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We discuss a new concept of the subcritical transition to turbulence in unbounded smooth (noninflectional)
spectrally stable shear flows. This concept (the so-called «bypass» transition) follows from considering the
non-normality of the linear dynamics of vortex disturbances in shear flows and is most easily interpreted by
tracing the evolution of spatial Fourier harmonics (SFHs) of the disturbances. The key features of the concept
are as follows: the transition of the flow by only finite amplitude vortex disturbances despite the fact that the
phenomenon is energetically supported by a linear process (the transient growth of SFHs); the anisotropy of
processes in the k-space; the onset of chaos due to the dynamical (not stochastic) process — nonlinear processes
that close the transition feedback loop by the angular redistribution of SFHs in the k-space. The evolution of
two-dimensional small-scale vortex disturbances in the parallel flow with a uniform shear is analyzed within the
weak turbulence approach. This numerical test analysis is carried out to prove the most problematic statement
of the concept, the existence of a positive feedback caused by the nonlinear process. Numerical calculations also
show the existence of a threshold: if the amplitude of the initial disturbance exceeds the threshold value, the
self-maintenance of disturbances becomes realistic. The latter is a characteristic feature of the flow transition

to the turbulent state and its maintenance.

PACS: 47.27.Cn, 47.27.Eq, 47.20.Ky, 47.20.Ft

1. INTRODUCTION

Shear flows are permanently interesting because
they are widely spread both in the terrestrial and as-
trophysical environment (galaxies, stars, jets, planet
atmospheres, oceans, etc.) and in the laboratory and
industry (tokamaks, MHD facilities, etc.). Some sim-
ple and important hydrodynamic shear flows (e.g., the
Couette flow) remain insensitive to infinitesimal distur-
bances at any Reynolds numbers but become turbulent
at finite disturbances even at moderate (subcritical)
Reynolds numbers. Moreover, the transition to turbu-
lence occurring in such flows strongly depends not only
on the amplitude of the initial disturbances but also on
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their type and spectrum. Physics of these facts was not
explained even one decade ago [1-6].

Specific features of shear flows rigrorously estab-
lished recently [7] led to difficulties in studying linear
phenomena in the framework of the canonical modal
analysis, i.e., the technique where all the disturbed
quantities are expanded in Fourier integrals in time.
The point is that the operators arising in this approach
are not self-adjoint [8]. Their eigenfunctions are not
orthogonal to each other, which yields a strong inter-
ference among them. As a result, even if all the imagi-
nary parts of all eigenfrequencies are negative and the
eigenfunctions monotonically decay with time (i.e., the
flow is spectrally stable), a particular solution can re-
veal a large relative growth over a finite time interval.
The analysis of separate eigenfunctions and eigenfre-
quencies is therefore not sufficient to arrive at definite
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conclusions on the linear evolution of disturbances. In
addition, taking the interference into account usually
leads to insurmountable complications. This has given
impetus to the so-called nonmodal analysis as a tool
for describing the evolution of disturbances in smooth
shear flows (i.e., those without the inflection point), pri-
marily in the parallel flow with the uniform shear of ve-
locity. Within this approach, the temporal behavior of
the spatial Fourier harmonics (SFHs) of disturbances is
studied without any spectral expansion in time. Being
an optimal tool, the nonmodal analysis considerably
simplifies the mathematical description of the processes
and is capable of revealing the key phenomena that es-
cape perception in the modal approach (in particular,
the phenomena caused by the non-normality of the lin-
ear dynamics). Many new unexpected results on time
evolution of both the vortex mode [9-17] and acoustic
wave [18,19] disturbances have already been obtained
within this approach; it was also successfully applied
to the study of the MHD waves [20-22]. New lin-
ear mechanisms of the mutual transformation of wave
modes [23-25] and conversion of vortices to waves [26—
29] have been discovered. A new concept of the sub-
critical transition to turbulence in smooth shear flows
(those without the inflection point) has been formu-
lated [30-37]. The latter, named the «bypass» transi-
tion, is the subject of our analysis.

According to the concept, the subcritical transi-
tion to turbulence that occurs in spectrally stable shear
flows is caused by the interplay among four (linear and
nonlinear) basic phenomena. The transition scenario
based on this concept is presented in detail (in qual-
itative terms) in Sec. 2. In Sec. 2, we also consider
the «philosophicaly problem of turbulence, i.e., how a
completely deterministic and causal system can have
chaotic solutions. In Sec. 3, we give numerical test
calculations to prove the most problematic statement
of the concept — the existence of a positive nonlinear
feedback. The subsequent results of numerical calcula-
tions are also presented in Sec. 3. We have restricted
ourselves to the investigation of the action of nonlin-
earity for the two-dimensional symmetric disturbance
(which is quite simple and most suitable for testing)
in the weak turbulence approximation. In reality, the
shear flow turbulence has a three-dimensional (3D) na-
ture. However, from the discussion presented in Sec. 4
it follows that nonlinear processes should easier cope
with the «mission» of the positive feedback in the ac-
tual 3D case than in the 2D one. The weak turbu-
lence equation for a 2D vortex mode disturbances in
the parallel flow with a uniform shear is derived in the
Appendix.
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2. SCENARIO OF THE SUBCRITICAL
TRANSITION TO TURBULENCE

Vortex mode (aperiodic/nonoscillating)  distur-
bances are the creator of turbulence in the unbounded,
parallel flow with a constant shear rate and a uniform
density that we consider here. Therefore, the presented
scenario involves disturbances of only this type. The
nonmodal formalism allows revealing the following
specific features in the evolution of SFHs:

(a) The wave number of a SFH along the axis or-
thogonal to the flow velocity (i.e., along the flow shear)
varies in time; in the linear approximation, there is a
«drift» of a SFH in the wave-number space, i.e., in the
k-space.

