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An exact analytical solution for the ¢-state Potts model on a 2 x oo ladder with arbitrary two-, three-, and
four-site interactions in a unit cell is presented in a closed form. This solution is used to show that the finite-size
internal energy equation [6] yields an accurate value of the critical temperature for the triangular Potts lattice
with three-site interactions in alternate triangular faces. It is argued that the above equation is exact at least

for self-dual models on isotropic strips.
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1. INTRODUCTION

The methods that allow extracting information
about a multidimensional system from solutions of its
lower-dimensional counterparts play an important role
in statistical physics. One of the most well-known
examples of this kind is the finite-size scaling ap-
proach [1, 2].

There are cases that evoke particular interest when
the critical properties of a system experiencing a phase
transition can be exactly determined from the data per-
taining to its subsystems. For instance, for the Ising
strips, the intersection point of the partition function
zero locus in a complex temperature plane with the real
positive axis yields the exact value of the critical tem-
perature for the two-dimensional Ising model [3]. Ex-
act critical temperatures for the S = 1/2 Ising models
on square, triangular, honeycomb, and centered square
(Union Jack) anisotropic lattices are obtained by using
strip clusters when an effective field is applied to one
side of the strip only [4]. Another exotic way of estimat-
ing the critical point of the square-lattice Ising model
was proposed in [5]. The authors of this paper showed
that in the quasidiagonal form of a transfer matrix of
a finite-width strip, all coefficients of the characteristic
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equation for the sub-block containing the largest eigen-
value have an extremum located precisely at the exact
value of the phase transition temperature of the infinite
lattice.

In the present paper, we concentrate our attention
on the method to calculate the critical temperature pro-
posed by Wosiek [6] (see also [7-12]). The author of [6]
introduced a maximum criterion for the ratio of mo-
ments of the transfer matrix and obtained the following
equation for determining the critical point position in
a d-dimensional system:

u(K.) = ua(K,.). (1)

Here, u; and wus are the respective internal energies of
(d—1)-dimensional and two coupled (d—1)-dimensional
subsystems and K, is the critical coupling (the normal-
ized inverse critical temperature) of the d-dimensional
system.

It is remarkable that at d = 2, Eq. (1) (see [6]) yields
the exact value of K, for the isotropic square and tri-
angular Ising lattices, as well as for the three-site Potts
model on the square lattice with isotropic interactions.
Subsequently, several other models were added to the
list, which now includes another isotropic Baxter model
(two square Ising lattices coupled by four-particle in-
teractions), the Baxter—Wu model (triangular lattice
with three-site interactions of Ising spins) [10], and the
g-state Potts model on an isotropic square lattice with
an arbitrary value of ¢ [12]. The physical nature of
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Eq. (1) can be elucidated when it either yields an ex-
act solution or admits an approximate estimate or does
not give any solution at all for a given model.

For a two-dimensional system, Eq. (1) connects the
internal energies of infinitely long linear and double
chains. Therefore, in order to test Eq. (1) rigorously, it
is necessary to have analytical solutions for such sub-
systems.

In Sec. 2, we give an exact analytical solution for
the two-chain Potts strip with a large number of inde-
pendent parameters. As a special case, it contains a
solution for the linear Potts chain.

Our solution for the double Potts chain enables us
to cover all the previously known cases where Eq. (1)
exactly reproduces the critical temperatures for the
two-dimensional Ising, Baxter—Wu, and Potts models.
In addition, we discover (Sec. 3) a new model for which
Eq. (1) yields the exact result. This is the g-state Potts
model on the triangular lattice with purely three-site
interactions in a half of the triangular faces [13].

In Sec. 4, we discuss the results. In particular, we
show that duality is a sufficient condition for the valid-
ity of Eq. (1) for isotropic spin lattices. In Sec. 5, we
summarize the results obtained in the work.

2. SOLUTION OF THE DOUBLE ¢-STATE
POTTS CHAIN WITH THE S, SYMMETRY

We consider a two-chain (ladder) lattice with spin
variables o} attached to its sites (i = 1,2 is the chain
index and I = 1,2,3,... labels the sites in the longi-
tudinal direction of the ladder); the spin variables take
the values 1,2,... ,q.

We write the Hamiltonian of the system as

M= Hiolofiolotin) ()
l

The locality of interactions in this Hamiltonian allows
us to introduce the transfer matrix V' with the elements

(3)

H(oy,02;07,0%)

V I. ! —
<‘71=U2‘ ‘01,02> exp T

(where T is the temperature and kp is the Boltzmann
constant) and reduce the problem of calculating the
free energy density f of an infinitely long strip to find-
ing the largest eigenvalue Ay of the matrix V:

f:%mk. (4)

Transfer matrix (3) has the size ¢*> x ¢°. It is real
and all its elements are positive, but the matrix is not
symmetric in general (Vi; # Vj;).

