприменимость подходов, используемых для описания когерентной генерации (см. подробнее в Заключении).

В работе также показано, что механизм усиления в резонансно-туннельном диоде тесно связан с квантовой интерференцией и существенно отличается от обычно предполагаемого.

2. ВОЛНОВЫЕ ФУНКЦИИ РЕЗОНАНСНО-ТУННЕЛЬНОГО ДИОДА В ЛИНЕЙНОМ ПО ПОЛЮ ПРИБЛИЖЕНИИ

Мы изучим модель когерентного туннелирования в резонансно-туннельном диоде, аналогичную [10]. Рассматривается одномерная квантовая яма с δ -функциональными барьерами в точках x = 0 и x = a (см. рисунок). Слева ($x \to -\infty$) к квантовой яме подводится стационарный поток электронов, пропорциональный q^2 , с энергией ε , приблизительно равной энергии резонансного уровня ε_R . В области квантовой ямы действует

переменное электрическое поле E(t) с потенциалом U(x,t):

$$U(x,t) = U(x) \cos \omega t,$$

$$U(x) = \begin{cases} xU\theta(x), & x < a, \\ aU & x > a, \\ U = -eE/2. \end{cases}$$
(1)

Волновая функция $\Psi(x,t)$ удовлетворяет уравнению Шредингера

$$i\frac{\partial\Psi}{\partial t} = -\frac{\partial^2\Psi}{\partial x^2} + \left[\alpha_2\delta(x) + \alpha_1\delta(x-a)\right]\Psi + U(x,t)\Psi.$$
(2)

Здесь положено $\hbar = 2m = 1$. Установившееся решение (2) ищем в виде [2, 10, 16]

$$\Psi(x,t) = e^{-i\varepsilon t} \left[\psi_0(x) + e^{-i\omega t} \psi_{+1}(x) + e^{i\omega t} \psi_{-1}(x) \right].$$
(3)

Парциальные волновые функции ψ_0 , ψ_n $(n = \pm 1)$ описывают электроны с квазиэнергиями соответственно ε и $\varepsilon + n\omega$.

Переменное поле вызывает токи поляризации (отклика)

$$J^{c}(x,t) = J^{c}(x)\cos\omega t, \quad J^{s}(x,t) = J^{s}(x)\sin\omega t.$$

Здесь J^c — синфазный с полем и J^s — реактивный токи; J^c и J^s можно выразить через функции ψ_0 и ψ_n :

$$J^{c}(x) = J^{c}_{+1}(x) + J^{c}_{-1}(x),$$

$$J^{c}_{n}(x) = -ie \left[(\psi^{*}_{0}\psi'_{n} + \psi^{*}_{n}\psi'_{0}) - \text{c.c.} \right],$$

$$J^{s}(x) = J^{s}_{+1}(x) - J^{s}_{-1}(x),$$

$$J^{s}_{n}(x) = e \left[(\psi^{*}_{0}\psi'_{n} - \psi^{*}_{n}\psi'_{0}) + \text{c.c.} \right], \quad \psi' \equiv \frac{d\psi}{dx}.$$
(4)

 Функция нулевого приближения $\psi_0(x)$ в области 0 < x < a удовлетворяет уравнению

$$\varepsilon\psi_0(x) + \psi_0''(x) = 0 \tag{5}$$

и граничным условиям (см. [8])

$$\psi_{0}(0)(1 - \beta_{2}) + \psi'_{0}(0)/ip = q, \quad p^{2} = \varepsilon,$$

$$\psi_{0}(a)(1 - \beta_{1}) - \psi'_{0}(a)/ip = 0,$$

$$\beta_{j} = \alpha_{j}/ip, \quad j = 1, 2.$$
(6)

Соответствующие уравнения и граничные условия для функций $\psi_n(x)$ в линейном по полю приближении имеют вид

$$p_n^2 \psi_n(x) + \psi_n''(x) = U(x)\psi_0(x), \quad p_n^2 = p^2 + n\omega, \quad (7)$$

$$\psi_n(0)(1-\beta_{2n}) + \frac{\psi'_n(0)}{ip} = 0, \qquad (8)$$

$$\psi_n(a)(1 - \beta_{1n}) - \frac{\psi'_n(a)}{ip_n} = \frac{aU\psi_0(a)}{2p_n^2},$$

