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DOUBLE POTTS CHAIN AND EXACT RESULTSFOR SOME TWO-DIMENSIONAL SPIN MODELSM. A. Yurish
hev * **The Abdus Salam International Centre for Theoreti
al Physi
s34100, Trieste, ItalySubmitted 12 April 2001An exa
t analyti
al solution for the q-state Potts model on a 2 � 1 ladder with arbitrary two-, three-, andfour-site intera
tions in a unit 
ell is presented in a 
losed form. This solution is used to show that the �nite-sizeinternal energy equation [6℄ yields an a

urate value of the 
riti
al temperature for the triangular Potts latti
ewith three-site intera
tions in alternate triangular fa
es. It is argued that the above equation is exa
t at leastfor self-dual models on isotropi
 strips.PACS: 05.50.+q, 05.70.Jk, 75.10.Hk1. INTRODUCTIONThe methods that allow extra
ting informationabout a multidimensional system from solutions of itslower-dimensional 
ounterparts play an important rolein statisti
al physi
s. One of the most well-knownexamples of this kind is the �nite-size s
aling ap-proa
h [1, 2℄.There are 
ases that evoke parti
ular interest whenthe 
riti
al properties of a system experien
ing a phasetransition 
an be exa
tly determined from the data per-taining to its subsystems. For instan
e, for the Isingstrips, the interse
tion point of the partition fun
tionzero lo
us in a 
omplex temperature plane with the realpositive axis yields the exa
t value of the 
riti
al tem-perature for the two-dimensional Ising model [3℄. Ex-a
t 
riti
al temperatures for the S = 1=2 Ising modelson square, triangular, honey
omb, and 
entered square(Union Ja
k) anisotropi
 latti
es are obtained by usingstrip 
lusters when an e�e
tive �eld is applied to oneside of the strip only [4℄. Another exoti
 way of estimat-ing the 
riti
al point of the square-latti
e Ising modelwas proposed in [5℄. The authors of this paper showedthat in the quasidiagonal form of a transfer matrix ofa �nite-width strip, all 
oe�
ients of the 
hara
teristi
*On leave from Vasilsursk Laboratory, Radiophysi
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equation for the sub-blo
k 
ontaining the largest eigen-value have an extremum lo
ated pre
isely at the exa
tvalue of the phase transition temperature of the in�nitelatti
e.In the present paper, we 
on
entrate our attentionon the method to 
al
ulate the 
riti
al temperature pro-posed by Wosiek [6℄ (see also [7�12℄). The author of [6℄introdu
ed a maximum 
riterion for the ratio of mo-ments of the transfer matrix and obtained the followingequation for determining the 
riti
al point position ina d-dimensional system:u1(K
) = u2(K
): (1)Here, u1 and u2 are the respe
tive internal energies of(d�1)-dimensional and two 
oupled (d�1)-dimensionalsubsystems and K
 is the 
riti
al 
oupling (the normal-ized inverse 
riti
al temperature) of the d-dimensionalsystem.It is remarkable that at d = 2, Eq. (1) (see [6℄) yieldsthe exa
t value of K
 for the isotropi
 square and tri-angular Ising latti
es, as well as for the three-site Pottsmodel on the square latti
e with isotropi
 intera
tions.Subsequently, several other models were added to thelist, whi
h now in
ludes another isotropi
 Baxter model(two square Ising latti
es 
oupled by four-parti
le in-tera
tions), the Baxter�Wu model (triangular latti
ewith three-site intera
tions of Ising spins) [10℄, and theq-state Potts model on an isotropi
 square latti
e withan arbitrary value of q [12℄. The physi
al nature of1282



