О ТИПАХ НЕУСТОЙЧИВОСТЕЙ ПРОСТРАНСТВЕННО ОГРАНИЧЕННЫХ СИСТЕМ

Д. Н. Клочков, А. А. Рухадзе*

Институт общей физики Российской академии наук 119991, Москва, Россия

Поступила в редакцию 23 мая 2001 г.

Дается классификация неустойчивостей в пространственно ограниченных системах, обобщающая приведенную в книге [1]. Показано, что если в системе нет активных границ, а в неограниченной однородной среде нет усиления волн, что соответствует отсутствию решений дисперсионного уравнения с отрицательной мнимой частью волнового вектора при вещественной частоте, то возможно развитие только безусилительных неустойчивостей с нелокальным резонансом. На примере пространственно ограниченной системы, пронизываемой потоком, рассматривается развитие безусилительной неустойчивости, когда наряду с собственными волнами учитывается возбуждение волн потоков, играющих принципиальную роль в развитии неустойчивости.

PACS: 52.35.-g

Традиционно считается, что генератор — это усилитель с обратной связью [2]. Если обратиться к распределенным пространственно ограниченным системам, то обратную связь здесь осуществляет отраженная от границ системы собственная волна, а под словом «усилитель» подразумевается усиление в среде по крайней мере одной из собственных волн. Это означает, что для неограниченной однородной среды дисперсионное уравнение собственных волн $D(\omega, k) = 0$ имеет комплексные корни $k = k_{\nu}(\omega)$ при действительных значениях частоты ω , причем часть корней лежит в нижней части комплексной k-плоскости. Из этого следует, что в случае неограниченной среды также имеет место неустойчивость: конвективная или абсолютная [1]. В качестве примера для пучковых систем можно привести широко известную черенковскую неустойчивость [3, 4].

Тем не менее в пространственно ограниченных системах существует по меньшей мере еще один класс неустойчивостей, когда все корни $k = k_{\nu}(\omega)$ реальны при действительных ω ; более того, точка ветвления решений $k_{\nu}(\omega)$ лежит на действительной оси комплексной ω -плоскости. Это исключает развитие глобальной неустойчивости в конечной системе, конвективной и абсолютной — в неограниченной [1,5].

Более того, инкремент этих неустойчивостей обратно пропорционален длине системы *L*, т. е.

 $\gamma_{\omega}^+ \propto L^{-1}.$

Так как при анализе неустойчивостей в конечной области пространства обычно рассматривался асимптотический вид условия устойчивости при $L \to \infty$, часть неустойчивостей, встречающихся в ограниченных плазменных средах, просто выпадала из рассмотрения. В связи с этим назрела необходимость обобщить принятую классификацию неустойчивостей в ограниченных системах, изложение которой можно найти в книгах [1,4], а также в оригинальной статье [5]. Вначале мы исследуем двухволновые неустойчивости и получим критерии, когда можно говорить о генераторе как об усилителе с обратной связью. Далее исследуем на примере четырех волн класс многоволновых неустойчивостей, которые не укладываются в традиционную схему, и покажем, что в ограниченной системе возможна генерация на четырех волнах в отсутствие усиления волн.

Рассмотрим пространственно ограниченную систему, в которой волны распространяются вдоль оси z, испытывая трансформацию на границах z = 0 и z = L. Пусть для соответствующей неограниченной однородной среды соответствующее линеаризованное волновое уравнение содержит полином сте-

^{*}E-mail: rukh@fpl.gpi.ru

пени N относительно пространственной производной $\partial/\partial z$. Тогда волновое дисперсионное уравнение $D(\omega, k) = 0$ определяет законы дисперсии волн

$$k_{\nu} = k_{\nu}(\omega), \quad \nu = 1, \dots, N.$$

В этом случае волновые возмущения в системе конечной длины можно представить как суперпозицию нормальных волн ($\nu = 1, \ldots, N$) неограниченной однородной среды и переходного поля вблизи границ системы

$$A(t,z) = \sum_{\nu=1}^{N} A_{\nu} \exp\left[-i\omega t + ik_{\nu}(\omega)z\right] + \sum_{s} B_{s} \exp\left[-i\omega t + ik_{s}(\omega)z\right].$$
(1)

Здесь отдельно выделена сумма затухающих мод B_s , которые определяют переходное поле вблизи границ z = 0 и z = L для случая поперечно неоднородных систем и которыми в случае бесконечно протяженной среды пренебрегают. В качестве примеров приведем случаи, когда в резонатор инжектируется тонкостенный трубчатый пучок электронов или в резонатор помещается трубчатая плазма. В этих случаях вблизи границ z = 0 и z = L имеется переходное поле, описываемое второй суммой в (1), где индекс *s* нумерует поперечные волновые числа $k_{\perp s}$. Учет этих волн приводит к так называемым односторонним решениям [5]. В дальнейшем при составлении дисперсионного уравнения для пространственно ограниченной среды мы опустим волны $B_s \exp(-i\omega t + ik_s z)$, считая систему достаточно длинной, а моды B_s настолько быстро затухающими, что амплитуды этих волн, отраженных от другого конца системы, стремятся к нулю в окрестности рассматриваемой границы. Математически условие пренебрежения затухающими вглубь системы модами может быть выражено неравенством

$$\min\{L \operatorname{Im} k_s\} \gg 1, \qquad (2)$$

которое мы считаем в дальнейшем всегда выполненным.

