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OPTICAL BISTABILTYYu. N. Ovhinnikov *Laudau Institute for Theoretial Physis142432, Chernogolovka, Mosow region, RussiaI. M. Sigal **Department of Mathematis, University of TorontoSubmitted 23 May 2001We onsider the problem of the wave propagation through a nonlinear medium. We derive a dynamial systemthat governs the behavior of standing (or solitary) waves. The form of this system alone su�es to understandthe qualitative dependene of solutions of the original equation on the intensity of the inident wave. We solvethis dynamial system in the leading order in the nonlinearity strength. We �nd multiple solutions of the originalproblem for a given inoming wave and turning points of these solutions as a funtion of the intensity of thewave. We brie�y investigate stability of di�erent branhes. Our results yield analyti desription of the optialbistability phenomenon.PACS: 63.10.+a, 42.65.Tg1. INTRODUCTIONThe problem of the light propagation through non-linear media is of a great theoretial and pratial in-terest. At large intensities, the dieletri onstant " isnot a onstant but varies as the intensity does. Evena tiny dependene of " on the intensity an produesigni�ant e�ets over large distanes. Controlling andutilizing these e�ets is one of the main hallenges ofthe theory of wave propagation. In this paper, we on-sider the propagation of light through a slab of mediumwhose dieletri onstant depends on the intensity oflight. A key e�et of interest here is the bistabilityphenomenon � existene of several solutions (with dif-ferent transmission oe�ients) with alternating sta-bility properties for a given intensity of the inomingbeam. This phenomenon was predited about 20 yearsago in Ref. [1℄ and it has been a subjet of intensiveresearh sine then. The researh in this area furtherintensi�ed about 10 years ago with the theoretial dis-overy of gap solitons in Ref. [2℄. See Refs. [2�10℄ forsome of the important original works and Refs. [11�13℄for reent reviews and the bakground material.In this paper, we address the problem of the prop-*E-mail: ov�itp.a.ru**E-mail: sigal�math.toronto.edu

agation of eletromagneti waves through a nonlineardialeti slab in a systemati way. To keep the expo-sition as simple as possible, we onsider the simplestpossible dependene of the slab dialeti onstant onthe intensity of light. Our goal is to larify some on-eptual points and to perform onrete omputations.Spei�ally, weestablish a minimum ation priniple and onse-quently a Hamiltonian struture for the basi (phe-nomenologial) equation;�nd a riterion of bistability in terms of linear reso-nanes, whih o�ers a possibility for multidimensionalextensions;�nd the loation of turning points;estimate the number of solutions for inoming wavesof high intensities;disuss general features of the stability analysis.To our knowledge, the results summarized aboveare new. 2. THE MODELIn the loal and nondissipative approximation, theequation desribing the propagation of light through1157



Yu. N. Ovhinnikov, I. M. Sigal ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001a medium with the dieletri onstant " and withoutharges or urrents is given by (see, e.g., Refs. [14�18℄)�2t ("E) = �E; (2:1)where E(x; t) is the eletri �eld at a point x 2 R3 attime t: the speed of light  is set to 1. This equationarises from the priniple of minimum (or more preisely,stationary) ation. We write the ation for the eletro-magneti �eld in a medium whose dialetri onstant "depends on the amplitude of the eletri �eld E (i.e.," = "(jEj2)) asS(A) = 12 ZZ �f(jEj2; x) � jBj2�;where A is the transverse vetor potential, divA = 0(we work in the Coulomb gauge), E = ��A=�t,B = rotA (magneti �eld), andf(s;x) = sZ0 "(u;x)du:Moreover, we set the magneti permeability � to 1.Here, we modi�ed only the part of the ation relatedto the eletri �eld E, leaving the part onneted tothe magneti �eld B unhanged. The reason for thisis that the eletri suseptibility �e = " � 1 an takerelatively large values, even muh larger than 1, whilethe magneti suseptibility �m = �� 1 is always muhsmaller than 1 in nonmagneti materials, namely of theorder 10�5�10�8.The ritial points of the above funtional are givenby the Euler�Lagrange equation� ��t �"(jEj2;x)�A�t �+�A = 0: (2:2)Di�erentiating this equation with respet to t and us-ing that �A=�t = �E, we arrive at (2.1). Conversely,Eq. (2.1) implies Eq. (2.2) if we require thatlimT!1 1T TZ0 Adt = 0;i.e. the vetor potential A has no zero harmoni. Thelatter is onsistent with Eq. (2.2) beause that equationontains only odd powers of A.A reformulation of Eq. (2.1) (or (2.2)) in terms ofthe minimum ation priniple immediately leads to theenergy onservation with the energy funtionalE(A) = Z (A�AL)� L;