 $\beta_{jn} = \frac{\alpha_j}{ip_n}, \quad j = 1, 2.$

В (5)–(8) предполагается, что $\psi_n \ll \psi_0$. Решение системы (5)–(8) можно представить в следующей форме:

$$\psi_0(x) = A \exp(ipx) + B \exp(-ipx) \equiv \\ \equiv \gamma_0 \cos px + i\delta_0 \sin px,$$

$$A\Delta_0 = q(2 - \beta_1) \exp(-2ipa), \quad B\Delta_0 = q\beta_1, \quad (9)$$

$$\Delta_0 = (2 - \beta_1)(2 - \beta_2) \exp(-2ipa) - \beta_1 \beta_2 \approx$$
$$\approx \frac{2}{\sqrt{\Gamma_1 \Gamma_2}} (i\delta - \Gamma), \quad (10)$$
$$\delta = \varepsilon - \varepsilon_R, \quad \Gamma = \Gamma_1 + \Gamma_2, \quad \Gamma_j = \frac{2p^3}{a\alpha_j^2},$$

$$\psi_n = A_n \exp(ip_n x) + B_n \exp(-ip_n x) - \frac{xU}{\omega_n} \psi_0 - \frac{2U}{\omega_n^2} \psi'_0, \quad (11)$$

$$A_n \Delta_n = q_n (2 - \beta_{1n}) \exp(-2ip_n a) + \beta_{2n} \tilde{q}_n,$$

$$B_n \Delta_n = q_n \beta_{1n} + (2 - \beta_{2n}) \tilde{q}_n, \quad \omega_n = -n\omega,$$

$$\Delta_n \approx \frac{2}{\sqrt{\Gamma_1 \Gamma_2}} \left[i(\delta + n\omega) - \Gamma \right], \quad (12)$$

$$q_n = \frac{2Uip}{\omega_n^2} \left[A(2-\beta_{2n}) + \beta_{2n}B + \frac{\omega_n^2}{4p^4}(A+B) \right], \quad (13)$$

$$\begin{split} \tilde{q}_n &= -\frac{2Uip}{\omega_n^2} \left[\beta_{1n} A + (2 - \beta_{1n}) B e^{-2ip_n a} + \right. \\ &+ \left. \frac{\omega_n^2}{4p^4} (A + B e^{-2ipa}) \right] e^{i(p-p_n)a}. \end{split}$$

Формулы (9)–(13) дают точное решение задачи, которое, к сожалению, громоздко и необозримо. Однако, как показано в [10], существует возможность преобразовать общие формулы для ψ_n и токов J^c , J^s к простым и физически наглядным выражениям, используя естественный для резонансно-туннельного диода малый параметр ω/ε_R . Действительно, малость частоты ω по сравнению с энергией ε_R присуща генератору на резонансно-туннельном диоде.

Чтобы провести это преобразование, представим величины $\gamma_n = A_n + B_n$ и $\delta_n = A_n - B_n$ в виде суммы слагаемых

$$\gamma_n = \gamma_n^{(1)} + \gamma_n^{(2)} + \gamma_n^{(3)},
\delta_n = \delta_n^{(1)} + \delta_n^{(2)} + \delta_n^{(3)}.$$
(14)

В слагаемых $\gamma_n^{(1)}$ и $\delta_n^{(1)}$ полагаем $p = p_n$ в показателях экспонент, а в $\gamma_n^{(2,3)}$ и $\delta_n^{(2,3)}$ формируем разность между точными и выделенными выражениями. После компенсации в $\gamma_n^{(1)}$ и $\delta_n^{(1)}$ ряда членов и сокращения определителя в знаменателе получаем

$$\gamma_n^{(1)} = \frac{2Uip}{\omega_n^2} \delta_0, \quad \delta_n^{(1)} = \frac{2Uip}{\omega_n^2} \gamma_0. \tag{15}$$

Отметим, что $\gamma_n^{(1)}$ и $\delta_n^{(1)}$ расходятся при $\omega \to 0$. Оставшиеся слагаемые оказываются конечными в низкочастотном пределе и равными

$$\gamma_n^{(2)} = -\frac{4Uip}{\omega_n^2 \Delta_n} \left[\beta_{1n} A z_n + (2 - \beta_{1n}) B e^{-2ip_n a} z_n^* \right], \quad (16)$$

$$\delta_n^{(2)} = \gamma_n^{(2)}(\beta_{2n} - 1), \quad z_n = \exp(ipa - ip_n a) - 1.$$
 (17)

В (16), (17) опущены малые члены порядка ω/ε_R и Γ/ε_R . Здесь мы рассматриваем наиболее интересный случай квантовой ямы с «сильными» барьерами, когда $\Gamma/\varepsilon_R \ll 1$ и $p/\alpha_j \ll 1$. Именно в этом пределе реализуются замечательные свойства квантовых ям. С учетом малости ω/ε_R и Γ/ε_R (16) окончательно приводится к виду

$$\gamma_n^{(2)} = -\frac{4Ua^2\alpha_1 A}{p^2\Delta_n} \,. \tag{18}$$

Видно, что выражение $\gamma_n^{(2)}$ и, согласно (17), $\delta_n^{(2)}$ конечны при $\omega\to 0.$