Волну вида $\exp\left[-i\omega t + ik_{\nu}(\omega)z\right]$, задаваемую ветвью $k_{\nu}(\omega)$, будем называть идущей в некотором направлении, если при $\operatorname{Im} \omega \to \infty$ она убывает при изменении z в этом направлении. Так, если при $\operatorname{Im} \omega \to \infty$ имеем $\operatorname{Im} k_{\nu}(\omega) \to \infty$, то волна распространяется в положительном направлении оси z, если же $\operatorname{Im} k_{\nu}(\omega) \to -\infty$, то волна распространяется в противоположную сторону. Можно показать, что для волн, близких к гармоническим, такое определение распространения волны совпадает с определением с помощью их групповой скорости.

Разобьем волны на две группы: группу волн, распространяющихся в положительном направлении оси z (им соответствует индекс «+»), и группу волн, идущих в противоположном направлении (им соответствует индекс «-»). На границах z = 0 и z = L происходит взаимная трансформация каждой волны одной группы в волны другой. Пусть решена соответствующая дифракционная задача, т.е. найдены коэффициенты трансформации волн A_{ν}^{\pm} с учетом волн B_s переходного поля. Тогда на границе z = 0 будет справедливо следующее соотношение:

$$A_p^+ = \sum_{j=1}^{n^-} T_{pj}^{(in)} A_j^-, \quad p = 1, \dots, n^+,$$
(3)

описывающее трансформацию вол
н k_j^- в волны $k_p^+.$ Аналогично на границ
еz=Lтрансформация волн k_μ^+ в волн
у k_n^- описывается уравнением

$$A_{n}^{-}\exp(ik_{n}^{-}L) = \sum_{j=1}^{n^{+}} T_{nj}^{(out)} A_{j}^{+} \exp(ik_{j}^{+}L), \qquad (4)$$
$$n = 1, \dots, n^{-}.$$

Здесь $n^+ + n^- = N$.

Система однородных линейных уравнений (3), (4) имеет нетривиальное решение, если ее определитель равен нулю. Отсюда получается дисперсионное уравнение для пространственно ограниченной системы

$$\det\left\{\sum_{p=1}^{n^{-}} T_{jp}^{(in)} T_{pn}^{(out)} \times \right. \\ \left. \times \exp(i(k_n^+ - k_p^-)L) - \delta_{jn} \right\} = 0, \quad (5)$$

определяющее дискретный спектр часто
т ω системы.

В частном случае возможна такая ситуация, когда кроме волн k_1^+ и k_1^- других волн в системе нет, т. е. N = 2. Если N > 2, то для ω , лежащей в верхней части комплексной плоскости, выделим такие $k_{n^*}^+$ и $k_{p^*}^-$, мнимая часть разности которых минимальна, т. е.

$$\min_{\mathrm{Im}\,\omega>0} \{\mathrm{Im}(k_n^+ - k_p^-)\} = \mathrm{Im}(k_{n^*}^+ - k_{p^*}^-).$$
(6)

Будем называть «основным волновым состоянием» состояние, соответствующее возбуждению волн k_{n*}^+

и $k_{p^*}^-$. Для каждого волнового состояния, описываемого слагаемым $\{k_n^+ - k_p^-\}$ в экспоненциальном множителе, определим «волновую щель» Δk_{np} от основного волнового состояния, т. е. вычислим величину

$$\Delta k_{np} = \operatorname{Im}(k_n^+ - k_p^-) - \operatorname{Im}(k_{n^*}^+ - k_{p^*}^-).$$
(7)

Если длина системы *L* достаточно велика, т. е. если выполняется неравенство

$$L\min\{\Delta k_{np}\} > 1,\tag{8}$$

то в уравнении (5) основной вклад дает слагаемое с $\exp[i(k_{n^*}^+ - k_{p^*}^-)L]$, описывающее основное волновое состояние. Заметим, что условие (8) не эквивалентно условию (2). Может оказаться, что условие (8) просто невыполнимо, а может быть и наоборот. Так, для резонансных неустойчивостей (таких, например, как черенковская) условие (8) выполняется и оказывается более сильным, чем условие (2). Будем считать, что условие (8) выполнено. В этом случае уравнение (5) существенно упрощается и принимает вид

$$T_{n^*p^*}^{(in)} T_{p^*n^*}^{(out)} e^{i(k_{n^*}^+ - k_{p^*}^-)L} = 1.$$
(9)