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Double Potts 
hain and exa
t results : : :Eq. (1) 
an be elu
idated when it either yields an ex-a
t solution or admits an approximate estimate or doesnot give any solution at all for a given model.For a two-dimensional system, Eq. (1) 
onne
ts theinternal energies of in�nitely long linear and double
hains. Therefore, in order to test Eq. (1) rigorously, itis ne
essary to have analyti
al solutions for su
h sub-systems.In Se
. 2, we give an exa
t analyti
al solution forthe two-
hain Potts strip with a large number of inde-pendent parameters. As a spe
ial 
ase, it 
ontains asolution for the linear Potts 
hain.Our solution for the double Potts 
hain enables usto 
over all the previously known 
ases where Eq. (1)exa
tly reprodu
es the 
riti
al temperatures for thetwo-dimensional Ising, Baxter�Wu, and Potts models.In addition, we dis
over (Se
. 3) a new model for whi
hEq. (1) yields the exa
t result. This is the q-state Pottsmodel on the triangular latti
e with purely three-siteintera
tions in a half of the triangular fa
es [13℄.In Se
. 4, we dis
uss the results. In parti
ular, weshow that duality is a su�
ient 
ondition for the valid-ity of Eq. (1) for isotropi
 spin latti
es. In Se
. 5, wesummarize the results obtained in the work.2. SOLUTION OF THE DOUBLE q-STATEPOTTS CHAIN WITH THE Sq SYMMETRYWe 
onsider a two-
hain (ladder) latti
e with spinvariables �il atta
hed to its sites (i = 1; 2 is the 
hainindex and l = 1; 2; 3; : : : labels the sites in the longi-tudinal dire
tion of the ladder); the spin variables takethe values 1; 2; : : : ; q.We write the Hamiltonian of the system asH = �Xl H(�1l ; �2l ;�1l+1; �2l+1): (2)The lo
ality of intera
tions in this Hamiltonian allowsus to introdu
e the transfer matrix V with the elementsh�1; �2jV j�01; �02i = exp H(�1; �2;�01; �02)kBT (3)(where T is the temperature and kB is the Boltzmann
onstant) and redu
e the problem of 
al
ulating thefree energy density f of an in�nitely long strip to �nd-ing the largest eigenvalue �1 of the matrix V :f = 12 ln�1: (4)Transfer matrix (3) has the size q2 � q2. It is realand all its elements are positive, but the matrix is notsymmetri
 in general (Vij 6= Vji).

To solve the eigenvalue problem for the transfer ma-trix, we use the group-theoreti
al approa
h (see, e.g.,Ref. [14℄, where this approa
h was applied to a qua-sidiagonalization of the Ising model transfer matrix onparallelepipeds L� L�1). In order to obtain a solu-tion for the two-leg spin ladder (in whi
h we are parti
-ularly interested) in the most general form, we pro
eein the reversed order. Namely, we �rst sele
t a sym-metry group in the spa
e j�1; �2i, whi
h enables us toquasidiagonalize the transfer matrix up to sub-blo
kse
ular equations that 
an be solved analyti
ally; onlythen we expand the Hamiltonian densityH into a seriesin the invariants of the symmetry group.We take a model that is invariant, e.g., under trans-formations of the symmetri
 group Sq of the degree q.For the Potts model, this means that we are dealingwith a system in the zero external �eld. Fortunately,the �eld is not required to test Eq. (1).It is known (see, e.g., [15℄) that the largest eigen-value of the transfer matrix is lo
ated in the sub-blo
kof the identity irredu
ible representation. In a

or-dan
e with group theory, the basis ve
tors  i of theidentity irredu
ible representation 
an be obtained bysu

essively a
ting with the permutation operators ofthe Sq group on the orths j1; 1i, j1; 2i, : : : , jq; qi. A
t-ing by elements of the symmetri
 group �rst on theorth j1; 1i and then on j1; 2i, we �nd that the two lin-ear 
ombinations obtained involve all the orths. Thenormalized basis ve
tors are given by 1 = 1pq qXi=1 ji; ii;  2 = 1pq(q � 1) qXi;j=10 ji; ji (5)(the prime at the se
ond sum indi
ates that the termswith i = j are omitted). Hen
e, the sub-blo
k of theidentity irredu
ible representation has the size 2 by 2,and therefore, its eigenvalues (one of whi
h is �1) 
anbe easily obtained by solving an algebrai
 equation ofonly the se
ond degree. We note that if we take thegroup Sq �Cs (where Cs is the group of mirror re�e
-tions in the plane pla
ed between the 
hains of the two-leg ladder), the sub-blo
k 
orresponding to the iden-tity irredu
ible representation again has the size 2� 2,and therefore, this symmetry (whi
h only redu
es thenumber of independent parameters in the Hamiltonian)does not justify itself in the given 
ase.We now represent Hamiltonian (2) as a sum ofterms that are invariant under transformations of the1283 16*
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Fig. 1. Geometry of two-site 
ouplings in the doubleq-state Potts 
hain with the Sq symmetrygroup Sq :H = �Xl [J1Æ�1l �1l+1 + J2Æ�2l �2l+1 + J0Æ�1l �2l ++J 0Æ�1l �2l+1+J 00Æ�2l �1l+1+J3Æ�1l �2l �1l+1+J 03Æ�1l �1l+1�2l+1++ ~J3Æ�1l �2l �2l+1 + ~J 03Æ�2l �1l+1�2l+1 + J4Æ�1l �2l �1l+1�2l+1 ℄: (6)The Krone
ker symbols entering here are de�ned asÆ�1����k = ( 1; if �1 = : : : = �k;0; otherwise. (7)The stru
ture of the two-site 
ouplings in Hamilto-nian (6) is shown in Fig. 1. Matrix elements of theoriginal transfer matrix are written ash�1; �2jV j�01; �02i = exp �K1Æ�1�01 +K2Æ�2�02++ 12K0(Æ�1�2 + Æ�01�02) +K 0Æ�1�02 +K 00Æ�2�01 ++K3Æ�1�2Æ�1�01 +K30Æ�1�01Æ�1�02 + ~KÆ�1�2Æ�1�02 ++ ~K 0Æ�2�02Æ�2�01 +K4Æ�1�01Æ�1�2Æ�1�02� ; (8)whereK0 = J0=kBT; K1 = J1=kBT; K2 = J2=kBT;K 0 = J 0=kBT; K 00 = J 00=kBT; K3 = J3=kBT;K 03 = J 03=kBT; ~K3 = ~J3=kBT; ~K 03 = ~J 03=kBT;K4 = J4=kBT:Using Eqs. (5) and (8), we 
al
ulate the matrix el-ements Qij =  +i V  j

