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We explore the role of electronic and ionic polarization energies in the physics of the «colossal» magnetoresistive
(CMR) materials. We use the Mott-Littleton approach to evaluate polarization energies in the LaMnO3 lattice
associated with holes localized on both the Mn®* cation and O®~ anion. The full (electronic and ionic) lattice
relaxation energy for a hole localized at the O site is estimated as 2.4 eV, which is appreciably greater than that
of 0.8 eV for a hole localized at the Mn site, indicating a strong electron—phonon interaction in the former case.
The ionic relaxation around the localized holes differs for the anion and cation holes. The relaxation associated
with Mn* is approximately isotropic, whereas ionic displacements around O~ holes show axial symmetry with
the axis directed towards the apical oxygens. Using the Born—Haber cycle, we examine thermal and optical
energies of the hole formation associated with the electron ionization from Mn®**, 0?7, and La®" ions in the
LaMnOg lattice. For these calculations, we derive a phenomenological value for the second electron affinity
of oxygen in the LaMnQs3 lattice by matching the optical energies of the La’™ and O~ hole formation with
maxima of binding energies in the experimental photoemission spectra. The calculated thermal energies predict
that the electronic hole is marginally more stable in the MnT state in the LaMnO3 host lattice, but the energy
of a hole in the O~ state is only higher by a small amount, 0.75 eV, suggesting that both possibilities should
be treated seriously. We examine the energies of a number of fundamental optical transitions, as well as those
involving self-trapped holes of Mn** and O~ in the LaMnOj3 lattice. The reasonable agreement of our predicted
energies, linewidths, and oscillator strengths with experimental data leads us to plausible assignments of the
optical bands observed. We deduce that the optical band near 5 €V is associated with the O(2p)-Mn(3d)
transition of a charge-transfer character, whereas the band near 2.3 €V is rather associated with the presence
of Mn** and/or O~ self-trapped holes in the nonstoichiometric LaMnO3 compound.

© 2002

PACS: 75.30.Vn, 71.55.Ht, 78.40.Ha
1. INTRODUCTION

The striking behavior of the «colossaly magnetore-
sistive (CMR) oxides of R1—,A,MnO3 (where R stands
for trivalent rare-earth ions and A for divalent alkaline-
earth ions, and 0.2 < z < 0.5) arises from the in-
terplay of several distinct energy terms: magnetic in-
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teractions, electronic band structure energies, crystal
field splittings, vibrational energies, and the electron—
lattice coupling, including small polaron ideas and the
Jahn—Teller (JT) effect. Understanding this behavior
has been helped very greatly by the use of models to
map the various regimes of behavior [1]. The experi-
mental evidence [2] suggests that manganites are doped
charge-transfer insulators having O(2p) holes rather
than Mn3T (3d) electrons as the current carriers. How-
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ever, whether holes reside at O and/or Mn sites is still
the subject of controversy. Some of the models of po-
larization and vibration in CMR systems make major
approximations, such as a single vibrational frequency
(Einstein model) or rigid, unpolarizable ions. These
simplifications are known to give seriously inadequate
results, both quantitatively and qualitatively. For ex-
ample, for the charge transfer transitions of the zinc
vacancy center V™ in ZnSe, optical spectroscopy [3] al-
lows one to obtain the key relaxation and tunnelling en-
ergies. But in the simple one-frequency rigid-ion model,
these values are inconsistent with the observed charge
localization on a single Se neighbor to the vacancy [4].
However, the consistency and good agreement with ex-
periment are restored in the general model at the har-
monic and dipole approximation level, namely the shell
model. Important properties of the shell model [5, 6]
consist, first, in properly separating the ionic and elec-
tronic polarizations, such that phonons are well pre-
dicted and polarization at the atomic scale is well repro-
duced, and second, in recognizing that the local envi-
ronment affects the polarizability of ions through short-
range repulsive forces. As a result, the shell model
provides an adequate framework for understanding en-
ergies dominated by polarization and distortion. Such
energies include those describing small polarons [3-5]
and optical charge transfer transitions (as considered
for MgO [7] and V~ centers in ZnSe [4]). The shell
model has also been extensively used in studies of de-
fect energetics and nonstoichiometry in oxides [8]. Its
considerable quantitative success arises largely because
it provides such an accurate description of the large
polarization energies.

It is helpful to recognize the orders of magnitude of
the several energy terms for CMR oxides. Obviously,
a small energy does not mean that the particular en-
ergy is unimportant, but a small value often means that
very simple ideas for those terms are sufficient in exam-
ining phenomena dominated by large energies. Typical
magnitudes are as follows.

CMR instability energy of an electron in an exter-
nal fieldof 10T .................. 0.001 eV (~ upgH).

Magnetic exchange (from kT, with T being the
Neel temperature) .............ooovevveee .. 0.01eV.

Energy of the noncubic structural deformation of
the LaMnOszcell ..............................< 0.4 eV.

Jahn—Teller energy (from the largest known JT

ENETEIOS) « ottt et <04 eV.
Crystal-field splitting energies (from data on many
SYSTEIMS) Lot 1 eV typical.

Polarization energies (net charge +e) ... 5to 10 eV.
Free-ion ionization potentials ............tens of eV.

Madelung energies (fully ionic models). . tens of eV.

In this paper, we mainly consider the polarization
energies, for which the large energy terms are dom-
inant. We only discuss the JT and crystal field en-
ergies in simple terms, although we remark that one-
frequency models of the JT effect also lead to inconsis-
tencies.

We apply the shell model calculations to look specif-
ically at energies associated with the localized holes of
Mn** and O~ in a nonstoichiometric or slightly doped
«parenty LaMnQOjz compound. Using this model, we
address some of the issues in physics of CMR systems
for which the polarization energies are crucial. First,
we calculate the electronic and ionic polarization en-
ergies due to holes localized on Mn3* and O?~ ions in
order to estimate the key polaron energies and examine
the controversial question whether holes reside at Mn
or O sites in the LaMnOQOj lattice. Second, we estimate
the energies of the main charge transfer transitions in-
cluding Mn** and O~ species, which determine specific
transport properties of doped CMR materials. We an-
alyze their contribution to the optical conductivity in
the nonstoichiometric LaMnOs3 crystal and make the
assignment of bands in the optical conductivity spec-
trum more clear-cut.