To solve the eigenvalue problem for the transfer ma-
trix, we use the group-theoretical approach (see, e.g.,
Ref. [14], where this approach was applied to a qua-
sidiagonalization of the Ising model transfer matrix on
parallelepipeds L x L x oo). In order to obtain a solu-
tion for the two-leg spin ladder (in which we are partic-
ularly interested) in the most general form, we procee
in the reversed order. Namely, we first select a sym-
metry group in the space |01, 02), which enables us to
quasidiagonalize the transfer matrix up to sub-block
secular equations that can be solved analytically; only
then we expand the Hamiltonian density H into a series
in the invariants of the symmetry group.

We take a model that is invariant, e.g., under trans-
formations of the symmetric group S, of the degree g.
For the Potts model, this means that we are dealing
with a system in the zero external field. Fortunately,
the field is not required to test Eq. (1).

It is known (see, e.g., [15]) that the largest eigen-
value of the transfer matrix is located in the sub-block
of the identity irreducible representation. In accor-
dance with group theory, the basis vectors v; of the
identity irreducible representation can be obtained by
successively acting with the permutation operators of
the S, group on the orths |1,1), [1,2), ..., |q,¢). Act-
ing by elements of the symmetric group first on the
orth |1,1) and then on |1,2), we find that the two lin-
ear combinations obtained involve all the orths. The
normalized basis vectors are given by

— LS )

1 q
'¢ = —= 'a ) 3 w =
' \/azzzl‘z Z> ’ V Q(q_ 1) i,j=1

(the prime at the second sum indicates that the terms
with ¢ = j are omitted). Hence, the sub-block of the
identity irreducible representation has the size 2 by 2,
and therefore, its eigenvalues (one of which is A;) can
be easily obtained by solving an algebraic equation of
only the second degree. We note that if we take the
group S, x C, (where Cj; is the group of mirror reflec-
tions in the plane placed between the chains of the two-
leg ladder), the sub-block corresponding to the iden-
tity irreducible representation again has the size 2 x 2,
and therefore, this symmetry (which only reduces the
number of independent parameters in the Hamiltonian)
does not justify itself in the given case.

We now represent Hamiltonian (2) as a sum of
terms that are invariant under transformations of the
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Fig.1. Geometry of two-site couplings in the double
@-state Potts chain with the S, symmetry

group Sy:
H= =2 ooy, + Tabstor,, + Jodsior +
1
+J'50102 —l—J”(SUz(,l +J3(5(,102(,1 +J35 +

Uz "z+1Ul+1

+J360102012+ -I-J3(5 251 1"12+1 +J46011"120'11+1 2 ] (6)

Tit1

The Kronecker symbols entering here are defined as

1, ifoy =...= 0y,
Ogq ooy = 7
rer { 0, otherwise. (@)

The structure of the two-site couplings in Hamilto-
nian (6) is shown in Fig. 1. Matrix elements of the
original transfer matrix are written as

<01 ;02 ‘V‘Ulla Ué> = exp |:K’16010"1 + 1(26020"2"'
1. . .
+ 51‘0(50102 + 50”10’2) + K,(salaé + A”(so'go”l +
+ }-(360102 6010"1 + I(SIéalo"l 50'10"2 + I;’60'102 6010"2 +

+ R’I(sagﬂédngﬂ’l + I(450'10"1 60102 6010"2 9 (8)

where
Ko = Jo/kgT, K, =.J/kgT, Ksy=J5/kpT,
K'=J'/kgT, K"=.J]"/kpT, Ks=Js3/kpT,
Ky = J3/kpT, Ks=J3/kgT, K}=J/kpT,
Ky = J4/kpT.

Using Eqs. (5) and (8), we calculate the matrix el-
ements

Qij = ¥V

of the sub-block corresponding to the identity irre-
ducible representation:
Qi =[¢—1+exp(K1 + Ky + K' + K" + K3 +
+ K4 4 K3 + K§ + Ky)] exp Ko,
Q12 = (g — 1)?[g — 2+ exp(K; + K" + K3) +
+ exp(Ky + K' + K3)] exp(Ko/2),
Q21 = (¢ — 1)'?[g— 2 + exp(K1 + K' + K}) +
+exp(Ks + K" + K})] exp(Ko/2),
Q= (q—2)(q—3+ e +ef2 5 45" ¢
+exp(K; + K») +exp(K' + K").