Actually, (cf. [9-28]) in a parallel flow with uniform
shear

Up = (Ay,0,0) (1)

(where A is the shear parameter that is assumed to
be positive), disturbances cannot have the form of a
simple plane wave because of the effect of the shearing
background on the wave crests. The SFH wave num-
bers are then time-dependent: if a SFH with the wave
numbers k;, ky,(0), and k, is initially disturbed,

v2(0) = 0g (ky, ky(0), K, 0) x

x exp(ikyx + ik, (0)y +ik.z), (2)
then the evolution of its phase for ¢t > 0 is determined
by the equations

Vg (t) o exp(ikgx + ky(t)y + ik, 2),

(3)
iy (1) = ky (0) — ko At (4)

that describe the «linear drift» of the SFH in the wave-
number space.

The values of the spatial characteristics (i.e., kg,
ky(t), and k.) define the energy exchange intensity be-
tween SFHs and the background flow to a greater ex-
tent. Therefore, the linear drift leads to the variation
of the intensity of this exchange.

(b) Not all SFHs can draw energy from the shear;
only the SFHs that are located in a certain region of
the k-space (called the «amplification regions below)
are amplified. Moreover, each SFH is amplified dur-
ing a limited time interval until it leaves the amplifica-
tion region as a result of the linear drift. In addition,
the presence of SFHs in this region imposes conditions
mainly on the direction (and not the magnitude) of
their wave vector. Therefore, the process of the en-
ergy exchange between vortex mode disturbances and
the shear flow has a pronounced anisotropic character
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Fig.1. Time evolution of the normalized energy of

2D and 3D SFHs defined in the linear stage and in
the invisced case (i.e., with only processes (a) and
(b) involved). Thin solid line corresponds to a 2D
SFH with the parameters k,(0)/ks 10, k. 0,
02(0)/0,(0) 10, and ©.(0) = 0. The bold solid
line corresponds to a 3D SFH with the parameters
ky(0)/ka = 10, k2 /ks = 1, 5,(0)/#,(0) = —5, and
02(0)/0,(0) 5. Here, ©,(0), 9,(0), and ©.(0) are
the components of the SFH velocity at ¢t = 0. ks,
ky(0), and k. are related to the wave numbers of the
SFH (see Fig. 2)

in the k-space. Physics of this process is described in
detail in [38].

Therefore, vortex mode disturbances at the linear
stage of the evolution are pumped by the background
shear flow and grow within a limited time interval, i.e.,
exhibit a transient growth. There is an essential dif-
ference between the transient growths of 2D and 3D
SFHs [16-20], which can be seen by comparing the evo-
lution of their energy, as in Fig. 1. This figure shows
time evolution of the normalized energy of 2D and 3D
SFHs. It corresponds to the linear dynamics of sepa-
rate SFHs in the invisced case (i.e., when only processes
(a) and (b) are at work).

The amplification region in the k-space is much
wider for 3D SFHs than for 2D ones. Moreover, in con-
trast to 2D SFHs, the energy of 3D SFHs does not de-
crease after passing the amplification region (3D SFHs
do not return energy to the flow) but it saturates and
approaches a value that may be much higher than their
initial value. In reality, however, a viscous dissipation
becomes efficient as |k, ()] — oo and (if no new phe-
nomena, e.g., nonlinear phenomena are involved) con-
verts the energy of SFHs into heat. We list the viscous
dissipation as item (c).

Thus, the nonmodal approach demonstrates not
only the possibility of the algebraic/transient growth
of SFHs of vortex mode disturbances in shear flows,
but also the anisotropic properties of linear processes
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in the wave-number space. This anisotropy is also ob-
served in nonlinear processes.

(d) Nonlinear processes, apart from the usual frag-
mentation of the disturbance scale, are also responsible
for the angular redistribution of SFHs in the k-space,
i.e., they could «supply» SFHs to the amplification re-
gion, closing a feedback loop of the transition to tur-
bulence. In a forced shear flow, the nonlinear terms do
not contribute to the energy transfer between the mean
flow and disturbances.

Processes (a) and (b) are quantitatively analyzed
and well-acknowledged in papers devoted to the non-
modal approach. The existence of a positive feedback
(caused by the nonlinear processes) has been checked
using model equations [34, 35]. In Sec. 3, we prove it us-
ing the Navier—-Stokes equation in the weak turbulence
approach.

It is plausible that the angular redistribution of
SFHs in the k-space is the main process caused by the
nonlinearity. The nonlinear processes then indirectly
favor the energy extraction by SFHs from the shear
flow (the SFH scale decrease to the dissipative scale
should be ensured by the linear drift of SFHs in the
k-space).