2. DESCRIPTION OF THE LaMnOj3z SYSTEM
AND THE SHELL MODEL
APPROXIMATION

Many of the CMR materials are hole-doped systems
of perovskite manganites of the form La; ,A;MnOj;.
Their properties are intimately related to those of the
«parenty compound (x = 0). Below Tx ~ 140 K,
LaMnOgs is an A-type antiferromagnet in which the
MnO, ferromagnetic layers are stacked along the ¢ axis
with alternating spin directions. The structure of the
perovskite manganites can be clearly understood start-
ing from the simple cubic perovskite structure (Pm3m,).
The idealized cubic structure of LaMnQOj featuring a
chain of the corner-sharing MnQOg octahedra is pre-
sented in Fig. 1. The Mn3* ion with the 3d* electronic
configuration is known to exhibit a large JT effect in
other systems [9]. Therefore, it is natural to assume
that the JT instability of the Mn3* ion can contribute
to an orthorhombic distortion of the perovskite struc-
ture of the Pnma symmetry in the LaMnQOs3 crystal.
The orthorhombic structure can be obtained from the
cubic perovskite structure by two consequent and co-
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Fig.1.  The idealized cubic perovskite structure

(Pm3m) of the LaMnOs crystal. The orthorhombic

Pnma structure can be obtained by two consequent

rotations of the MnOg octahedra around the [010] and
[101] directions

ordinated rotations of the MnQOg octahedra around the
[010] and [101] directions, as shown in Fig. 1. Another
possible contribution to the observed distortion from
the cubic symmetry in LaMnOgs could be attributed
to an atomic size mismatch: the sum of the Mn-O
layer ionic radii, ry, + ro, does not match that of
the La-O layer, (rr, + 70)/v/2, in the right way for
a stable cubic structure. The size mismatch effect is
known to be a common reason for distortions in differ-
ent perovskite oxides. Our shell model calculations per-
formed for the LaMnQOs Pnma structure indicate that
the orthorhombic distortions experimentally observed
at low temperatures could not be simply caused by the
lattice mismatch effect (which, in principle, must be
properly described in the framework of the shell model
approximation), but are caused by the both effects,
with a comparative contribution of the JT effect. Some
special efforts should be undertaken to empirically ac-
count for the JT effect in the framework of the shell
model. We perform the shell model calculations for
the cubic perovskite structure (Fig. 1). This approx-
imation seems to be mostly relevant to the nonmag-
netic quasi-cubic perovskite structure of the LaMnQOj3
crystal experimentally observed at high temperatures
T >400 K > Ty ~ 140 K. We suggest that our mod-
eling of the cubic perovskite structure provides a rea-
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sonable model because we are mainly interested in es-
timating the key polarization energies associated with
polaron-type charge carriers in the high-temperature
insulating quasi-cubic phase of the CMR lattices.

We model the LaMnOjs system using methods
based on the shell model and the Mott—Littleton ap-
proach that have been successfully applied to study-
ing the properties of a wide range of oxides (includ-
ing transition metal oxides), halides, and other sys-
tems [10, 11]. The calculations are performed using
the GULP code [12]. In the shell model [5], the lat-
tice is considered as an assembly of polarizable ions,
represented by massive point cores and massless shells
coupled by isotropic harmonic forces. The interaction
potential includes contributions of the Coulomb, po-
larization, and short-range interactions. We adopt a
fully ionic model (with the formal charges of ions in
the LaMnOj lattice, La3*, Mn3*, and O?7). This is
less restrictive than one might think because a parallel
covalent description is possible [13]. The sum of the
core and shell charges is equal to the formal charge of
the ion in the lattice. The core and shell charges and
the spring constant of each ion are parameters of the
model. The electronic polarization of the ions is repre-
sented by the displacement of their shells relative to the
cores in the dipole approximation. The lattice distor-
tion is simulated by the core displacements from their
lattice site positions.

In our model, cations are treated as unpolariz-
able and the short-range interactions between relatively
small cations (core—core interactions) are ignored. The
short-range potentials used for the shell-shell (oxygen—
oxygen) and core—shell (metal-oxygen) interactions are
of the Buckingham form,

r6

r)_

Pij

Vij = Aijexp ( (1)

The parameters of both repulsive and attractive
components of the Buckingham potential for the shell-
shell (027—027) interactions used in this work are ob-
tained in Ref. [14] and presented in Table 1(a). The
Buckingham parameters for the core—shell Mn3+-02~
and La3t-02~ interactions were fitted in this work
using the experimental data including the lattice pa-
rameter, the static and high-frequency dielectric con-
stants, and the frequencies of the transverse optical
(TO) phonons in the LaMnOQs3 crystal [15]. The dielec-
tric constants are especially important if one wishes to
predict polarization energies accurately. We have not
found an experimental value of the static dielectric con-
stant of LaMnOj in the literature. We are grateful to
T. Arima and Y. Tokura [16] for sending us the experi-
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Table 1.

Potential parameters for short-range interactions in LaMnO3 (Pm3m): (a) elaborated in the present work;

(b) from Islam et al. [17]; (c) from Grimes [20] for Mn3*+ and Mn** different valence states; reusofr = 20 A

A, eV p, A C, eV-A-6 Y, |e] k, eV-A2
(a) La’t-02— 1516.3 0.3639 0.00
Mn3+t-02%— 1235.9 0.31525 0.00
0%2--0?- 22764.3 0.1490 20.37 —2.48 16.8
(b) La’t-02— 1516.3 0.3525 0.00
Mn3+-02— 1235.9 0.3281 0.00
02—-0%- 22764.3 0.1490 43.00
(c) La’t-02~ 2088.79 0.3460 23.25
Mn3+-02— 922.83 0.3389 0.00
Mn*t-02%- 1386.14 0.3140 0.00
0%2--0?- 9547.96 0.2192 32.00 —2.04 6.3

mental data on the reflectivity spectra of LaMnO3 mea-
sured at room temperature and reported in Ref. [15]. In
the present work, the experimental value of the static
dielectric constant ey ~ 18 + 2 was derived from these
data by the Kramers—Kronig analysis and was further
used in the fitting procedure. The parameters fitted
for LaMnOg (Pm3m) in Ref. [17] (see Table 1(b)) were
used as the starting values for the core—shell La3*-0%~
and Mn3*t-02~ short-range interaction potentials. The
oxygen shell charge was taken as —2.48|e| and the shell-
core spring constant k& was chosen to give the correct
value of the static dielectric constant €q.

The final values of our shell model parameters are
presented in Table 1(a). The calculated and exper-
imental properties of LaMnOs (Pm3m) are summa-
rized in Table 2. One can see that both sets of pa-
rameters (Table 1(a, b)) give close values for the lat-
tice parameter and cohesive energy, however at the
same time, our parameters give results that are close
to the static and high-frequency dielectric constants.
The value of the static dielectric constant calculated
with the parameters given in Ref. [17] is much higher
than that derived from the experimental reflectivity
spectra. Our model also agrees well with the exper-
imental values of the transverse optical phonon ener-
gies [15]. The phonon bands obtained in our calcula-
tions correlate well with those observed with higher os-
cillator strengths. In particular, the predicted phonon
energies agree well for the La-external mode (wro,),
Mn-O-Mn bending mode (wro,) and Mn-O stretch-
ing mode (wro,) for the quasi-cubic perovskite struc-
ture of the strongly doped perovskite manganite system
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Lag.67Cag.33MnO3 [18, 19].

