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Nonequilibrium interaction effects of two Hubbard—Anderson impurities have been experimentally studied by
means of STM/STS methods and theoretically analyzed using a self-consistent approach based on the Keldysh

formalism.
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Impurity states at surfaces and interfaces of semi-
conductors can strongly modify the local electronic
structure. As the system size decreases, the correct un-
derstanding of localized state properties becomes more
and more important. The interaction between impu-
rities must also be taken into account as the impu-
rity concentration increases. If the distance between
impurities is of the order of the localization radius,
sufficiently strong correlation effects arise that modify
the tunneling conductivity. The electronic structure of
such complexes can be tuned by an external electric
field. These effects are believed to determine electronic
properties of semiconductor nanostructures in the fu-
ture. However, local effects caused by the interaction
of two impurity states near the surface are not well ex-
amined at present. A powerful tool for studying the lo-
cal electronic structure is the scanning tunneling spec-
troscopy (STS) combined with the scanning tunneling
microscopy (STM) imaging. In the present work, the
electronic structure of localized impurity states formed
by a pair of impurity Si atoms separated by 3 nm at
the (110) GaAs surface are studied by the STM/STS
methods.

The samples under investigation are GaAs single
crystals doped with compensating impurities Si and Zn
with the respective concentrations 5 - 10'® ecm™3 and
210" em™3. All measurements were carried out at

*E-mail: ars.@pli.ac.ru
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4.2 K with a home-built low-temperature STM with an
in situ cleavage mechanism [1]. After the crystal was
cleaved along the (110) plane, two Si atoms with the
spatial separation about 3 nm were chosen as the object
of investigation. The separation distance is compara-
ble to the visible localization radius of the Si impurity
states, which is about 1-1.5 nm (Fig. 1a). A high dop-
ing level accounts for a nonuniform Coulomb potential
in the sample. This is one of the reasons why the initial
electronic states of the observed atoms are not equiva-
lent. The scanned area was 10 nm x 10 nm and within
this area, the tunneling conductivity (dI/dV)/(I/V)
was measured with the spatial step 0.25 nm.

In the experimentally observed spatial distribution
of the local tunneling conductivity, one can distinguish
a two-fold switching on and off for each of the atomic
«a» and «b» states upon changing the tunneling bias
within the semiconductor band gap (visible as the dark
stripe in Fig. 1). After switching on, the excess tunnel-
ing conductivity occurs in the vicinity of each of these
atoms in a bias range about 0.65 €V, which is much
greater than the level width of the localized state. At
the same time, the transition from the «darks» state to
the «light» one occurs within the bias change range
~ 0.15 eV, which is comparable to the energy level
width of the localized state.

The map view of the tunneling conductivity allows
analyzing the evolution of the local density of states
(LDOS) near each impurity atom. At zero applied bias,



P. I. Arseev, N. S. Maslova, V. I. Panov, S. V. Savinov

MWITD, Tom 121, Bem. 1, 2002

Fig.1. STM images (right panel) and the map view of the normalized tunneling conductivity measured along the direction
x depicted on the STM topography images (left panel). a — an isolated Si impurity, scan area 5.8 nm, bias range from
+2.5V to —2 V, b — two interacting Si impurities, scan area 10 nm, bias range from +2.5 V to —2 V

atom «a» forms a bright area of the enhanced tunneling
conductivity and remains «switched on» in bias range
from —0.2 V to +0.4 V. Atom «b» is invisible at V' ~ 0.
In the bias range from +0.4 V to +0.7 V, the tunnel-
ing conductivity decreases in the vicinity of atom «a»
(dark area). The next switching on of this atom occurs
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at +0.7 V and a bright spot of the enhanced tunneling
conductivity is observed up to +1.3 V.