The scenario of the subcritical transition to tur-
bulence (called the «bypass» transition) is based on
the interplay of the linear and nonlinear basic phe-
nomena itemized above. In presenting this scenario,
we schematically describe these processes in the plane
k. = const (which is parallel to the plane kyk,). It
is obvious that the boundaries of the k-space regions
where phenomena (b) and (c) occur are vague. We
fix the regions where these phenomena are operative
for clarifying the analysis. The viscous dissipation be-
comes essential for harmonics with the wave numbers
satisfying the inequality

k2R >Ry,

where the value of k, depends on the Reynolds number.
As follows from Fig. 1, the real growth of the distur-
bance energy occurs when the ratio |k, (t)/k,| reaches
moderate values (the dashed region in Fig. 2). We can
therefore separate three regions inside the circle

,/k%—l—k2<k,,:

I(T"), II(IT"), and III(III"). We now discuss what hap-
pens to a SFH of the vortex mode disturbance injected
in region I(T'), for instance at point 1 (see Fig. 2). The
wave number of the SFH varies in time, thereby lead-
ing to a drift in the direction marked by the arrows.
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Fig.2. A conventional separation of regions of the ac-
tion of the basic physical processes that are responsible
for the onset of turbulence/chaos in accordance with
the bypass transition. The energy exchange between
the disturbances and the background flow is essen-
tial (a transient growth takes place) in regions II(11")
dashed by vertical lines; nonlinear processes (e.g., of
the type k' + k" — k) and the «linear drift» are ef-
fective in all regions I(I'), 11(11"), and II(11I") inside the
circle \/k2 + k% < k,. The viscous dissipation of SFHs
dominates outside the circle \/k2 + k2 > k.,

After a certain moment, when the harmonics passes
point 2, its energy starts to grow. This growth is tran-
sient and lasts until the SFH leaves the amplification
region II(IT") (point 3 in Fig. 2). Continuing its drift,
the harmonics then reaches point 4, where the dissi-
pative processes are switched on and convert the dis-
turbance energy into the heat. Consequently, if the
nonlinear phenomena are inefficient, nothing interest-
ing can occur as regards the transition, and the distur-
bances eventually disappear. A permanent extraction
of the shear energy by disturbances is necessary for
their maintenance. This is possible in the case of the
permanent existence of disturbances in regions I(I') and
II(IT") that can be provided by nonlinear processes, in
particular, by the three-wave processes

k'+k" -k
(see Fig. 2), four-wave processes
kl + kll + kIII - k./

five-wave processes, etc. This means a predominant
transfer of the disturbance energy by the nonlinear pro-
cesses from region ITI(ITT") to regions I(I') and II(IT").
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However, there are no restrictions on the reverse trans-
fer (from regions I(I') and II(IT") to region ITI(III")).
But, as shown is Sec. 3, the nonlinear processes ensure
a preferential transfer of the disturbance energy to the
amplification region.

The reproduction of disturbances in region I(I') de-
pends on both the amplitude and the spectrum of the
initial disturbances. The nonlinear decay processes are
insignificant at low amplitudes and are not able to re-
sist the linear drift of SFHs in the k-space. As a result,
low-amplitude disturbances are damped without any
trace, i.e., without inducing the transition to turbu-
lence. The higher is the initial disturbance amplitude,
the more noticeable nonlinear effects occur. At a cer-
tain amplitude (which evidently depends on the initial
disturbance spectrum and the Reynolds number), non-
linear processes can compensate the action of the linear
drift, thereby ensuring the permanent return of SFHs to
the amplification region (this is justified by simulations
in Sec. 3). This eventually ensures a permanent extrac-
tion of energy from the background flow and the main-
tenance of disturbances. Therefore, a certain threshold
must occur in accordance with the scenario discussed
here.

Any theory aiming at explaining the transition to
turbulence must distinctly answer the problem of how
a completely deterministic and causal system can have
chaotic solutions. In accordance with the above sce-
nario, the onset of turbulence/chaos occurs because of
dynamical (not stochastic) processes and can be ex-
plained as follows.

We assume that we initially have a spatially local-
ized vortical disturbance with sufficiently regular fea-
tures: a package of spatial Fourier harmonics. In gen-
eral, a disturbance of some physical variable, e.g., ve-
locity can be represented as

vie ) = [ kol explig.n) + k-1l ()

where |[v(k,t)| and ¢(k,t) are real functions of k and
t. We assume that the initial phase ¢(k,0) is a weakly
varying function of k. In this case, the initial distur-
bance v(r, 0) is regular and sufficiently smooth in space.

What kind of processes govern the phase evolution
at any point of the k-space?

We consider processes in at arbitrarily chosen point
in the k-space inside the package. Following the sce-
nario, the SFH that happens to be at the point at the
initial moment of time, leaves this point because of the
linear drift. But this «loss» is compensated by the lin-
ear and nonlinear processes: a portion of energy «ar-
rivesy as the result of the linear drift; portions of energy
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are transferred from numerous points of the k-space as
a result of the nonlinear decay processes (three-wave,
four-wave, etc.) described above. The total energy
of the SFH at the chosen point is composed of these
portions. Naturally, all these portions have their own
phases. It is clear that the Fourier harmonic phase at
the point must be a certain sum of these phases. It is
evident that the phase p(k,t) becomes a strongly vary-
ing function of k with the passage of time, because the
phases of SFHs at neighboring points of the k-space can
differ from each other by any value. Consequently, an
initially regular disturbance becomes more and more
irregular, thereby tending to the chaotic behavior.

