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A TURBULENCE MODEL IN UNBOUNDED SMOOTH SHEARFLOWS. THE WEAK TURBULENCE APPROACHG. D. Chagelishvili a;b *, R. G. Chanishvili a, T. S. Hristov 
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al Astrophysi
s, Abastumani Astrophysi
al Observatory380060, Tbilisi, Georgiab Spa
e Resear
h Institute of Russian A
ademy of S
ien
es117810, Mos
ow, Russia
 University of California, IrvineIrvine CA 92697-3975, USASubmitted 7 June 2001We dis
uss a new 
on
ept of the sub
riti
al transition to turbulen
e in unbounded smooth (nonin�e
tional)spe
trally stable shear �ows. This 
on
ept (the so-
alled �bypass� transition) follows from 
onsidering thenon-normality of the linear dynami
s of vortex disturban
es in shear �ows and is most easily interpreted bytra
ing the evolution of spatial Fourier harmoni
s (SFHs) of the disturban
es. The key features of the 
on
eptare as follows: the transition of the �ow by only �nite amplitude vortex disturban
es despite the fa
t that thephenomenon is energeti
ally supported by a linear pro
ess (the transient growth of SFHs); the anisotropy ofpro
esses in the k-spa
e; the onset of 
haos due to the dynami
al (not sto
hasti
) pro
ess � nonlinear pro
essesthat 
lose the transition feedba
k loop by the angular redistribution of SFHs in the k-spa
e. The evolution oftwo-dimensional small-s
ale vortex disturban
es in the parallel �ow with a uniform shear is analyzed within theweak turbulen
e approa
h. This numeri
al test analysis is 
arried out to prove the most problemati
 statementof the 
on
ept, the existen
e of a positive feedba
k 
aused by the nonlinear pro
ess. Numeri
al 
al
ulations alsoshow the existen
e of a threshold: if the amplitude of the initial disturban
e ex
eeds the threshold value, theself-maintenan
e of disturban
es be
omes realisti
. The latter is a 
hara
teristi
 feature of the �ow transitionto the turbulent state and its maintenan
e.PACS: 47.27.Cn, 47.27.Eq, 47.20.Ky, 47.20.Ft1. INTRODUCTIONShear �ows are permanently interesting be
ausethey are widely spread both in the terrestrial and as-trophysi
al environment (galaxies, stars, jets, planetatmospheres, o
eans, et
.) and in the laboratory andindustry (tokamaks, MHD fa
ilities, et
.). Some sim-ple and important hydrodynami
 shear �ows (e.g., theCouette �ow) remain insensitive to in�nitesimal distur-ban
es at any Reynolds numbers but be
ome turbulentat �nite disturban
es even at moderate (sub
riti
al)Reynolds numbers. Moreover, the transition to turbu-len
e o

urring in su
h �ows strongly depends not onlyon the amplitude of the initial disturban
es but also on*E-mail: george
h123�yahoo.
om

their type and spe
trum. Physi
s of these fa
ts was notexplained even one de
ade ago [1�6℄.Spe
i�
 features of shear �ows rigrorously estab-lished re
ently [7℄ led to di�
ulties in studying linearphenomena in the framework of the 
anoni
al modalanalysis, i.e., the te
hnique where all the disturbedquantities are expanded in Fourier integrals in time.The point is that the operators arising in this approa
hare not self-adjoint [8℄. Their eigenfun
tions are notorthogonal to ea
h other, whi
h yields a strong inter-feren
e among them. As a result, even if all the imagi-nary parts of all eigenfrequen
ies are negative and theeigenfun
tions monotoni
ally de
ay with time (i.e., the�ow is spe
trally stable), a parti
ular solution 
an re-veal a large relative growth over a �nite time interval.The analysis of separate eigenfun
tions and eigenfre-quen
ies is therefore not su�
ient to arrive at de�nite508
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on
lusions on the linear evolution of disturban
es. Inaddition, taking the interferen
e into a

ount usuallyleads to insurmountable 
ompli
ations. This has givenimpetus to the so-
alled nonmodal analysis as a toolfor des
ribing the evolution of disturban
es in smoothshear �ows (i.e., those without the in�e
tion point), pri-marily in the parallel �ow with the uniform shear of ve-lo
ity. Within this approa
h, the temporal behavior ofthe spatial Fourier harmoni
s (SFHs) of disturban
es isstudied without any spe
tral expansion in time. Beingan optimal tool, the nonmodal analysis 
onsiderablysimpli�es the mathemati
al des
ription of the pro
essesand is 
apable of revealing the key phenomena that es-
ape per
eption in the modal approa
h (in parti
ular,the phenomena 
aused by the non-normality of the lin-ear dynami
s). Many new unexpe
ted results on timeevolution of both the vortex mode [9�17℄ and a
ousti
wave [18; 19℄ disturban
es have already been obtainedwithin this approa
h; it was also su

essfully appliedto the study of the MHD waves [20�22℄. New lin-ear me
hanisms of the mutual transformation of wavemodes [23�25℄ and 
onversion of vorti
es to waves [26�29℄ have been dis
overed. A new 
on
ept of the sub-
riti
al transition to turbulen
e in smooth shear �ows(those without the in�e
tion point) has been formu-lated [30�37℄. The latter, named the �bypass� transi-tion, is the subje
t of our analysis.A

ording to the 
on
ept, the sub
riti
al transi-tion to turbulen
e that o

urs in spe
trally stable shear�ows is 
aused by the interplay among four (linear andnonlinear) basi
 phenomena. The transition s
enariobased on this 
on
ept is presented in detail (in qual-itative terms) in Se
. 2. In Se
. 2, we also 
onsiderthe �philosophi
al� problem of turbulen
e, i.e., how a
ompletely deterministi
 and 
ausal system 
an have
haoti
 solutions. In Se
. 3, we give numeri
al test
al
ulations to prove the most problemati
 statementof the 
on
ept � the existen
e of a positive nonlinearfeedba
k. The subsequent results of numeri
al 
al
ula-tions are also presented in Se
. 3. We have restri
tedourselves to the investigation of the a
tion of nonlin-earity for the two-dimensional symmetri
 disturban
e(whi
h is quite simple and most suitable for testing)in the weak turbulen
e approximation. In reality, theshear �ow turbulen
e has a three-dimensional (3D) na-ture. However, from the dis
ussion presented in Se
. 4it follows that nonlinear pro
esses should easier 
opewith the �mission� of the positive feedba
k in the a
-tual 3D 
ase than in the 2D one. The weak turbu-len
e equation for a 2D vortex mode disturban
es inthe parallel �ow with a uniform shear is derived in theAppendix.