The enhanced tunneling conductivity near atom
«by» is also observed in two separated bias ranges: from
+0.1V to +0.5 V and at the same polarity from +0.6 V
to +1.2 V. In Fig. 2, two experimentally obtained
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Fig.2. The normalized conductance (dI/dV)/(I/V)

measured within the semiconductor band gap in the

vicinity of impurity atoms: a — the STM tip is placed

over the «a» atom on Fig. 1b; b — the STM tip is
placed over the «b» atom in Fig. 1b

(dI/dV)/(I]V) curves are shown for two different po-
sitions of the STM tip: above atom «a» and above
atom «b».

Because such effects have not been observed for an
isolated impurity, a natural question is to what extent
the interaction between the two impurities modifies the
kinetic processes. To answer this question, we suggest a
self-consistent theoretical analysis of the local tunneling
conductivity behavior in the vicinity of two interacting
Anderson impurities on a semiconductor surface [2]. In
the Anderson model [3], an individual impurity state
is characterized by the following parameters: the bare
impurity electron level ¢y, the on-site Coulomb repul-
sion of localized electrons U, and the level broadening T’
caused by the hybridization with continuum states. It
is known that nontrivial effects occur in the Anderson
model if the on-site Coulomb repulsion is sufficiently
strong. Because the experimentally observed localiza-
tion radius of Si impurity states at the GaAs surface is
of the order of 1 nm, the estimated value of the Hub-
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bard energy is about 0.5-1 eV. It must be mentioned
that although the Si atoms in the bulk GaAs are known
to form a shallow impurity state with binding energies
about 6 meV at low doping levels, the situation is dif-
ferent near the surface in the presence of the STM tip.
It was experimentally observed by many authors (see,
e.g. [4-6]) that the band bending induced by the sur-
face and by the STM tip can considerably change the
position of the Si impurity level relative to the conduc-
tion band edge. Numerous STM images (see references
above) show that the localization radius of the Si atom
state is about 1-1.5 nm. In highly doped crystals, in
addition the electronic state of any particular atom can
be strongly modified by the presence of neighboring
dopant atoms.

The electron transport through a single Ander-
son impurity in the Coulomb blockade and the Kondo
regime has been studied experimentally and is still un-
der theoretical investigation [7-13]. However, most of
the authors concentrated on the weak tunneling cou-
pling, when the tunnel junction is used only as a probe
without affecting the impurity states [9]. Therefore, the
tunneling conductivity through the Anderson impurity
is usually supposed to be determined by the equilibrium
impurity density of states. In the Coulomb blockade
regime of tunneling through an impurity or a quan-
tum dot, the influence of the tunneling current on the
impurity (dot) spectrum is neglected [11]. The impu-
rity charge therefore takes discrete values; n, and n_,
can be equal only to 0 or 1. The width of the tunnel-
ing conductivity peak in the Coulomb blockade regime
is determined by the sum of relaxation rates and can-
not achieve (without destroying this regime) the exper-
imentally observed anomalously large values ~ 0.65 eV
even at room temperatures. As the tunneling coupling
increases, the impurity charge is no longer a discrete
value and one must consider impurity electron filling
numbers (which now become continuous variables) de-
termined from the kinetic equations.

We note that the coupling to the leads in the Kondo
regime modifies the impurity spectrum, but charge fluc-
tuations are suppressed because the initial impurity
level lies deep below the Fermi level [14]. In the equi-
librium case, the electron filling numbers n, and n_,
satisfy the relation

Neg +n_, = 1.

Spin fluctuations dominate in this case because the im-
purity state is always single occupied. This requires the
following relations between the parameters of the An-
derson model: —eqg > I and ¢g + U > I'. The Kondo
resonance then contributes to the zero-bias anomaly of

15%
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the tunneling conductivity. But the contribution of the
Kondo effect to the tunneling conductivity dependence
on the applied voltage becomes almost negligible when
the applied bias exceeds a typical energy value deter-
mined by the Kondo temperature (small compared to
go and T') (see [15, 16]). When the applied bias in-
creases (decreases) to the impurity energy level, the
Kondo resonance is destroyed.