3. THE WEAK TURBULENCE APPROACH

In accordance with the above scenario, nonlinear
processes do not contribute to the energy transfer be-
tween the mean flow and perturbations. They result in
(i) the fragmentation of the disturbance scale, i.e., the
energy transfer from large scales to smaller ones and
finally to the dissipative ones; (i7) the angular redistri-
bution of SFHs in the k-space. It must be noted that
the energy transfer to the small dissipative scales also
occurs because of the linear drift of SFHs (process (a)),
which could be even more operative than the nonlinear
fragmentation of the disturbance scale. We again em-
phasize that the main role of the nonlinear processes in
the presented scenario consists in (ii) rather than (i),
because in doing so, they could «supply» SFHs to the
amplification region, closing the feedback loop of the
transition to turbulence. The existence of a positive
nonlinear feedback is the most problematic statement
of the concept. It has been verified using model equa-
tions [34,35]. In this section, we attempt to prove it
using the Navier-Stokes equation. We performed nu-
merical calculations for a 2D symmetric vortex mode
disturbance in the weak turbulence approximation. As
we see in what follows, the 2D symmetric disturbance
is most suitable for testing the existence of the positive
nonlinear feedback.

The weak turbulence equation describing the evolu-
tion of the energy spectral density of a 2D disturbance
is derived in the Appendix,

OFx 24k, k
= E) — W p
5+ Ve(VEK) e K +
+v(k2+k2)Ex = NEx, (6)
where

Vi = (0/0ky,0/0ky)
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V = (—Ak,,0)

and Ey is the energy density of the 2D vortex mode
disturbances at a fixed point of the k-space. (In other
words, Ey is the spectral density of energy.) The term
NEy is defined by Eq. (A.36). As can be seen from
Eq. (6) (and as described in Sec. 2), the energy spec-
tral density (0Ex/0t) changes because of the following
reasons.

1) The linear «drift> of SFHs in the wave-number
space (the second term in the left-hand-side). This
term does not cause a variation of the total disturbance
energy,

3

/ dkVi(VE) = 0,

but results in a transfer of SFHs from the amplification
region to the attenuation one.

2) The energy exchange between disturbances and
the background flow (the third term in the left-hand
side). Assuming that A > 0, we can state that the
2D SFHs for which k,(t)/k; > 0 gain energy from
the background flow and their amplitude increases,
whereas the amplitudes of SFHs for which &, (t)/k, <0
decrease.

3) The viscosity (the last term in the left-hand side),
which transforms the disturbance energy into heat and
which is significant for large wave numbers.

4) The nonlinear three-wave processes (the term in
the right-hand side), leading to the energy exchange

3

between different SFHs [39-41]. It is easy to show that
/ dkNEy = 0,

i.e., the nonlinear term leads only to the energy redis-
tribution in the k-space (not to a change of the total
disturbance energy).

The conditions for wave vectors (k' + k" = k)
and frequencies (wi + ws w) are usually imposed
on three-wave processes in the weak turbulence equa-
tions [39-41]. Because both conditions cannot be
simultaneously satisfied for waves with certain wave
vectors, the restriction of three-wave processes arises.
Moreover, these conditions cause the existence of
some completely non-decaying spectra. The vortex
mode disturbances considered here are aperiodic
(w1, ws,w = 0) and therefore automatically satisfy the
second condition (w; + ws = w). Hence, there are
no forbidden three-wave processes for SFHs in our
case. However, they have different probabilities. For
example, the probability of the processes k' + k' = k
is equal to zero, although it is not forbidden in princi-
ple. Therefore, the nonlinear term in Eq. (6) is equal
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to zero if a single SFH mode is disturbed. This explains
the following well-known fact: a single SFH mode is an
exact solution of the complete incompressible Navier—
Stokes equation, while a superposition of modes is usu-
ally not.

The net effect of all the three-wave processes de-
pends on two factors: the probability with which dif-
ferent decay acts occur (the coefficients of Ey/ Exn and
ExFx in Eq. (A.36)) and the distribution of SFHs in
the k-space (the values of Ey Ey and EyxEy). If the
spectral density of energy is increased in the first and
third quarters of the k-space at the cost of the second
and fourth ones, we can say that the three-wave pro-
cesses lead to the preferential transfer of SFHs to the
amplification region, i.e., lead to the regeneration of
SFHs, which can gain shear energy (lead to the positive
feedback). This trend of nonlinear processes can be re-
vealed by showing their asymmetry in the k-space with

respect to the K, axis. To proceed, we consider the
initial 2D disturbance with the highest possible sym-
metry with respect to the K, axis (see Fig. 3). In this
case, processes (a) and (c) are symmetric with respect
to K, and process (b) is asymmetric because it results
in removal of SFHs from the first and third quarters
of the k-space to the second and fourth ones; process
(b) is therefore asymmetric in the opposite direction to
nonlinear process (d). That is why the symmetric 2D
disturbance presented in Fig. 3 is most suitable for de-
termining the trend of the nonlinear transfer of SFHs.

