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OPTICAL BISTABILTYYu. N. Ov
hinnikov *Laudau Institute for Theoreti
al Physi
s142432, Chernogolovka, Mos
ow region, RussiaI. M. Sigal **Department of Mathemati
s, University of TorontoSubmitted 23 May 2001We 
onsider the problem of the wave propagation through a nonlinear medium. We derive a dynami
al systemthat governs the behavior of standing (or solitary) waves. The form of this system alone su�
es to understandthe qualitative dependen
e of solutions of the original equation on the intensity of the in
ident wave. We solvethis dynami
al system in the leading order in the nonlinearity strength. We �nd multiple solutions of the originalproblem for a given in
oming wave and turning points of these solutions as a fun
tion of the intensity of thewave. We brie�y investigate stability of di�erent bran
hes. Our results yield analyti
 des
ription of the opti
albistability phenomenon.PACS: 63.10.+a, 42.65.Tg1. INTRODUCTIONThe problem of the light propagation through non-linear media is of a great theoretial and pra
ti
al in-terest. At large intensities, the diele
tri
 
onstant " isnot a 
onstant but varies as the intensity does. Evena tiny dependen
e of " on the intensity 
an produ
esigni�
ant e�e
ts over large distan
es. Controlling andutilizing these e�e
ts is one of the main 
hallenges ofthe theory of wave propagation. In this paper, we 
on-sider the propagation of light through a slab of mediumwhose diele
tri
 
onstant depends on the intensity oflight. A key e�e
t of interest here is the bistabilityphenomenon � existen
e of several solutions (with dif-ferent transmission 
oe�
ients) with alternating sta-bility properties for a given intensity of the in
omingbeam. This phenomenon was predi
ted about 20 yearsago in Ref. [1℄ and it has been a subje
t of intensiveresear
h sin
e then. The resear
h in this area furtherintensi�ed about 10 years ago with the theoreti
al dis-
overy of gap solitons in Ref. [2℄. See Refs. [2�10℄ forsome of the important original works and Refs. [11�13℄for re
ent reviews and the ba
kground material.In this paper, we address the problem of the prop-*E-mail: ov
�itp.a
.ru**E-mail: sigal�math.toronto.edu

agation of ele
tromagneti
 waves through a nonlineardiale
ti
 slab in a systemati
 way. To keep the expo-sition as simple as possible, we 
onsider the simplestpossible dependen
e of the slab diale
ti
 
onstant onthe intensity of light. Our goal is to 
larify some 
on-
eptual points and to perform 
on
rete 
omputations.Spe
i�
ally, weestablish a minimum a
tion prin
iple and 
onse-quently a Hamiltonian stru
ture for the basi
 (phe-nomenologi
al) equation;�nd a 
riterion of bistability in terms of linear reso-nan
es, whi
h o�ers a possibility for multidimensionalextensions;�nd the lo
ation of turning points;estimate the number of solutions for in
oming wavesof high intensities;dis
uss general features of the stability analysis.To our knowledge, the results summarized aboveare new. 2. THE MODELIn the lo
al and nondissipative approximation, theequation des
ribing the propagation of light through1157



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001a medium with the diele
tri
 
onstant " and without
harges or 
urrents is given by (see, e.g., Refs. [14�18℄)�2t ("E) = �E; (2:1)where E(x; t) is the ele
tri
 �eld at a point x 2 R3 attime t: the speed of light 
 is set to 1. This equationarises from the prin
iple of minimum (or more pre
isely,stationary) a
tion. We write the a
tion for the ele
tro-magneti
 �eld in a medium whose diale
tri
 
onstant "depends on the amplitude of the ele
tri
 �eld E (i.e.," = "(jEj2)) asS(A) = 12 ZZ �f(jEj2; x) � jBj2�;where A is the transverse ve
tor potential, divA = 0(we work in the Coulomb gauge), E = ��A=�t,B = rotA (magneti
 �eld), andf(s;x) = sZ0 "(u;x)du:Moreover, we set the magneti
 permeability � to 1.Here, we modi�ed only the part of the a
tion relatedto the ele
tri
 �eld E, leaving the part 
onne
ted tothe magneti
 �eld B un
hanged. The reason for thisis that the ele
tri
 sus
eptibility �e = " � 1 
an takerelatively large values, even mu
h larger than 1, whilethe magneti
 sus
eptibility �m = �� 1 is always mu
hsmaller than 1 in nonmagneti
 materials, namely of theorder 10�5�10�8.The 
riti
al points of the above fun
tional are givenby the Euler�Lagrange equation� ��t �"(jEj2;x)�A�t �+�A = 0: (2:2)Di�erentiating this equation with respe
t to t and us-ing that �A=�t = �E, we arrive at (2.1). Conversely,Eq. (2.1) implies Eq. (2.2) if we require thatlimT!1 1T TZ0 Adt = 0;i.e. the ve
tor potential A has no zero harmoni
. Thelatter is 
onsistent with Eq. (2.2) be
ause that equation
ontains only odd powers of A.A reformulation of Eq. (2.1) (or (2.2)) in terms ofthe minimum a
tion prin
iple immediately leads to theenergy 
onservation with the energy fun
tionalE(A) = Z (A�AL)� L;