2. SCENARIO OF THE SUBCRITICALTRANSITION TO TURBULENCEVortex mode (aperiodi
/nonos
illating) distur-ban
es are the 
reator of turbulen
e in the unbounded,parallel �ow with a 
onstant shear rate and a uniformdensity that we 
onsider here. Therefore, the presenteds
enario involves disturban
es of only this type. Thenonmodal formalism allows revealing the followingspe
i�
 features in the evolution of SFHs:(a) The wave number of a SFH along the axis or-thogonal to the �ow velo
ity (i.e., along the �ow shear)varies in time; in the linear approximation, there is a�drift� of a SFH in the wave-number spa
e, i.e., in thek-spa
e.A
tually, (
f. [9�28℄) in a parallel �ow with uniformshear U0 = (Ay; 0; 0) (1)(where A is the shear parameter that is assumed tobe positive), disturban
es 
annot have the form of asimple plane wave be
ause of the e�e
t of the shearingba
kground on the wave 
rests. The SFH wave num-bers are then time-dependent: if a SFH with the wavenumbers kx, ky(0), and kz is initially disturbed,vx(0) = ~vx(kx; ky(0); kz ; 0)�� exp(ikxx+ iky(0)y + ikzz); (2)then the evolution of its phase for t > 0 is determinedby the equationsvx(t) / exp(ikxx+ ky(t)y + ikzz); (3)ky(t) = ky(0)� kxAt (4)that des
ribe the �linear drift� of the SFH in the wave-number spa
e.The values of the spatial 
hara
teristi
s (i.e., kx,ky(t), and kz) de�ne the energy ex
hange intensity be-tween SFHs and the ba
kground �ow to a greater ex-tent. Therefore, the linear drift leads to the variationof the intensity of this ex
hange.(b) Not all SFHs 
an draw energy from the shear;only the SFHs that are lo
ated in a 
ertain region ofthe k-spa
e (
alled the �ampli�
ation region� below)are ampli�ed. Moreover, ea
h SFH is ampli�ed dur-ing a limited time interval until it leaves the ampli�
a-tion region as a result of the linear drift. In addition,the presen
e of SFHs in this region imposes 
onditionsmainly on the dire
tion (and not the magnitude) oftheir wave ve
tor. Therefore, the pro
ess of the en-ergy ex
hange between vortex mode disturban
es andthe shear �ow has a pronoun
ed anisotropi
 
hara
ter509



G. D. Chagelishvili, R. G. Chanishvili, T. S. Hristov, J. G. Lominadze ÆÝÒÔ, òîì 121, âûï. 2, 2002
normali
zedener
gyofSF
H
100

200

300

400

5 10 15 20 25 300
AtFig. 1. Time evolution of the normalized energy of2D and 3D SFHs de�ned in the linear stage and inthe invis
ed 
ase (i.e., with only pro
esses (a) and(b) involved). Thin solid line 
orresponds to a 2DSFH with the parameters ky(0)=kx = 10, kz = 0,~vx(0)=~vy(0) = �10, and ~vz(0) = 0. The bold solidline 
orresponds to a 3D SFH with the parametersky(0)=kx = 10, kz=kx = 1, ~vx(0)=~vy(0) = �5, and~vz(0)=~vy(0) = �5. Here, ~vx(0), ~vy(0), and ~vz(0) arethe 
omponents of the SFH velo
ity at t = 0. kx,ky(0), and kz are related to the wave numbers of theSFH (see Fig. 2)in the k-spa
e. Physi
s of this pro
ess is des
ribed indetail in [38℄.Therefore, vortex mode disturban
es at the linearstage of the evolution are pumped by the ba
kgroundshear �ow and grow within a limited time interval, i.e.,exhibit a transient growth. There is an essential dif-feren
e between the transient growths of 2D and 3DSFHs [16�20℄, whi
h 
an be seen by 
omparing the evo-lution of their energy, as in Fig. 1. This �gure showstime evolution of the normalized energy of 2D and 3DSFHs. It 
orresponds to the linear dynami
s of sepa-rate SFHs in the invis
ed 
ase (i.e., when only pro
esses(a) and (b) are at work).The ampli�
ation region in the k-spa
e is mu
hwider for 3D SFHs than for 2D ones. Moreover, in 
on-trast to 2D SFHs, the energy of 3D SFHs does not de-
rease after passing the ampli�
ation region (3D SFHsdo not return energy to the �ow) but it saturates andapproa
hes a value that may be mu
h higher than theirinitial value. In reality, however, a vis
ous dissipationbe
omes e�
ient as jky(t)j ! 1 and (if no new phe-nomena, e.g., nonlinear phenomena are involved) 
on-verts the energy of SFHs into heat. We list the vis
ousdissipation as item (
).Thus, the nonmodal approa
h demonstrates notonly the possibility of the algebrai
/transient growthof SFHs of vortex mode disturban
es in shear �ows,but also the anisotropi
 properties of linear pro
esses