3.1. Results of the numerical calculation of the
weak turbulence equation

We consider the 2D initial disturbance with the
spectral density of energy that is symmetric in the
k-space (see also Fig. 3)

3

Ex(t=0)=

_ { B {arctg (ﬂl(k,% - k- kZ)) arctg (B2(k§ + k; — kg))}2
)

|
where B defines the value of the initial disturbance

energy, ko and k, = 1/\/@ are the minimum and
maximum values of the disturbance wave vectors re-
spectively, and (; and > denote the sharpness of the
disturbance boundaries in the k-space. The calcula-
tions are carried out at 31 = 0.07, f2 = 0.8, kg = 0.3,
and k, = 10 (i.e., A = 1 and v = 0.01). The ab-
sence of SFHs with large wave numbers is justified by
the action of viscosity. SFHs with small wave numbers
are also absent, because we consider small-scale distur-
bances. The evolution of Ey was numerically investi-
gated for a short time interval (At < 1) because of two
reasons. First, Eq. (6) is obtained in the weak turbu-
lence approximation and it is therefore correct only for
a relatively short time interval (t < 1/A4). Second, the
trend of nonlinear processes is revealed even for such
short time intervals.

Initially, we tried to answer the question what the
redistributing action of the nonlinear term NEy is in
the k-space. Specifically, whether the term N Ey trans-
fers disturbance energy to the amplification region.
For 2D disturbances, the amplification region covers
the first and third quarters of the kg k, plane (where
kgky > 0) and the attenuation region covers its second
and fourth quarters (where k,k, < 0). Introducing po-
\ k2 kL
we can say that the angle ¢ between 0 and 7/2 corre-
sponds to the amplification region, and between —m /2

lar coordinates p = arctg(k,/k,) and k =

17 ZKOT®, Beim. 2
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for k2

for k2

>k§+k§ and kg+k§>k§, 7)
<kl +kyand k2 + k) < k3,
and 0 to the attenuation one.

Obviously, the value and sign of NEy depend on
¢ and k. Taking the integral over k, we obtain the
function that describes the nonlinear redistribution of
energy only in ¢,

T(p,t) = /dk kN Ej. (8)

It is easy to see that if the conditions

(9)

are satisfied, we can unambiguously state that the non-
linear processes transfer the disturbance energy to the
amplification region, thereby realizing the positive feed-
back.

We thus determine the dependence of ¥ on ¢. The
result of our calculations at the time instance At = 0.1
is shown in Fig. 4. Tt is seen that conditions (9) are sat-
isfied, i.e., the nonlinear three-wave processes lead to
the preferential energy transfer to the amplification re-
gion. Because we used a symmetric initial disturbance
(with SFHs having the same «weight» in the amplifica-
tion and attenuation regions), we can conclude that the
nonlinear three-wave processes do have the tendency to
transfer SFHs to the amplification region. This conclu-
sion can be considered as a numerical confirmation (in
the weak turbulence approximation) of the suggestion
given in 4).

Vo, t)ocpensa >0, V(o t)| _r/2cpc0 <0
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Fig.3. The spectral density distribution of the distur-

bance energy in the k.k, plane for the time instance

t =0, i.e., initial conditions for the numerical solution

of Eq. (6). The absence of SFHs with large wave num-

bers is related to the action of viscosity. SFHs with

small wave numbers are also absent, because we con-
sider small-scale disturbances

T(p,0.1)

0.02

0.01

—0.01

—0.02
—7/2

w/2
¥

Fig. 4. The phase factor U (¢, t) (see Eq. (8)) for differ-

ent ¢ = arctg(ky /k.) at At = 0.1. It can be seen that

the nonlinear term N Ey results in a transfer of the 2D

SFH energy from the attenuation region —7/2 < ¢ < 0
to the amplification one 0 < ¢ < 7/2

Figure 5 presents the disturbance normalized total
energy Eiot(t)/Eior(0) vs time, where

Eror(t) = / dkFy.

The three curves correspond to different values of the
parameter B (see Eq. (7)), i.e., to different values of
the initial disturbance energy [ dkEyx. The first curve
pertains to low values of B = B; at which the effect of

514

Eiot(t)
Et0t(0)

1.2
1.15
1.1
1.05

0.95

09 1 1 1 1
0.1 0.2 0.3 0.4

At

Fig.5. The disturbance normalized total energy vs
time. Each curve corresponds to a different amplitude
of the initial disturbance (i.e., to a different value of
the initial disturbance energy), B1 < B2 < B3 (see
Eq. (7)). The first curve suits well to low values of
B = B, at which the effect of nonlinear processes can
be ignored. In this case, the total energy of the distur-
bance is gradually decreasing. For the other two values
B = B; and Bs (with By < By < Bjs), the effect
of nonlinear processes is significant and the initial de-
crease of the total energy of disturbances is replaced
by its growth

nonlinear processes can be ignored. As seen from Fig. 5,
the total disturbance energy gradually decreases if non-
linear processes are negligible. For the other two values
B = By and Bs (Wlth B € By < Bg)./ at which the
effect of nonlinear processes is significant, the initial de-
crease of the total energy is replaced by its growth. The
higher is the initial energy, the sooner the growth be-
gins. The results shown in Fig. 5 can be explained only
by the nonlinear transfer of energy of the disturbances
to the amplification region. The following arguments
may prove this conclusion.