transmittedwavewavein
identrefle
tedwave nonlinearmedium0 aFig. 1.where L = 12 Z (f(jAj2; x)� j rotAj2):This fun
tional 
an be expli
itly 
omputed asE(A) = 12 Z ff(jEj2;x) + j rotAj2g:Moreover, the variational formulation given aboveshows that Eq. (2.2) is Hamiltonian, with the standardPoisson bra
kets and with the Hamiltonian fun
tionalfound via the Legendre transform asH(A;�) = 12 Z ��(jEj2) + j rotAj2�;where the momentum �eld �(x) is related to theele
tri
 �eld E(x) as � = �f 0(jEj2)E and we set�(s) = f 0(s)s� f(s)=2.In what follows, we 
onsider the symplest model ofthe nonlinear wave propagation. We assume that(�) the medium in question is uniform in the y andz dire
tions, i.e. " does not expli
itly depend on y andz; (�) apart from its dependen
e on x, " depends onE only through the amplitude jEj2, i.e.," = "(jEj2; x);(
) the nonlinear part of the medium forms a slab ofthe thi
kness a perpendi
ular to the x axis (see Fig. 1),i.e.,"(jEj2; x) = ( 1 if x < 0 or x > a;n2"(jEj2) if 0 � x � a; (2:3)where n is the refra
tive index. The fun
tion "(jEj2) istaken in the simplest possible form"(jEj2) = 1 + �jEj2: (2:4)In real materials, � � jE0j�2, where E0 is the inter-nal (atomi
) ele
tri
 �eld. Be
ause the ele
tri
 break-down already o

urs when jEj � jE0j, the se
ond termin the right-hand side of (2.4), whi
h is of the order(jEj2=jE0j)2, is indeed very small,�jEj2 � 1: (2:5)1158



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Opti
al bistabilityWe 
onsider only waves of a �xed polarization, i.e.,assume that E(x; t) in Eq. (2.1) 
an be written asE(x; t) = E(x; t)e; (2:6)where e is a �xed ve
tor (the polarization ve
tor) prop-agating in the x dire
tion, i.e., e is perpendi
ular to thex axis. In this 
ase, E(x; t) 
an be assumed to dependon x only, and therefore, Eq. (2.1) redu
es to the equa-tion �2E�x2 = �2�t2 ("E); (2:7)where E = E(x; t) and " = "(jEj2; x).This equation is subje
t to the boundary 
onditionsE(x; t) = ( f(x� t) + f1(x+ t) if x < 0;f2(x � t) if x > a (2:8)with the fun
tion f given and the fun
tions f1 and f2unknown. These boundary 
onditions say that the �eldon the left of the sample 
onsists of the in
oming wavef(x � t) and some re�e
ted wave f1(x + t), while the�eld on the right of the sample 
onsists of only theoutgoing wave f2(x � t). In addition, we spe
ify thein
oming wave asf(x� t) = Re(e�ik0(x�t)) (2:9)for some k0 > 0.3. SOLITARY WAVESWe study solitary waves for Eq. (2.7), i.e., waves ofthe form E(x; t) = Re �e�ik0t 0(x)� (3:1)where  0 is a 
omplex fun
tion. In the leading ap-proximation in the nonlinearity parameter �, it thenfollows that  0 satis�es the stationary equation (seeAppendix 1) � 0 + k20"0 0 = 0; (3:2)with "0 = "((3=4)j 0j2; x). We are interested in theproblem of the solitary wave passage through the non-linear slab, whi
h amounts to taking the solutions  0su
h that 0 = ( Aeik0x +RAe�ik0x for x < 0;TAeik0x for x > a (3:3)with a given A and for some R and T . Here Aeik0x,RAe�ik0x, and TAeik0x are the in
ident, re�e
ted, andtransmitted waves, respe
tively (see Fig. 2), and R andT are the re�e
tion and transmission 
oe�
ients.

nonlinearmediumRAe�ik0x TAeik0xAeik0x
Fig. 2. Re�e
tion and transmission 
oe�
ientsor 00 a aFig. 3. Two solutions satisfying b.
.  (0) = 0 and (a) = 0The �ux 
onservation (see below) implies that Rand T satisfy jRj2 + jT j2 = 1: (3:4)In the linear 
ase, R and T are independent of A,and the amplitude A drops out of the equation. Thisis not so in the nonlinear 
ase. The goal of this paperis to �nd the dependen
e of jRj (or jT j) on A. Themain point here is that although two initial 
onditionsuniquely de�ne a solution of a se
ond-order ODE, twoboundary 
onditions 
an be satis�ed by several (a �nitenumber of) solutions of a nonlinear se
ord-order ODE.Figure 3 shows two solutions satisfying the boundary
onditions  (0) = 0 and  (a) = 0. In 
onstrast, in thelinear 
ase, two boundary 
onditions determine a so-lution of a se
ond-order ODE uniquely (modulo eigen-fun
tions).4. THE BOUNDARY VALUE PROBLEMInstead of 
onsidering Eq. (3.2) and 
onditions (3.3)on the entire real axis, we study this problem on theinterval [0; a℄, 000 + k20"�34 j 0j2� 0 = 0; 0 � x � a; (4:1)and use 
onditions (3.3) to set the boundary 
onditionsat x = 0 and x = a as 0(0) = A(1 +R);  00(0) = ik0A(1�R) (4:2)and  0(a) = ATeik0a;  00(a) = ik0ATeik0a: (4:3)We thus arrive at a boundary value problem on [0; a℄.It is 
onvenient to res
ale this problem as 0(x) = A (kx);1159



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001where k = k0n, the wave ve
tor in the medium withthe refra
tion 
oe�
ient n. The new boundary valueproblem is given by 00 + "1(j j2) = 0; 0 � x � b; (4:4)where b = ka and "1(j j2) = "((3=4)A2j j2), with theboundary 
onditions (0) = 1 +R;  0(0) = in(1�R) (4:5)and  (b) = Teib=n;  0(b) = inTeib=n: (4:6)Be
ause Eq. (4.4) is invariant under the gauge trans-formation  (x)! ei� (x), we 
an assume T � 0.Re
alling expression (2.4) for ", we �nd"1(j j2) = 1 + 2�j j2; � = 3�jAj2=8; (4:7)and therefore, the in
ident beam amplitude A entersthe new equation only through the parameter � andvarying A is the same as varying �.We note that Eq. (2.5) implies that in real material,�� 1.Although Eqs. (4.5), (4.6) appear to represent four(
omplex) 
onstraints, these equations in fa
t 
onsti-tute only two 
onditions be
ause R and T are unknown.Eliminating the unknownsR and T from boundary 
on-ditions (4.5), (4.6), we obtain the 
onditions (0)� in 0(0) = 2; (4:8) (b) + in 0(b) = 0: (4:9)Equation (4.6) shows that a solution of Eq. (4.4)with boundary 
onditions (4.8), (4.9) determines thetransmission 
oe�
ient T = j (b)j; on the other hand,knowing T determines the solution of (4.4). Our goalin what follows is to �nd T = j (b)j, where  solves(4.4), (4.8), and (4.9) as a fun
tion of �.5. RESONANCES AND THE EFFECTIVEWAVE VECTORWe now des
ribe the physi
al me
hanism underly-ing the nonlinear phenomenon under 
onsideration. Webegin with the linear 
omponent of this me
hanism,and therefore set � = 0. In this 
ase, Eq. (4.4) 
an besolved expli
itly with the result lin = 12 �1 +Rlin + 1�Rlinn � eix ++ 12 �1 +Rlin � 1�Rlinn � e�ix (5.1)