We have also tested another set of short-range pair
potentials that are different for the Mn ion in different
valence states Mn?t, Mn?*, and Mn**. The potentials
were obtained by fitting the equilibrium structures of
several oxide compounds, such as MnO, LaMnOg, and
CasMnOy [20]. We tested pair potentials for Mn**+ and
Mn?+ from this set, presented in Table 1(c). These pa-
rameters also give good results (see the set of values
(c) in Table 2) for the lattice parameter and dielectric
constants, but are less successful in predicting the opti-
cal phonon frequencies. As we show below, both these
and our parameters give similar values for the calcu-
lated properties of polarons in these crystals, thereby
validating the correctness of the shell model approach.

We then apply the shell model parameters to esti-
mate key defect energies using the well-known Mott—
Littleton method (see Ref. [11] for a more detailed de-
scription). It is based on the concept that the total
energy of the crystal lattice containing a defect is mini-
mized by relaxation of the ions surrounding the defect,
and this relaxation fairly rapidly decreases at distances
away from the defect. In these calculations, the crystal
is divided into three regions: an inner spherical region
I, containing the defect and its immediate surround-
ings, an intermediate finite region II, which is created
to properly link region I, and an outer infinite region
ITI, which responds as a dielectric continuum. Finite re-
gions I and IT are embedded in infinite region ITI. The
typical radii of regions I and II used in our calculations
were 10 and 25 A, respectively. We considered an elec-
tronic hole located in the center of region I, which is
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Table 2.  Crystal properties of LaMnQO3 (Pm3m) calculated using the shell model potentials (Table 1) and compared
with experimental data

Lattice Cohesive € €o WTOy 5 WTO, 5 WTOg5
const. ag, A | energy Ejq, eV cm™! cm™! cm™!

Exp. 3.889 18 £ 2[15] | 4.9[15] | 172[15] | 360 [15] | 560 [15]
Calc. (a) 3.889 —140.52 15.6 4.9 172 308 513

Calc. (b) 3.904 —139.12 56.17 - - - -

Calc. (c) 3.906 —139.58 14.1 4.6 156 252 368

the most perturbed. The displacements of cores and
shells in this region are calculated explicitly. In inter-
mediate region II, the ions are also treated within the
shell model, but their displacements and polarizations
are derived from the dielectric continuum approxima-
tion. The system total energy is minimized (the preset
accuracy was 0.01 eV) with respect to the positions of
all cores and shells in regions I and II in the potential
produced by polarized region III.

The Mott-Littletone method is especially valuable
to estimate key polaron energies because the long-range
polarization fields are treated properly; many other
methods (such as cluster methods or periodic cell meth-
ods) treat these significant terms badly.

3. ELECTRONIC HOLES IN LaMnOgj;

3.1. Relaxation energies of the localized holes
in LaMnOg

We study possible hole localization (self-trapping)
on Mn3* and O?" ions in a slightly hole-doped or
nonstoichiometric LaMnOg crystal. Theoretical pre-
dictions of the electron charge carrier self-trapping in
the ideal lattice are based on calculations of the so-
called self-trapping energy [10], which is the difference
between the localization and relaxation energies. The
first of these terms is basically an increase in the hole
(electron) kinetic energy due to its localization on a
finite number of lattice sites from a completely delo-
calized state. The second is the energy gain due to
the lattice polarization by the localized charge. They
represent a very delicate balance of large terms that in
many cases differ by 0.1 eV only. The calculation of
the localization energy, especially in complex crystals,
is the most difficult part of the study of the electron
charge carrier self-trapping [10] and requires accurate
electronic structure calculations beyond the scope of
this work. Our aim is rather to compare the relaxation

energies for the hole localization in two different sublat-
tices of the same crystal. These energies are indicative
of the strength of the electron—phonon interaction, and
their difference can suggest whether there are major
differences in hole trapping in one of the sublattices.
The hole formation process can be generally seen
as the ionization of the in-crystal ion with an electron
being taken out of the crystal and put on the vacuum
level. The energy required in this process (the hole
formation energy Ej for a = Mn, O, La) is the work
done against the in-crystal ionic core potential, I*, and
the crystalline electrostatic potential, Uf;, less than the
energy gain due to the lattice polarization effects, R:

Ey =1*+Uy + R™. (2)
To assess the extent of the lattice perturbation by the
hole localization and calculate the hole relaxation en-
ergy, it is useful to distinguish the «electronic» and
«ionic» terms in the polarization energy. The first
term, which we call R, is due to the «electronic»
polarization of ions by the momentarily localized hole,
which in our method is represented by the displace-
ments of shells with respect to the cores that are fixed
at their perfect crystal positions. This term takes the
lattice response on, e.g., the Franck—Condon photoion-
ization into account. The lattice distortion term due to
displacements of cores and related adjustment of shells
after the complete lattice relaxation, denoted as AR,
is the difference between the full polarization energy
R® and R

opt>

o
opt*

ARf, = R* — (3)
It represents the hole relaxation energy. If this energy
exceeds the localization energy, i.e., the kinetic energy
rise due to the complete hole localization on this site,
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one can then talk about the hole being self-trapped on
this site. Given this assumption, Eq. (2) takes the form

Ep =1%+ Uy + Rg, + AR, (4)

The shell model Mott-Littleton calculations give the
cumulative energy of the second and third terms, Sg;,
or of the last three terms, S%,, in Eq. (4) depending
on whether both shells and cores or shells only were
allowed to relax. It is sensible, however, to evaluate
these terms separately. This can be rigorously done
by independently calculating the on-site electrostatic
potential Ug; within the periodic model and using the
definition introduced by Eq. (3). The values of Sp,
and 57}, and the calculated terms Uf;, RS, and ARY,
are summarized in Table 3.

It follows from the calculations that there is a large
difference in the lattice relaxation energies for the O~
and Mn*T holes. The lattice relaxation energy —ARS,
caused by the hole localization at the O site (2.38 V)
appears to be significantly larger than that for the hole Fig.2. The core displacements (more than or equal to

localized at the Mn site (0.83 €V), as shown in Ta- 0.004 A) of the ions surrounding the Mn** electronic
hole defect after the complete relaxation of cores and

shells in the LaMnO3 lattice

o
opt>

ble 3(a). This indicates a strong electron-phonon in-
teraction in the case of the hole localized at the O site
and could suggest that the hole trapping is more prefer-
ential in the oxygen sublattice. However, the width of
the Mn(3d) subband in the density of states, which de-
termines the hole localization energy, is much narrower
than that of the O(2p) related subband [21]. Without
a much fuller electronic structure calculation of the lo-
calization energy, it is therefore impossible to draw any
final conclusion as to in which sublattice the holes could
be localized.