Разбиение γ_n и δ_n (а следовательно, и A_n и B_n) позволяет записать волновую функцию $\psi_n(x)$ в более простой форме:

$$\psi_n = \gamma_n^{(2)} \cos p_n x + i\delta_n^{(2)} \sin p_n x. \tag{19}$$

Действительно, можно показать, что расходящиеся при $\omega \to 0$ выражения в $\psi_n(x)$ взаимно компенсируются. Таким образом, волновые функции $\psi_n(x)$ конечны в низкочастотном пределе и на границах ямы принимают значения

$$\psi_n(0) = \psi_n(a) = \gamma_n^{(2)}.$$
 (20)

Следует отметить, что в упомянутых выше работах [4–6] функция $\psi_n(x)$ расходятся при $\omega \to 0$. В то же время нетрудно убедиться непосредственно (полагая $\omega = 0$ в (1) с самого начала), что функция ψ_n не должна иметь особенностей при $\omega = 0$. Не исключено, что это обстоятельство и является причиной расхождения частотных зависимостей токов поляризации.

Пользуясь выражениями (9) и (20), найдем критерий линейного приближения при $\omega \ll \Gamma$: $Ua/\Gamma \ll 1$. Он резко отличается от соответствующего критерия в [4–6]: $Ua/\omega \ll 1$. Разница связана с поведением $\psi_n(x)$ при $\omega \to 0$.

3. ВЫСОКОЧАСТОТНЫЙ ОТКЛИК В РЕЗОНАНСНО-ТУННЕЛЬНОМ ДИОДЕ

Вначале найдем активную составляющую тока J^c . Подставляя ψ_0 из (9) и ψ_n из (19) в (4), получим

$$J_n^c(x) = ep \{ (K_n + c.c.) \times \\ \times [\sin p_n x \sin px + \cos p_n x \cos px] - \\ - i(F_n - c.c.) [\sin px \cos p_n x - \sin p_n x \cos px] \} \equiv \\ \equiv ep \{ (K_n + c.c.) \cos(p - p_n)x - \\ - i(F_n - c.c.) \sin(p - p_n)x \}, \quad (21)$$

$$K_n = \delta_0^* \gamma_n^{(2)} + \gamma_0^* \delta_n^{(2)}, \quad F_n = \delta_0^* \delta_n^{(2)} + \gamma_0^* \gamma_n^{(2)}.$$
(22)

Вклад в ток $J_n^c(x)$ вносят слагаемые четырех типов: переходы под действием поля между состояниями с волновыми функциями $\sin px$ и $\sin p_n x$ с весом $\delta_0^* \delta_n^{(2)}$, между $\cos px$ и $\cos p_n x$ с весом $\gamma_0^* \gamma_n^{(2)}$, между $\sin px$ и $\cos p_n x$ с весом $\delta_0^* \gamma_n^{(2)}$ и, наконец, между $\cos px$ и $\sin p_n x$ с весом $\gamma_0^* \delta_n^{(2)}$. Следует иметь в виду, что слагаемое в токе, пропорциональное, например, $\sin px \cos p_n x$, появляется в результате перехода между состояниями $\sin px$ и $\sin p_n x$, так как $J_n^c \propto (\psi^* \psi' - \text{c.c.})$. Это слагаемое соответствует переходу «лазерного» типа, так как волновые функции $\sin px$ и $\sin p_n x$ совпадают с собственными функциями изолированной квантовой ямы. Правда, в рассматриваемой ситуации импульсы р и p_n различаются на малую величину $\omega_n/2p$. (В лазере $p - p_n = \pm \pi/a$.) Так как коэффициенты $\delta_0 \sim \beta \gamma_0$, $\delta_n^{(2)} \sim \beta \gamma_n^{(2)}$, вклад этого слагаемого по сравнению со вторым $\gamma_0^* \gamma_n^{(2)}$ (между $\cos px$ и $\cos p_n x$) велик по параметру $\alpha^2/p^2 \gg 1$.

Слагаемые между «смешанными» состояниями (характерными для токового состояния в резонансно-туннельном диоде и исчезающими в изолированной яме) $\sin p_n x$ и $\cos px$, $\sin px$ и $\cos p_n x$ входят с примерно одинаковыми весами $\delta_0^* \gamma_n^{(2)}$ и $\gamma_0^* \delta_n^{(2)}$, что позволяет им эффективно интерферировать. Именно эти переходы приводят к необычной частотной зависимости $J_n^c(x)$, а также к исключительной чувствительности тока от разности «мощности» барьеров $\alpha_2 - \alpha_1$ эмиттера (α_2) и коллектора (α_1) резонансно-туннельного диода.