Дадим теперь классификацию возможных неустойчивостей, описываемых уравнением (9). Для этого возьмем уравнение (9) по модулю

$$|T_{n^*p^*}^{(in)}T_{p^*n^*}^{(out)}|\exp[-\operatorname{Im}(k_{n^*}^+ - k_{p^*}^-)L] = 1.$$
(10)

Если $\operatorname{Im}(k_{n^*}^+ - k_{p^*}^-) > 0$, то экспоненциальный множитель в уравнении (10) меньше единицы. В этом случае неустойчивость может развиваться только, если

 $|T_{n^*p^*}^{(in)}||T_{p^*n^*}^{(out)}|>1,$

т. е. если имеет место сверхотражение хотя бы от одной из границ системы. В качестве примера можно привести явление развития акустических колебаний в резонаторе Гельмгольца, над открытой горловиной которого движется плоскопараллельный воздушный поток [6].

Если $\operatorname{Im}(k_{n^*}^+ - k_{p^*}^-) < 0$, то экспоненциальный множитель в уравнении (10) больше единицы. В этом случае неустойчивость может развиваться даже в условиях потерь на границах системы.

Рассмотрим асимптотику $L \to \infty$. В зависимости от знака разности $\operatorname{Im}(k_{n^*}^+ - k_{p^*}^-)$ экспоненциальный множитель в уравнении (10) стремится либо к нулю, либо к бесконечности. Поэтому уравнение (10) выполняется для $L \to \infty$ только при условии

$$\operatorname{Im}(k_{n^*}^+ - k_{p^*}^-) = 0. \tag{11}$$

Уравнение (11), записанное относительно ω , представляет собой частный случай уравнения (10), когда влияние границ системы исключается. Фактически мы написали условие развития неустойчивости в безграничной среде, а конечность системы учли через отраженную волну. Неустойчивости данного типа получили название глобальных [1, 4, 5].

Рассмотрим теперь вопрос о том, когда имеет место ${\rm Im}(k_n^+-k_p^-)\leq 0$ при ${\rm Im}\,\omega>0,$ т.е. когда развивается неустойчивость в отсутствие активных границ. Пусть при вещественном $\omega~({\rm Im}\,\omega=0)$ волновое число имеет вид

$$k(\omega) = k'(\omega) + ik''(\omega).$$

При этом мы считаем что нет апериодического усиления в системе, т.е. выполняется условие

$$k''(\omega) \ll k'(\omega).$$

Пусть имеет место сдвиг частоты в верхнюю часть комплексной плоскости

$$\omega = \omega' + i\omega'', \quad \omega'' > 0.$$

Полагая $\omega'' \ll \omega'$, для волнового числа получим

$$k(\omega) = k'(\omega') + i\left(k'' + \frac{\omega''}{v_{gr}}\right).$$
(12)

Здесь

$$v_{gr} = \frac{d\omega'}{dk'} = \left(\frac{dk'(\omega')}{d\omega'}\right)^{-1}$$

— групповая скорость волны. Условие пространственного усиления ${\rm Im}\,k<0$ волны принимает вид

$$k'' < -\frac{\omega''}{v_{gr}}.\tag{13}$$

Откуда видно, что усиление в среде возможно, если распространяется волна обратной дисперсии с $k = \alpha/\omega$ и групповой скоростью $v_{gr} = -\omega^2/\alpha < 0$, или если |k''| настолько велико, что выполняется условие (13) при отрицательной правой части.

Пусть для волн $k_{n^*}^+$ и $k_{p^*}^-$ выполняется закон дисперсии вида (12). Опуская индексы n^* и p^* , ставшие уже ненужными, мы можем написать

$$k^{+} - k^{-} = k'_{+}(\omega') - k'_{-}(\omega') + i\left[k''_{+} - k''_{-} + \omega''\left(\frac{1}{v_{gr}^{+}} - \frac{1}{v_{gr}^{-}}\right)\right], \quad (14)$$

откуда следует искомое неравенство

$$k''_{+} - k''_{-} + \omega'' \left(\frac{1}{v_{gr}^{+}} - \frac{1}{v_{gr}^{-}}\right) \le 0.$$
 (15a)

Таким образом, в отсутствие активных границ неустойчивость на двух волнах в конечной системе развивается при выполнении неравенства (15а), при этом знак равенства соответствует развитию глобальной неустойчивости с инкрементом

$$\omega'' = \frac{k''_- - k''_+}{1/v_{gr}^+ - 1/v_{gr}^-}$$

Появление в формуле для инкремента групповой скорости имеет простое объяснение: обратная связь в системе осуществляется с групповой скоростью, так как именно с этой скоростью происходит перенос энергии волной. Если в системе нет усиления, но имеются активные границы, то уравнение (10) имеет решение при

$$|T_{n^*p^*}^{(in)}||T_{p^*n^*}^{(out)}| > 1.$$
(156)

В этом случае усиление волн происходит вне рассматриваемой системы. Расширив область пространства и тем самым включив в систему область, где происходит усиление, мы приходим к случаю, когда в системе происходит усиление.