and Rlin = (n2 � 1)(eib � e�ib)�(n� 1)2eib + (n+ 1)2e�ib : (5:2)The last equation shows that as a fun
tion of b = ka,Rlin has a series of minima and maxima,b = ka = �m) jRlinj = 0 (= jRlinjmin);b = ka = ��m+ 12�) jRlinj == n2 � 1n2 + 1 (= jRlinjmax):For n � 1, this resonan
e behavior is rather sharp: ifthe width a of the slab 
ontains an integer number ofthe half-wave lengths, �=2 = 2�=2k, then the trans-mission is perfe
t and the slab is therefore transpar-ent. If the width of the slab 
ontains an odd numberof quarter-wave lengths, then there is almost no trans-mission and the slab is opaque.The resonan
e stru
ture of the linear 
ase plays a
ru
ial role in the pe
uliar behavior of the nonlinearsolution. This solution 
an be 
onsidered as a linearone with a varying e�e
tive wave ve
tor,keff � k"1=21 = k(1 + 2�j j2)1=2: (5:3)As the intensity (i.e., �) varies, so does the e�e
tivewave-length and the medium goes through a series ofresonan
es in whi
h it is either perfe
tly transparent,jT j = 1, or almost opaque, jT j � 0.Thus, the presen
e of sharp minima and maximaof the re�e
tion (or transmission) 
oe�
ient o�ers asimple 
riterion for the o

urren
e of the bistabilityphenomenon. One way to extend this 
riterion to themultidimensional 
ase is to relate it to the resonan
estru
ture of the s
attering pro
ess 
onsidered above.Indeed, we observe that Rlin (and therefore,  lin) dis-play a resonan
e stru
ture in the sense that it has 
om-plex poles atb(= ka) = �m� i ln 1 + 1=n1� 1=n; m = 0;�1; : : : (5:4)The real parts of these poles exa
tly give the positionof maxima of the transmission 
oe�
ient. If we re
allthat b = ka, we 
an rewrite (5.4) ask = �ma � ia ln 1 + 1=n1� 1=n; m = 0;�1; : : : (5:5)The real part of this expression takes the values 2�m=athat 
oin
ide with the eigenvalues of the operator1160



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Opti
al bistabilityp�d2=dx2 on the interval [0; a℄ with the periodi
boundary 
onditions.To obtain resonan
e solutions, we must solve theoriginal wave equations�2E�x2 = �2�t2 ("E) (5:6)(where " = n2) on the interval [0; a℄ with the boundary
onditions representing an outgoing wave. For this, weset E = e�i�t� with � > 0 and� = ( A1e�i�x for x < 0;A2ei�x for x > a; (5:7)where A1 and A2 are arbitrary 
onstants. Eliminatingthese 
onstants, we obtain�0(0)�(0) = �i� and �0(a)�(a) = i�: (5:8)On the other hand, Eq. (5.6) implies the equation for�, �"�2� = �2�x2 �; (5:9)on the interval [0; a℄. Solving Eqs. (5.8), (5.9) and re-
alling that " = n2(> 1), we �nd� = �man � ian ln 1 + 1=n1� 1=n; m = 0;�1; : : : (5:10)and the 
orresponding expression for �, whi
h we omithere.We have thus arrived at the following 
on
lusion:resonan
es of the transmission 
oe�
ient, whi
h areresponsible for the bistable behavior of our nonlinearsystem, 
oin
ide with the resonan
es of the linear waveequation (5.6) (in (5.6), " is n2 times the 
hara
teris-ti
 fun
tion of the interval [0; a℄). This is importantbe
ause there are well developed te
hniques for �ndingresonan
es in multidimensional linear systems. Thus,we have a possibility of identifying the bistability phe-nomenon in the multidimensional 
ase.We indi
ate the 
onne
tion between the aboveresonan
e solutions and the stability problem forEqs. (2.7)�(2.9) with � = 0 (the linear problem). Inthis 
ase, we seek solutions to Eqs. (2.7)�(2.9) in theform E = Re �e�ik0t 0(x) + �(x; t)�; (5:11)where j�j � j 0j. From (2.8), (2.9) and (3.3), we 
anassume that � satis�es the boundary 
onditions� = ( e�i�(x+t) for x < 0;ei�(x�t) for x > a; (5:12)