Подставляя (18) в (22), получаем выражение для K_n :

$$K_{n} = \frac{q}{\Delta_{0}^{*}} \gamma_{n}^{(2)} \varphi, \quad \frac{\varphi}{\Delta_{0}^{*}} = \beta_{2n} (A^{*} + B^{*}) - 2B^{*}, \quad (23)$$

$$\varphi = \beta_2 (2 + \beta_1) \exp(2ipa) - \beta_1 \beta_2 + 2\beta_1 = = \Delta_0^* - 2\Delta_{01}^* \exp(ipa), \quad (24)$$

снова пренебрегая членами порядка ω/ε_R . Здесь Δ_0 дается выражением (10), а Δ_{01} — «урезанный определитель»:

$$\Delta_{01} = (2 - \beta_1) \exp(-ipa) + \beta_1 \exp(ipa).$$
 (25)

Функция φ из (24) описывает суперпозицию упомянутых выше переходов «нелазерного» типа и сильно зависит от разностей $\delta = \varepsilon - \varepsilon_R$ и $\alpha_2 - \alpha_1$. Здесь $\varepsilon_R - \varphi_R$ энергия резонансного уровня, определяемая из уравнения

$$\operatorname{Re}\Delta_0(\varepsilon_R) = 0. \tag{26}$$

Вблизи резонанса и при услови
и $\Gamma/\varepsilon_R\ll 1$ функцию φ можно представить в виде

$$\varphi = -\frac{i\alpha_1\alpha_2a\delta}{p^3} + 2\left(\frac{\alpha_1}{\alpha_2} - \frac{\alpha_2}{\alpha_1}\right). \tag{27}$$

При $\alpha_2 = \alpha_1 = \alpha$ формула (23) переходит в соответствующее выражение для K_n , полученное в [10].

Вначале рассмотрим ситуацию при $\alpha_2 = \alpha_1$. Из (27) видно, что в резонансе, когда $\varepsilon = \varepsilon_R$, имеем $\varphi = 0$. Это означает, что вклады в ток J_n^c при $\cos(p - p_n)x$ (практически не зависящие от координаты и являющиеся основными при $\omega \ll \Gamma$) равны нулю в отдельности, как J_{+1}^c , так и J_{-1}^c . Если $\delta \neq 0$, оба тока J_{+1}^c и J_{-1}^c отличны от нуля и имеют одинаковый знак. Мы увидим, что это соответствует излучению при $\delta > 0$ и поглощению при $\delta < 0$. Обычно же предполагается, что J_{+1}^c приводит к поглощению, $J_{-1}^c - \kappa$ излучению [4–6, 8], а результирующий знак отклика определяется их разницей. Это, кстати, позволяет получать в [4–6] при $\omega \to 0$ конечные выражения для тока, хотя волновые функции расходятся (см. разд. 2). Теперь рассмотрим влияние границ. Как следует из (27), отличие α_1 от α_2 ведет к появлению мнимой добавки к δ , зависящей от разности $\alpha_1/\alpha_2 - \alpha_2/\alpha_1$:

$$\varphi = -\frac{2i}{\sqrt{\Gamma_1 \Gamma_2}} \left[\delta + i\sqrt{\Gamma_1 \Gamma_2} \left(\frac{\alpha_1}{\alpha_2} - \frac{\alpha_2}{\alpha_1} \right) \right]. \quad (28)$$

Подставляя значения для $\gamma_n^{(2)}$ из (18) и φ в (22), приходим к следующему выражению для K_n + c.c.:

$$K_n + \text{c.c.} = -\frac{4Ua}{|\Delta_0|^2 \Gamma_1^{3/2} \Gamma_2^{1/2}} \left[\delta \left(\frac{1}{\Delta_n} + \frac{1}{\Delta_n^*} \right) + \right]$$

+
$$i(\Gamma_1\Gamma_2)^{1/2}\left(\frac{\alpha_1}{\alpha_2} - \frac{\alpha_2}{\alpha_1}\right)\left(\frac{1}{\Delta_n} - \frac{1}{\Delta_n^*}\right)\right].$$
 (29)

Аналогичным путем найдем выражение для «лазерноподобных» переходов

$$F_n - \text{c.c.} = \frac{8iUp}{|\Delta_0|^2 \Gamma_1^{3/2} \Gamma_2^{1/2}} \left(\frac{1}{\Delta_n} - \frac{1}{\Delta_n^*}\right), \qquad (30)$$

которое слабо зависит от разницы $\alpha_2 - \alpha_1$. Можно показать, что вклад в J_n^c от $(F_n - c.c.)$ дает поглощение для n = +1 и излучение при n = -1 в соответствии с обычными представлениями.