In the present work, we are interested in the tun-
neling conductivity behavior in a wide bias range from
+2.5 V to —2 V (while the typical value of the Kondo
temperature is less than 1 meV). The adopted param-
eters of the model correspond to the mixed-valence
regime, ¢ & ' or ¢ + U ~ T (although U > T'). This
choice of the set of parameters is more adequate for our
analysis of the anomalies in the tunneling conductivity
behavior observed experimentally in a wide bias range
V comparable to U and V' > £43. Under all these con-
ditions, the Kondo effect does not reveal itself in the
tunneling characteristics, although spin asymmetry of
the electron filling numbers occurs in particular bias
ranges.

Ag the applied bias is increased, nonequilibrium
processes start playing a significant role, especially at
low temperatures. Nonequilibrium effects in the tun-
neling conductivity spectra of metallic nanoparticles
have been considered by Agam and co-authors [17]. In
this work, changes of the energy of an excited single
electron state are caused at large applied bias by differ-
ent nonequilibrium occupancy configurations of other
single electron states. It was assumed that the electron
spectrum of a nanoparticle consists of many levels and
the level spacing is smaller than the applied bias. But
the filling numbers of each level are equal to either 0 or
1. Different random configurations of the electron oc-
cupation result in fluctuations of the Coulomb interac-
tion energy. However, continuous changes in nonequi-
librium electron filling numbers caused by kinetic pro-
cesses were not taken into account.

In the present work, the nonequilibrium charge dis-
tribution due to tunneling processes and the effect of
the tunneling bias voltage on the impurity state energy
values are taken into account. Nonequilibrium electron
filling numbers on the Hubbard-Anderson impurities
are calculated from a self-consistent system of kinetic
equations based on the Keldysh diagram technique [18§].
At the final stage of calculations, the Coulomb inter-
action of localized electrons is treated self-consistently
in the mean-field approximation. It is shown that with
increasing the tunneling bias, two states with differ-
ent energies for opposite-spin electrons can appear at
each impurity: the transition from the «paramagnetic»
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regime to the «magnetic» one can occur. The inverse
transition from the «magnetic» to the «paramagnetic»
state can also occur with further increasing the tunnel-
ing bias. We have also determined the conditions under
which the transition to the magnetic state is enhanced
by the interaction between the two Anderson impuri-
ties. We found that the impurity interaction results
in a redistribution of localized non-equilibrium charges
and can lead to pinning of the impurity levels near the
Fermi level of each electrode and to the mutual at-
traction of the energy levels of different impurities in
particular ranges of the applied bias.

We consider a theoretical model with two interact-
ing Anderson impurities. The STM tip is supposed to
be positioned above one of the impurity atoms (atom
«a»). The Hamiltonian of the model is given by

}AI = FI(] + ﬁtun + gint + Flimiﬂa (1)

where

Hy = Z(sk — ,u)cltack,a +
k,o

+ Z(‘Sp —H eV)Cg,an,a (2)
p.o

describes noninteracting electrons in the two electrodes,
(k, o) for the tip and (p, o) for the example.

The part flimp corresponds to the impurity states
and takes the Hubbard repulsion into account,

. U
Himp = €a Z ajaa + 7a ann“_(, +
(o (o

U
+stbjb0+7”

o

Here, n% = ata,, a, destroys an impurity «a» electron
with the spin o, n® = b¥b,, b, destroys an impurity
«b» electron with the spin o, and ¢, and ¢, are the
energy levels of impurities «a» and «b» (they depend
on the bias V in general).

The part I:Imt describes the interaction between the
impurity states,

Hine =T (ajby +h.c), (4)
o

and H’tun is responsible for tunneling transitions from

the impurity states to each electrode (tip or substrate)

3

Hiwn = Tpa Z(cg70ag+h.c.)+
p.o

+Tp.b Z(C;,gba+h~c~)+Tk,a Z(cﬂ'ﬁag—l—h.c.). (5)

P, k,o



MITD, Tom 121, BHmm. 1, 2002

Nonequilibrium tunneling effects ...

Nonequilibrium effects in the tunneling current and
conductivity are naturally described by the Keldysh di-
agram technique ([19], see also the recent paper [16]).