with � that is 
omplex but 
lose to k0. Clearly, � is ofthe form � = e�i�t�, where � satis�es Eqs. (5.8), (5.9),and 
onsequently, � is given in (5.10). The resonan
eeigenvalues therefore serve as the stability exponentsfor solution (3.1) in the linear 
ase (be
ause Im� < 0,the solution e�ik0t 0(x) is stable).6. CONSERVATION LAWSIn this se
tion, we des
ribe 
onservation lawsobeyed by Eq. (4.4). We 
onsider x as a time variable.We �rst de�ne the �energy� densitye( ) = j 0j2 +G(j j2); (6:1)where G(u) = uZ0 "1(v)dv = u+ �u2: (6:2)Using Eq. (4.4), we 
on
lude that �e( )=�x = 0, andtherefore,e( ) � j 0j2 + j j2 + �j j4 = C > 0: (6:3)In the same way, it follows that the �ux densityj = Im( � =�x) is also 
onserved, j = C1. To 
om-bine these two 
onservation laws, it is 
onvenient topass to the polar representation = p� ei�: (6:4)The 
onservation of the �ux then gives��0 = C1: (6:5)In 
lassi
al me
hani
s, this equation expresses the an-gular momentum 
onservation or the Kepler law: therate of 
hange of the area swept by the radius ve
tor ofa parti
le in a 
entral potential is 
onstant. Togetherwith the energy 
onservation equation, this equationgives �02 = 4(�C21 + C�� g(�)); (6:6)where g(�) = �G(�) = �2 + ��3. Starting with thisequation and boundary 
onditions (4.8), (4.9), we de-rive our main equations in the next se
tion.7. THE MAIN EQUATIONSIn this se
tion, we derive the equations for � andjT j2 = �(b) on whi
h we base our analysis. We ob-serve that the right-hand side of Eq. (6.6) 
ontains twointegration 
onstants (or 
onservation 
onstants). We1161



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001use boundary 
onditions (4.8), (4.9) to express these
onstants in terms of �(0) and �(b).The boundary 
ondition at x = b gives12 �0p� + i�0p�p� ��������x=b = in ; (7:1)whi
h implies�0(b) = 1n and �0(b) = 0: (7:2)Equation (6.5) and the �rst equation in (7.2) yieldC1 = �(b)=n, and therefore,�0 = �(b)n� : (7:3)Equations (6.6) and C1 = �(b)=n give�02 = f(�); (7:4)where f(�) = 4�� �(b)2n2 + C�� g(�)�: (7:5)Equations (7.2) and (7.4), (7.5) imply that �(b) = jT j2is a root of f1(�(b)) = 0; (7:6)where f1(u) = Cu� 1n2u2 � g(u): (7:7)Equations (7.4)�(7.7) 
onstitute all the basi
 equa-tions of our analysis ex
ept one eqaution. We now �ndthe 
onstant C as a fun
tion of �(b) by solving (7.6),(7.7) for C, C = �1 + 1n2� �(b) + ��(b)2: (7:8)This is a quadrati
 relation between �(0) and �(b). Sub-stituting (7.8) in (7.5), we �ndf(�) = 4�� �(b)2n2 + �(b)�1 + 1n2 ��++ ��(b)2�� �2 � ��3�: (7.9)Finally, we �nd the remaining basi
 equation using theboundary 
ondition at x = 0. Using (6.4), (7.3), and(7.4), we rewrite Eq. (4.9) as��(0)� in2 pf(�(0)) + �(b)� ei�(0)p�(0) = 2; (7:10)

�(0) f(�)�1
Fig. 4. A traje
tory of �0 = �pf(�)whi
h implies, after taking the absolute value,��(0) + �(b)�2 + 14n2f��(0)� = 4�(0): (7:11)Inserting expression (7.9) for f(�) in (7.11), we obtain,after simple transformations,'��(b); �(0)� = 0; (7:12)where'(u; v) = �n2v2 + (n2 � 1)v �� (n2 + 3)u� n2�u2 + 4: (7.13)We now 
an formulate the problem as follows. Wemust solve the di�erential equation �02 = f(�) withthe boundary values �(0) and �(b) satisfying the equa-tion '��(b); �(0)� = 0, where f and ' are given by therespe
tive equations (7.9) and (7.13).We split our task as follows:(i) Using Eqs. (7.4) and (7.9), we �rst determine�(0) as a fun
tion of �(b). Here, we 
onsider �(b) as aninitial 
ondition for the dynami
al system�0 = �pf(�)+; (7:14)where x+ = max(x; 0). We then solve (7.14) ba
k-wards, from x = b to x = 0 (with the 
hange of signs atturning points, f(�) = 0!) and �nd �(0) as a fun
tionof �(b), n, and �. Here, the 
ases where �0(0) > 0 and�0(0) < 0 
an be 
onsidered separately.(ii) We then insert �(0) found at step (i) inEq. (7.12). The result is an algebrai
 equation for�(b) = jT j2. In general, this algebrai
 equation hasseveral solutions depending on � and n.The essen
e of this analysis 
an be inferred from theform of Eqs. (7.9) and (7.14), without solving them.Indeed, let �1, �2 and �3 be the roots of the equationf(�) = 0. As we already know, one of these roots is�(b), for example �1 = �(b). We let �3 < �2. It isnot di�
ult to show (see below) that �2 < �1 (in fa
t,�2 < (1 + ��1)�1n�2�1) and �3 < 0. The roots of f(�)1162



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Opti
al bistabilityare equilibria and turning points of the dynami
al sys-tem in Eq. (7.14). At these roots, �0 = 0 and pf(�)+
hanges its sign. The behavior of this dynami
al sys-tem is shown in Fig. 4.Open Problem. Dynami
al system (7.14) is param-eterized by �1. Its phase portrait should qualitatively
hange as �1 goes through a turning point. How?8. EQUATION (7.6)We now show that we 
an infer mu
h informationfrom Eq. (7.6) without solving di�erential equation(7.4). We 
onsider the two simplest 
ases:(a) linear 
ase: G(u) = u, and hen
e, g(u) = u2. Inthis 
ase, f (lin)1 (u) = Cu��1 + 1n2�u2;and therefore, the equation f (lin)1 (�(b)) = 0 has, in ad-dition to the trivial solution �(b) = 0, one nontrivialsolution �(b) = C1 + n�2 :(b) Cubi
 nonlinearity: G(u) = u+�u2, and there-fore, g(u) = u2 + �u3. In this 
ase,f1(u) = Cu� (1 + 1n2 )u2 � �u3:Thus, depending on the 
oe�
ients, the equationf1(�(b)) = 0 has, in addition to the trivial solution�(b) = 0, either none or one or two nontrivial solutions.All the possibilities are listed in Fig. 5.Con
lusion. In the linear 
ase, we always have onenontrivial solution (after the division by u, the fun
tionf (lin)1 (u) be
omes linear). In the simplest, 
ubi
 non-linear 
ase, depending on C and �, there 
an be none,one or two nontrivial solutions for �(b) = jT j2.9. SOLUTION OF THE NONLINEARPROBLEMWe �rst solve di�erential equation (7.4), �0 == �pf(�)+. Re
alling that �(b) solves f(�) = 0, weexpress f(�) asf(�) = 4��(b)������2+(1+��(b))���(b)n2 � : (9:1)Integrating the equation �0 = �pf(�)+, we �nd� �1Z�0 d�pf(�) = b (9:2)