One experimental test could involve the analysis of
local vibrations due to the hole localization. It can be
facilitated by the qualitative difference in the lattice
relaxation around the two centers that is clearly seen
in Figs. 2 and 3. The completely relaxed configuration
of the ions surrounding the Mn** electronic hole defect
(see Fig. 2) corresponds to the positions of cores in re-
gion I that have appreciable displacements (more than
or equal to 0.004 A) from their perfect lattice sites. The
cores of the six nearest neighbor oxygen ions are sym-
metrically displaced by about 0.1 A towards the Mn**
ion carrying the hole. The rest of the lattice relax-
ation comprises small displacements of the Mn and La
ions (about 0.01 and 0.004 A, respectively) out from
the Mn** hole center.

By contrast, the ionic relaxation around the O~
hole center has the axial symmetry, with the largest

lattice displacements of the nearby Mn ions (about Fig.3. The core displacements (more than or equal to
0.21 A) along the axis away from the O~ hole center 0.03 A) of the ions surrounding the O~ electronic hole
(see Fig. 3). These displacements cause the next two defect after the complete relaxation of cores and shells

in the LaMnO3 lattice
215
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Table 3.

Formation and polarization energies for localized holes in LaMnOg3: (a) for the pair potentials explored in this

work; (c) for the pair potentials from Grimes [20] (Table 1) for Mn3®* and Mn** different valence states

a-hole | ER .y | Efn I* (ER) Sopt St Uty | Rope | ARf, | Epps
(a) | Mot | 256 | 1.73 | 47.41(51.20) | —44.85 | —45.68 | —38.3 | —6.55 | —0.83 | 1.2
0- 486 | 2.48 ~13.91 1877 | 1639 | 221 | -3.33 | —238 | 35
La‘t | 18.36 | 17.63 | 49.45 (49.45) | —31.09 | —31.82 | —27.4 | —3.68 | —0.73 | 17.0
() | Mn** | 262 | 1.95 | 46.83 (51.20) | —44.27 | —44.94 | —38.1 | —6.17 | —0.67 | 1.2
0~ 492 | 2.52 ~13.82 18.74 | 1634 | 22.0 | —=3.26 | —2.40 | 3.5
La‘t | 1842 | 17.84 | 49.45 (49.45) | —31.03 | —31.61 | —27.4 | —3.63 | —0.58 | 17.0

apical oxygen ions along the axis to move away from
the O~ hole center by about 0.1 A. The equatorial oxy-
gen ions in the octahedron relax towards the hole center
by about 0.03 A. In-plane La ions also show apprecia-
ble displacements away from the O~ hole center. The
qualitative difference in the symmetry of the lattice re-
laxation around the two centers implies the difference in
the local vibrational modes, which can be used for ex-
perimentally probing the hole localization in LaMnOs.

3.2. Photoemission spectra and in-crystal
ionization potentials in LaMnQOj3. Formation
energies of the localized holes in the LaMnO3
crystal

To evaluate the hole formation energy, we need to
estimate the values of the unknown in-crystal ioniza-
tion energies I*. We suggest estimating the ionization
potentials from the experimental photoemission spec-
troscopy (PES) data, which can be directly related to
our calculations. In principle, PES at different excita-
tion energies probes bonding states as well as nonbond-
ing states. The latter, being ion-in-crystal-like, can be
related to the Frank—Condon energies obtained in our
calculations. In order to juxtapose experimental and
calculated values, we must also take into account that
the PES binding energy Epgg is measured with respect
to the Fermi energy level Er of the sample. Therefore,
we write

I* + Uyy + Rop = Epps + Er.

(5)

In the PES spectra of LaMnQj, there are two main
photoemission bands around 3.5 and 6 eV binding en-
ergies at T' = 100, 200 K for the Hel (hv = 21.2 €V)
and Hell (hv = 40.8 e¢V) photon energies for which
the O(2p) photoionization cross-section is dominant
[22]. The main maximum at 3.5 eV has been prima-
rily assigned to the O(2p) nonbonding states, whereas
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the second maximum is assigned to the Mn(3d)-O(2p)
bonding states and the decrease of the O(2p) charac-
ter correlates with the decrease of the Mn(3d)-O(2p)
hybridization strength. For higher energies with the
Hell PES study, the onn(3q)/00(2p) cross-section ra-
tio increases and a feature near 2.7 €V appears [22].
At high photon energies 500 eV and T' = 280 K, the
band at 3.5 €V is not clearly evident, but the band at
2.7 eV becomes dominant over the band at 6 eV, which
stands for the maximum contribution of Mn(3d) 3t,,
states at the binding energy of 2.7 eV [23]. The crystal
field splitting between the Mn(3d) 3¢, and e, states in
LaMnOg has been estimated from the PES study to be
about Acp &~ 1.5 €V [23]. The peak at 17 eV has been
assigned to the La(5p) states [23].

Thus, in accordance with the dominant contribu-
tions to the PES spectra of LaMnOs3 [22, 23], we as-
sign the values EQp ¢ ~ 3.5 eV, Ebdq &~ 17.0 eV, and
EM1. ~ 1.2 eV, suggesting that the Mn hole formation
process is associated with the electron photoionization
from the e, level. These maxima in the PES spectra
correlate well with the maxima in the density of states
for the O(2p) and Mn(3d) e, valence bands in LaMnQOs3
calculated within the local spin density approximation
(LSDA) [21]. The corresponding schematic represen-
tation of the band structure in accordance with the
assigned maxima of binding energies in the PES spec-
tra [22, 23] in the scale of energies related to the crystal
Fermi level EF is shown in Fig. 4. The gap in the e,
electron band opened at Er due to the lattice distor-
tion (the JT effect and/or lattice mismatch effect) is
shown in accordance with the PES crystal field split-
ting data [23]. The relevant electron excitations from
the Mn(3d) ey, O(2p), and La(5p) valence band levels
are schematically shown by arrows. The corresponding
PES energies F'3 g are summarized in Table 3.

Having assigned the E%pg energies, we now pro-
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Fig.4. A schematic representation of the valence band structure of the LaMnOg3 crystal, showing binding energies [22, 23]

with respect to the crystal Fermi level Er. The processes of the optical electron excitation from the Mn(3d) ey, O(2p),

and La(5p) valence bands to the vacuum level are shown by arrows. These optical excitation energies can be compared with

experimental PES data [22, 23] and with the calculated values of optical energies F,,¢, for the Mn**, 07, and La** hole
formation (Table 3)

ceed with the evaluation of the hole formation energies
Ej;. We first obtain the crystal Fermi energy using
Eq. (5) and data for the La ion. We assume that the
electronic density of the closed-shell La®* ion is not sig-
nificantly deformed by the crystalline field, and the in-
crystal ionization energy I™® can therefore be plausibly
estimated by the fourth standard ionization potential
Ery of a free La atom [24], presented in Table 3. This
approximation is consistent with the full ionic charges
adopted in our shell model parameterization. We note
that the above approximation of a free cation is shown
to be reliable only for closed-shell cations. This gives
Er =~ 1.36 eV for the Fermi energy of the LaMnQOj3
crystal.