The tunneling current is determined as [19]

— Z / dw Tiea (G
k,o

—Gr).®

The functions G5 can be obtained from the kinetic
equations, which in the Keldysh formalism are of the
general form
—(G2)T (7)
where S usually includes all the interactions; in our
case, however, S is determined only by the tunneling
coupling to the leads and by the interaction between
the impurities. Therefore, the elements of D simply
reduce to the corresponding nonzero parameters Ty g
(o, B = a,b,k,p). It is reasonable to use the approx-
imation in which the strongest interaction of the con-
sidered model — the on-site Coulomb repulsion U —
is included in Gy. At this stage, it is not necessary to
consider the details of any particular approximation for
treating U.

With the help of the kinetic equations, tunneling
current (6) can be transformed to the form

IO'(V) = _471( X
X /Ime";(w)(n

o
a

(w) = ng(w —eV)) dw, (8)

where nf(w) is the equilibrium filling number for the
metallic tip, fo’a(w., V') is the exact retarded Green’s
function of the impurity «a» state, ng(w) is the exact
impurity filling number, and the tunneling rate 7y is
one of the set of kinetic coefficients determined by

k(W) = |Ta " (W), (W) = [Tpp*vp (W), (9)
Ya(w) = |Tpa|2’/p(w)a =9 +7% + %,
where

e (w) =

! ZImGR(k,w)
%

is the density of states in the metallic tip and
@) = == 3 Tm GR(p,w)
7T b '

is the substrate density of states.
In Eq. (8) and in what follows, we use the stan-
dard approximation with the filling numbers nf (w) and
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nop(w) for the continuum states of the banks unper-
turbed by the tunneling processes, which yields

G< (W) = —2inY(w) Im G’fzk, (10)
Gy pw) = =2ind(w) ImGF .

Equation (8) shows that the problem is reduced
to finding the exact nonequilibrium filling number ng
This problem can be solved using Eqs. (7) for G5, G<
and Gcfb in the stationary case,

0
EG< =T(Gy,—Gg) + 272 ImGZ R (n® —nl) +
+ 29k Im G;’f(na — nﬂ), (11)
9 < < <
athb =T(Gy, — Gp) +
+ 27, Im GZE(n® — no) (12)
9 < 1< < <
=5 =G =R, Gy + T(Gy — Go,) +
+ 271G — WG + 2 Giny.,  (13)
9 1< < <
= EG =R, Gy, +T(Gy, —Gy) +
+ 2G5 — Gl — 2 GEng,  (14)
where we use the notation
R} =G& —Git —il. (15)
For ng(w) and nf (w), we then have
e Im GZF (W) (ng (w) — np (w)) =
— [Ya Im G2 (w) (n] (w) — ng(w))+
+ 7 Im G (w) (nf (w) — np(w))]
1° Im G (w)ng (w) — Im G (w)nf (w) = (16)
= 3 Im G (W) (nf (w) — ng(w)) +
+ nop(W)T(% Im(R3,G;') — v Im(R3,G2)) +
+ np(w) Ty Im(R, G,
where
=T?Im RY,

and where nl(w) and nf(w — eV) are the respective
equilibrium filling numbers of the substrate and the
metallic tip states.

It must be noted that no particular approximation
for treating the Coulomb interaction has been used un-
til now. If we use the mean-field approximation, which
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is suitable for the mixed-valence regime, for decoupling ny =ng(b) +
the on-site Coulomb interaction, we obtain Yello (0 (@) = ng(a)) — (Ya + 1) Tab
. (21
- 1 (e +7a) (96 + 1) + Y000 (21)
PTEg -8 —in+ e+ m)] where
Goa(w) =
_ w—ég-l-i'yb Tap = Ty %
w—&7 +ivp)(w—E&9 +i(y, + - T%
o= il =&+ i + ) < [ In(RaGES @) ) — np() o, (22)
Ghy (w) = (17)
_ w = &5 +i(Ya + )
(=& i)=& +ila+m)) - T (@ = [ dondo @ InGhw) (23