Подставляя Δ_n , Δ_0 в (29) и (30) и собирая результаты, получаем окончательные выражения для тока $J^c(x) = J^c_{+1}(x) + J^c_{-1}(x)$ и приведенного тока J^c :

$$J^{c}(x) = -\frac{e^{2}EaQ\Gamma\Gamma_{2}\delta}{\left(\delta^{2}+\Gamma^{2}\right)\left[\left(\delta+\omega\right)^{2}+\Gamma^{2}\right]\left[\left(\delta-\omega\right)^{2}+\Gamma^{2}\right]} \times \left\{ \left[\left(\delta^{2}+\Gamma^{2}+\omega^{2}\right)-\frac{\alpha_{1}^{2}-\alpha_{2}^{2}}{\alpha_{1}^{2}+\alpha_{2}^{2}}\left(\delta^{2}+\Gamma^{2}-\omega^{2}\right)\right]\cos\frac{\omega}{2p}x - \frac{4\omega p}{a}\sin\frac{\omega}{2p}x \right\}, \quad (31)$$

$$J^{c} = \frac{1}{a} \int_{0}^{a} J^{c}(x) dx = -\frac{e^{2} E a Q \Gamma \Gamma_{2} \delta \left[(\Gamma^{2} + \delta^{2}) + \frac{\Gamma_{1} - \Gamma_{2}}{\Gamma_{1} + \Gamma_{2}} (\Gamma^{2} + \delta^{2} - \omega^{2}) \right]}{(\Gamma^{2} + \delta^{2}) \left[(\delta + \omega)^{2} + \Gamma^{2} \right] \left[(\delta - \omega)^{2} + \Gamma^{2} \right]}, \quad Q = pq^{2}.$$
 (32)

Вклад «лазерного» слагаемого $(F_n - c.c.)$ в приведенный ток J_n^c , пропорциональный ω^2 , в точности компенсируется соответствующим членом в $(K_n + c.c.)$. Поэтому результирующее выражение (32) имеет интерференционную природу и происходит от $(K_n + c.c.)$.

При одинаковых барьерах $\Gamma_1 = \Gamma_2 = \Gamma/2$ мы приходим к результату, впервые полученному в [10]:

$$J^{c} = -\frac{e^{2} E a Q \Gamma^{2} \delta}{2 \left[(\delta + \omega)^{2} + \Gamma^{2} \right] \left[(\delta - \omega)^{2} + \Gamma^{2} \right]}, \qquad (33)$$

если исправить допущенную там опечатку: в знаменателе (33) должно стоять 2 вместо 4. Нетрудно видеть, что ток $J^c(\delta,\omega)$ не меняет знака во всем интервале частот. В низкочастотном пределе, $\omega \ll \Gamma$, выражается через статическую дифференциальную J^c проводимость:

$$J^{c}(\delta,0) = \frac{e^{2}Ea}{2} \frac{dJ_{0}(\delta)}{d\delta},$$
(34)

$$J_0(\delta) = \frac{Q\Gamma^2}{2(\delta^2 + \Gamma^2)}, \qquad (35)$$

где $J_0(\delta)$ — статический резонансный ток.

Как показано в [10], кроме обычного режима, в котором J^c имеет максимум при $\omega = 0$ (и $\delta < \Gamma$), существует и так называемый «квантовый» режим при $\delta > \Gamma$. Ему соответствует максимум J^c при частоте ω_m :

$$\omega_m^2 = \delta^2 - \Gamma^2, \quad \delta > \Gamma. \tag{36}$$

Излучение (поглощение) происходит благодаря квазирезонансным переходам между состояниями с энергиями ε и ε_R . Отсюда следует, что при одинаковых барьерах ($\alpha_2 = \alpha_1$) генерация возможна на частотах, значительно превышающих Γ , если выбрать энергию электронов (аналог постоянного напряжения смещения) $\varepsilon = \varepsilon_R + \omega$ вне области максимальной отрицательной дифференциальной проводимости (где $\delta < \Gamma$).

Отметим, что описанные выше результаты были подтверждены с высокой точностью численным решением системы (5)–(8), а также непосредственно временного уравнения (2) в работах [12–14].

10 ЖЭТФ, вып. 4

В случае разных барьеров ($\Gamma_1 \neq \Gamma_2$) частотная зависимость тока J^c может стать кардинально другой. Так, при $\Gamma_1 > \Gamma_2$ ток меняет знак при некотором значении частоты ω_0 :

$$\omega_0^2 = \frac{2\Gamma_1(\delta^2 + \Gamma^2)}{\Gamma_1 - \Gamma_2} \,. \tag{37}$$

В то же время «квантовый» режим реализуется при любых Γ_1 и Γ_2 . В частности, при $\Gamma_1 \gg \Gamma_2$ максимум тока достигается при частоте $\omega_m^2 = 2(\delta^2 + \Gamma^2) - (\delta^4 + 10\delta^2\Gamma^2 + 9\Gamma^4)^{1/2}$. (Если $\delta \gg \Gamma$, то $\omega_m \approx \delta$.)