in the wave-number spa
e. This anisotropy is also ob-served in nonlinear pro
esses.(d) Nonlinear pro
esses, apart from the usual frag-mentation of the disturban
e s
ale, are also responsiblefor the angular redistribution of SFHs in the k-spa
e,i.e., they 
ould �supply� SFHs to the ampli�
ation re-gion, 
losing a feedba
k loop of the transition to tur-bulen
e. In a for
ed shear �ow, the nonlinear terms donot 
ontribute to the energy transfer between the mean�ow and disturban
es.Pro
esses (a) and (b) are quantitatively analyzedand well-a
knowledged in papers devoted to the non-modal approa
h. The existen
e of a positive feedba
k(
aused by the nonlinear pro
esses) has been 
he
kedusing model equations [34; 35℄. In Se
. 3, we prove it us-ing the Navier�Stokes equation in the weak turbulen
eapproa
h.It is plausible that the angular redistribution ofSFHs in the k-spa
e is the main pro
ess 
aused by thenonlinearity. The nonlinear pro
esses then indire
tlyfavor the energy extra
tion by SFHs from the shear�ow (the SFH s
ale de
rease to the dissipative s
aleshould be ensured by the linear drift of SFHs in thek-spa
e).The s
enario of the sub
riti
al transition to tur-bulen
e (
alled the �bypass� transition) is based onthe interplay of the linear and nonlinear basi
 phe-nomena itemized above. In presenting this s
enario,we s
hemati
ally des
ribe these pro
esses in the planekz = 
onst (whi
h is parallel to the plane kxky). Itis obvious that the boundaries of the k-spa
e regionswhere phenomena (b) and (
) o

ur are vague. We�x the regions where these phenomena are operativefor 
larifying the analysis. The vis
ous dissipation be-
omes essential for harmoni
s with the wave numberssatisfying the inequalityqk2x + k2y > k� ;where the value of k� depends on the Reynolds number.As follows from Fig. 1, the real growth of the distur-ban
e energy o

urs when the ratio jky(t)=kxj rea
hesmoderate values (the dashed region in Fig. 2). We 
antherefore separate three regions inside the 
ir
leqk2x + k2y < k� :I(I0), II(II0), and III(III0). We now dis
uss what hap-pens to a SFH of the vortex mode disturban
e inje
tedin region I(I0), for instan
e at point 1 (see Fig. 2). Thewave number of the SFH varies in time, thereby lead-ing to a drift in the dire
tion marked by the arrows.510
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Fig. 2. A 
onventional separation of regions of the a
-tion of the basi
 physi
al pro
esses that are responsiblefor the onset of turbulen
e/
haos in a

ordan
e withthe bypass transition. The energy ex
hange betweenthe disturban
es and the ba
kground �ow is essen-tial (a transient growth takes pla
e) in regions II(II0)dashed by verti
al lines; nonlinear pro
esses (e.g., ofthe type k0 + k00 ! k) and the �linear drift� are ef-fe
tive in all regions I(I0), II(II0), and III(III0) inside the
ir
lepk2x + k2y < k� . The vis
ous dissipation of SFHsdominates outside the 
ir
le pk2x + k2y > k�After a 
ertain moment, when the harmoni
s passespoint 2, its energy starts to grow. This growth is tran-sient and lasts until the SFH leaves the ampli�
ationregion II(II0) (point 3 in Fig. 2). Continuing its drift,the harmoni
s then rea
hes point 4, where the dissi-pative pro
esses are swit
hed on and 
onvert the dis-turban
e energy into the heat. Consequently, if thenonlinear phenomena are ine�
ient, nothing interest-ing 
an o

ur as regards the transition, and the distur-ban
es eventually disappear. A permanent extra
tionof the shear energy by disturban
es is ne
essary fortheir maintenan
e. This is possible in the 
ase of thepermanent existen
e of disturban
es in regions I(I0) andII(II0) that 
an be provided by nonlinear pro
esses, inparti
ular, by the three-wave pro
essesk0 + k00 ! k(see Fig. 2), four-wave pro
essesk0 + k00 + k000 ! k;�ve-wave pro
esses, et
. This means a predominanttransfer of the disturban
e energy by the nonlinear pro-
esses from region III(III0) to regions I(I0) and II(II0).

However, there are no restri
tions on the reverse trans-fer (from regions I(I0) and II(II0) to region III(III0)).But, as shown is Se
. 3, the nonlinear pro
esses ensurea preferential transfer of the disturban
e energy to theampli�
ation region.The reprodu
tion of disturban
es in region I(I0) de-pends on both the amplitude and the spe
trum of theinitial disturban
es. The nonlinear de
ay pro
esses areinsigni�
ant at low amplitudes and are not able to re-sist the linear drift of SFHs in the k-spa
e. As a result,low-amplitude disturban
es are damped without anytra
e, i.e., without indu
ing the transition to turbu-len
e. The higher is the initial disturban
e amplitude,the more noti
eable nonlinear e�e
ts o

ur. At a 
er-tain amplitude (whi
h evidently depends on the initialdisturban
e spe
trum and the Reynolds number), non-linear pro
esses 
an 
ompensate the a
tion of the lineardrift, thereby ensuring the permanent return of SFHs tothe ampli�
ation region (this is justi�ed by simulationsin Se
. 3). This eventually ensures a permanent extra
-tion of energy from the ba
kground �ow and the main-tenan
e of disturban
es. Therefore, a 
ertain thresholdmust o

ur in a

ordan
e with the s
enario dis
ussedhere.Any theory aiming at explaining the transition toturbulen
e must distin
tly answer the problem of howa 
ompletely deterministi
 and 
ausal system 
an have
haoti
 solutions. In a

ordan
e with the above s
e-nario, the onset of turbulen
e/
haos o

urs be
ause ofdynami
al (not sto
hasti
) pro
esses and 
an be ex-plained as follows.We assume that we initially have a spatially lo
al-ized vorti
al disturban
e with su�
iently regular fea-tures: a pa
kage of spatial Fourier harmoni
s. In gen-eral, a disturban
e of some physi
al variable, e.g., ve-lo
ity 
an be represented asv(r; t) = Z dkj~v(k; t)j exp[i'(k; t) + ik � r℄; (5)where j~v(k; t)j and '(k; t) are real fun
tions of k andt. We assume that the initial phase '(k; 0) is a weaklyvarying fun
tion of k. In this 
ase, the initial distur-ban
e v(r; 0) is regular and su�
iently smooth in spa
e.What kind of pro
esses govern the phase evolutionat any point of the k-spa
e?We 
onsider pro
esses in at arbitrarily 
hosen pointin the k-spa
e inside the pa
kage. Following the s
e-nario, the SFH that happens to be at the point at theinitial moment of time, leaves this point be
ause of thelinear drift. But this �loss� is 
ompensated by the lin-ear and nonlinear pro
esses: a portion of energy �ar-rives� as the result of the linear drift; portions of energy511
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e asa result of the nonlinear de
ay pro
esses (three-wave,four-wave, et
.) des
ribed above. The total energyof the SFH at the 
hosen point is 
omposed of theseportions. Naturally, all these portions have their ownphases. It is 
lear that the Fourier harmoni
 phase atthe point must be a 
ertain sum of these phases. It isevident that the phase '(k; t) be
omes a strongly vary-ing fun
tion of k with the passage of time, be
ause thephases of SFHs at neighboring points of the k-spa
e 
andi�er from ea
h other by any value. Consequently, aninitially regular disturban
e be
omes more and moreirregular, thereby tending to the 
haoti
 behavior.3. THE WEAK TURBULENCE APPROACHIn a