transmittedwavewaveinidentrefletedwave nonlinearmedium0 aFig. 1.where L = 12 Z (f(jAj2; x)� j rotAj2):This funtional an be expliitly omputed asE(A) = 12 Z ff(jEj2;x) + j rotAj2g:Moreover, the variational formulation given aboveshows that Eq. (2.2) is Hamiltonian, with the standardPoisson brakets and with the Hamiltonian funtionalfound via the Legendre transform asH(A;�) = 12 Z ��(jEj2) + j rotAj2�;where the momentum �eld �(x) is related to theeletri �eld E(x) as � = �f 0(jEj2)E and we set�(s) = f 0(s)s� f(s)=2.In what follows, we onsider the symplest model ofthe nonlinear wave propagation. We assume that(�) the medium in question is uniform in the y andz diretions, i.e. " does not expliitly depend on y andz; (�) apart from its dependene on x, " depends onE only through the amplitude jEj2, i.e.," = "(jEj2; x);() the nonlinear part of the medium forms a slab ofthe thikness a perpendiular to the x axis (see Fig. 1),i.e.,"(jEj2; x) = ( 1 if x < 0 or x > a;n2"(jEj2) if 0 � x � a; (2:3)where n is the refrative index. The funtion "(jEj2) istaken in the simplest possible form"(jEj2) = 1 + �jEj2: (2:4)In real materials, � � jE0j�2, where E0 is the inter-nal (atomi) eletri �eld. Beause the eletri break-down already ours when jEj � jE0j, the seond termin the right-hand side of (2.4), whih is of the order(jEj2=jE0j)2, is indeed very small,�jEj2 � 1: (2:5)1158



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Optial bistabilityWe onsider only waves of a �xed polarization, i.e.,assume that E(x; t) in Eq. (2.1) an be written asE(x; t) = E(x; t)e; (2:6)where e is a �xed vetor (the polarization vetor) prop-agating in the x diretion, i.e., e is perpendiular to thex axis. In this ase, E(x; t) an be assumed to dependon x only, and therefore, Eq. (2.1) redues to the equa-tion �2E�x2 = �2�t2 ("E); (2:7)where E = E(x; t) and " = "(jEj2; x).This equation is subjet to the boundary onditionsE(x; t) = ( f(x� t) + f1(x+ t) if x < 0;f2(x � t) if x > a (2:8)with the funtion f given and the funtions f1 and f2unknown. These boundary onditions say that the �eldon the left of the sample onsists of the inoming wavef(x � t) and some re�eted wave f1(x + t), while the�eld on the right of the sample onsists of only theoutgoing wave f2(x � t). In addition, we speify theinoming wave asf(x� t) = Re(e�ik0(x�t)) (2:9)for some k0 > 0.3. SOLITARY WAVESWe study solitary waves for Eq. (2.7), i.e., waves ofthe form E(x; t) = Re �e�ik0t 0(x)� (3:1)where  0 is a omplex funtion. In the leading ap-proximation in the nonlinearity parameter �, it thenfollows that  0 satis�es the stationary equation (seeAppendix 1) � 0 + k20"0 0 = 0; (3:2)with "0 = "((3=4)j 0j2; x). We are interested in theproblem of the solitary wave passage through the non-linear slab, whih amounts to taking the solutions  0suh that 0 = ( Aeik0x +RAe�ik0x for x < 0;TAeik0x for x > a (3:3)with a given A and for some R and T . Here Aeik0x,RAe�ik0x, and TAeik0x are the inident, re�eted, andtransmitted waves, respetively (see Fig. 2), and R andT are the re�etion and transmission oe�ients.