(we re
all that �1 = �(b) and �0 = �(0)). It is shown inAppendix 2 that Eq. (9.2) is equivalent, modulo O(�)(but keeping terms of the order O(�b)), to the equation4(1� �1)�1 n2(n2 � 1)2 = sin2 b1� 34��1n2 + 1n2 : (9.3)This equation de�nes �1 (= �(b) = jT j2) as a multival-ued fun
tion of � for given values of the parameters nand b.Of 
entral interest are turning points of this fun
-tion. To �nd them, we di�erentiate Eq. (9.3) with re-spe
t to �1,� 4�21 n2(n2 � 1)2 = 3�b4 n2 + 1n2 �� sin 2b1� 34��1n2 + 1n2 ; (9.4)and then solve the resulting two equations for �1 and�. Thus, the turning points of �1 as a fun
tion of � aregiven by solutions of Eqs. (9.3) and (9.4).10. TURNING POINT IN THE LARGE-n CASE(SEMICLASSICAL LIMIT)We investigate Eqs. (9.3) and (9.4) in the 
ase wheren � 1. In this 
ase, the fa
tor n2(n2�1)2 in both equa-tions 
an be repla
ed by 1=n2. We 
onsider two 
ases:(a) j�jb � 1. Be
ause n � 1, Eq. (9.4) shows thateither �1 � 1=n2 or b is 
lose to �m, where m is aninteger. We 
onsider the latter 
ase and setb = �m+ Æ with jÆj � 1: (10:1)Equation (9.3) 
an then be redu
ed to the equation4(1� �1) = n2�1�Æ + 3�b4 �1�2 : (10:2)Di�erentiating this equation with respe
t to �1, we ob-tain the equation for the turning points,� 4 = 3�bn2�12 �Æ + 34b��1�++ n2�Æ + 3�bn �1�2 : (10.3)We now pass from �1 to the variable z de�ned byn�Æ + 3�b4 �1� = � 83z :1163
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hinnikov, I. M. Sigal ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001f1 uC > 0, � < �
rit < 0
f1 uone nontrivial solution

C > 0, � = �
rit < 0 f1 C > 0, �
rit < � < 0 u
uuone nontrivial solution

C < 0, � < 0f1

f1
uC > 0, � > 0

a unique nontrivial solution no nontrivial solutions
two nontrivial solutions
no nontrivial solutions

C < 0, � > 0f1
Fig. 5.The resulting equation for z has the solutionsz1;2 = 23�� Æn�pÆ2n2 � 12�: (10:4)Substituting in Eqs. (10.2) and (10.3) �8=3z forn(Æ + 3�b�1=4) and then solving Eq. (10.2) for �1 andEq. (10.3), for �nb we �nd�(k)1 = 9z2k16 + 9z2k and �nb = zk(�(k)1 )2 (10:5)for k = 1; 2. In the region between these turning points,all the three solutions of Eq. (10.2) 
an be representedas �1 = �4Æ(1 + z)3��m (10:6)and z = �13 +r49 � 163Æ2n2 
os'; (10:7)

where ' = 'j , j = 1; 2; 3, is given by'j = 13 0BBB��2 + 2�j++ ar
sin8>>><>>>:1 + 36Æ2n2 + 81b�2n2Æ3�1� 12Æ2n2�3=2 9>>>=>>>;1CCCA : (10.8)Be
ause �1 > 0, solutions (10.6) exist only in the regionÆ� < 0.(b) nj�jb � 1. In this 
ase, n 
an take an arbi-trary value larger than one. Eliminating trigonometri
fun
tions from Eqs. (9.3) and (9.4), we arrive at theequation� 4n33�b(n2 + 1)2�2 == �21(1� �1)��1 � 4n2(n2 + 1)2� : (10.9)1164
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14n2

r.h.s. of (10.9) 4n33�b(n2 + 1)2!2 �1Fig. 6. Graphi
al solution to Eq. (10.9)This equation 
an have either two positive solutions for�1 or none. In the �rst 
ase, one of the solutions is 
loseto 1,�(1)1 = 1� 12 �n2 � 1n2 + 1�2 ++s14 �n2 � 1n2 + 1�4 �� 4n33�b(n2 + 1)2�2; (10.10)while the other one, �(2)1 , is a solution of a 
ubi
 equa-tion. For �bn � 1 and n � 1, the 
ubi
 equation isgiven by �31 � 4�21n2 �� 43�bn�2 = 0:A positive solution to the last equation is�(2)1 = 83n2 �12 + 
h�� ;where 
h 3� = 1 + 38 �n2�b�2 : (10.11)A graphi
al solution to Eq. (10.9) is shown in Fig. 6.Using values (10.10) and (10.11) for �1, we obtainthe values for � from Eq. (9.3) as�(1) = 43 �m� bb n2n2 + 1 (10:12)and �(2) = n2 + 13 �(m+ 1=2)� bb ; (10:13)provided j�m� bj � b.Equations (10.10)�(10.13) give the top (Eqs. (10.10)and (10.12)) and bottom (Eqs. (10.11) and (10.13))turning points. The distan
e between the neighboringturning points in the �rst and the se
ond sets isÆ�1 = 43 �b n2n2 + 1 and Æ�2 = n2 + 13 �b : (10:14)