Gyt (w)
T
(W= & +im)(w =5 +i(va +m0) = T2

In the mean-field approximation, the impurity ener-
gies depend on the applied bias V both directly through
the external field in the contact area (which changes
the «bare» impurity level) and indirectly through the
Coulomb interaction of the nonequilibrium electron
density,

=c,+aV +Uy(n,?),

7 =€ +ﬂV—|—Ub<n;”>. (18)

The coefficients a and 8 («, 8 < 1) approximately de-
scribe the potential drop between the semiconductor
substrate and the impurity. (If one deals with the
Coulomb blockade regime, the electron filling numbers
(n?) are set equal to 0 or 1, because the hybridization
with the lead states is neglected.)

For simplicity, the indirect interaction between the
impurities through the semiconductor band states is
not included in the presented results. This interaction
can be easily taken into account but it does not lead to
any new qualitative changes of the tunneling conduc-
tivity behavior.

Now the main point is that the nonequilibrium elec-
tron filling numbers for impurity atoms «a» and «b»
must satisfy the self-consistency condition

. /dw ng (w)Im G (w),

(19)
_ /dw ng () Im GE (),

where n?(w) and nf (w) are determined by stationary
equations (16). Equations (19) can be rewritten as

pa) +
(1 + 1) (nf (@) —ng(a)) + vl

(Y + 7a) (% + 10) + Yoe

(o
ng =n

, (20)
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(with the Fermi level for ny shifted by eV from the
Fermi level for nyp). For the equilibrium case, V = 0
and ng = ng(a) = ng(a).

Solving Eqs. (16) for nZ(w), we can rewrite the tun-

neling current in Eq. (8) in the final form

_ Y (Y + o)
(Ya + ) (9 + 10) + Vo

x/[<%+ L )ImG

’Yb + 770
n Tﬁ Tm(RayGAT (w, V)

x (n

15(V)

Ro

a,a

(w,V)+

E

0 (w—eV)) dw,

P

0

(w) =y (24)

where the self-consistent values for nJ and nj are in-
serted in GE | GE and R, for each value of the bias V.
As expected, the tunneling current depends only on the
difference of the electron distribution functions of the
electrodes. The first term of the above expression for
the tunneling current describes the renormalization of
the relaxation rate by the interaction with the neigh-
boring impurity atom «b»,

Yoo

. 25
Yo + Mo ( )

Ya = Ya Tt

If the interaction is absent, T = 0, then n = 0 and
the usual form of the tunneling current through the
impurity localized state is restored. The second term
is responsible for the charge redistribution between the
interacting impurity atoms. As a consequence of this
charge redistribution, we obtain that the tunneling con-
ductivity (see (24)) is no longer simply proportional
to the impurity density of states. These complications
make the investigation of the tunneling current through
a multi-channel system with the interaction between
different channels much more difficult (see, e.g., [20]).
In what follows, the interaction between the im-
purities is chosen (in accordance with the experimen-
tal situation) not greater than the tunneling rates.
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This implies that the equilibrium level splitting (see
Eqgs. (17)) is not resolved via level broadening. In ki-
netic processes, however, the interaction considerably
modifies the charge distribution. The opposite situ-
ation, with the zero-bias conductivity determined by
the exact equilibrium spectrum of the two-site com-
plex, was recently analyzed in [13].

We emphasize that Eq. (6) is exact and is valid in
any case, irrespective of the approximations used in
calculating Im GF and n,. Equations (19)—(24) can be
applied to any regime, including the Coulomb blockade
regime, with the proper choice of the retarded Green’s
function and the R,; function. However, as noted in
the introduction, in the present paper we are mainly in-
terested in the mixed valence regime e ~ yore+U ~ v
and U > ~, and we therefore use mean-field equa-
tions (17) for numerical calculations of the tunneling
conductivity.

The tunneling conductivity enhancement can usu-
ally be observed at the tunneling bias voltage such that

+o
a

lefo(V) - EL| <T

or
leX7(V) — B3| < T.