nonlinearmediumRAe�ik0x TAeik0xAeik0x
Fig. 2. Re�etion and transmission oe�ientsor 00 a aFig. 3. Two solutions satisfying b..  (0) = 0 and (a) = 0The �ux onservation (see below) implies that Rand T satisfy jRj2 + jT j2 = 1: (3:4)In the linear ase, R and T are independent of A,and the amplitude A drops out of the equation. Thisis not so in the nonlinear ase. The goal of this paperis to �nd the dependene of jRj (or jT j) on A. Themain point here is that although two initial onditionsuniquely de�ne a solution of a seond-order ODE, twoboundary onditions an be satis�ed by several (a �nitenumber of) solutions of a nonlinear seord-order ODE.Figure 3 shows two solutions satisfying the boundaryonditions  (0) = 0 and  (a) = 0. In onstrast, in thelinear ase, two boundary onditions determine a so-lution of a seond-order ODE uniquely (modulo eigen-funtions).4. THE BOUNDARY VALUE PROBLEMInstead of onsidering Eq. (3.2) and onditions (3.3)on the entire real axis, we study this problem on theinterval [0; a℄, 000 + k20"�34 j 0j2� 0 = 0; 0 � x � a; (4:1)and use onditions (3.3) to set the boundary onditionsat x = 0 and x = a as 0(0) = A(1 +R);  00(0) = ik0A(1�R) (4:2)and  0(a) = ATeik0a;  00(a) = ik0ATeik0a: (4:3)We thus arrive at a boundary value problem on [0; a℄.It is onvenient to resale this problem as 0(x) = A (kx);1159



Yu. N. Ovhinnikov, I. M. Sigal ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001where k = k0n, the wave vetor in the medium withthe refration oe�ient n. The new boundary valueproblem is given by 00 + "1(j j2) = 0; 0 � x � b; (4:4)where b = ka and "1(j j2) = "((3=4)A2j j2), with theboundary onditions (0) = 1 +R;  0(0) = in(1�R) (4:5)and  (b) = Teib=n;  0(b) = inTeib=n: (4:6)Beause Eq. (4.4) is invariant under the gauge trans-formation  (x)! ei� (x), we an assume T � 0.Realling expression (2.4) for ", we �nd"1(j j2) = 1 + 2�j j2; � = 3�jAj2=8; (4:7)and therefore, the inident beam amplitude A entersthe new equation only through the parameter � andvarying A is the same as varying �.We note that Eq. (2.5) implies that in real material,�� 1.Although Eqs. (4.5), (4.6) appear to represent four(omplex) onstraints, these equations in fat onsti-tute only two onditions beause R and T are unknown.Eliminating the unknownsR and T from boundary on-ditions (4.5), (4.6), we obtain the onditions (0)� in 0(0) = 2; (4:8) (b) + in 0(b) = 0: (4:9)Equation (4.6) shows that a solution of Eq. (4.4)with boundary onditions (4.8), (4.9) determines thetransmission oe�ient T = j (b)j; on the other hand,knowing T determines the solution of (4.4). Our goalin what follows is to �nd T = j (b)j, where  solves(4.4), (4.8), and (4.9) as a funtion of �.5. RESONANCES AND THE EFFECTIVEWAVE VECTORWe now desribe the physial mehanism underly-ing the nonlinear phenomenon under onsideration. Webegin with the linear omponent of this mehanism,and therefore set � = 0. In this ase, Eq. (4.4) an besolved expliitly with the result lin = 12 �1 +Rlin + 1�Rlinn � eix ++ 12 �1 +Rlin � 1�Rlinn � e�ix (5.1)