Итак, в пространственно ограниченной системе развитие неустойчивости на двух волнах возможно, если наряду с условием (8) выполняется хотя бы одно из условий (15). В этом случае неустойчивость является усилительной неустойчивостью с обратной связью в том смысле, что в системе имеет место усиление хотя бы одной волны и при этом одна или две волны осуществляют обратную связь с групповой скоростью. Все эти неустойчивости укладываются в традиционные представления о том, что генератор — это усилитель с обратной связью [2].

Если не выполняется ни одно из условий (15) и в системе нет больше волн, кроме двух рассматриваемых, то система устойчива относительно начальных возмущений. Если же в системе больше двух волн, то вопрос об устойчивости системы на основе невыполнения критериев (15) решить нельзя. Более того, может оказаться так, что волновая щель Δk_{nn} невелика или отсутствует вовсе, или же система настолько коротка, что во всех перечисленных случаях условие (8) не выполняется. Тогда нельзя выделить две волны согласно условию (6) и тем самым редуцировать уравнение (5) к виду (10). В этом случае все волны, для которых выражение $L \operatorname{Im}(k_n^+ - k_n^-)$ имеет примерно одинаковую величину, равноправно входят в уравнение (5). Подстановка в уравнение (5) законов дисперсии $k_{\nu} = k_{\nu}(\omega)$ приводит к трансцендентному комплексному уравнению относительно ω . Если в результате решения полученного уравнения окажется, что ω имеет положительную мнимую часть (Im $\omega > 0$), то система является неустойчивой. При этом выполнение условий (15) не обязательно, т. е. в системе может не быть ни активных границ, ни волн с обратной дисперсией, ни локального пространственного усиления волн (k'' = 0). Этот класс неустойчивостей, которые назовем «безусилительными», не укладывается в традиционные представления о том, что генератор — это усилитель с обратной связью. При этом число волн N в системе может быть любым, N > 2.

Наиболее простой и часто встречающейся ситуацией является случай четырех волн. Это происходит, когда систему пронизывает поток (например, пучок электронов или ионов, стабилизированный магнитным полем). Будем предполагать, что поток движется в положительном направлении оси z. Тогда в системе три волны движутся в том же направлении, что и поток (это собственная волна системы с волновым числом k_1 и две волны потока с волновыми числами k_3 и k_4), и только одна отраженная собственная волна системы с $k_2 = k^-$ распространяется в противоположном направлении.

Если на правой границе системы z = L сопутствующие потоку волны A_1 , A_3 и A_4 частично трансформируются во встречную волну A_2 и частично в волны, покидающие систему, то данный процесс можно записать в следующем виде:

$$\exp(ik_2L) = \sum_{\substack{\nu=1\\\nu\neq 2}}^{4} T_{2\nu}^{(out)} T_{\nu 2}^{(in)} \exp(ik_{\nu}L).$$
(16)

Уравнение (16) является частным случаем уравнения (5) для четырех волн.

Будем считать, что в отсутствие потока среда системы является изотропной (симметричной относительно инверсии $z \to -z$), тогда волновые числа собственных волн системы без потока имеют вид $k_{1,2} = \pm a$, где *a* принимает дискретный набор значений в силу конечности системы (резонатора). Так как условие (8) не выполняется, это исключает возможность локального резонанса в системе, т.е. $\omega \neq au$, где u — скорость потока. Будем считать плотность потока настолько малой, что его можно учесть по теории возмущений. В этом случае для собственных волн системы имеем

$$k_{1,2} = \pm a + \delta k_{1,2}, \tag{17a}$$

а для волн потока

$$k_{3,4} = \frac{\omega}{u} \pm \delta k_3. \tag{176}$$

Здесь

$$\delta k_1 = O(\omega_b^2), \quad \delta k_2 = O(\omega_b^2), \quad \delta k_3 = -\delta k_4 = O(\omega_b),$$

где ω_b — малый параметр, характеризующий невозмущенную плотность потока. Для пучков заряженных частиц ω_b — это ленгмюровская частота частиц пучка, а малым безразмерным параметром в этом случае является безразмерная величина ω_b/ω_0 , где ω_0 — характерная частота системы. В плазмоподобных средах наличие пучка приводит к поправке $\delta \varepsilon$ в тензоре диэлектрической проницаемости, которая оказывается пропорциональной величине $\omega_b^2/(\omega-ku)^2$. Появление потокового выражения $\omega - ku$ в знаменателе следует из уравнения движения частиц пучка. В результате из возмущенной части δε тензора диэлектрической проницаемости получаем поправки δk_i в законе дисперсии волны. Так, если в пустой металлический резонатор круглого сечения инжектируется однородный моноэнергетический пучок электронов, то

$$\varepsilon_{\parallel} = -\frac{\omega_b^2 \gamma^{-3}}{(\omega - ku)^2},$$

$$\delta k_{1,2} = \mp \frac{k_{\perp}^2 \gamma^{-3}}{2a(\omega \mp au)^2} \omega_b^2$$
(18a)

$$\delta k_{3,4} = \frac{\omega}{u} \frac{\gamma^{-5/2}}{\sqrt{\omega^2 - a^2 u^2}} \omega_b.$$
(186)

Здесь k_{\perp} — поперечное волновое число,

$$\gamma = (1 - u^2/c^2)^{-1/2}$$

— релятивистский фактор.