But it is very important to note that any increase of
the LDOS in the energy interval

Er —eV <e< Ep

with changing of the applied bias V' leads to an en-
hancement of the tunneling conductivity at eV. This
increase of the LDOS for an interacting system is not
necessarily related to crossing a single electron level
by the shifted Fermi level Er — eV

The analysis of the proposed model allows describ-
ing different possible regimes of the tunneling conduc-
tivity behavior in the vicinity of impurity atoms in a
wide range of tunneling bias changes. In numerical cal-
culations, we adopt a ~ 0.3 and § ~ 0.1 in Eq. (18).

1) If v € va, 7, one of the impurity atoms (atom
«a») can be in the «magneticy state in a certain tun-
neling bias range. The transition from the «paramag-
netic» regime to the «magnetic» one and vice versa can
occur with changing of the applied voltage (Fig. 3a).
This behavior leads to switching the «a» atom «on»
and «offy twice on spatially resolved local tunneling
conductivity spectra (Fig. 3b), which are very similar
to the STS experimental data shown in Fig. 2.

In addition, the energy levels are pinned in the
vicinity of the Fermi level of one of the electrodes (tip
or sample) while the bias voltage changes within an
order U range.
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Fig.3. A well pronounced two-fold structure of the tun-
neling conductivity with an increased peak width, very
similar to the one observed in STS experiments. a —
The dependence of the «a» and «b» atom energies
on the applied bias V; the parameter values are (in eV)
el =-0256)=—-05U,=16 U, =0.5 v =02,
=02 7 =0.05 6, =2 —03V, e =) — 0.1V,
T = 0.2; solid lines correspond to ¢ and ¢, 7, dotted
line shows the mean value of &, = (1/2)(ef +¢, 7) be-
cause atom «b» is close to the paramagnetic state for
this set of parameters. b — The normalized tunneling
conductivity vs. the applied bias voltage

In the nonequilibrium case, where the tunneling
bias is not zero, the interaction between atoms «a» and
«b» can enhance the «magnetic» state and increase the
difference between the energy values e, and _, of the
opposite-spin electrons localized on atom «a».

A detailed analysis of the tunneling bias range for
which

lea?(Ving) — Ep| <T

leads to the following conclusions.

If there is no interaction between the atoms (the
bias range is such that |¢;7(V,n?) — E%| < T), the
occupancy of the state e,7(V,nJ) grows and n, 7 (V)
and £7(V) increase; consequently, n7 (V) and ,7(V)
decrease. The levels ;7 (V,ng) and €7 (V,n,?) become
closer and a sharp transition from the «magnetic» to
the «paramagnetic» state occurs (Fig. 4b).
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Fig.4. The dependence of the «a» and «b» atom en-
ergies on the applied bias V. The parameter values are
(in eV) 2 0.25, &9 0.1, U, =18, U, = 0.5,
Yo = 0.15, 4 = 0.2, 7 = 0.05, g, = €2 — 0.3V,
ey =¢cp —0.1V; T =02 (a), 0 (b). Solid lines corre-
spond to ¢ and £, 7. The dotted line shows the mean
value of e, = (1/2)(ef + ¢, °) because atom «b» is
close to the paramagnetic state for this set of parame-
ters

In the presence of interaction, the ;7 (V,nJ) state
filling is suppressed because of a charge redistribution
between the two interacting atoms «a» and «b». Cor-
respondingly, the increase of ¢7(V,n;?) and the de-
crease of e, 7(V,nZ) also are not so fast as in the non-
interacting case. Therefore, when atom «a» is in the
«magneticy state, the range of the applied bias becomes
wider because of the inter-atomic interaction (compare
Figs. 4a and 4b). We stress that this enhancement of
the «magnetic» regime is possible only in the nonequi-
librium case, i.e., for a nonzero tunneling bias and the
energy levels sf('z)(V., nj(‘z)) close to the Fermi level of
one of the electrodes.

In the equilibrium case, the interaction with para-
magnetic atom «b» results in the suppression of the
«magneticy state on atom «a» (compare Figs. 4a¢ and
4b).