The situation is more complicated for manganese
and oxygen. The Mn3t ion has a nonclosed 3d shell
with four electrons in it, and we therefore expect the
in-crystal ionization energy IM™ to be different from the
fourth ionization potential of a free Mn atom. Because
the O2~ ion is only stabilized by the crystalline field, it
has a negative ionization potential that cannot be de-
fined in a nonspeculative way. Using the Mn(3d) and
O(2p) related maxima in the PES spectra, E% g, and
the obtained value Er &~ 1.36 €V, we can now estimate
the effective ionization energies I* for manganese and
oxygen in the LaMnOQOs crystal from Eq. (5). These
values are presented in Table 3, with the free metal
ionization potentials [24] given in brackets for com-
parison. The O~ in-crystal ionization potential I©
(negative electron affinity of O7) is then estimated to
be —13.91 eV. The absolute value of this potential is
within the limits of O~ electron affinities calculated for
many oxide compounds in Ref. [25] using the embedded
cluster ab-initio method. Those calculations predicted
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10.6 eV for MgO and 12.9 eV for ThO,. Taking the
semiempirical nature of our calculations into account,
we find this agreement quite good.

The optical and thermal energies of the hole forma-
tion, By ., and Ej',,, are calculated using these effec-
tive values of the in-crystal ionization energies in accor-
dance with Eq. (4) and presented in Table 3. Taking
the crystal field splitting effect into account, we have
found that the electronic hole is marginally more stable
at the Mn site than at the O site in the LaMnOQO3 lattice,
but the energy difference between the thermal energies
of the hole formation, Ej',,, is too small (0.75 eV). This
result rather suggests that both possibilities should be
treated seriously. That is, providing the balance be-
tween the localization and relaxation energies favors
the possibilities for the hole self-trapping at the Mn
and O sites, the electronic hole in LaMnO3 is likely to
be localized on the manganese, or on both the oxygen
anion and the transition metal cation, rather than on
the oxygen ion alone.

To assess the accuracy of the calculated energies of
the hole formation and lattice relaxation, we need to
discuss the following issue related to the pair poten-
tials used in these calculations. The energies presented
in Table 3(a) were obtained using the pair potentials
listed in Table 1(a). To verify the robustness of our
results, we repeated the same calculations using the
potentials in [20], which give close values for the dielec-
tric constants in LaMnQOj3 (see Table 2(c)), but were
specially optimized to treat different Mn®+ and Mn**
charge states. The calculated values of formation and
polarization energies for the localized holes Mn*+, O,
and La®t and the energies deduced in Eq. (4) using
these pair potentials are presented in Table 3(c). These
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calculations demonstrate that the hole relaxation en-
ergy of Mn?t is decreased by 0.16 eV if we account
for the change in the short-range potentials caused by
the change of the Mn charge state. Comparing with
our results, we can see good coincidence for the similar
values and for the thermal and optical energies of hole
formation.

4. OPTICAL CHARGE TRANSFER
TRANSITIONS IN LaMnOg

Polaronic-type electron charge carriers mostly de-
termine specific transport properties of CMR materi-
als in their high-temperature insulating paramagnetic
phase, which are always associated with photo-induced
charge transfer transitions. In hole-doped systems of
perovskite manganites R; ,A,MnQOs, the most im-
portant charge transfer transitions associated with lo-
calized charge carriers are apparently those involving
Mn** and O~ self-trapped holes. In this section, using
the derived values of the in-crystal ionization energies,
we calculate energies of the main charge transfer tran-
sitions suggesting that holes could be localized at the
Mn or O sites. We analyze the contribution of these
charge transfer transitions to the experimental opti-
cal conductivity in nonstoichiometric or slightly hole-
doped LaMnOj crystals to make the assignment of the
bands in the optical conductivity spectrum more clear-
cut and to verify our shell model approach. We now
proceed with a brief analysis of the optical conductivity
spectra.

4.1. Analysis of the optical conductivity
spectra in LaMnO3

The room-temperature optical conductivity spec-
trum of LaMnQOjs measured in [15] is shown by solid
curve 1 in Fig. 5a in the spectral region 0 to 8 eV (re-
produced from the original data with a permission of
Arima and Tokura [15, 16]). This spectrum is very sim-
ilar to that measured by Okimoto et al. at T' = 9 K [26].
It reveals the optical gap near 1.3 eV and includes sev-
eral broad absorption bands with maxima near 2.3, 5,
and 9 eV. The gap is assumed to be of the charge trans-
fer type [15]. The first transition around 2.3 eV has
been suggested to be of the O(2p)-Mn(3d) character.
The band near 5 €V is thought to be due to the excita-
tions to a higher lying Mn 3d e, antiparallel spin con-
figuration, separated by a Hund’s rule coupling energy.
The wide band observed around 9 eV in the optical
conductivity spectrum is assigned to the O(2p)-La(5d)
interband optical transition [15].
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The optical spectra measured in hole-doped man-
ganese oxides show striking changes over a wide pho-
ton region (0 to 6 eV) as the temperature and doping
concentration change. In the La; ,Sr,MnQOj system,
with increasing doping concentration (z = 0 to 0.3,
T = 9 K [26]), the excitations around 2.3 and 5 eV shift
appreciably to lower energies. However, the principal
changes occur in the low-energy mid-infrared spectral
region stemming from the filling of the gap because
of the hole doping. In the insulating paramagnetic
phase of hole-doped manganites, there are two features
clearly observed in the experimental mid-infrared op-
tical conductivity, around 0.6 €V [18,26] and around
1.2-1.5 eV [27, 28]. The optical band around 0.6 eV
seems to be associated with polaronic-type charge car-
riers in doped CMR manganites, and the consistent
value of the activation energy of about 0.15 eV was
measured for the hopping conductivity in the adia-
batic temperature limit [29, 30]. The origin of these
features is still a subject of many controversial discus-
sions. It is well known that the LaMnQOg crystal has a
strongly distorted orthorhombic structure at low tem-
peratures, which in many works is ascribed due to a
strong electron—phonon interaction stemming from the
JT effect inherent for Mn3* ion in the octahedral oxy-
gen configuration. In this case, the e, bands split into
two subbands separated by the JT energy Ej;r. Be-
cause the on-site d—d transitions are dipole-forbidden,
these mid-infrared peaks around 0.6 and 1.2-1.5 eV
were qualitatively explained as occurring because of an
electron transition from an occupied site Mn3* to an
unoccupied site Mn** and an adjacent occupied site
Mn?*, respectively [1].