ordan
e with the above s
enario, nonlinearpro
esses do not 
ontribute to the energy transfer be-tween the mean �ow and perturbations. They result in(i) the fragmentation of the disturban
e s
ale, i.e., theenergy transfer from large s
ales to smaller ones and�nally to the dissipative ones; (ii) the angular redistri-bution of SFHs in the k-spa
e. It must be noted thatthe energy transfer to the small dissipative s
ales alsoo

urs be
ause of the linear drift of SFHs (pro
ess (a)),whi
h 
ould be even more operative than the nonlinearfragmentation of the disturban
e s
ale. We again em-phasize that the main role of the nonlinear pro
esses inthe presented s
enario 
onsists in (ii) rather than (i),be
ause in doing so, they 
ould �supply� SFHs to theampli�
ation region, 
losing the feedba
k loop of thetransition to turbulen
e. The existen
e of a positivenonlinear feedba
k is the most problemati
 statementof the 
on
ept. It has been veri�ed using model equa-tions [34; 35℄. In this se
tion, we attempt to prove itusing the Navier�Stokes equation. We performed nu-meri
al 
al
ulations for a 2D symmetri
 vortex modedisturban
e in the weak turbulen
e approximation. Aswe see in what follows, the 2D symmetri
 disturban
eis most suitable for testing the existen
e of the positivenonlinear feedba
k.The weak turbulen
e equation des
ribing the evolu-tion of the energy spe
tral density of a 2D disturban
eis derived in the Appendix,�Ek�t +rk(VEk)� 2Akxkyk2x + k2yEk ++ �(k2x + k2y)Ek = N̂Ek; (6)where rk = (�=�kx; �=�ky) ;

V = (�Akx; 0);and Ek is the energy density of the 2D vortex modedisturban
es at a �xed point of the k-spa
e. (In otherwords, Ek is the spe
tral density of energy.) The termN̂Ek is de�ned by Eq. (A.36). As 
an be seen fromEq. (6) (and as des
ribed in Se
. 2), the energy spe
-tral density (�Ek=�t) 
hanges be
ause of the followingreasons.1) The linear �drift� of SFHs in the wave-numberspa
e (the se
ond term in the left-hand-side). Thisterm does not 
ause a variation of the total disturban
eenergy, Z dkrk(VEk) = 0;but results in a transfer of SFHs from the ampli�
ationregion to the attenuation one.2) The energy ex
hange between disturban
es andthe ba
kground �ow (the third term in the left-handside). Assuming that A > 0, we 
an state that the2D SFHs for whi
h ky(t)=kx > 0 gain energy fromthe ba
kground �ow and their amplitude in
reases,whereas the amplitudes of SFHs for whi
h ky(t)=kx < 0de
rease.3) The vis
osity (the last term in the left-hand side),whi
h transforms the disturban
e energy into heat andwhi
h is signi�
ant for large wave numbers.4) The nonlinear three-wave pro
esses (the term inthe right-hand side), leading to the energy ex
hangebetween di�erent SFHs [39-41℄. It is easy to show thatZ dkN̂Ek = 0;i.e., the nonlinear term leads only to the energy redis-tribution in the k-spa
e (not to a 
hange of the totaldisturban
e energy).The 
onditions for wave ve
tors (k0 + k00 = k)and frequen
ies (!1 + !2 = !) are usually imposedon three-wave pro
esses in the weak turbulen
e equa-tions [39�41℄. Be
ause both 
onditions 
annot besimultaneously satis�ed for waves with 
ertain waveve
tors, the restri
tion of three-wave pro
esses arises.Moreover, these 
onditions 
ause the existen
e ofsome 
ompletely non-de
aying spe
tra. The vortexmode disturban
es 
onsidered here are aperiodi
(!1; !2; ! = 0) and therefore automati
ally satisfy these
ond 
ondition (!1 + !2 = !). Hen
e, there areno forbidden three-wave pro
esses for SFHs in our
ase. However, they have di�erent probabilities. Forexample, the probability of the pro
esses k0 + k0 = kis equal to zero, although it is not forbidden in prin
i-ple. Therefore, the nonlinear term in Eq. (6) is equal512
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e model : : :to zero if a single SFH mode is disturbed. This explainsthe following well-known fa
t: a single SFH mode is anexa
t solution of the 
omplete in
ompressible Navier�Stokes equation, while a superposition of modes is usu-ally not.The net e�e
t of all the three-wave pro
esses de-pends on two fa
tors: the probability with whi
h dif-ferent de
ay a
ts o

ur (the 
oe�
ients of Ek0Ek00 andEkEk00 in Eq. (A.36)) and the distribution of SFHs inthe k-spa
e (the values of Ek0Ek00 and EkEk00). If thespe
tral density of energy is in
reased in the �rst andthird quarters of the k-spa
e at the 
ost of the se
ondand fourth ones, we 
an say that the three-wave pro-
esses lead to the preferential transfer of SFHs to theampli�
ation region, i.e., lead to the regeneration ofSFHs, whi
h 
an gain shear energy (lead to the positivefeedba
k). This trend of nonlinear pro
esses 
an be re-vealed by showing their asymmetry in the k-spa
e with