При выполнении обратного неравенства, $\Gamma_1 < \Gamma_2$, ток сохраняет знак при любых частотах. В предельном случае $\Gamma_2 \gg \Gamma_1$ частотная зависимость становится необычной для резонансно-туннельного диода:

$$J^{c} = -\frac{e^{2} E a Q \Gamma_{2}^{2} \delta \omega^{2}}{(\Gamma^{2} + \delta^{2}) \left[(\delta + \omega)^{2} + \Gamma_{2}^{2} \right] \left[(\delta - \omega)^{2} + \Gamma_{2}^{2} \right]}.$$
 (38)

Действительно, при $\omega \to 0$ ток обращается в нуль и не выражается через дифференциальную проводимость. Остается только квантовый режим, причем максимум $J^c(\delta, \omega)$ достигается для частоты

$$\omega_m^2 = \delta^2 + \Gamma^2 \tag{39}$$

для любого $\delta > 0$.

Найдем также реактивный ток. После некоторых вычислений получаем

$$J_n^s(x) = ep [i(K_n - c.c.) \cos(p - p_n)x + (F_n + c.c.) \sin(p - p_n)x]$$
(40)

и для приведенного реактивного тока

$$J^{s} = -\frac{e^{2}EaQ\Gamma_{2}\delta\omega\left[\delta^{2}-\omega^{2}-3\Gamma^{2}+4(\Gamma_{2}^{2}-\Gamma_{1}^{2})\right]}{2(\Gamma^{2}+\delta^{2})\left[(\delta+\omega)^{2}+\Gamma^{2}\right]\left[(\delta-\omega)^{2}+\Gamma^{2}\right]}.$$
 (41)

При $\Gamma_1 = \Gamma_2$ эта формула переходит в соответствующее выражение работы [10], если исправить там знак на противоположный.

4. СРАВНЕНИЕ С РЕЗУЛЬТАТАМИ ДРУГИХ РАБОТ

Как уже обсуждалось детально в [10] и упоминалось выше во Введении, нет единого мнения по вопросу фундаментального ограничения на частоту генерации резонансно-туннельного диода. Согласно довольно широко распространенной точке зрения (см., например, [4,8]), частота генерации (т.е. частота, где ток меняет знак и усиление обращается в нуль) ограничена величиной равной Г.

Это представление основано, в частности, на результатах теоретических работ [1–4], в которых решалось уравнение Шредингера, а также на результатах работ, использующих метод туннельного гамильтониана [5,6].

К сожалению, трудно провести непосредственное сравнение с численными расчетами, тем более что среди них много противоречий (см., например, [8,17]). Как уже указывалось нами выше в разд. 3, возможной причиной изменения знака отклика в [1–3] является несимметричность барьеров из-за напряжения смещения.

Представляется важным провести сравнение с теоретическими результатами, полученными аналитически в наиболее простой постановке, чтобы исключить влияние непринципиальных осложнений. Для этого будем предполагать (как это уже делалось выше), что функция распределения электронов эмиттера имеет δ -образный характер, т. е. электроны предполагаются моноэнергетическими с энергией ε . Затем проведем сравнение и для других функций распределения.

Наиболее близка по постановке задачи работа [4] (см. в ней ссылки на предыдущие работы), где рассмотрена аналитическая модель резонансно-туннельного диода на основе уравнения Шредингера. Но, в отличие от данной работы и [10], автор [4] не находит явного решения уравнения Шредингера в области квантовой ямы. Он записывает волновую функцию на коллекторной границе (x = a) в виде

$$\Psi = \left[t_0 e^{-ipx} + t_{+1} e^{-ip_{+1}x - i\omega t} + t_{-1} e^{-ip_{-1}x - i\omega t} \right] \times \\ \times \exp\left(i\varepsilon t - \frac{iV\sin\omega t}{\omega} \right), \quad (42)$$

где t_0 , $t_{\pm 1}$ — амплитуды перехода электронов соответственно через яму без поля и в первом порядке по полю (аналоги наших ψ_0 и $\psi_{\pm 1}$). Структура пред-полагалась с одинаковыми $\Gamma_1 = \Gamma_2$.