In a recent theoretical study of the optical conduc-
tivity spectra of 3d transition metal perovskites LaMO3
(M = Ti-Cu) [31] using the local spin density approx-
imation method (LSDA + U), the authors estimated
the role of lattice distortions in the band structure
calculations and concluded that the JT structural dis-
tortions play a crucial role in opening the optical gap
in the LaMnO3 Mn(3d) e, valence band. Considering
the experimentally observed distorted structure of the
LaMnOj crystal, the direct gap in the LSDA study has
been estimated as appoximately 0.7 eV, which is less
than the observed optical gap (about 1.3 eV [15, 26]).
There are also some discrepancies observed at higher
energies between the experimental optical conductivity
in 3d transition metal perovskites LaM QO3 and the cal-
culated optical conductivity considering contributions
from the interband and intraband transitions for the
perfect lattice [31], which complicates the assignment
of the optical bands. In addition, the contribution from
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Fig.5. a) The experimental optical conductivity spectrum of the LaMnOs3 crystal [15] (curve I, T = 300 K) represented

by the contributions from the three Lorentz oscillators in accordance with the dispersion analysis of the imaginary part of

the dielectric function €2 shown in Fig. 5b. b) The experimental €2 spectrum of LaMnOs3 (curve 1, T' = 300 K) represented

by a sum of three main Lorentzian shaped bands: 1.93, 4.75, and 9.07 eV (drawn by curves 2, 3, and 4, respectively). The

rest of the e> spectrum after subtraction of the Lorentzian bands is shown by line 5. The Lorentzian band parameters are
given in Table 4 together with the estimated oscillator strengths f;

the charge transfer transitions to the optical conductiv-
ity in the nonstoichiometric lattice must be taken into
account to describe the optical conductivity at low en-
ergies satisfactorily and to clarify the assignment of the
optical bands in the LaMnQOj3 crystal.

To estimate the contribution of the charge transfer
transitions to the experimental optical conductivity of
the LaMnOQOg3 crystal, shown by curve 1 in Fig. 5a, we
have analyzed the imaginary part e»(v) of the dielec-
tric function [15, 16]. For this purpose, we represented
the e3(v) spectrum, shown by curve 1 in Fig. 5b, as
the sum of the first three main bands with Lorentzian
lineshapes,

ev) =Y e

i

2 A,
Vi ViV
v2)? 4 422

(6)

where (vp;/E;)? = f; is the oscillator strength, vy, is
the plasma frequency, ~; is the bandwidth, and Ej; is
the resonance frequency of the ith oscillator. The three
Lorentzian bands with the maxima F; at 1.93, 4.75, and
9.07 eV and the respective widths 7; of 1.46, 2.0, and
5.1 eV are represented by curves 2, 3, and 4 in Fig. 5b.
The rest of the imaginary part of the dielectric func-
tion after subtraction of the Lorentzian bands is shown
by curve 5. The Lorentzian band parameters together
with the estimated oscillator strengths are given in Ta-
ble 4. These Lorentzian bands contribute to the ex-
perimental optical conductivity spectrum, as shown by
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Table 4.
dielectric function [15, 16] represented by the sum of
Lorentzian shaped bands

Parameters of the imaginary part €2 of the

Ei7 eV Yis eV V;iv eV2 fz
1.93 1.46 1.895 0.51
4.75 2.0 4.22 0.187
9.07 5.1 12.75 0.155

the corresponding lines in Fig. 5a, with more details at
low energies.

4.2. Calculation of charge transfer transition
energies

Using the Born-Haber cycle and the shell model,
we can consider both thermally assisted and optical
charge transfer processes. This can be illustrated for a
hypothetical transformation of two ions X(m+1)+ and
Y=D+ into X+ and YT with an electron trans-
ferred from Y to X (or a hole from X to Y),

X(mAD+ 4 yn=D+ _y xm+ 4 ynt,

(7)

There are two basic steps: 1) removing an electron from
the in-crystal Y(=D+ ion to infinity, outside the crys-
tal; 2) adding an electron from the infinity, outside the
crystal, to the in-crystal X(™*+1+ jon. The steps are
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standard within the shell model. Whether shells alone
or shells and cores are relaxed depends on which tran-
sition is being calculated. In the case of a thermally
assisted hopping, the shell and core positions are con-
sidered to be fully relaxed in both charge states and the
transition energy is denoted by Fyj. Comparison of the
two charge states gives an additional indication which
species are more stable. For optical transitions, the
Franck—Condon approximation is used and the tran-
sition energies E,,; are calculated on the assumption
that only shells can relax (corresponding to the full
electronic polarization), whereas the cores remain in
the positions corresponding to the initial state. The
major contributions into these energies come from ion-
ization energies IY, I()fn+1)3 the Madelung and polar-
ization terms, whose cumulative energies for the de-
fect configuration corresponding to the charge transfer
transition considered, S[X™*,Y" "], ¢, result from
the Mott-Littleton calculations (as in Eq. (4)). If the
charge transfer includes a localized hole in thermal
equilibrium in the initial state (the related values in the
LaMnOs3 lattice are presented as S5y in Table 3), the
corresponding thermal energy S[X(m+D+ yn=1)+],
of the initial defect configuration must be subtracted.
Thus, the thermal and optical energies of the charge
transfer transitions can be calculated using the formu-
las

Eopt = I = Loy + SIX™, Y g0 —

_ S[X(erl)Jr’Y(nfl)wL] (8)

th

Ey = I — L% + SX™, Y]y, —
_S[X(m+1)+,Y(n71)+]th- (9)

Evidently, there is some dependence on the separation
of X and Y. The charge transfer optical transitions for
nearest neighbors are likely to dominate and the rel-
evant key cases have been calculated. If X and Y are
the same (symmetric), the ionization terms cancel each
other, as for the intervalence charge transfer transition

Mn*t + Mn?t — Mn®* + Mn?t.

We here emphasize that the calculations of charge
transfer transitions between the metal Mn sublattice
ions are more reliable because they do not depend on
the difference between the Madelung potentials of the
two sublattices, nor on the phenomenologically deduced
parameter of the O?~ in-crystal ionization potential.
The cumulative thermal Sy, and optical S,p en-
ergies following from the Mott—Littleton calculations
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for the charge transfer transitions involving Mn**
and O~ species, and those characterizing funda-
mental electronic transitions in the LaMnQjs lattice
(e.g., the Mn(3d) gap transition, O(2p)-Mn(3d), and
O(2p)-La(5d)) are presented in Table 5 by transitions
1-3 and 4-6, respectively. To calculate the optical and
thermal energies of the charge transfer transitions, we
used a self-consistent set of the ionization potentials
(see Table 3(a)) derived by matching the calculated op-
tical energies of the hole formation with the photoemis-
sion experimental energies and the standard ionization
potentials for a free La atom. We must also estimate
the third in-crystal ionization potential of Mn, IN®™.
We suggest that it should be shifted in-crystal from
the standard value for a free Mn atom (33.67 eV [24])
by the same value as the fourth potential of Mn (from
the standard value 51.2 €V), by subtracting the crystal
field splitting effect (Acp & 1.5 €V); we thus calculate
in-crystal

NP = 33.67 — (51.2 — (47.41 + Acr/2)) = 30.63 éV.