of the sub-blo
k 
orresponding to the identity irre-du
ible representation:Q11 = [q � 1 + exp(K1 +K2 +K 0 +K 00 +K3 ++K 03 + ~K3 + ~K 03 +K4)℄ expK0;Q12 = (q � 1)1=2[q � 2 + exp(K1 +K 00 +K3) ++ exp(K2 +K 0 + ~K3)℄ exp(K0=2);Q21 = (q � 1)1=2[q � 2 + exp(K1 +K 0 +K 03) ++ exp(K2 +K 00 + ~K 03)℄ exp(K0=2);Q22 = (q � 2)(q � 3 + eK1 + eK2 + eK0 + eK00) ++ exp(K1 +K2) + exp(K 0 +K 00): (9)
As a result, we �nd that the largest eigenvalue of thetransfer matrix of the double q-state Potts 
hain withHamiltonian (6) is given by�(2)1 = 12(Q11 +Q22) ++ �14(Q11 �Q22)2 + (q � 1)A expK0�1=2 ; (10)whereA = [q�2+exp(K1+K 00+K3)+ exp(K2+K 0+ ~K3)℄��[q�2+exp(K1+K 0+K 03)+ exp(K2+K 00+ ~K 03)℄: (11)The versions of the double Potts 
hains solved pre-viously [3; 12; 16�18℄ 
orrespond to a parti
ular 
hoi
eof the intera
tion 
onstants. SettingJ0 = J 0(= J)with all the other intera
tion 
onstants vanishing, wearrive at the solution for the linear Potts 
hain [19℄,�(1)1 (K) = eK + q � 1: (12)3. THE TRIANGULAR POTTS LATTICE WITHTHREE-SITE INTERACTIONS ONALTERNATE TRIANGLE FACESA large number of independent parameters in themodel solved in the previous se
tion enables us to testEq. (1) for a wide 
lass of two-dimensional spin sys-tems.In addition to the 
ases listed in the Introdu
tion, inwhi
h Eq. (1) is satis�ed exa
tly, we 
onsider the Pottsmodel on a triangular latti
e with three-site intera
-tions in ea
h up-triangle (Fig. 2). The position of the
riti
al point in this model was found with both three-and two-site intera
tions [13℄. However, it is known [12℄1284
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Fig. 2. Fragment of the Potts latti
e with three-siteintera
tions in alternate triangular fa
es (shaded)that for the triangle latti
e with pair 
ouplings, Eq. (1)yields the exa
t result only for the Ising 
ase (q = 2).We therefore dis
uss the model with purely three-siteintera
tions. In this 
ase,K
 = ln(1 + q): (13)We now show that this value satis�es Eq. (1) by subsys-tems in the shape of strips with the periodi
 boundary
ondition in the transverse dire
tion.The internal energy of the one-dimensional subsys-tem is u1(K) � �f1�K = [(q � 1)e�K + 1℄�1: (14)Substituting K3 = ~K3 with all the other intera
tion
onstants vanishing, we obtain from (4), (10), and (11)the free energy density of the double Potts 
hain:f2(K) = 12 ln"12(e2K + q2 � 1)++ �14(e2K � (q � 1)2)2 ++ q(q � 1)(2eK + q � 2)�1=2# : (15)The internal energy is given byu2(K) = �f2�K :Di�erentiating Eq. (15) with respe
t to K, we �nd theexpression for u2(K).The analysis shows that the dependen
es u1(K) andu2(K) have a 
rossing point that lies exa
tly atK = K
 = ln(1 + q)both for integer and non-integer q. The internal energyof the system at the 
riti
al point is given byu1(K
) = u1(K
) = u2(K
) = 12(1 + q�1): (16)