Будем предполагать, что на входной границе z = 0 влетающий поток не возмущен ни по скорости, ни по плотности. Чтобы удовлетворить этому условию, будем полагать, что на этой границе происходит зеркальное отражение волн, т.е. через границу z = 0 волны систему не покидают. Условие зеркального отражения волн может быть представлено в виде

$$\sum_{\nu=1}^{r} k_{\nu} A_{\nu} + \sum_{s} k_{s} B_{s} = 0.$$
 (19a)

Отсутствие возмущений потока по скорости дает [7]

$$\sum_{\nu=1}^{4} \frac{A_{\nu}}{\omega - k_{\nu}u} + \sum_{s} \frac{B_{s}}{\omega - k_{\nu}u} = 0, \qquad (196)$$

а отсутствие возмущений по плотности —

$$\sum_{\nu=1}^{4} \frac{A_{\nu}}{(\omega - k_{\nu}u)^2} + \sum_{s} \frac{B_s}{(\omega - k_{\nu}u)^2} = 0.$$
(19b)

Для потоков малой плотности, когда $B_s = O(\omega_b^2)$, или для поперечно однородных систем коэффициенты трансформации имеют вид [7]

$$T_{12}^{(in)} = 1 + O(\omega_b^2), \tag{20a}$$

$$T_{32}^{(in)} = \alpha \omega_b, \qquad (206)$$

$$T_{42}^{(in)} = -\alpha\omega_b. \tag{20b}$$

Коэффициенты трансформации $T_{2\nu}^{(out)}$ могут быть представлены в наиболее общем виде:

$$T_{21}^{(out)} = \varkappa_1 + g_1 \omega_b^2,$$
 (21a)

$$T_{23}^{(out)} = \varkappa_b + g_b \omega_b^2, \qquad (216)$$

$$T_{24}^{(out)} = \varkappa_b - g_b \omega_b^2. \tag{21b}$$

Здесь \varkappa_1 — коэффициент отражения попутной волны от плоскости z = L в отсутствие потока, \varkappa_b коэффициент трансформации потоковых волн. В результате в общем виде можно положить

$$T_{21}^{(out)}T_{12}^{(in)} = \varkappa_1 + q_1\omega_b^2, \qquad (22a)$$

$$T_{23}^{(out)}T_{32}^{(in)} = -b\omega_b + F\omega_b^2, \qquad (226)$$

$$T_{24}^{(out)}T_{42}^{(in)} = b\omega_b + F\omega_b^2.$$
(22b)

Величины q, b, F зависят от геометрии системы и являются функциями частоты и волновых чисел (подробнее см. [7]). Так, если в вакуумный металлический идеальный (нет ни омических, ни излучательных потерь, $\varkappa_1 = 1$) резонатор круглого сечения инжектируется однородный моноэнергетический пучок электронов, то

$$b = \frac{\omega}{au} \frac{k_{\perp}^2 u^2 \gamma^{-1/2}}{(\omega^2 - a^2 u^2)^{3/2}},$$
 (23a)

$$F = 2\frac{\omega}{au} \frac{\omega^2 + a^2 u^2}{(\omega^2 - a^2 u^2)^3} k_{\perp}^2 u^2 \gamma^{-3}, \qquad (236)$$

$$q_1 = -2F. \tag{23b}$$

Полагая

$$L\delta k_1 \ll 1, \quad L\delta k_2 \ll 1, \quad L\delta k_3 \sim 1,$$

получаем окончательный вид дисперсионного уравнения неустойчивости, линеаризованного по малому параметру($\sim \omega_b/\omega$):

$$\mathcal{D}(a) \equiv \mathcal{D}_0(a) + \mathcal{D}_1(a) = 0.$$
(24)

Здесь

$$\mathcal{D}_0(a) = e^{-iaL} - \varkappa_1 e^{iaL} \tag{25}$$

 невозмущенная часть дисперсионного уравнения, которая определяет дискретный набор значений невозмущенного параметра *a*:

$$a = \frac{\pi n}{L} - \frac{1}{2L} \arg \varkappa_1 - \frac{i}{2L} \ln \frac{1}{|\varkappa_1|}, \qquad (26)$$

а следовательно, и дискретный спектр собственных колебаний системы $\omega = \omega(\operatorname{Re} a)$. Мнимая часть параметра *a* определяет потери на излучение:

$$\gamma_{\omega}^{-} = -\frac{d\omega}{da} \operatorname{Im} a = \frac{1}{2L} \frac{d\omega}{da} \ln \frac{1}{|\varkappa_{1}|}.$$
 (27)

Здесь

$$\frac{d\omega}{da} = v_{gr}$$

— групповая скорость собственной волны системы.