�
14n2(n2 + 1)2

�1
Fig. 7. Dependen
e of �1 on �; the number of solutionsfor a given �The dependen
e of �1 on � is shown graphi
ally inFig. 7.We �nally 
ompute the number of solutions for agiven � in the region j�jb� 1. It is given byN(�) = 2(Ntop(�)�Nbottom(�)) + 1; (10:15)where Ntop(�) and Nbottom(�) is the number of thetop and bottom turning points in the interval [0; �℄and the 
oe�
ient 2 a

ounts for the fa
t that thereare two solutions 
orresponding to ea
h turning point(see Fig. 7). We have roughly Ntop(�) � �=Æ�1 andNbottom � �=Æ�2, and therefore,N(�) � 2�� 1Æ�1 � 1Æ�2� � 32��b: (10:15)11. STABILITYIn this se
tion, we study the general stability prop-erties of solutions to boundary value problem (4.4)�(4.6). A detailed analysis will be given elsewhere.Clearly, given �1 � �(b) � j (b)j2 = T 2, the problem inEqs. (4.4)�(4.6) has a unique solution. In other words,solutions of the latter problem 
an be parameterizedby �1. (This 
an be done expli
itly by expressing � interms of �1.) In what follows, we ta
itly assume thatthe 
urve (=multivalued fun
tion)  =  (�) is param-eterized by �1. With this parameterization in mind,we sometimes speak about stability of a point (�1; �)understanding by it the stability of the 
orrespondingpoint ( ; �).Our task is to �nd stability of solutions ofEqs. (2.7)�(2.9) of form (3.1)�(3.3). To �t this prob-lem into the standard framework, one would have torewrite (2.7) as a system of the �rst order Hamiltonianequations and apply to it a rather subtle stabilitytheory for solitary waves (see e.g. [19℄ and referen
es1165
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hinnikov, I. M. Sigal ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001therein). We adopt a dire
t approa
h instead. We seeksolutions of Eqs. (2.7)�(2.9) in the formE = 8><>: Re[e�i!t( 0 + e�t�)℄ if � is real (11:2)Re[e�i!t( 0 + e�t�1 + e��t�2)℄if � is 
omplex, (11:3)where ! = k0,  0 satis�es Eqs. (3.2), (3.3), and � aresmall and su
h thate�i(!+i�)t� is an outgoing wavefor x < 0 and x > a (11.4)and similarly for � 
omplex. This implies� = ( A1e�i(!+i�)x for x < 0;A2ei(!+i�)x for x > a (11:5)for some 
onstants A1 and A2, whi
h gives�0(0)�(0) = �i(! + i�) and �0(a)�(a) = i(! + i�) (11:6)for � real. For � 
omplex, the boundary 
onditions are�01(0)�1(0) = �i(! + i�); �01(a)�1(a) = i(! + i�) (11:7)and �02(0)�2(0) = �i(! + i��); �02(a)�2(a) = i(! + i��): (11:8)For simpli
ity, we deal only with the 
ase Eq. (11.2),the 
ase (11.3) is treated in a similar way. Substituting(11.2) in (2.7), we derive the linearized equation for �(see Appendix 1 for a similar derivation),L�(�) = 0; (11:9)where, with � = ! + i� and "0(s; x) = �"(s; x)=�s,L�(�) = �2x� + �2"(j 0j2; x)� ++ �2"0(j 0j2; x) 0 Re( 0�): (11.10)Equation (11.9) is a nonlinear eigenvalue problem.We observe that the operator family L� satis�es,L�� = L��, with respe
t to the inner produ
t(�; �) = ReZ ��: (11:11)A 
ru
ial role in our analysis is played by the fol-lowing result whi
h is stated dire
tly for the res
aledfun
tion  (x) = A�1 0(x=k), k = k0n.

x = stable (� < 0)o = unstable (� > 0)x x x x x x x�1
4n2(n2 + 1)2 �o xo o o o o o o oxx Fig. 8.Theorem. ( ; �) is a turning point i�� ��1 solves L0(�) = 0 (11:12)at that pointProof. We write Eq. (4.4) as F ( ; �) = 0 and let =  (�1) and � = �(�1). Di�erentiating the lastequation with respe
t to �1, we obtainF ( ; �) � ��1 + �F�� ( ; �) ����1 = 0; (11:13)where F ( ; �) is the variational derivative of F ( ; �)with respe
t to  . We note that F ( ; �) is equalto L0 up to a res
aling. Now, ( ; �) is a turningpoint i� ��=��1 = 0 at that point, and therefore, i�F ( ; �)� =��1 = 0:This theorem implies that� = 0 is an eigenvalue of (res
aled)Eq. (11.9)$ (�1; �) is a turning point. (11.14)We 
laim that � 
hanges its sign as �1 passes a turningpoint,����1 < 0 at a top turning point> 0 at a bottom turning point, (11:15)where top and bottom refers to the turning points of�1 = �1(�).Equations (11.14) and (11.15) suggest that thereal eigenvalue �, is negative on the top bran
hes of�1 = �1(�) (see Fig. 8), while � > 0 on the bottomones. Hen
e, the bottom bran
hes are unstable. Inorder to understand the stability properties of the topbran
hes, one has to envoke the remaining, 
omplexeigenvalues. We expe
t that they are stable near thetop turning points and unstable elsewhere.Equation (11.15) is proved by a perturbation the-ory, whi
h requires the information about solutions to1166
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al bistability(11.9) only at the turning point. The details will bepresented elsewhere.Comparing Eqs. (11.6) and (11.9) with Eqs. (5.8)and (5.9), i.e. with the equations for the resonan
e so-lution in the linear 
ase, we 
on
lude that the formerequations des
ribe the resonan
e solution in the non-linear 
ase (the nonlinear resonan
e). It is remarkablethat while the 
orresponding problem is always stablein the linear 
ase (see Eq. (5.10)), the stable and un-stable bran
hes alternate in the nonlinear 
ase.12. EXPRESSION FOR  In this se
tion, we �nd an approximate form of thesolution  to Eq. (4.4). This information is needed, inparti
ular, for a more detailed study of the stability ofvarious bran
hes.We �rst �nd the fun
tion �(x) for 0 < x < b. Forthis, we repla
e Eq. (9.2) with the equation� �(x)Z�0 d�pf(�) = x;whi
h is integrated in the same way as (9.2) to yield(see Appendix 2)�(x) = 12�1�1 + 1n2 +�1� 1n2� 
os 2
(x)� ; (12:1)where 
(x) = b� x1� 3��14 (1 + 1n2 ) : (12:2)We next �nd the expression for � = arg( ) thatmat
hes (12.1). Observing that1 + 1n2 +�1� 1n2� 
os 2
 == (n+ 1)22n2 ����ei
 + n� 1n+ 1e�i
����2 ;we seek � in the form�(x) = �(x) + �(x); (12:3)where �(x) = � ar
tg �n�1 tg 
(x)� and where the fun
-tion � is to be found using Eq. (7.3) for �. The lattergives, modulo O(�),�(x) = �3��14 �1 + 1n2� (�(x)��(0))+�(0): (12:4)