Only the unstable and dissipation processes ((b)
and (c)) lead to changing the total disturbance energy.
Viscosity (process (c¢)) always causes a decrease of the
disturbance energy. As for process (b), its net effect
depends on the distribution of the energy spectral den-
sity in the amplification and attenuation regions. If the
«weight» of SFHs in the amplification region is «heav-
ier» than that in the attenuation region, the net effect
of process (b) causes an increase of the total energy
of the 2D disturbance. Vice versa, if the «weight» of
SFHs is «heaviery in the attenuation region, process (c)
causes a decrease of the total energy. It follows from
the above argument that in accordance with Eq. (6),
the total energy of 2D disturbances can become higher



MITD, Tom 121, BHIm. 2, 2002

A turbulence model ...

only if the «weight» of SFHs in the amplification re-
gion is «heavier» than that in the attenuation region.
In addition, the «weight» must be so much «heavier»
that the net effect of the third term in Eq. (6) dominate
over that of the viscous term.

Initially, the SFHs of the 2D disturbance considered
here (see Eq. (7) and Fig. 3) have the same «weight»
in the amplification and attenuation regions. If we as-
sume that the effect of nonlinear processes is negligible,
the disturbance is transferred to the attenuation region
with time by the linear drift. This causes an increase of
the «weight» of SFHs in the attenuation region toward
higher values than in the amplification region, and the
total energy of the disturbance under study must there-
fore begin to decrease. It is the temporal history that
can explain the B = By curve run in Fig. 5. The be-
havior of the curves with B = By and Bj, namely the
fact that the initial decrease of the total disturbance
energy is replaced by its growth, thus unambiguously
indicates that beginning with a certain time instance
(which occurs the earlier the larger the disturbance am-
plitude is), the «weight» of SFHs in the amplification
region dominates over the «weight» of SFHs in the at-
tenuation one. This fact can be explained only by the
preferential transfer of SFHs to the amplification re-
gion caused by the nonlinear processes. It also follows
from Fig. 5 that there exists some threshold By, for the
initial disturbances. If B > By, (e.g., Ba, B3 > Byy),
the initial decrease of the total disturbance energy is
replaced by its growth, which must eventually lead to
the self-maintenance of disturbances. We did not cal-
culate the threshold because of the following simple
reasons. In our calculations, the threshold must ap-
pear at large times At > 1, where the weak turbulence
approach becomes invalid. In addition, we made cal-
culations for a definite disturbance and the calculation
of the threshold in the particular case would not enrich
the theory; much more important is the establishment
of the threshold existence.

4. DISCUSSION

The aim of this paper was to prove the existence of
the positive nonlinear feedback, the most problematic
statement of the «bypass» transition to turbulence. We
performed numerical calculations for the 2D case in the
weak turbulence approximation. The results of calcula-
tions shown in Fig. 4 describe the preferential nonlinear
transfer of the disturbance energy to the amplification
region and the results in Fig. 5 evidence for the prefer-
ential transfer that can crucially change the temporal

history: the total disturbance energy decrease can be
replaced by its growth at certain amplitudes. This be-
havior makes the self-maintenance of the disturbance
realistic. This is in turn the characteristic feature of
the flow transition to the turbulent state and its main-
tenance.

We can therefore conclude that our numerical test
calculations prove the existence of the positive nonlin-
ear feedback in the 2D case. In reality, the shear flow
turbulence has a 3D nature (cf. Ref. [6]). However,
the qualitative analysis in Sec. 2 implies that nonlin-
ear processes easier cope with the positive feedback in
the actual 3D case than in 2D one. Indeed, we refer
to the case discussed in Sec. 2, where SFHs of incom-
pressible vortical 3D disturbances are initially in region
I(I') (see Fig. 2) and then drift along the k, axis thus
falling in the amplification region II(II'). They are am-
plified and reach region III(III") because of the drift.
In distinction to 2D SFHs (see Fig. 1), 3D SFHs do
not become weaker after leaving the amplification re-
gion. The spectral energy density of 3D disturbances
must therefore be higher in region III(III') than in re-
gion I(I"). Combining this fact with the preferential
nonlinear transfer of the SFH energy to the amplifi-
cation region, we conclude that the positive nonlinear
feedback must be easier realized in the 3D case than in
the 2D one.

In accordance with the «bypass» transition to
turbulence, the transient growth of disturbances is a
key element of the subcritical transition. (The flow is
spectrally stable.) At the same time, triggering the
nonlinear positive feedback — nonlinear regeneration
of the SFH that can draw the mean flow energy —
is a necessary step to the transition. These facts
require the existence of a sufficiently high level of
initial disturbances in the system for the subcritical
transition. It is obvious that finite disturbances can
be produced by external forces. For instance, a pair
of oblique waves with small, but finite amplitudes
were used in Refs. [42,43] as the initial condition in
numerical simulations of the transition. However,
finite disturbances must also have the intrinsic fluctu-
ation origin according to Refs. [44,45]. (These results
shed new light on the fluctuation background of the
vortex mode fluctuations in the laminar Couette flow.)
Namely, according to Refs. [44,45], the background of
the vortex mode fluctuations in a certain subspace of
the wave-number space is sufficiently strong at high
Reynolds numbers and the level of its spectral energy
density by far exceeds the level of the white noise. This
must in turn trigger a nonlinear positive feedback and
lead to the transition. The reality of this time history

17*
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should be proved by direct numerical simulation.