Taking the standard value I;* = 19.18 eV, the cal-
culated optical energy of the fundamental transition of
the charge transfer character O(2p)-La(5d)

Eopt =19 — I}t + S[La®", 0% ]op = 8.93 eV

(see Table 5, transition No. 6) correlates well with the
maximum of the broad band in the e function near
9.07 €V (curve 4 in Fig. 5b). This encouraging consis-
tency between the experimental and calculated energies
allows us to suggest that the earlier estimated in-crystal
value 7° = —13.91 eV provides a reasonable value in
this shell model calculation. We also calculated the op-
tical energy of the fundamental transition of the charge
transfer character O(2p)-Mn(3d),

Eopt = I — IN® 4 S[Mn®+, 02,y = 5.61 V

(see Table 5, transition No. 5). We suggest that the rel-
evant transition should correlate with the broad optical
band observed in the e; function near 4.75 eV (curve 3
in Fig. 5b). Our calculations therefore predict transi-
tions which appear to correlate with the maxima of the
major broad-band features in the optical conductivity
spectrum. The calculated optical energy for the tran-
sition between the Mn(3d) valence band and the upper
Hubbard Mn(3d) band is estimated to be
Eop = IN® — I + SMn®t, Mn®t],,, = 3.72 eV

(see Table 5, transition No. 4), predicting a band gap of
the Mott—Hubbard type in the LaMnQOg crystal. This
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Table 5. Calculated optical (E,pt) and thermal (E:;) energies for the main charge transfer transitions in LaMnOg3; Sop¢
and Sy, are resultant calculated values of the sum of defect energies for the corresponding charge transfer process

No. Charge transfer transition | FEop, €V Exp., eV Eyp, eV Sopt, €V | Stn, €V
1 Mn*t + Mn?*t — Mn?* + Mn?* 1.33 - 0.00 —44.35 | —45.68
2 | O + Mn*t — 0%~ + Mn*t 1.43 (2.29) 1.93 —0.75 (0.12) | —43.50 | —45.66
3 | Mn't + 0?7 — Mn®*t + O~ 2.98 (2.12) 1.93 0.75 (=0.12) | 18.62 16.39
4 | 2Mn?*t — Mn**t + Mn?t 3.72 3.5 [27], 3.2 [32] 2.68 —13.06 | —14.10
5 Mn3*t + 0%~ — Mn?* + O~ 5.61 (4.75) 4.75 3.50 50.15 48.04
6 | La*t + 0%~ — La’t + O~ 8.93 9.07 6.47 42.02 39.56

Transitions Nos. 4, 5, and 6 are associated with the Mn(3d) gap, O(2p)-Mn(3d), and O(2p)-La(5d) transitions,

respectively.

value agrees well with the assigned transition experi-
mentally observed near 3.5 €V in Ndg 7Srg.3MnOj3 [27]
and near 3.2 €V in Lag g25Srg.175MnO3 [32]. A small
contribution to the experimental optical conductivity
can be observed around 3.7 €V in the LaMnQOj crys-
tal, as shown by curve 5 in Fig. 5b resulting from our
dispersion analysis.

Having assigned the fundamental electronic transi-
tions in the LaMnQj3 crystal in accordance with the re-
sults of our calculations, which are also consistent with
the consideration in Ref. [27], we note that the assign-
ment of the optical conductivity band around 2.3 eV
still remains controversial. In the earlier study [15],
this band was associated with the fundamental charge
transfer transition of the O(2p)-Mn(3d) e, character,
whereas the band at about 5 eV was associated by the
authors with the excitations to a higher lying Mn 3d e,
antiparallel spin configuration, separated by the Hund’s
rule coupling energy. However, our results allow us to
argue that an alternative interpretation of this transi-
tion obtained in this work can be correct. We suggest
that the band at about 2.3 €V is rather associated with
the presence of Mn** and/or O~ localized holes in the
LaMnOg crystal, which is known to exhibit a strongly
nonstoichiometric behavior with respect to the oxygen
content, up to 0.1 in as-grown crystal.

Indeed, if an optical band is associated with a
charge transfer transition in a crystal lattice, its max-
imum position Avy,., and the half-width AW are
known to be related by a simple formula in the high-
temperature limit [33],

AW?

16kTIn2 (10)

hmae =

We can invoke this expression to verify the charge
transfer transition character of the bands associated
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with the photo-induced hopping conductivity of the lo-
calized charge carriers. Using this expression, the esti-
mates for 7' = 300 K show a very encouraging consis-
tency between the half-width and the maximum energy
of the first Lorentzian band (curve 2 in Fig. 5b, with
the parameters given in Table 4): from AW =~ 0.73 eV,
we obtain hv,e, ~ 1.92 eV, which matches well the
maximum position estimated to be near 1.93 eV from
the dispersion analysis of the €5 function. This is con-
sistent with the view that this transitions could be of
the charge transfer type, associated with the presence
of localized electronic charge carriers in the LaMnQOj3
crystal lattice.

The main contributions to the optical conductivity
are then expected from the following charge transfer
transitions:

1) the intervalence Mn?*/Mn*t charge transfer
transition,

Mn** + Mn?+ — Mn®* + Mn*+,

Eopt = S[Mn3*, Mn**],,; — Sy™ = 1.33 €V,

2) the transition of the O~ self-trapped hole to a
neighboring manganese ion,

O~ + Mn?*t — 02~ + Mn*t,

Eopt = INP — 10 + 5[0, Mn®*],,; — S, = 1.43 &V,

3) the transition of the Mn** self-trapped hole to a
neighboring oxygen ion,

Mn*t + 0% = Mn*T + 0,

Eopt = I° — IN™ + S[0?7,Mn* "], — S}h" = 2.98 eV

(see transitions Nos. 1-3, respectively, in Table 5).
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Analyzing all calculated and experimental optical
energies given in Table 5, we can conclude that the
agreement is much better for the calculations not in-
volving the in-crystal ionization potentials of man-
ganese, IN® and IN®, or in the case where their dif-
ference enters and the inaccuracy due to these terms
cancels out. Relying on the correlation between the cal-
culated and experimental optical energies, we can try
to refine the values of IN" and IN", whose in-crystal
determination presents difficulties due to a nonclosed
3d shell of the Mn?®* ion. Indeed, expecting the cal-
culated optical energy of the fundamental transition of
the charge transfer character O(2p)-Mn(3d),