Учет возмущения пучка дает второе слагаемое $\mathcal{D}_1(a)$ в дисперсионном уравнении:

$$\mathcal{D}_1(a) = iL\delta k_2 e^{-iaL} - (iL\delta k_1\varkappa_1 + q_1\omega_b^2)e^{iaL} + + 2ib\omega_b\sin(L\delta k_3)e^{i\theta} - 2F\omega_b^2\cos(L\delta k_3)e^{i\theta}.$$
 (28)

Здесь

$$\theta = \frac{\omega L}{u}$$

 пролетный угол (фаза) частиц потока. Соответствующее этому члену возмущение δω собственной частоты системы равно

$$\delta\omega = -\frac{d\omega}{da} \frac{\mathcal{D}_1(a)}{\partial \mathcal{D}_0(a)/\partial a} =$$

$$= \frac{1}{2} \frac{d\omega}{da} (\delta k_2 - \delta k_1) + (-1)^n \frac{\omega_b b}{L\sqrt{|\varkappa_1|}} \times$$

$$\times \frac{d\omega}{da} \sin (L\delta k_3) \exp \left(i\theta - \frac{i}{2}\arg \varkappa_1\right) +$$

$$+ i\frac{\omega_b^2}{L} \frac{d\omega}{da} \left[\frac{q_1}{2\varkappa_1} + (-1)^n \frac{F}{\sqrt{|\varkappa_1|}} \cos (L\delta k_3) \times$$

$$\times \exp \left(i\theta - \frac{i}{2}\arg \varkappa_1\right)\right]. \quad (29)$$

Отсюда находим инкремент неустойчивости системы с учетом потерь на излучение:

$$\gamma_{\omega} = \operatorname{Im} \delta \omega - \gamma_{\omega}^{-} = \frac{1}{2} v_{gr} \operatorname{Im} (\delta k_2 - \delta k_1) + (-1)^n \frac{\omega_b v_{gr}}{L} \times \operatorname{Im} \left[\frac{b}{\sqrt{\varkappa_1}} \sin(L\delta k_3) \exp\left(i\theta - \frac{i}{2} \arg \varkappa_1\right) \right] + \frac{\omega_b^2 v_{gr}}{L} \operatorname{Re} \left[\frac{q_1}{2\varkappa_1} + (-1)^n \frac{F}{\sqrt{|\varkappa_1|}} \cos(L\delta k_3) \times \exp\left(i\theta - \frac{i}{2} \arg \varkappa_1\right) \right] - \frac{v_{gr}}{2L} \ln \frac{1}{|\varkappa_1|}.$$
 (30)

Если в системе есть усиление, т. е. выполняется условие (15а), то существует ненулевая «волновая щель» Δk_{np} . В этом случае, начиная с некоторого значения длины системы L^* , для всех $L > L^*$ будет выполнятся условие (8). Таким образом, в длинных системах, $L > L^*$, будет иметь место двухволновая генерация, описываемая уравнением (9). Действительно, устремляя длину системы $L \to \infty$ в формуле (30), мы получаем инкремент глобальной неустойчивости

$$\gamma_{\omega} = \frac{1}{2} v_{gr} \operatorname{Im}(\delta k_2 - \delta k_1).$$
(31)

Если все δk_i действительны (в этом случае комплексными могут быть только $T_{np}^{(out)}$), то условие (8) не выполняется ни при каких длинах L, а инкремент (декремент) неустойчивости равен

$$\gamma_{\omega} = (-1)^{n} \frac{\omega_{b} v_{gr}}{L} \frac{|b|}{\sqrt{|\varkappa_{1}|}} \sin(L\delta k_{3}) \times \\ \times \sin\left(\theta - \frac{1}{2}\arg\varkappa_{1} + \arg\varkappa_{b}\right) + \\ + \frac{\omega_{b}^{2} v_{gr}}{L} \left[\frac{|q_{1}|}{2|\varkappa_{1}|}\cos(\arg q_{1} - \arg\varkappa_{1}) + \\ + (-1)^{n} \frac{|F|}{\sqrt{|\varkappa_{1}|}}\cos(L\delta k_{3}) \times \\ \times \cos\left(\theta - \frac{1}{2}\arg\varkappa_{1} + \arg F\right)\right] - \\ - \frac{v_{gr}}{2L}\ln\frac{1}{|\varkappa_{1}|}. \quad (32)$$

Если $\gamma_{\omega} > 0$, то в системе возникает безусилительная неустойчивость, так как для реальных $k_{\nu} = k_{\nu}(\omega)$ при Im $\omega = 0$ ни одно из условий (8), (15) не выполнено. При $L \to \infty$ инкремент безусилительной неустойчивости стремится к нулю, поэтому данная неустойчивость возникает только в пространственно ограниченных средах.