Thus, using solutions for only the linear and doublePotts 
hains, Eq. (1) has enabled us to extra
t the exa
tvalue of K
 for the bulk two-dimensional Potts modelon a triangular latti
e with alternating fa
es that in-tera
t by three-site for
es.4. DISCUSSIONIn Ref. [8℄, Eq. (1) was extended touL(K
) = uL0(K
); L; L0 = 1; 2; 3; : : : ; (17)where uL is the internal energy per site of L 
oupled(d�1)-dimensional subsystems. In the two-dimensional
ase, L denotes the width of the strip.The validity of 
ondition (17) for arbitrary L and L0means the absen
e of a �singular� (i.e., L-dependent)part of the internal energy density at the 
riti
al point,uL(K
) = 
onst on L: (18)In other words, the amplitudes of all �nite-size 
or-re
tions to the 
riti
al internal energy of the systemu1(K
) are equal to zero.For the square isotropi
 Ising latti
e, the derivativeof the inverse 
orrelation length �L(K) with respe
tto the temperature-like variable K has a similar prop-erty [20, 21℄, ��L�K �����K=K
 = ��L0�K �����K=K
 ; (19)i.e., ��L=�Kj
 does not depend on L. This propertyhas enabled us to exa
tly determine the value of thethermal 
riti
al exponent yt (= 1) for this model usingonly the �nite-size data [20, 21℄.Equations (1) and (17) are valid for the ferromag-neti
 isotropi
 square Potts latti
es. These models areself-dual and their 
riti
al 
oupling (in the anisotropi

ase) is determined from the 
ondition(expKx � 1)(expKy � 1) = q: (20)For the antiferromagneti
 square-latti
e Potts model,the 
riti
ality 
ondition is [22℄(expKx + 1)(expKy + 1) = 4� q; (21)where Kx < 0 and Ky < 0. We performed a veri�
a-tion and found that in the antiferromagneti
 
ase, the
urves u1(K) and u2(K) do not have any self-
rossingpoint, and therefore, Eq. (1) does not lead to the exa
tvalue that follows from Eq. (21), nor to any approxi-mate estimate for the 
riti
al point.1285



M. A. Yurish
hev ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001It is not di�
ult to show that if the model is self-dual and the dual point therefore 
oin
ides with theoriginal one, Eqs. (1) and (17) are valid.Indeed, we 
onsider for instan
e the Ising model onthe isotropi
 square latti
e L�N with toroidal bound-ary 
onditions. The partition fun
tion of this systemhas a fundamental property: it is invariant (up to amultipli
ative fa
tor exponentially depending on L) un-der the duality transformation (see [23℄),ZL;N(K�) = (sh 2K)�LMZL;M (K); (22)where K and K� are related bythK� = exp(�2K): (23)(We here used another normalization of the ex
hange
onstant in the Ising model, namely JPotts = 2JIsing.)In the limit of an in�nitely long strip (N ! 1),Eq. (22) transforms to the duality 
ondition for thelargest eigenvalue,�(L)1 (K�) = (sh 2K)�L�(L)1 (K): (24)This implies that the values of the normalized inter-nal energy in dually 
onjugated points (K and K�) arerelated by uL(K�)�K��K = uL(K)� 2u0(K); (25)where the additive term u0 (= 
th 2K) does not dependon L. Another important feature related to the isotropyof the latti
e is that the dually 
onjugated pointsK andK� merge into one point at 
riti
ality,K� = K = K
: (26)Using Eq. (23), we �nd that at the 
riti
al pointK
 = 12 ln�1 +p2� ;the derivative �K��K ����
 = �1:Consequently, uL(K
) = u0(K
) = p2: (27)Thus, the 
riti
al internal energy per site uL(K
) of anIsing 
ylinder with isotropi
 square 
ells satis�es 
on-dition (18) for all L = 1; 2; : : : This, in turn, leads tothe validity of Eqs. (1) and (17).Similarly, Eqs. (1) and (17) 
an be derived for otherisotropi
 spin model partition fun
tions that satisfy afun
tional equation likeZL(K�) = [g(K)℄LZL(K): (28)