respe
t to the Kx axis. To pro
eed, we 
onsider theinitial 2D disturban
e with the highest possible sym-metry with respe
t to the Kx axis (see Fig. 3). In this
ase, pro
esses (a) and (
) are symmetri
 with respe
tto Kx and pro
ess (b) is asymmetri
 be
ause it resultsin removal of SFHs from the �rst and third quartersof the k-spa
e to the se
ond and fourth ones; pro
ess(b) is therefore asymmetri
 in the opposite dire
tion tononlinear pro
ess (d). That is why the symmetri
 2Ddisturban
e presented in Fig. 3 is most suitable for de-termining the trend of the nonlinear transfer of SFHs.3.1. Results of the numeri
al 
al
ulation of theweak turbulen
e equationWe 
onsider the 2D initial disturban
e with thespe
tral density of energy that is symmetri
 in thek-spa
e (see also Fig. 3),Ek(t = 0) == ( B �ar
tg ��1(k2� � k2x � k2y)� ar
tg ��2(k2x + k2y � k20)�	2 for k2� > k2x + k2y and k2x + k2y > k20 ;0 for k2� < k2x + k2y and k2x + k2y < k20 ; (7)where B de�nes the value of the initial disturban
eenergy, k0 and k� = 1=pA� are the minimum andmaximum values of the disturban
e wave ve
tors re-spe
tively, and �1 and �2 denote the sharpness of thedisturban
e boundaries in the k-spa
e. The 
al
ula-tions are 
arried out at �1 = 0:07, �2 = 0:8, k0 = 0:3,and k� = 10 (i.e., A = 1 and � = 0:01). The ab-sen
e of SFHs with large wave numbers is justi�ed bythe a
tion of vis
osity. SFHs with small wave numbersare also absent, be
ause we 
onsider small-s
ale distur-ban
es. The evolution of Ek was numeri
ally investi-gated for a short time interval (At � 1) be
ause of tworeasons. First, Eq. (6) is obtained in the weak turbu-len
e approximation and it is therefore 
orre
t only fora relatively short time interval (t . 1=A). Se
ond, thetrend of nonlinear pro
esses is revealed even for su
hshort time intervals.Initially, we tried to answer the question what theredistributing a
tion of the nonlinear term N̂Ek is inthe k-spa
e. Spe
i�
ally, whether the term N̂Ek trans-fers disturban
e energy to the ampli�
ation region.For 2D disturban
es, the ampli�
ation region 
oversthe �rst and third quarters of the kxky plane (wherekxky > 0) and the attenuation region 
overs its se
ondand fourth quarters (where kxky < 0). Introdu
ing po-lar 
oordinates ' = ar
tg(ky=kx) and k = qk2x + k2y,we 
an say that the angle ' between 0 and �=2 
orre-sponds to the ampli�
ation region, and between ��=2

and 0 to the attenuation one.Obviously, the value and sign of N̂Ek depend on' and k. Taking the integral over k, we obtain thefun
tion that des
ribes the nonlinear redistribution ofenergy only in ',	('; t) � Z dk kN̂Ek: (8)It is easy to see that if the 
onditions	('; t)j0<'<�=2 > 0; 	('; t)j��=2<'<0 < 0 (9)are satis�ed, we 
an unambiguously state that the non-linear pro
esses transfer the disturban
e energy to theampli�
ation region, thereby realizing the positive feed-ba
k.We thus determine the dependen
e of 	 on '. Theresult of our 
al
ulations at the time instan
e At = 0:1is shown in Fig. 4. It is seen that 
onditions (9) are sat-is�ed, i.e., the nonlinear three-wave pro
esses lead tothe preferential energy transfer to the ampli�
ation re-gion. Be
ause we used a symmetri
 initial disturban
e(with SFHs having the same �weight� in the ampli�
a-tion and attenuation regions), we 
an 
on
lude that thenonlinear three-wave pro
esses do have the tenden
y totransfer SFHs to the ampli�
ation region. This 
on
lu-sion 
an be 
onsidered as a numeri
al 
on�rmation (inthe weak turbulen
e approximation) of the suggestiongiven in 4).17 ÆÝÒÔ, âûï. 2 513
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0
kx

ky

0

Fig. 3. The spe
tral density distribution of the distur-ban
e energy in the kxky plane for the time instan
et = 0, i.e., initial 
onditions for the numeri
al solutionof Eq. (6). The absen
e of SFHs with large wave num-bers is related to the a
tion of vis
osity. SFHs withsmall wave numbers are also absent, be
ause we 
on-sider small-s
ale disturban
es
Ψ(ϕ, 0.1)

−0.02

−0.01

0

0.01

0.02

−π/2 0 π/2
ϕFig. 4. The phase fa
tor 	('; t) (see Eq. (8)) for di�er-ent ' = ar
tg(ky=kx) at At = 0:1. It 
an be seen thatthe nonlinear term N̂Ek results in a transfer of the 2DSFH energy from the attenuation region ��=2 < ' < 0to the ampli�
ation one 0 < ' < �=2Figure 5 presents the disturban
e normalized totalenergy Etot(t)=Etot(0) vs time, whereEtot(t) = Z dkEk:The three 
urves 
orrespond to di�erent values of theparameter B (see Eq. (7)), i.e., to di�erent values ofthe initial disturban
e energy R dkEk. The �rst 
urvepertains to low values of B = B1 at whi
h the e�e
t of

B3(> B2)

B2

B1(≪ B2)

Etot(t)
Etot(0)