The initial 
ondition �(0) is found from�(0) = �(0)� ar
tg� 1n tg 
(0)� (12:5)and �(0) = ar

tg � n�02(�+ �1)�����x=0 : (12:6)The fun
tion �(x) 
an also be represented as (againmodulo O(�))�(x) = �(0)� 3��12n �1 + 1n2��� xZ0 dy1 + 1n2 +�1� 1n2� 
os 2
(y) : (12.7)Putting Eqs. (12.1) and (12.3) together, we write (x) =p�(x)ei�(x) as (x) = n+ 12n p�1eiÆ(x) �� �e�i
(x) + n� 1n+ 1ei
(x)� ; (12.8)where 
(x) is given by Eq. (12.2) andÆ(x) = 
onst+ ��12n (b� x):The expli
it form of  re�e
ts the pi
ture of a non-linear wave propagation: it is a superposition of twowaves travelling in opposite dire
tions with slightly dif-ferent speed. The nonlinearity leads to a renormaliza-tion of the wave ve
tor,k0 ! k0�1� 3��14 �1 + 1n2���1 ;and to the appearan
e of a slowly varying phase �(x).Expression (12.8) for  will be used in the study ofthe stability problem whi
h will appear elsewhere.13. CONCLUSIONAs we see from Fig. 8, a small 
hange of the lightintensity (i.e., of �) near a turning point is 
apable ofswit
hing the system from one state (solution  ) to an-other. Namely, moving around a turning point 
hangesa stable solution into an unstable one; under the a
tionof a random perturbation, the system then jumps to astable solution as shown in Fig. 9. This either turns onor turns o� the light passing through the slab.1167
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�

�1 unstablestable
Fig. 9. Swit
hing of solutionsAt the next step, we would like to address thenonlinear stability problem, in other words, to studysolutions of Eqs. (2.7)�(2.9) with the initial 
onditions
lose to the solitary wave e�ik0t 0(x) in the 
aseswhere  0 is on a stable bran
h and, more interestingly,in the 
ase where  0 is on the unstable bran
h (seeEq. (5.11)). In the latter 
ase, it is desirable to �nda mathemati
al des
ription to the pro
esses des
ribedabove (see Fig. 9).The se
ond author is grateful to Doug Mills foruseful dis
ussions and en
ouragement. Supported byNSERC under Grant NA7901.APPENDIX 1One-mode approximationIn this appendix, we derive Eq. (3.2), whi
h is a one-mode approximation to Eq. (2.7). We seek a solutionto Eq. (2.7) in the formE(x; t) = 1Xn=0Re �e�i(2n+1)k0t n(x)�: (A1.1)Substituting (A1.1) in (2.7), we obtain an in�nite sys-tem of 
oupled equations for the 
oe�
ients  n(x),n = 0; 1; : : : , the �n-th equation read o� from the
oe�
ient in front of e�i(2n+1)k0t. Be
ause of bound-ary 
onditions (2.8), (2.9), it is easy to show that n = O(�n). Hen
e, the 
ontribution of  n, n � 1,to the n = 0 equation is of the order O(�2), and wedrop this 
ontribution in the leading-order approxima-tion. Finally, to derive the n = 0 equation, we use therelation