In the 
ases where the model is self-dual but the 
riti
almanifold is a line or a surfa
e (as, e.g., for anisotropi
latti
es), Eqs. (1) and (17) no longer hold. This isnot di�
ult to prove if we again 
onsider the two-dimensional Ising model. For the anisotropi
 squarelatti
e, the duality 
ondition be
omes�(L)1 (K�x;K�y ) == [sh(2Kx) sh(2Ky)℄�L=2 �(L)1 (Kx;Ky) (29)withthK�x = exp(�2Ky) and thK�y = exp(�2Kx): (30)It then follows that on the 
riti
al linesh(2Kx) sh(2Ky) = 1; (31)
ondition (29) relates the values of the free energyat distin
t (dually 
onjugated) points (Kx;Ky) and(Ky;Kx),fL(Kx;Ky) = fL(Ky;Kx) ++ 12 ln [sh(2Kx) sh(2Ky)℄ : (32)This violates Eqs. (1) and (17), whi
h identify the in-ternal energies at the same point.The 
riti
al internal energy density of the stripL�1 
ut out from an anisotropi
 latti
e depends onthe size L. This is easy to verify using the results ofSe
. 2 if one 
al
ulates the values u1(K
) and u2(K
)for the anisotropi
 Ising and Potts latti
es.On the other hand, we 
an establish the same prop-erty if we take the Onsager solution [24℄ for the two-dimensional Ising model. The dominant eigenvalue ofthe transfer matrix of the 
ylinder L�1 with spatiallyanisotropi
 intera
tions is given by�(L)1 (K;�) = [2 sh(2K)℄L=2 �� exp�
1 + 
3 + : : :+ 
2L�12 � ; (33)where � = Jy=Jx is the latti
e anisotropy parameterand 
r are positive solutions of the equations
h 
r = 
h(2�K) 
th(2K)�sh(2�K)sh(2K) 
os �rL !: (34)From this, we obtain the internal energy per siteuL(K;�) = 
th(2K) ++ 12L �
1�K + �
3�K + : : :+ �
2L�1�K !: (35)1286



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Double Potts 
hain and exa
t results : : :The fun
tions 
r(K) have a smooth extremum (mini-mum) that in the isotropi
 
ase (� = 1) lies exa
tly atK = K
, and therefore,�
r�K �����K=K
 = 0 (r 6= 0): (36)As a result, the se
ond term in Eq. (35) disappearsand the 
riti
al internal energy 
eases to depend on L.When � 6= 1, Eq. (36) is not valid and uL(K;�) de-pends on the strip width in a 
ompli
ated way. Thisexplains the failure of the exa
t 
al
ulations of K
 fromEq. (1) in the anisotropi
 Ising latti
e [10℄.In 
losing this se
tion, we note that in spite ofEqs. (1) and (17), Eq. (19) 
annot be dedu
ed fromthe dual invarian
e of the system.5. CONCLUSIONSUsing the group-theoreti
al approa
h, we obtainedthe exa
t analyti
al solution for the double Potts 
hainwith Hamiltonian (6). The solution allows examin-ing Eq. (1) for a large number of models with Ising(q = 2) and arbitrary Potts spins (in
luding non-integerq). The validity of Eq. (1) for the triangular Pottslatti
e with purely three-site intera
tions in alternatetriangular fa
es was established.We have also shown that Eqs. (1) and (17) are a 
on-sequen
e of the duality symmetry of models for whi
hthe 
riti
al point 
oin
ides with its dual image.As far as the author knows, the inverse theoremhas not been proved. Duality plus isotropy or, morepre
isely, self-
onjugation of the 
riti
al point are notne
essary 
onditions for Eq. (1). In general, therefore,there 
an exist systems that are not invariant underthe duality transformation or a 
ombination of thedual and star�triangle transformations, but for whi
hall amplitudes of �nite-size 
orre
tions to the 
riti
alinternal energy (or to some other quantity) are equalto zero.The author thanks A. A. Belavin, A. A. Nerse-syan, and A. M. Sterlin for useful dis
ussions and 
om-ments. I am also grateful to the Abdus Salam Inter-national Centre for Theoreti
al Physi
s (Trieste, Italy)for kind hospitality where this work was �nished. Theresear
h presented in this paper is supported in partby the RFBR (grant � 99-02-16472) and CRDF (grant�RP1-2254).
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