0.9

0.95

1

1.05

1.1
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1.2

0 0.1 0.2 0.3 0.4

AtFig. 5. The disturban
e normalized total energy vstime. Ea
h 
urve 
orresponds to a di�erent amplitudeof the initial disturban
e (i.e., to a di�erent value ofthe initial disturban
e energy), B1 � B2 < B3 (seeEq. (7)). The �rst 
urve suits well to low values ofB = B1 at whi
h the e�e
t of nonlinear pro
esses 
anbe ignored. In this 
ase, the total energy of the distur-ban
e is gradually de
reasing. For the other two valuesB = B2 and B3 (with B1 � B2 < B3), the e�e
tof nonlinear pro
esses is signi�
ant and the initial de-
rease of the total energy of disturban
es is repla
edby its growthnonlinear pro
esses 
an be ignored. As seen from Fig. 5,the total disturban
e energy gradually de
reases if non-linear pro
esses are negligible. For the other two valuesB = B2 and B3 (with B1 � B2 < B3), at whi
h thee�e
t of nonlinear pro
esses is signi�
ant, the initial de-
rease of the total energy is repla
ed by its growth. Thehigher is the initial energy, the sooner the growth be-gins. The results shown in Fig. 5 
an be explained onlyby the nonlinear transfer of energy of the disturban
esto the ampli�
ation region. The following argumentsmay prove this 
on
lusion.Only the unstable and dissipation pro
esses ((b)and (
)) lead to 
hanging the total disturban
e energy.Vis
osity (pro
ess (
)) always 
auses a de
rease of thedisturban
e energy. As for pro
ess (b), its net e�e
tdepends on the distribution of the energy spe
tral den-sity in the ampli�
ation and attenuation regions. If the�weight� of SFHs in the ampli�
ation region is �heav-ier� than that in the attenuation region, the net e�e
tof pro
ess (b) 
auses an in
rease of the total energyof the 2D disturban
e. Vi
e versa, if the �weight� ofSFHs is �heavier� in the attenuation region, pro
ess (
)
auses a de
rease of the total energy. It follows fromthe above argument that in a

ordan
e with Eq. (6),the total energy of 2D disturban
es 
an be
ome higher514
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e model : : :only if the �weight� of SFHs in the ampli�
ation re-gion is �heavier� than that in the attenuation region.In addition, the �weight� must be so mu
h �heavier�that the net e�e
t of the third term in Eq. (6) dominateover that of the vis
ous term.Initially, the SFHs of the 2D disturban
e 
onsideredhere (see Eq. (7) and Fig. 3) have the same �weight�in the ampli�
ation and attenuation regions. If we as-sume that the e�e
t of nonlinear pro
esses is negligible,the disturban
e is transferred to the attenuation regionwith time by the linear drift. This 
auses an in
rease ofthe �weight� of SFHs in the attenuation region towardhigher values than in the ampli�
ation region, and thetotal energy of the disturban
e under study must there-fore begin to de
rease. It is the temporal history that
an explain the B = B1 
urve run in Fig. 5. The be-havior of the 
urves with B = B2 and B3, namely thefa
t that the initial de
rease of the total disturban
eenergy is repla
ed by its growth, thus unambiguouslyindi
ates that beginning with a 
ertain time instan
e(whi
h o

urs the earlier the larger the disturban
e am-plitude is), the �weight� of SFHs in the ampli�
ationregion dominates over the �weight� of SFHs in the at-tenuation one. This fa
t 
an be explained only by thepreferential transfer of SFHs to the ampli�
ation re-gion 
aused by the nonlinear pro
esses. It also followsfrom Fig. 5 that there exists some threshold Bth for theinitial disturban
es. If B > Bth (e.g., B2; B3 > Bth),the initial de
rease of the total disturban
e energy isrepla
ed by its growth, whi
h must eventually lead tothe self-maintenan
e of disturban
es. We did not 
al-
ulate the threshold be
ause of the following simplereasons. In our 
al
ulations, the threshold must ap-pear at large times At� 1, where the weak turbulen
eapproa
h be
omes invalid. In addition, we made 
al-
ulations for a de�nite disturban
e and the 
al
ulationof the threshold in the parti
ular 
ase would not enri
hthe theory; mu
h more important is the establishmentof the threshold existen
e.4. DISCUSSIONThe aim of this paper was to prove the existen
e ofthe positive nonlinear feedba
k, the most problemati
statement of the �bypass� transition to turbulen
e. Weperformed numeri
al 
al
ulations for the 2D 
ase in theweak turbulen
e approximation. The results of 
al
ula-tions shown in Fig. 4 des
ribe the preferential nonlineartransfer of the disturban
e energy to the ampli�
ationregion and the results in Fig. 5 eviden
e for the prefer-ential transfer that 
an 
ru
ially 
hange the temporal

history: the total disturban
e energy de
rease 
an berepla
ed by its growth at 
ertain amplitudes. This be-havior makes the self-maintenan
e of the disturban
erealisti
. This is in turn the 
hara
teristi
 feature ofthe �ow transition to the turbulent state and its main-tenan
e.We 
an therefore 
on
lude that our numeri
al test
al
ulations prove the existen
e of the positive nonlin-ear feedba
k in the 2D 
ase. In reality, the shear �owturbulen
e has a 3D nature (
f. Ref. [6℄). However,the qualitative analysis in Se
. 2 implies that nonlin-ear pro
esses easier 
ope with the positive feedba
k inthe a
tual 3D 
ase than in 2D one. Indeed, we referto the 
ase dis
ussed in Se
. 2, where SFHs of in
om-pressible vorti
al 3D disturban
es are initially in regionI(I0) (see Fig. 2) and then drift along the ky axis thusfalling in the ampli�
ation region II(II0). They are am-pli�ed and rea
h region III(III0) be
ause of the drift.In distin
tion to 2D SFHs (see Fig. 1), 3D SFHs donot be
ome weaker after leaving the ampli�
ation re-gion. The spe
tral energy density of 3D disturban
esmust therefore be higher in region III(III0) than in re-gion I(I0). Combining this fa
t with the preferentialnonlinear transfer of the SFH energy to the ampli�-
ation region, we 
on
lude that the positive nonlinearfeedba
k must be easier realized in the 3D 
ase than inthe 2D one.In a

ordan
e with the �bypass� transition toturbulen
e, the transient growth of disturban
es is akey element of the sub
riti
al transition. (The �ow isspe
trally stable.) At the same time, triggering thenonlinear positive feedba
k � nonlinear regenerationof the SFH that 
an draw the mean �ow energy �is a ne
essary step to the transition. These fa
tsrequire the existen
e of a su�
iently high level ofinitial disturban
es in the system for the sub
riti
altransition. It is obvious that �nite disturban
es 
anbe produ
ed by external for
es. For instan
e, a pairof oblique waves with small, but �nite amplitudeswere used in Refs. [42; 43℄ as the initial 
ondition innumeri
al simulations of the transition. However,�nite disturban
es must also have the intrinsi
 �u
tu-ation origin a

ording to Refs. [44; 45℄. (These resultsshed new light on the �u
tuation ba
kground of thevortex mode �u
tuations in the laminar Couette �ow.)Namely, a