Our research was supported by the INTAS (grant
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APPENDIX

Derivation of the weak turbulence equation

We let the x axis of a Cartesian coordinate system
lie along the velocity of the mean flow and the y axis
along the flow velocity shear, Ug(Ay,0,0). The fluid
is assumed to be incompressible. Considering that the
disturbed variables are independent of the z coordinate,
the continuity equation and the equations of motion for
the disturbances are given by

v, Ovy,
5t e =0, (A1)
0 0 Ov,
Ovy oP
+UZ/ ay - _a_xa (A2)
o . 0 dv, . v, 0P
<8t +Ayax> vty = g (A3

where v, and v, are the respective disturbance veloci-
ties in the Cartesian coordinate system along the 2 and
y axes and P is the pressure disturbance normalized by
the undisturbed density of the fluid pg. The action of
viscosity in the weak turbulence equation is taken into
account in the end. Tt is significant that we consider dis-
turbances with the characteristic length scale much less
than the distance between the flow boundaries. This
allows us to neglect the boundary effects.

To simplify subsequent transformations, we intro-
duce a coordinate system z1y;, with its origin and the
21 axis coinciding with those of xy and the y axis con-
vecting with the mean flow. This is equivalent to chang-
ing the variables as

v =x—Ayt, y1 =y, t=t, (A.4)
0 0 0 0 ; 0
S =5 7 =7 —Alig—,
dxr  Ox; dy Oy o0xy (A5)

0 0 0
a = 8_751_Ay18—331'

In terms of the new variables, Eqs. (A.1)—(A.3) can be
rewritten as
) vy, =0,

o
81‘1 Uz

0

<_

oy

a2

o (A.6)
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LWL
6t Yy Umﬁxl
0 0 oP
+”Uy <a—y1 — Atla—xl> Vpe = —a—xl, (A?)
v, O, 9 AV
E +Uza—y1 + vy <a—y1 —At18—x1> vy =
0 0

Substitution (A.4) is not a physical transition to
a new coordinate system, because in Eqs. (A.6)-(A.8)
(as well as in Eqs. (A.1)-(A.3)), the quantities v, and
vy are components of the disturbance velocity in the
Cartesian coordinate system xy. The coefficients of
the original set of linear equations (A.1)—(A.3) depend
on the spatial coordinate y. As a result of the trans-
formation, this spatial inhomogeneity is changed to the
temporal one (Eqgs. (A.7) and (A.R)).

The disturbed variables can be Fourier decom-
posed with respect to the Eulerian (laboratory) coor-
dinates (z,y) and the Lagrangian (convected) coordi-
nates (z1,y1),

Vg oo Og (g, key, 1)
v, § = / dhydly {0y (ky by t) o X
P “oo P(ky, ky,t)
x exp(ikyx + ikyy), (A.9)

Vg 0o Vg (K12, K1y, t1)
oy b= / diipdliy { By (ko kryoty) b X
P ~oo P(kig, kiy,t1)

x exp(ikigz1 + ikiyy1).  (A.10)

The two Fourier representations in Eqs. (A.9) and
(A.10) are different, although they coincide at the ini-
tial moment (¢ = 0) because # = 21 and y = y;. This
difference is manifested in the dynamics of SFHs in the
wave-number space. The wave vector ki of a particular
SFH is constant in time in the convected coordinates,
while it varies in laboratory coordinates. Each of these
two methods has its advantages. In the linear theory,
Eq. (A.10) is convenient in studying the real spatial
Fourier harmonics moving with them. However, in an-
alyzing the weak turbulence equation (thus assuming
the excitation of many degrees of freedom), it is impos-
sible to follow the evolution of each Fourier harmonics.
In the latter case, it is more convenient to study what
occurs to the energy at a fixed point of the k-space,
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i.e., to describe the variation of the spectral density of
the disturbance energy at a fixed point of the k-space.
In spite of this, expansion (A.10) is also useful for in-
termediate transformations.

To derive the weak turbulence equation, we insert
expansion (A.10) in (A.6)—(A.8),

klzﬁz (klz-, klya t) +

+ (k1y — k1o At)0y (k1z, k1y,t) =0, (A11)
iy 00y (ki,t) .
<k1x At) 8t QAQ)y (k1 y t) +

At) X
At) oy (kY )}

/dklldk” {6(1(, kll kl)vy (kll7 ) II X

kll
X < At>

k/l
At)} ﬁy(k’l’,t)} = —iky, P,
avy kl t /dkl kll

Y {6(k’ K k) {_ <k
1 1 1 k/

ik, (0 +

+ [ dkhdk! { (K + K — k) Fy
108 1 1 1 kll

x 0y (K, t)ikY k”
Uy( 1» )Z lx k”

"

(&

o (A.12)
1z

At> 0, (K, )} X

Il

+/dk’1dk’1’ {5(1«1 K — k)i, (K ) x
" k
X Zklxvy(klvt) kll — At
lz
k1 ~
= —iky, | —2 — At P
o <k1x )

Eliminating P from these equations gives a sym-
metric equation for v,,

(A.13)

Oby (kg kry,t)
2 2 9 )
(ku + kly)% _

— 2Ak13 K1y (£)0y (K12, B1y, t) +
+: /dk’ldk’l’ (6K, + KL — kra)b(ky, + K — Fry) x
ki/ !

1
X klx[kllm(t) - k?(t)] <klllz kii) X
(kllxv k1y7 t)ﬁy(kil klllya )} =0, (A-14)
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where

kiy(t) = kiy — k1o At, K () = ki, + k3, (1).