Figure 5a, b depicts the dependence of the tunnel-
ing conductivity on the applied bias in the vicinity of
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Fig.5. The dependence of the normalized tunneling
conductivity on the applied bias voltage for the same
sets of parameters as in Fig. 4a and b

the «a» atom. Two broad peaks in the tunneling con-
ductivity spectra correspond to switching «on» the «a»

atom at

a
a

ca(Ving?) = B

and
e 2 (V,n?) = Ef.

2) For vk > 74,7 (i-e., for a sufficiently strong
coupling to the STM tip), the «magnetic» state on the
«a» atom can appear twice for the opposite polarity. In
Fig. 6a, the dependence of af(‘z) (v, nj(”b)) on the applied

bias is shown. In the applied bias range
ea(Ving?) = Bp| <T,

atom «a» is in the «magneticy state. But as the tunnel-
ing bias increases, the filling numbers rapidly decrease
and the «magnetic» regime is suppressed, and atom
«a» can be found in the «paramagneticy state. How-
ever, for the opposite polarity of the applied bias, atom
«a» can again be found in the «magnetic» state when
|e7(V,n,7)| is close to the Fermi level of the tip,

€7(Vin, ") — Ej| <T.



MITD, Tom 121, BHmm. 1, 2002

Nonequilibrium tunneling effects ...

Energy, eV
T
1.2

Ea

0.8

0.4
Ebh

(N

0

Il
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Bias voltage, V

0

0
Bias voltage, V

1

0.5 1.0

Fig.6. Double switching «on-off» of the magnetic
regime of atom «a» for a strong coupling to the STM
tip. a — The dependence of the «a» and «b» atom
energies on the applied bias V'; the parameters values
are (in eV) &2 0.7, &) = 0.5, U, = 2.0, U, = 0.5,
Yo = 0.05, 7 = 0.05, v = 0.35, g, = €2 — 0.3V,
ey =0 —0.1V; T =0.2; solid lines correspond to &7
and ¢, 7; dotted line shows the mean value of £7. b —
The normalized tunneling conductivity vs. the applied

bias voltage

The interaction between the «a» and «b» atoms can en-
hance this transition. Tunneling conductivity vs. bias
voltage is shown in Fig. 6.

3) Finally, when the coupling to the STM tip is
comparable to the coupling of the impurity atom to
the substrate, i.e., vk > 74,7, increasing the tunnel-
ing bias usually leads to the suppression of the «mag-
netic» state (Fig. 7Ta) because filling numbers decrease
due to the tunneling processes. Figure 7b depicts the
suppression of the second maximum of the tunneling
conductivity in this case.

Thus, a significant role of the nonequilibrium
electron distribution in tunneling processes through
coupled Anderson impurities is demonstrated. Tun-
neling conductivity resonances are sensitive to changes
of the electron filling numbers, which are not discrete
at a nonzero applied bias. We have shown that an
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Fig.7. Suppression of the two-fold structure of the
tunneling conductivity with the increase of y. o —
The dependence of the «a» and «b» atom energies
on the applied bias V; the parameters values are the
same as in Fig. 3 except 4« = 0.1. b — The normalized
tunneling conductivity vs. the applied bias voltage

impurity atom can be found in the magnetic state for
the applied bias within a certain range. Transitions
from the paramagnetic regime to the magnetic one and
vice versa can occur with changing the bias voltage. In
the presence of such transitions, impurity levels can be
pinned near the Fermi levels of each electrode, thereby
leading to the two-fold structure of spatially resolved
tunneling conductivity spectra with enormously broad
peaks in the vicinity of each impurity. The theoretical
approach proposed here allows us to explain the
experimentally obtained STS results and predicts
some new interesting possible «switching» regimes.
An interesting theoretical prediction is that the in-
teraction between impurities with different values of
the Coulomb repulsion can unexpectedly enhance the
magnetic regime of a single atom in the nonequilibrium
case at a large applied bias. At the same time, the
interaction with a «more paramagneticy neighbor
always leads to the suppression of the magnetic state
in the equilibrium.
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