ording to Refs. [44; 45℄, the ba
kground ofthe vortex mode �u
tuations in a 
ertain subspa
e ofthe wave-number spa
e is su�
iently strong at highReynolds numbers and the level of its spe
tral energydensity by far ex
eeds the level of the white noise. Thismust in turn trigger a nonlinear positive feedba
k andlead to the transition. The reality of this time history515 17*
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t numeri
al simulation.Our resear
h was supported by the INTAS (grantGE-97 � 0504). APPENDIXDerivation of the weak turbulen
e equationWe let the x axis of a Cartesian 
oordinate systemlie along the velo
ity of the mean �ow and the y axisalong the �ow velo
ity shear, U0(Ay; 0; 0). The �uidis assumed to be in
ompressible. Considering that thedisturbed variables are independent of the z 
oordinate,the 
ontinuity equation and the equations of motion forthe disturban
es are given by�vx�x + �vy�y = 0; (A.1)� ��t +Ay ��x� vx +Avy + vx �vx�x ++ vy �vx�y = ��P�x ; (A.2)� ��t + Ay ��x� vy + vx �vy�x + vy �vy�y = ��P�y ; (A.3)where vx and vy are the respe
tive disturban
e velo
i-ties in the Cartesian 
oordinate system along the x andy axes and P is the pressure disturban
e normalized bythe undisturbed density of the �uid �0. The a
tion ofvis
osity in the weak turbulen
e equation is taken intoa

ount in the end. It is signi�
ant that we 
onsider dis-turban
es with the 
hara
teristi
 length s
ale mu
h lessthan the distan
e between the �ow boundaries. Thisallows us to negle
t the boundary e�e
ts.To simplify subsequent transformations, we intro-du
e a 
oordinate system x1y1, with its origin and thex1 axis 
oin
iding with those of xy and the y axis 
on-ve
ting with the mean �ow. This is equivalent to 
hang-ing the variables asx1 = x�Ayt; y1 = y; t1 = t; (A.4)��x = ��x1 ; ��y = ��y1 �At1 ��x1 ;��t = ��t1 �Ay1 ��x1 : (A.5)In terms of the new variables, Eqs. (A.1)�(A.3) 
an berewritten as��x1 vx +� ��y1 �At1 ��x1� vy = 0; (A.6)

�vx�t +Avy + vx �vx�x1 ++ vy � ��y1 �At1 ��x1� vx = � �P�x1 ; (A.7)�vy�t + vx �vx�y1 + vy � ��y1 �At1 ��x1� vy == �� ��y1 �At1 ��x1�P: (A.8)Substitution (A.4) is not a physi
al transition toa new 
oordinate system, be
ause in Eqs. (A.6)�(A.8)(as well as in Eqs. (A.1)�(A.3)), the quantities vx andvy are 
omponents of the disturban
e velo
ity in theCartesian 
oordinate system xy. The 
oe�
ients ofthe original set of linear equations (A.1)�(A.3) dependon the spatial 
oordinate y. As a result of the trans-formation, this spatial inhomogeneity is 
hanged to thetemporal one (Eqs. (A.7) and (A.8)).The disturbed variables 
an be Fourier de
om-posed with respe
t to the Eulerian (laboratory) 
oor-dinates (x; y) and the Lagrangian (
onve
ted) 
oordi-nates (x1; y1),8><>: vxvyP 9>=>; = 1Z�1 dkxdky8><>: v̂x(kx; ky; t)v̂y(kx; ky; t)P̂ (kx; ky; t) 9>=>;�� exp(ikxx+ ikyy); (A.9)8><>: vxvyP 9>=>; = 1Z�1 dk1xdk1y8><>: ~vx(k1x; k1y; t1)~vy(k1x; k1y; t1)~P (k1x; k1y; t1) 9>=>;�� exp(ik1xx1 + ik1yy1): (A.10)The two Fourier representations in Eqs. (A.9) and(A.10) are di�erent, although they 
oin
ide at the ini-tial moment (t = 0) be
ause x � x1 and y � y1. Thisdi�eren
e is manifested in the dynami
s of SFHs in thewave-number spa
e. The wave ve
tor k1 of a parti
ularSFH is 
onstant in time in the 
onve
ted 
oordinates,while it varies in laboratory 
oordinates. Ea
h of thesetwo methods has its advantages. In the linear theory,Eq. (A.10) is 
onvenient in studying the real spatialFourier harmoni
s moving with them. However, in an-alyzing the weak turbulen
e equation (thus assumingthe ex
itation of many degrees of freedom), it is impos-sible to follow the evolution of ea
h Fourier harmoni
s.In the latter 
ase, it is more 
onvenient to study whato

urs to the energy at a �xed point of the k-spa
e,516
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e model : : :i.e., to des
ribe the variation of the spe
tral density ofthe disturban
e energy at a �xed point of the k-spa
e.In spite of this, expansion (A.10) is also useful for in-termediate transformations.To derive the weak turbulen
e equation, we insertexpansion (A.10) in (A.6)�(A.8),k1x~vx(k1x; k1y; t) ++ (k1y � k1xAt)~vy(k1x; k1y ; t) = 0; (A.11)��k1yk1x �At� �~vy(k1; t)�t � 2A~vy(k1; t) ++ Z dk01dk001 �Æ(k01 + k001 � k1)�k01yk01x �At� �� ~vy(k01; t)ik001x�k001yk001x �At� ~vy(k001 ; t)�++ Z dk01dk001 �Æ(k01 + k001 � k1)~vy(k01; t)ik001x ���k001yk001x �At��� ���k001yk001x �At�� ~vy(k001 ; t)� = �ik1x ~P ; (A.12)�~vy(k1; t)�t + Z dk01dk001 ���Æ(k01 + k001 � k1) ���k01yk01x �At� ~vy(k01; t)� �� ik001x~vy(k001 ; t)�++ Z dk01dk001 �Æ(k01 + k001 � k1)~vy(k01; t) �� ik001x~vy(k001 ; t)�k001yk001x �At�� == �ik1x�k1yk1x �At� ~P : (A.13)Eliminating ~P from these equations gives a sym-metri
 equation for vy ,(k21x + k21y)�~vy(k1x; k1y; t)�t �� 2Ak1xk1y(t)~vy(k1x; k1y; t) ++ i2 Z dk01dk001 �Æ(k01x + k001x � k1x)Æ(k01y + k001y � k1y)�� k1x[k0021 (t)� k021 (t)℄�k001yk001x � k01yk01x��� ~vy(k01x; k01y; t)~vy(k001x; k001y; t)g = 0; (A.14)