По отношению к величине $L\delta k_3$ системы можно разбить на короткие и длинные. В коротких системах $L\delta k_3 \ll 1$, поэтому

$$\sin(L\delta k_3) \sim L\delta k_3 \sim \omega_b L.$$

В результате оба первых члена в (32) одного порядка, а инкремент в системе без потерь $\gamma_{\omega} \propto \omega_b^2$, т.е. пропорционален плотности потока. Так, если в вакуумный металлический идеальный (нет ни омических, ни излучательных потерь) резонатор круглого сечения инжектируется однородный моноэнергетический пучок электронов, то инкремент равен

$$\gamma_{\omega}^{+} = \frac{k_{\perp}^{2} c^{2} \gamma^{-3}}{(\omega^{2} - a^{2} u^{2})^{2}} \frac{u}{L} \omega_{b}^{2} \times \\ \times \left[(-1)^{n} \theta \sin \theta + 2 \frac{\omega^{2} + a^{2} u^{2}}{\omega^{2} - a^{2} u^{2}} \left((-1)^{n} \cos \theta - 1 \right) \right].$$
(33)

Условие развития неустойчивости имеет вид

$$(-1)^n \theta \sin \theta + 2 \frac{\omega^2 + a^2 u^2}{\omega^2 - a^2 u^2} \times \\ \times \left((-1)^n \cos \theta - 1 \right) > 0. \quad (34)$$

В длинных системах, когда $L\delta k_3 \geq 1$, второй член в (32) имеет более высокий порядок малости по параметру ω_b в сравнении с первым слагаемым. Поэтому для длинных систем выражение для инкремента упрощается и становится равным

$$\gamma_{\omega} = \frac{v_{gr}}{L} \left[(-1)^n \omega_b \frac{|b|}{\sqrt{|\varkappa_1|}} \sin(L\delta k_3) \times \sin\left(\theta - \frac{1}{2}\arg\varkappa_1 + \arg\varkappa_b\right) - \frac{1}{2}\ln\frac{1}{|\varkappa_1|} \right]. \quad (35)$$

Условие развития неустойчивости, $\gamma_{\omega} > 0$, для длинных систем принимает вид

$$(-1)^{n} \omega_{b} |b| \sin(L\delta k_{3}) \times \\ \times \sin\left(\theta - \frac{1}{2} \arg \varkappa_{1} + \arg \varkappa_{b}\right) > \frac{\sqrt{|\varkappa_{1}|}}{2} \ln \frac{1}{|\varkappa_{1}|}. \quad (36)$$

Как видно из (36), выполнение неравенства сильно зависит от пролетного угла θ . В этом смысле можно говорить, что безусилительные неустойчивости определяются нелокальным резонансом, в выражение для которого входят параметры потока и линейные размеры системы. Кроме того, анализ (36) показывает, что безусилительная неустойчивость развивается в достаточно высокодобротных системах, когда

$$2\omega_b|b| > \sqrt{|\varkappa_1|} \ln |\varkappa_1|^{-1}.$$

Для идеального резонатора условие (36) существенно упрощается:

$$(-1)^n \sin(L\delta k_3) \sin\theta > 0. \tag{37}$$

При выводе формулы для инкремента γ_{ω} предполагался произвольный закон дисперсии $a = a(\omega)$ собственных волн системы. Поэтому безусилительная неустойчивость является универсальной в том смысле, что проявляется на волнах с любым законом дисперсии и ненулевой групповой скоростью. В отличие

от резонансных неустойчивостей, таких как черенковская, развитие безусилительной неустойчивости не требует, чтобы собственные волны системы были замедленными. В качестве примеров приведем эффект возбуждения различных свистков с резонатором [6] (флейт, органных труб и т. д.), а также возбуждение акустоэлектрического генератора при скоростях электронного потока, меньших скорости звука в сегнетоэлектрике. В электронике — это возбуждение монотрона, а также генерация СВЧ-излучения на косой ленгмюровской волне в плазменном резонаторе при плотностях плазмы ниже критической, когда развитие резонансной черенковской неустойчивости невозможно [8], возбуждение потенциальных ленгмюровских волн в плоском слое плазмы при непрерывной инжекции моноэнергетического пучка электронов [9].

К описанному типу неустойчивостей относятся и неизлучательные неустойчивости, такие как апериодическая неустойчивость Пирса [1]. Закон дисперсии волн в наиболее общей форме представим в виде

$$k_1 = \frac{\omega}{v_1}, \quad k_2 = -\frac{\omega}{v_2}, \tag{38a}$$

$$k_{3,4} = \frac{\omega \pm \eta}{v_{gr}}.$$
(386)

Здесь η — параметр, характеризующий поток, — уже не является малой величиной; v_{gr} — групповая скорость пучковых волн. При условии $\omega < \eta$ фазовая скорость медленной пучковой волны направлена навстречу потоку, в то время как ее групповая скорость сонаправлена ему. И хотя в этом случае медленная пучковая волна ведет себя как волна с обратной дисперсией, условие (15а) здесь не выполняется, так как $v_{gr} > 0$, а $k_4'' = 0$.