_ IMn

Eopt = I° — IN? + SMn®t 07|, =

13.91 — 30.63 + 50.15 = 5.61 eV

(see Table 5, transition No. 5) to be correlated with
the broad optical band observed in the €5 function near
4.75 eV (curve 3 in Fig. 5b), we can refine the third in-
crystal ionization potential of manganese as (IN")*
= 31.49 eV and, correspondingly, (IN")* = 48.27 eV.
Using these corrected values, we recalculated the ener-
gies of transitions Nos. 2 and 3 in Table 5 associated
with the charge transfer transitions of O~ and Mn**
self-trapped holes and obtained close values of optical
energies, Fope = 2.29 eV and F,),; = 2.12 eV, respec-
tively. These corrected values for the optical charge
transfer transition energies are presented in brackets
in Table 5 for transitions Nos. 2 and 3. We suggest
that these transitions, Mn** + 02~ — Mn?t + O~
and O~ + Mn®** — 02~ + Mn**, associated with the
hole transfer along the chain Mn**t-02~-Mn?* could
be responsible for the band around 2.3 €V in the op-
tical conductivity spectrum (the related band in the
€2 spectrum has the maximum energy 1.93 eV) of the
as-grown nonstoichiometric LaMnQOg crystal. If the
band is thus assigned, the net oscillator strength of
this band, f; = 0.51 (see Table 4) must depend on
the concentration of the localized holes as f; = for/x,
thereby providing an estimate of the oscillator strength
for the charge transfer transition, fop. The typical
value z & 0.1 for an as-grown LaMnOg crystal gives an
estimate for the oscillator strength consistent with the
transition of the charge transfer type.

The negative value of the thermal energy,
Ey, = —0.75 eV, for transition No. 2 in Table 5
indicates a more thermally stable state of the Mn**t
hole compared to the O~ hole state, in accordance with
our results for the thermal energies Ef} of the holes
formation (Table 3(a)) based on preliminary estimates
for the fourth in-crystal ionization potential of the
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Fig.6. The experimental (solid line) €2 spectrum of
Lay/sSr1/sMnO3 [28] (T = 300 K) approximated by
the Lorentzian shaped band (dashed line)

manganese ion. Using the refined value IN" = 48.27 eV
deduced from the comparison between the calculated
and experimental optical energies, we now derive the
respective thermal energies 0.12 and —0.12 eV for
transitions Nos. 2 and 3. This result reinforces our
arguments made above that the electronic hole can be
thermally stable on both the transition metal cation
and the oxygen anion in the LaMnOQOj crystal.

In accordance with our shell model calculations,
the intervalence charge transfer transition Mn*t -+
+ Mn?*t — Mn?**t + Mn*t is predicted to have the
optical energy E,p, = 1.33 eV (Table 5, transition
No. 1); compared with the energy of the optical gap
in LaMnOQs, it is not observable in an as-grown pure
crystal.

Because of the doping effect, the optical spectra in
CMR manganese oxides show striking changes over a
wide photon region (0 to 6 €V). In the Laj_,Sr,MnOs3
system, with increasing the doping concentration from
x=0to 0.3 at T = 9 K [26], the optical conductivi-
ty bands around 2.3 and 5 eV shift to lower energies
by more than 0.5 eV. We have analyzed the low-energy
€2 function in a slightly doped Laz/gSry/sMnO3z com-
pound [28], and found it to be well described by the
Lorentzian curve with the maximum at 1.32 eV and
the half-width of 0.61 eV, as presented in Fig. 6. We
emphasize that the maximum position of this band and
its half-width are also in a good correlation with the for-
mula describing a transition of the charge transfer char-
acter (see Eq. (10)): from AW = 0.61 eV, we obtain
hVmaz =~ 1.34 €V, which matches well the maximum po-
sition observed experimentally. It is reasonable to sug-
gest that this band is of the same origin as the band at
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€ = 1.93 €V in the pure LaMnQO3 compound, assigned
to transitions Nos. 2 and 3 in Table 5 and shifted by
about 0.5 eV to lower energies because of the hole in-
teraction effect in CMR systems. Using this line of rea-
soning, we can also suggest that the 0.6 eV band [18, 26]
in the optical conductivity of CMR compounds is due
to the intervalence charge transfer transition Mn*+ +
+ Mn?t — Mn?*+ + Mn?**t and is associated with the
photo-induced hopping conductivity of Mn** localized
holes, with the consistent value of hopping conductivity
activation energy of approximately 0.15 eV measured in
the adiabatic temperature limit [29, 30].

The results given are based on the shell model pa-
rameters (Table 1(a)), which were fitted to give good
values for both the dielectric constants and the TO
modes. When we use the second set of the shell
model parameters, determined primarily using the ox-
ide structures MnO, LaMnOs3, and Ca;MnOy [20] (Ta-~
ble 1(c)), the resulting energies are very similar for the
low-energy optical charge transfer transition band near
2.3 eV, but the predicted energies are about 1.5 eV
higher for 5 eV optical band.

5. CONCLUSIONS

In this paper, we explore the role of electronic and
ionic polarization energies in the physics of CMR ma-
terials. In particular, we examine energies associated
with the localized Mn?t and O~ holes in the lattice
of the «parent» LaMnQO3 compound. Our calculations
are done for the idealized cubic perovskite LaMnQOj3
structure, which is relevant to the nonmagnetic quasi-
cubic perovskite structure experimentally observed at
high temperatures 7' > 400 K > T ~ 140 K. To es-
timate the polarization energy terms, we use a fully
ionic shell model. The shell model parameters that we
derive satisfy the equilibrium conditions for the quasi-
cubic perovskite structure LaMnOgz and agree well with
experimental values of the static and high-frequency di-
electric constants as well as the TO phonons.

As a result of our shell model calculations, we find
that on one hand, there is a huge difference between the
hole relaxation energies on the oxygen and manganese
sites, which indicates a strong electron—phonon inter-
action in the case of a hole localized at the O site. On
the other hand, the difference that we find between the
thermal energies of the Mn** and O~ holes is too small.
This means that we must seriously consider the possi-
bility that the electronic hole in LaMnQs is localized
on the manganese, or on both the oxygen anion and
the transition metal cation, rather than on the oxygen
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ion alone. If so, this system would be similar to many
other transition metal oxides.

Assuming that holes in the LaMnOg crystal can lo-
calize in either or in both the Mn and O sublattices,
we estimate the main associated optical charge transfer
transition energies, which we relate to the experimen-
tally observed optical conductivity spectra. Applying
the Mott-Littleton approach, we estimate the charge
transfer transition energies within the Born—Hyber cy-
cle using the in-crystal ionization potentials for ions in
the LaMnQOg3 crystal obtained in our study of the ex-
perimental photoemission spectra.

Our analysis allows us to suggest a new interpre-
tation of the main bands in the optical conductiv-
ity spectrum near 2.3 and 5 eV. We suggest that the
band around 5 eV is associated with the fundamental
O(2p)-Mn(3d) transition of the charge transfer char-
acter, whereas the band near 2.3 €V is rather associ-
ated with the presence of Mn** and/or O~ self-trapped
holes in the nonstoichiometric LaMnQOg3 compound.

To summarize, we believe that the results of this
work demonstrate the applicability and usefulness of
the shell model approach to preliminary modeling of
polaron-related features in complex oxides such as
CMR materials, and hope that they will stimulate
further theoretical and experimental studies of the
character and properties of hole states in these mate-
rials.
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