�2�t2 �jRe(e�ik0t 0)j2 Re(e�ik0t 0)� == �2�t2 �142j 0j2�12e�ik0t 0��++ �2�t2 �14e�2ik0t 20�12eik0t � 0��++ terms proportional to eik0t and e�3ik0t == �2�t2 �34 j 0j2�12e�ik0t 0��++ terms proportional to eik0t and e�3ik0t: (A1.2)In the above approximation, this expression immedi-
ately implies Eq. (3.2).APPENDIX 2Computation of Z d�pf(�)The derivative of (9.3). We set �1 = �(b) and re
allexpression (9.1) for f(�),f(�) = 4(�1 � �) h��2 + (1 + ��1)�� �1n2 i : (A2.1)We observe that �1 is a root of the equation f(�) = 0.We �nd the other two roots,�2;3 = (2�)�1 "�(1+��1)�r(1+��1)2+4��1n2 # == 1 + ��12� "�1�s1 + 4��1n2(1 + ��1)2 # : (A2.2)The expansion in powers of � shows that�2 = �1n2(1 + ��1) �1� ��1n2 �+O(�2) == �1n2 �1� ��1�1 + 1n2��+O(�2) (A2.3)and �3 = � 1� �1 + ��1�1 + 1n2��+O(�): (A2.4)Clearly, for � small and n � 1, a safe way to expandf�1=2(�) is by expanding(��� ��3)�1=2 == �1 + ��1�1 + 1n2�+ ��+O(�2)��1=2 == 1� 12���1 + �1n2 + ��+O(�2):1168
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al bistabilityHen
e, forf(�) = �4(�� �1)(�� �2)(��� ��3) (A2.5) we obtain, modulo O(�2),
2f�1=2(�) = 1� 12���1 + �1n2 + ��[�(�� �1)(�� �2)℄1=2 : (A2.6)Our aim is to integrate this expression. For this, we present it as2f�1=2(�) = 1� 12��32�1 + 12�2 + �1n2�p�(�� �1)(�� �2) + 12� ��+ 12(�1 + �2)p�(�� �1)(�� �2) : (A2.7)We let �0 = �(0) and re
all that �1 = �(b). We then have�1Z�0 d� ��+ 12(�1 + �2)p�(�� �1)(�� �2) =p�(�� �1)(�� �2) ���1�0 = �p(�1 � �0)(�0 � �2): (A2.8)Using that �ar
sin x� pq �0 = 1s1� (x� p)2q2 1q = 1pq2 � (x � p)2 = 1p(p+ q � x)(x � p+ q)and setting p = (�1 + �2)=2 and q = (�1 � �2)=2, we obtain�1Z�0 d�p(�1 � �)(�� �2) = ar
sin 2 0B��� �1 + �22�1 � �2 1CA��������1�0 = �2 � ar
sin�2�0 � (�1 + �2)�1 � �2 � : (A2.9)Combining Eqs. (A2.7)�(A2.9), we obtain2 �1Z�0 d�pf(�) = �12�p(�1 � �0)(�0 � �2) + �1� 14��3�1 + �2 + 2 �1n2���� ��2 � ar
sin�2�0 � (�1 + �2)�1 � �2 �� : (A2.10)Together with Eqs. (9.2) and (A2.3), this gives, modulo O(�2),�1� 34��1 + 1n2� �1� ��2 � ar
sin�2�0 � (�1 + �2)�1 � �2 ��� 12�p(�1 � �0)(�0 � �2) = �2b: (A2.11)This 
an be rewritten as 2�0 � (�1 + �2)�1 � �2 = 
os �2b+ �p(�1 � �0)(�0 � �2)=21� 34��1 + 1n2� �1 : (A2.12)Equations (7.11)�(7.12) now imply�0 = (n2 + 3)�1 � 4n2 � 1 + n2�n2 � 1 "�21 � �(n2 + 3)�1 � 4�2(n2 � 1)2 #+O(�2): (A2.13)9 ÆÝÒÔ, âûï. 5 (11) 1169



Yu. N. Ov
hinnikov, I. M. Sigal ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001Inserting this expression for �0 and Eq. (A2.3) for �2 in Eq. (A2.12), we �nally obtain an equation for �1 only,4(1� �1)�1 n2(n2 � 1)2 �1� 2n2�(n2 � 1)2 �(n2 + 1)�1 � 2�� ��1(n2 + 1)n2(n2 � 1) � == sin2 2664b+ �2(n2 � 1)q(1� �1)n�2�(n2 + 1)2�1 � 4n2�1� 3�4 �1 + 1n2� �1 3775 ; (A2.14)modulo O(�2) terms. We simplify this equation by dropping terms of the order O(�) (but keeping terms of theorder O(�b)!) to obtain Eq. (9.3).The derivation of (12.1), (12.2). Pro
eeding as above, we obtain�(x)Z�0 d�pf(�) = �1� 3�4 (1 + 1n2 )�1� �ar
sin�2�(x)� (�1 + �2)�1 � �2 �� ar
sin�2�0 � (�1 + �2)�1 � �2 ��++ 12� hp(�1 � �(x))(�(x) � �2)�p(�1 � �0)(�0 � �2)i (A2.15)(Eq. (A2.15) with x = b yields, as it should,Eq. (A2.10)). Using this expression, we �nd an ap-proximate solution of the equation�(x)Z�0 d�pf(�)for �(x) by dropping terms of the order O(�) but keep-ing terms of the order O(�b). This yields�(x) = 12(�1 + �2) + 12(�1 � �2) 
os 2
(x); (A2.16)where 
(x) = b� x1� 3��14 �1 + 1n2� :Inserting expression (A2.3) for �2 in the right-handside, we arrive at (12.1), (12.2).APPENDIX 3In this appendix, we outline another derivation ofthe expression for the solution  of Eq. (4.4). In thisderivation, we 
onsider (4.4) as a linear equation for by assuming that j j2 = � in this equation is givenby (12.1), (12.2). We seek two linearly independent so-lutions of the resulting equation in the Blo
h fun
tionthe form[Aei
(x) +Be�i
(x)℄ei�(b�x) +O(�) (A3.1)for some �, A, and B. Inserting this in the equationin question and using the solvability 
ondition for the


onstants A and B, we obtain, after a simple 
al
ula-tion, � = ��; where � = ��12n (A3.2)With these values for �, we solve for A asA = n� 1n� 1B:As a result, the general solution of the above linearequation is given by = C ��1 + 1n� ei
(x) +�1� 1n� e�i
(x)��� e�i�(b�x) ++D��1 + 1n� e�i
(x) +�1� 1n� ei
(x)��� ei�(b�x): (A3.3)From boundary 
ondition (4.9), we �ndD = ��14 �12 + 32n2�C: (A3.4)Hen
e, the last term in (A3.3) is O(�) and 
an there-fore be omitted. Finally, we use that j (b)j = p�1, to�nd that jDj = p�1=2, and therefore, = n+ 12n p�1 �e�i
(x) + n� 1n+ 1ei
(x)��� ei�+i�(b�x) (A3.5)where � is given by Eq. (A3.2) and � is some 
onstantrelated to �(0) in a simple way.1170
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