wherek1y(t) = k1y � k1xAt; k21(t) = k21x + k21y(t):Introdu
ing the fun
tionCk = [k21x + k21y(t)℄~vy(k1; t); (A.15)we rewrite Eq. (A.14) in a more 
onvenient form (
f.Refs. [39�41℄)i�Ck1�t = Z dk01dk001Vk1k01k001Ck01Ck001 ; (A.16)whereVk1k01k001 = Æ(k01 + k001 � k1)k021 (t)� k0021 (t)k021 (t)k0021 (t) �� (k01x + k001x)�k01yk01x � k001yk001x� : (A.17)We note that Ck is related to the vorti
ity of the spatialFourier harmoni
s.Assuming that many degrees of freedom (modes)are ex
ited, we use the random phase approximation(
f. Ref. [39℄), whi
h 
an be expressed by
Ck1Ck01� = nk1(t)Æ(k1 + k01) �� n(k1x; k1y ; t)Æ(k1 + k01); (A.18)where h: : : i denotes the phase average.To use the methods of the weak turbulen
e theory,we expand Ck asCk1 = C(0)k1 + C(1)k1 + : : : ; (A.19)where C(0)k1 � C(1)k1 (A.20)and �C(0)k1�t = 0; (A.21)whi
h means that the nonlinearity is taken into a

ountwithin the perturbation theory. Using Eqs. (A.19)�(A.21), it follows from (A.16) thatC(1)k1 == �i Z dk01dk001 8<:C(0)k01 C(0)k001 tZ0 dt0Vk1k01k0019=; : (A.22)We next use the relations between higher 
orrelationsa

epted in the weak turbulen
e theory,DC(0)k1 C(0)k01 C(0)k001 E = 0; (A.23)517
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an be easily seen, we then have�nk1�t Æ(k1 + k0001 ) == �i Z dk01dk001 �Vk1k01k001 
Ck01Ck001Ck0001 �++ Vk0001 k01k001 
Ck1Ck001Ck0001 �� �� �i Z dk01dk001 nVk1k01k001 �DC(0)k01 C(0)k001 C(1)k0001 E++ DC(1)k01 C(0)k001 C(0)k0001 E+ DC(0)k01 C(1)k001 C(0)k0001 E�++ Vk0001 k01k001 �DC(0)k1 C(0)k01 C(1)k001 E+ DC(1)k1 C(0)k01 C(0)k001 E++ DC(0)k1 C(1)k01 C(0)k001 E�o : (A.25)In view of (A.22) and (A.24), this be
omes= 2 Z dk01dk001 k01k001 ��8<:Æ(k1 � k01 � k001 )Æ(k1 + k0001 ) �� 0�nk1nk001 tZ0 dt0 k01k001 + 2nk1nk001 tZ0 dt0 �k01k0011A++ Æ(k1 + k01 + k001 )Æ(k1 + k0001 )��0�nk01nk001 tZ0 dt0 k01k001++ 2nk1nk001 tZ0 dt0 k1k0011A9=; ; (A.26)where k01k001 (t) � � 1k0021 (t) � 1k021 (t)� (k01x+k001x)�k01yk01x � k001yk001x� :Changing the variables in the se
ond part of the inte-gral as k01 ! �k01 and k001 ! �k001and taking into a

ount that �k01;�k001 = � k01k001 ; (A.27)

we 
ontinue the transformations as�nk1�t = 4 Z dk01dk001Æ(k1 � k01 � k001 ) k01k001 ��0�nk01nk001 tZ0 dt0 k01k001�� 2nk1nk001 tZ0 dt0 k1 �k0011A : (A.28)Inserting the expressions for  k01k001 and  k1 �k001 (seeEq. (A.26)) in the time integrals and integrating, weobtaintZ0 dt0 k01k001 = 1A (k01x + k001x)�k01yk01x � k001yk001x���( 1k0021x ar
tg At1 + (k001y=k001x) �(k001y=k001x)�At� �� 1k021x ar
tg At1+(k01y=k01x) �(k01y=k01x)�At�) ; (A.29)tZ0 dt0 k01�k001 = 1A (k1x � k001x)�k1yk1x � k001yk001x���( 1k0021x ar
tg At1 + (k001y=k001x) �(k001y=k001x)�At� �� 1k 21x ar
tg At1+(k1y=k1x) �(k1y=k1x)�At�) : (A.30)As mentioned above, it is 
onvenient to obtain theequation for the energy density at a �xed point of thek-spa
e in order to 
onstru
t the weak turbulen
e the-ory. For this, we use Eqs. (A.4)�(A.5) to transformEqs. (A.28)�(A.30) to the new variables kx and ky,
v2� = 
v2x + v2y� = Z dk1(~v2x + ~v2y) == Z dk1~v2y(k1x; k1y; t) 1 + k21y(t)k21x(t)! == Z dk1 n(k1x; k1y; t)k21x[k21x + k21y(t)℄ == Z dkn(kx; ky + kxAt; t)k2y(k2x + k2y) ; (A.31)wherekx � k1x; ky � k1y(t) = k1y � k1xAt: (A.32)518
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e model : : :On the other hand,
v2� = Z dk �v̂2x(kx; ky; t) + v̂2y(kx; ky; t)� == Z dkE(k; t) � Z dkEk; (A.33)when
e Ek = n(kx; ky + kxAt; t)k2x(k2x + k2y) : (A.34)Ek is the energy density of the 2D vortex modedisturban
es at a �xed point of the k-spa
e. In otherwords, this is the spe
tral density of energy.Inserting integrals (A.29) and (A.30) in Eq. (A.28),
hanging the variables in a

ordan
e with (A.4), andusing (A.34), we obtain the equation for the spe
traldensity of the disturban
e energy at a �xed point inthe k-spa
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