Introducing the function
k7, (4)]0

we rewrite Eq. (A.14) in a more convenient form (cf.
Refs. [39-41])

O = [k, + y (ki 1), (A.15)

ackl / dk dk Vie, w1 Cie, Ciey (A.16)
where
!2 (t) _ kllQ(t)
Viakiry = 003 + ki — k)= s
k,l "
(ke ) (2 - ) - (A
klx klx

We note that Cy is related to the vorticity of the spatial
Fourier harmonics.

Assuming that many degrees of freedom (modes)
are excited, we use the random phase approximation
(cf. Ref. [39]), which can be expressed by

<Ck1 Ck’1> =y, (H)d(k; + k) =

= n(klm,kly,t)d(kl +kll), (A18)

where (...) denotes the phase average.
To use the methods of the weak turbulence theory,
we expand Cy as

Ci, =C0 + ) + ..., (A.19)
where
o > o) (A.20)
and ©
acy
L = A.21
i, (A21)

which means that the nonlinearity is taken into account
within the perturbation theory. Using Eqs. (A.19)-
(A.21), it follows from (A.16) that

i

t

/dt Vk k' kY

0

—i / dkidki { €y CLY) (A.22)

We next use the relations between higher correlations
accepted in the weak turbulence theory,

) =0,

(el (A.23)
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
+{adad)(adag)+(aday) (adag)
= e, ey 0 (kg + k7)o (k' + ki) +
+ Nk, nkII(S(kl + klll)(S(kll + klll,) +

+ N, nkzlé(kl + k’ln)(S(k’l + k’ll)

(A.24)

As can be easily seen, we then have

6nk1

ot

5k, + 1) =

+ Vi {Che, Gy Ceyr))
/ i, i { Vi ({00l ) +

)+ (eciie)
(el +
+(alclcl)} . (a2s)

In view of (A.22) and (A.24), this becomes

~

+ {cgel) )
+ View it (<Cl(<?)cl(<2)0191')

= Q/dklldklll’(pkllklll X
X {(S(k1 — k] —k{)o(k, + k") x

t t
X (nklnkrlr /dt'lﬁkflkflf +2nk1nkr1/ /dtlib—k’lk’l’) +
0 0

+6(k, + K|

t
X (nkrlnkrll /dtl’(,bkllklll-l-
0
t
+ 2nk1nk/1/ /dt,ipklk’l’) }, (A.26)
0

+ki)6(k, +ki') x

where
g0 = (o = o) (i) (e M
KR kEE) R, R

Changing the variables in the second part of the inte-
gral as

ki — -k} and kY — -k
and taking into account that

Yok, —ky = Uik, (A.27)
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we continue the transformations as

6nk1
ot

=4 / k! dk'! s (k,

t
X nkzl nkzlz /
0

— 2nk1 nkzlz

"
— k) iy ¥
dt' s e —
t
0
Inserting the expressions for ¢y and ¢y, _1y (see

Eq. (A.26)) in the time integrals and integrating, we
obtain

dt' v, k,{) . (A28)

t
K, ok
0
1 At
arct —
kST (kTR (6, /R, — AY)
1 At
t , A.29
kR TG, k) (R /R At)}’ (429
/ Ry M
0/ A g =~k — k;'x)<klz _ﬁ> x
1 arct At —
]2 STy ) (R TR — AY)

At

As mentioned above, it is convenient to obtain the
equation for the energy density at a fixed point of the
k-space in order to construct the weak turbulence the-
ory. For this, we use Eqs. (A.4)-(A.5) to transform
Eqgs. (A.28)—-(A.30) to the new variables k, and k,,

>:

! t
arc g
]{:2

(%) = (02 +02) = /dkl(ﬁﬁ 1) =

kD, (t
— /dklﬁ;(klm-,klyat) <1+ 1y()

ki, (1)

k1$7kly )
dk =
/ REIR, + 3,()]
(kg ky + ko At )
/d GeTr e (A9
where
km = klz, ky = kly(t) = kly — klmAt (A32)
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On the other hand,

= /dk (62 (kg Ky, t) +6Z(kx,ky,t)) =

:/dkE(k,t) z/dkEk, (A.33)

whence
n(ky, ky + ky At t)

FEx is the energy density of the 2D vortex mode
disturbances at a fixed point of the k-space. In other
words, this is the spectral density of energy.

Inserting integrals (A.29) and (A.30) in Eq. (A.28),
changing the variables in accordance with (A.4), and
using (A.34), we obtain the equation for the spectral
density of the disturbance energy at a fixed point in
the k-space,

By =

(A.34)

OF) 24k, k
W -l-Vk(VEk) k% +k§Ek+
+v(k2 +k2)Ex = NE¢, (A.35)
where
Vi = (8/0k,,0/0k,), V = (—Ak,,0),
and
NE, = — / dk'dk" 6(k — k") x
klZ kllQ)(kl k'” k;;k;)Q
X i L arct At —
12\ k2 T e (R k) + At)
1 At
— arctg Ek/E 1=+
k2 1+ (ky /kY) ((Ky k) + At))
Lol L At ~
R R 8 T Gy k) (kg /) + A1)

— i arct At
12 N T (hy [ ((ky [+ At)

) 9
X EkEk”} . (A36)
In the derivation of Eqs. (A.35) and (A.36), the

viscosity term was omitted. It was then added in
Eq. (A.35) (the fourth term in the left-hand side).
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