Амплитуды находились суммированием проходящих и отраженных волн (модель резонатора Фабри-Перо) и оказались равными

$$|t_{\pm 1}|^2 = \left(\frac{V}{2\omega}\right)^2 \frac{\Gamma^2 \left[(\delta \pm \omega/2)^2 + \Gamma^2\right]}{(\delta^2 + \Gamma^2) \left[(\delta \pm \omega)^2 + \Gamma^2\right]}.$$
 (43)

Они существенно отличаются от наших (см. (18), (20)):

$$\left|\psi_{\pm 1}(a)\right|^{2} = \left|\gamma_{\pm}^{(2)}\right|^{2} = \frac{(Va)^{2}\Gamma^{2}}{16(\delta^{2} + \Gamma^{2})\left[(\delta \pm \omega)^{2} + \Gamma^{2}\right]}, \quad (44)$$

вычисленных по точному решению уравнения Шредингера (2) с граничными условиями (6), (8). Принципиальная разница состоит в расходимости $t_{\pm 1}$ при $\omega \to 0$. Выражение для тока J^c из [4] имеет вид

$$J^{c} = -\frac{epV\Gamma^{2}\delta(\delta^{2} + \Gamma^{2} - \omega^{2})}{(\Gamma^{2} + \delta^{2})\left[(\delta + \omega)^{2} + \Gamma^{2}\right]\left[(\delta - \omega)^{2} + \Gamma^{2}\right]}.$$
 (45)

Из (45) следует смена знака при $\omega_0^2 = \delta^2 + \Gamma^2$, наличие предельной частоты и отсутствие квантового режима. Причины расхождения с (33), по-видимому, связаны с приближениями, сделанными в [4] (см. подробнее анализ в [10]). В остальных известных нам аналитических работах, использующих уравнение Шредингера, не приведено замкнутых выражений для токов J^c и J^s .

Большое количество теоретических работ, посвященных вычислению высокочастотного отклика в резонансно-туннельного диоде, использует метод туннельного гамильтониана (см., например, [5,6] и ссылки там).

Выражение для тока i_2 (аналог J^c), полученное в [5, 6] для δ -образной функции распределения электронов, имеет вид

$$i_{2} = -\frac{2e^{2}V\Gamma_{1}\Gamma_{2}\delta(\delta^{2} + \Gamma^{2} - \omega^{2})}{(\Gamma^{2} + \delta^{2})\left[(\delta + \omega)^{2} + \Gamma^{2}\right]\left[(\delta - \omega)^{2} + \Gamma^{2}\right]}.$$
 (46)

При получении (46) предполагалось, что переменное поле приложено только к эмиттеру. Прежде всего отметим, что отклик i_2 слабо зависит от разности $\Gamma_1 - \Gamma_2$ и при $\Gamma_1 = \Gamma_2$ аналогичен (45) из [4]. Напомним, что в [4] поле предполагалось приложенным ко всей яме.

Чтобы провести сравнение с [5,6], мы решили уравнение Шредингера (2) с локальным потенциалом

$$U(x,t) = \overline{U}\delta(x)\cos\omega t. \tag{47}$$

Выражение для приведенного тока имеет вид

$$J^{c} = -\frac{8\overline{U}(\Gamma_{1}\Gamma_{2})^{3/2}\delta/p\left[\delta^{2}+\Gamma^{2}+\omega^{2}(3\Gamma/2\Gamma_{1}-1)\right]}{a(\Gamma^{2}+\delta^{2})\left[(\delta+\omega)^{2}+\Gamma^{2}\right]\left[(\delta-\omega)^{2}+\Gamma^{2}\right]}.$$
 (48)

Видно, что ток, в отличие от (46) и (32), не меняет знака во всем интервале частот и слабо зависит от разности $\Gamma_1 - \Gamma_2$. Кроме того, ток (48) имеет по сравнению с (46) и (32) малость порядка Γ/ε_R . Причина этого очевидна и состоит в следующем. Увеличение функции ψ_n на множитель ε_R/Γ за счет резонанса в яме с полем, приложенным ко всей яме, отсутствует, если поле U(x,t) из (47) локально. Таким образом, в методе туннельного гамильтониана отклик слабо зависит от вида U(x,t) в отличие от точного результата. Кроме того, отметим, что волновые функции в [5,6], как и в [4], расходятся при $\omega \to 0$.

Сравним отклики и для энергетического распределения электронов с квазиравновесной функцией $f(\varepsilon/T)$ (T — температура). В высокотемпературном пределе, когда ω , $\Gamma \ll T$, получаем для (46) при $\Gamma_1 = \Gamma_2 = \Gamma/2$:

$$\overline{i}_2 = e^2 \frac{\partial f(\varepsilon_R)}{\partial \varepsilon} \frac{V \Gamma^3 \pi}{4(\omega^2 + \Gamma^2)}.$$
(49)

Видно, что усиление ограничивается частотой $\omega \approx \Gamma$. Проводя аналогичное интегрирование для (33), получаем

$$J^{c} = \frac{e^{2} E a Q \Gamma \pi}{4} \frac{\partial f(\varepsilon_{R})}{\partial \varepsilon}, \qquad (50)$$

т.е. ограничение усиления по частоте отсутствует. По-видимому, указанные противоречия связаны с тем, что явление интерференции и открытые граничные условия некорректно учитываются в методе туннельного гамильтониана. Действительно, в последнем предполагается существование резонансного уровня, и феноменологически вводится перескок между ямой и эмиттером (коллектором). По сути дела, метод туннельного гамильтониана описывает некогерентное туннелирование. В работе [18] дано доказательство этого утверждения, по крайней мере, для $\omega < \Gamma$.