Потенциальная волна k_1 и две пучковые волны k_3 и k_4 сонаправлены потоку, а волна k_2 распространяется навстречу ему и поэтому осуществляет обратную связь в системе. Обозначим

$$T_{2\nu}^{(out)}T_{\nu 2}^{(in)} = \alpha_{\nu}$$

и перепишем уравнение (16) для данного случая в виде

$$\alpha_{1} \exp\left(i\frac{\omega L}{v_{1}}\right) - \exp\left(-i\frac{\omega L}{v_{2}}\right) + \left[\left(\alpha_{3} + \alpha_{4}\right)\cos\left(\frac{\eta L}{v_{gr}}\right) + i(\alpha_{3} - \alpha_{4})\sin\left(\frac{\eta L}{v_{gr}}\right)\right] \times \exp\left(i\frac{\omega L}{v_{gr}}\right) = 0. \quad (39)$$

В общем виде данное уравнение решить нельзя, так как нет малого параметра, по которому можно было бы раскладывать решение. Частные случаи уравнения (39) довольно детально разобраны в литературе (см., например, [10–12]), поэтому на них мы останавливаться не будем. Отметим здесь только два важных момента.

Обычно предполагают, что на границах z = 0 и z = L находятся металлические электроды. На границе z = L без потери внутренней самосогласованности задачи можно поставить более общие условия. Если считать, что в области z > L находится однородный диэлектрик с диэлектрической проницаемостью

$$\varepsilon(\omega) = \varepsilon'(\omega) + \varepsilon''(\omega),$$

то из граничных условий для поля при z = L получаем коэффициенты $T_{2\nu}^{(out)}$, хотя говорить в этом случае про волны, покидающие систему, можно только условно. При $\varepsilon \to \infty$ мы приходим к частному случаю зеркальных граничных условий на металле.

Рассмотрим очень длинные системы в асимптотике $L \to \infty$. Тогда при условии $\omega'' > 0$ вторым слагаемым в уравнении (39) можно пренебречь. Оставшиеся два члена будут иметь одинаковый порядок величины, если инкремент обратно пропорционален длине системы, т. е. если $\omega'' \propto 1/L$. Это означает, что в неограниченной системе данная неустойчивость отсутствует.

Таким образом, усилитель с обратной связью является частным случаем реализации генератора. В плазмоподобных пространственно ограниченных средах существует широкий класс неустойчивостей, не укладывающихся в традиционные представления. Условия развития этих неустойчивостей определяется нелокальным резонансом. Это делает невозможным создание усилителей, работающих на данном типе неустойчивостей, однако позволяет создать широкий класс генераторов.

В данной работе рассматривалась многоволновая неустойчивость системы по отношению к основному невозбужденному состоянию, в котором неравновесность обусловлена потоком. Поэтому приведенный выше анализ не содержит рассмотрения параметрических неустойчивостей в ограниченном пространстве [13], таких как вынужденное рамановское рассеяние либо вынужденное рассеяние Мандельштама-Бриллюэна. Неравновесность в этих процессах обусловлена нелинейным искажением невозмущенного состояния в присутствии волны накачки большой амплитуды.

В заключение авторы выражают благодарность В. П. Силину за полезные замечания и советы.

ЛИТЕРАТУРА

- 1. Е. М. Лифшиц, Л. П. Питаевский, Физическая кинетика, Наука, Москва (1979).
- 2. П. С. Ланда, *Нелинейные колебания и волны*, Наука, Москва (1997).
- А. Ф. Александров, Л. С. Богданкевич, А. А. Рухадзе, Основы электродинамики плазмы, Высшая школа, Москва (1978).
- 4. А. И. Ахиезер, И. А. Ахиезер, Р. В. Половин и др., Электродинамика плазмы, Наука, Москва (1974).
- 5. А. Г. Куликовский, ПМП 30, 148 (1966).
- 6. Ю. А. Степанянц, А. Л. Фабрикант, *Pacnpocmpa*нение волн в сдвиговых потоках, Наука, Москва (1996).
- D. N. Klochkov, M. Yu. Pekar, and A. A. Rukhadze, Phys. Plasmas 7, 4707 (2000).
- 8. Д. Н. Клочков, М. Ю. Пекар, Физика плазмы 23, 650 (1997).
- 9. С. С. Калмыкова, ЖЭТФ 65, 2250 (1973).
- **10**. М. В. Кузелев, А. А. Рухадзе, Электродинамика плотных электромагнитных пучков в плазме, Наука, Москва (1990).
- 11. S. Kuhn, Contrib. Plasma Phys. 34, 495 (1994).
- В. В. Владимиров, А. Н. Мосиюк, М. А. Мухтаров, Физика плазмы 9, 992 (1983).
- 13. Л. М. Горбунов, ЖЭТФ 67, 1386 (1974).