(9)

As a result, we find that the largest eigenvalue of the
transfer matrix of the double g-state Potts chain with
Hamiltonian (6) is given by

@ = %(Qn + Q22) +
1 1/2
Z(QM —Q22)* + (¢ — 1)Aexp Ky , (10)

where

= [¢g—2+exp(K1+K"+K3)+ exp(]x"g—}—K'—}—I{’g)]x
><[q—2—|—exp([s’1+lx’ + KL+ exp(Ko+ K"+ K3)]. (11)

The versions of the double Potts chains solved pre-
viously [3,12,16-18] correspond to a particular choice
of the interaction constants. Setting

Jo=J(=J)

with all the other interaction constants vanishing, we
arrive at the solution for the linear Potts chain [19],

=ef +qg-1. (12)

3. THE TRIANGULAR POTTS LATTICE WITH
THREE-SITE INTERACTIONS ON
ALTERNATE TRIANGLE FACES

A large number of independent parameters in the
model solved in the previous section enables us to test
Eq. (1) for a wide class of two-dimensional spin sys-
tems.

In addition to the cases listed in the Introduction, in
which Eq. (1) is satisfied exactly, we consider the Potts
model on a triangular lattice with three-site interac-
tions in each up-triangle (Fig. 2). The position of the
critical point in this model was found with both three-
and two-site interactions [13]. However, it is known [12]
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Fig.2. Fragment of the Potts lattice with three-site
interactions in alternate triangular faces (shaded)

that for the triangle lattice with pair couplings, Eq. (1)
yields the exact result only for the Ising case (¢ = 2).
We therefore discuss the model with purely three-site
interactions. In this case,

K. =1In(1+q). (13)

We now show that this value satisfies Eq. (1) by subsys-
tems in the shape of strips with the periodic boundary
condition in the transverse direction.

The internal energy of the one-dimensional subsys-
tem is

_9h

ui(K) = oK

[(q—De X + 171, (14)

Substituting K3 = K5 with all the other interaction
constants vanishing, we obtain from (4), (10), and (11)
the free energy density of the double Potts chain:

f2(K) = %1 %(621\’ +¢2 - 1)+
+ H(e” —(g=1°) +

1/2
+q(q—1)(261"+q—2)} ] (15)

The internal energy is given by
_op
0K’
Differentiating Eq. (15) with respect to K, we find the
expression for us (K).

The analysis shows that the dependences u; (K) and
us (K) have a crossing point that lies exactly at

Uo (I()

K=K.=ln(1+gq)

both for integer and non-integer ¢. The internal energy
of the system at the critical point is given by

Uoo (Ke) = u1(K¢) = us(K,) = %(1 +q¢7Y.  (16)

Thus, using solutions for only the linear and double
Potts chains, Eq. (1) has enabled us to extract the exact
value of K. for the bulk two-dimensional Potts model
on a triangular lattice with alternating faces that in-
teract by three-site forces.

4. DISCUSSION
In Ref. [8], Eq. (1) was extended to

uL(I{C) = ’U/L’(I(C)-, L7L, = 172737"' ) (17)

where uy is the internal energy per site of L coupled
(d—1)-dimensional subsystems. In the two-dimensional
case, L denotes the width of the strip.

The validity of condition (17) for arbitrary L and L'
means the absence of a «singulary (i.e., L-dependent)
part of the internal energy density at the critical point,

ur(K.) =const on L. (18)

In other words, the amplitudes of all finite-size cor-
rections to the critical internal energy of the system
Uoo (K;) are equal to zero.

For the square isotropic Ising lattice, the derivative
of the inverse correlation length ry (K) with respect
to the temperature-like variable K has a similar prop-
erty [20, 21],

OrL
0K

8IiLr

T OK

K=K.

: (19)
K=K.

i.e., Ok /OK]|, does not depend on L. This property
has enabled us to exactly determine the value of the
thermal critical exponent y; (= 1) for this model using
only the finite-size data [20, 21].

Equations (1) and (17) are valid for the ferromag-
netic isotropic square Potts lattices. These models are
self-dual and their critical coupling (in the anisotropic
case) is determined from the condition

(exp Ky —1)(exp Ky — 1) =¢. (20)

For the antiferromagnetic square-lattice Potts model,
the criticality condition is [22]

(exp Ky + 1)(exp Ky +1) =4 — g, (21)

where K, < 0 and K, < 0. We performed a verifica-
tion and found that in the antiferromagnetic case, the
curves u1 (K) and uy(K) do not have any self-crossing
point, and therefore, Eq. (1) does not lead to the exact
value that follows from Eq. (21), nor to any approxi-
mate estimate for the critical point.
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It is not difficult to show that if the model is self-
dual and the dual point therefore coincides with the
original one, Egs. (1) and (17) are valid.