5. ЗАКЛЮЧЕНИЕ

Полученные выражения для токов поляризации для несимметричных барьеров позволяют в принципе согласованно объяснить результаты, полученные экспериментально, а также в результате численного и аналитического решения уравнения Шредингера. Действительно, можно предположить, что в [1-3] и [7] асимметрия барьеров возникла за счет постоянного электрического поля смещения, которое понижает барьер коллектора (т.е. увеличивает Γ_1). Детальное сравнение требует проведения специальных расчетов и экспериментов с контролируемыми Г₁ и Г₂, т. е. с реальными величинами барьеров эмиттера и коллектора. Представляет интерес также проверка усиления в резонансно-туннельном диоде при $\Gamma_2 \gg \Gamma_1$, когда низкочастотное усиление должно стремиться к нулю как ω^2 . Очевидно, что этот результат сохранится при любом виде функции распределения электронов $f(\varepsilon)$. Важно также подчеркнуть, что при любых Γ_1 и Γ_2 квантовый режим генерации сохраняется. Частота, при которой усиление

максимально удовлетворяет условию квазирезонанса $\omega_m \approx \delta$, равна $\omega \gg \Gamma$. Таким образом, как показано в [12, 13], возможно достижение больших мощностей генерации на сверхвысоких частотах.

Подтверждение предсказываемых теорией результатов послужило бы доказательством специфического механизма излучения и поглощения в структурах с когерентным резонансным туннелированием, связанного с чисто квантовым явлением суперпозиции разных типов излучательных переходов.

Что касается метода туннельного гамильтониана, то представляется весьма сомнительным корректность его использования для вычисления высокочастотного отклика в когерентных системах типа резонансно-туннельного диода. Они являются исключительно чувствительными к граничным условиям, истинному виду потенциала переменного поля и корректному описанию явления пространственного квантования. Метод туннельного гамильтониана — по существу, феноменологический, так как резонансный уровень и граничные условия (заменяющиеся перескоком электронов) постулируются.

Автор благодарен Ю. В. Копаеву за полезное обсуждение работы. Работа выполнена в рамках Федеральной целевой программы «Интеграция» и при поддержке Минпромнауки РФ в рамках программы «Физика твердотельных наноструктур».

ЛИТЕРАТУРА

- W. R. Frensley, Appl. Phys. Lett. 551, 448 (1987); Rev. Mod. Phys. 62, 745 (1990).
- R. K. Mains and G. I. Haddad, J. Appl. Phys. 64, 3564 (1988); 64, 504 (1988).

- C. L. Fernando and W. R. Frensley, Phys. Rev. B 52, 5092 (1995).
- H. C. Lju, Phys. Rev. B 43, 12538 (1991); Erratum 48, 4977 (1993).
- M. Büttiker, A. Pretre, and H. Thomas, Phys. Rev. Lett. 70, 4114 (1993).
- M. P. Anatram and S. Datta, Phys. Rev. B 51, 7632 (1995).
- J. P. Mattia and Mc. Whorter, J. Appl. Phys. 84, 1140 (1998).
- H. C. Lju and J. C. L. Sollner, Semicond. Semimet. 41, 359 (1994).
- E. R. Brown, J. R. Södestrom, C. D. Parker et al., Appl. Phys. Lett. 58, 2291 (1991).
- 10. В. Ф. Елесин, ЖЭТФ 116, 704 (1999).
- V. F. Elesin and A. V. Krasheninnikov, Phys. Low-Dim. Struct. 7/8, 65 (1999).
- 12. В. Ф. Елесин, И. Ю. Катеев, А. И. Подливаев, ФТП
 34, 1373 (2000).
- В. Ф. Елесин, И. Ю. Катеев, А. И. Подливаев, УФН 170(3), 333 (2000).
- **14**. Р. Ф. Казаринов, Р. А. Сурис, ФТП **6**, 148 (1972).
- 15. N. S. Wingreen, A. P. Janho, and Y. Meir, Phys. Rev. B 48, 8487 (1993).
- 16. В. Ф. Елесин, ЖЭТФ 112, 483 (1997).
- 17. F. A. Buot and A. R. Rajagopal, Phys. Rev. B 48, 17217 (1993).
- 18. V. V. Afonin and A. M. Rudin, Phys. Rev. B 49, 10466 (1994).