Indeed, we consider for instance the Ising model on
the isotropic square lattice L x N with toroidal bound-
ary conditions. The partition function of this system
has a fundamental property: it is invariant (up to a
multiplicative factor exponentially depending on L) un-
der the duality transformation (see [23]),

Zr.n(K*) = (sh2K)" "M 7, y(K), (22)
where K and K™ are related by
th K* = exp(—2K). (23)

(We here used another normalization of the exchange
constant in the Ising model, namely Jpotts = 2Jrsing.)
In the limit of an infinitely long strip (N — o0),
Eq. (22) transforms to the duality condition for the
largest eigenvalue,

AB () = (sh2k) =AW (k). (24)

This implies that the values of the normalized inter-
nal energy in dually conjugated points (K and K*) are
related by
oK™

ur (K*) 5K up(K) — 2ug(K)
where the additive term ug (= cth 2K) does not depend
on L. Another important feature related to the isotropy
of the lattice is that the dually conjugated points K and
K* merge into one point at criticality,

(25)

3

K*=K=K,. (26)

Using Eq. (23), we find that at the critical point
1
K.=3 1n(1+\/§),

the derivative

oOK*
0K

Cc

Consequently,
ur(K.) = uo(K,) = V2. (27)

Thus, the critical internal energy per site ur,(K,.) of an
Ising cylinder with isotropic square cells satisfies con-
dition (18) for all L = 1,2,... This, in turn, leads to
the validity of Eqs. (1) and (17).

Similarly, Egs. (1) and (17) can be derived for other
isotropic spin model partition functions that satisfy a
functional equation like

Zi(K*) = [g(E)| 20 (K). (28)

In the cases where the model is self-dual but the critical
manifold is a line or a surface (as, e.g., for anisotropic
lattices), Eqgs. (1) and (17) no longer hold. This is
not difficult to prove if we again consider the two-
dimensional Ising model. For the anisotropic square
lattice, the duality condition becomes

MWURE K =
= [sh(2K,) sh(2K,)] “*\P(K,, K,) (29)
with
th K = exp(—2K,) and th Kj = exp(—2K,). (30)
It then follows that on the critical line
sh(2K,)sh(2K,) = 1, (31)

condition (29) relates the values of the free energy
at distinct (dually conjugated) points (K, K,) and
(K, Ky),

fL(K’.Z', A’y) - .fL (I(ya A’z) +

+ 5 Infsh(2K,) sh(2K,)] . (32)

This violates Eqgs. (1) and (17), which identify the in-
ternal energies at the same point.

The critical internal energy density of the strip
L x oo cut out from an anisotropic lattice depends on
the size L. This is easy to verify using the results of
Sec. 2 if one calculates the values uy (K,) and us(K,.)
for the anisotropic Ising and Potts lattices.

On the other hand, we can establish the same prop-
erty if we take the Onsager solution [24] for the two-
dimensional Ising model. The dominant eigenvalue of
the transfer matrix of the cylinder L x oo with spatially
anisotropic interactions is given by

AB (K a) = [2sh(2K))F? x

Y1+v3+ -+ Y2n-1
P ] (33)

X ex
2

where o = J,/J, is the lattice anisotropy parameter
and ~, are positive solutions of the equations
sh(2aK)

ch~, = ch(2aK) cth(QK)—W cos (F—Lr> (34)

From this, we obtain the internal energy per site
up(K;a) = cth(2K) +

1 <%+%

0K 0K 0K

0v2L—1
o + —) (35)

1286



MIT®, Tom 120, Boin. 5 (11), 2001

Double Potts chain and exact results ...

The functions v, (K) have a smooth extremum (mini-
mum) that in the isotropic case (a = 1) lies exactly at
K = K., and therefore,

07y
0K

=0 (r#0).

K=K.

(36)

As a result, the second term in Eq. (35) disappears
and the critical internal energy ceases to depend on L.
When a # 1, Eq. (36) is not valid and ug(K;a) de-
pends on the strip width in a complicated way. This
explains the failure of the exact calculations of K. from
Eq. (1) in the anisotropic Ising lattice [10].

In closing this section, we note that in spite of
Eqs. (1) and (17), Eq. (19) cannot be deduced from
the dual invariance of the system.

5. CONCLUSIONS

Using the group-theoretical approach, we obtained
the exact analytical solution for the double Potts chain
with Hamiltonian (6). The solution allows examin-
ing Eq. (1) for a large number of models with Ising
(¢ = 2) and arbitrary Potts spins (including non-integer
q). The validity of Eq. (1) for the triangular Potts
lattice with purely three-site interactions in alternate
triangular faces was established.

We have also shown that Eqs. (1) and (17) are a con-
sequence of the duality symmetry of models for which
the critical point coincides with its dual image.

As far as the author knows, the inverse theorem
has not been proved. Duality plus isotropy or, more
precisely, self-conjugation of the critical point are not
necessary conditions for Eq. (1). In general, therefore,
there can exist systems that are not invariant under
the duality transformation or a combination of the
dual and star—triangle transformations, but for which
all amplitudes of finite-size corrections to the critical
internal energy (or to some other quantity) are equal
to zero.
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national Centre for Theoretical Physics (Trieste, Italy)
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