and Rlin = (n2 � 1)(eib � e�ib)�(n� 1)2eib + (n+ 1)2e�ib : (5:2)The last equation shows that as a funtion of b = ka,Rlin has a series of minima and maxima,b = ka = �m) jRlinj = 0 (= jRlinjmin);b = ka = ��m+ 12�) jRlinj == n2 � 1n2 + 1 (= jRlinjmax):For n � 1, this resonane behavior is rather sharp: ifthe width a of the slab ontains an integer number ofthe half-wave lengths, �=2 = 2�=2k, then the trans-mission is perfet and the slab is therefore transpar-ent. If the width of the slab ontains an odd numberof quarter-wave lengths, then there is almost no trans-mission and the slab is opaque.The resonane struture of the linear ase plays aruial role in the peuliar behavior of the nonlinearsolution. This solution an be onsidered as a linearone with a varying e�etive wave vetor,keff � k"1=21 = k(1 + 2�j j2)1=2: (5:3)As the intensity (i.e., �) varies, so does the e�etivewave-length and the medium goes through a series ofresonanes in whih it is either perfetly transparent,jT j = 1, or almost opaque, jT j � 0.Thus, the presene of sharp minima and maximaof the re�etion (or transmission) oe�ient o�ers asimple riterion for the ourrene of the bistabilityphenomenon. One way to extend this riterion to themultidimensional ase is to relate it to the resonanestruture of the sattering proess onsidered above.Indeed, we observe that Rlin (and therefore,  lin) dis-play a resonane struture in the sense that it has om-plex poles atb(= ka) = �m� i ln 1 + 1=n1� 1=n; m = 0;�1; : : : (5:4)The real parts of these poles exatly give the positionof maxima of the transmission oe�ient. If we reallthat b = ka, we an rewrite (5.4) ask = �ma � ia ln 1 + 1=n1� 1=n; m = 0;�1; : : : (5:5)The real part of this expression takes the values 2�m=athat oinide with the eigenvalues of the operator1160



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Optial bistabilityp�d2=dx2 on the interval [0; a℄ with the periodiboundary onditions.To obtain resonane solutions, we must solve theoriginal wave equations�2E�x2 = �2�t2 ("E) (5:6)(where " = n2) on the interval [0; a℄ with the boundaryonditions representing an outgoing wave. For this, weset E = e�i�t� with � > 0 and� = ( A1e�i�x for x < 0;A2ei�x for x > a; (5:7)where A1 and A2 are arbitrary onstants. Eliminatingthese onstants, we obtain�0(0)�(0) = �i� and �0(a)�(a) = i�: (5:8)On the other hand, Eq. (5.6) implies the equation for�, �"�2� = �2�x2 �; (5:9)on the interval [0; a℄. Solving Eqs. (5.8), (5.9) and re-alling that " = n2(> 1), we �nd� = �man � ian ln 1 + 1=n1� 1=n; m = 0;�1; : : : (5:10)and the orresponding expression for �, whih we omithere.We have thus arrived at the following onlusion:resonanes of the transmission oe�ient, whih areresponsible for the bistable behavior of our nonlinearsystem, oinide with the resonanes of the linear waveequation (5.6) (in (5.6), " is n2 times the harateris-ti funtion of the interval [0; a℄). This is importantbeause there are well developed tehniques for �ndingresonanes in multidimensional linear systems. Thus,we have a possibility of identifying the bistability phe-nomenon in the multidimensional ase.We indiate the onnetion between the aboveresonane solutions and the stability problem forEqs. (2.7)�(2.9) with � = 0 (the linear problem). Inthis ase, we seek solutions to Eqs. (2.7)�(2.9) in theform E = Re �e�ik0t 0(x) + �(x; t)�; (5:11)where j�j � j 0j. From (2.8), (2.9) and (3.3), we anassume that � satis�es the boundary onditions� = ( e�i�(x+t) for x < 0;ei�(x�t) for x > a; (5:12)

with � that is omplex but lose to k0. Clearly, � is ofthe form � = e�i�t�, where � satis�es Eqs. (5.8), (5.9),and onsequently, � is given in (5.10). The resonaneeigenvalues therefore serve as the stability exponentsfor solution (3.1) in the linear ase (beause Im� < 0,the solution e�ik0t 0(x) is stable).6. CONSERVATION LAWSIn this setion, we desribe onservation lawsobeyed by Eq. (4.4). We onsider x as a time variable.We �rst de�ne the �energy� densitye( ) = j 0j2 +G(j j2); (6:1)where G(u) = uZ0 "1(v)dv = u+ �u2: (6:2)Using Eq. (4.4), we onlude that �e( )=�x = 0, andtherefore,e( ) � j 0j2 + j j2 + �j j4 = C > 0: (6:3)In the same way, it follows that the �ux densityj = Im( � =�x) is also onserved, j = C1. To om-bine these two onservation laws, it is onvenient topass to the polar representation = p� ei�: (6:4)The onservation of the �ux then gives��0 = C1: (6:5)In lassial mehanis, this equation expresses the an-gular momentum onservation or the Kepler law: therate of hange of the area swept by the radius vetor ofa partile in a entral potential is onstant. Togetherwith the energy onservation equation, this equationgives �02 = 4(�C21 + C�� g(�)); (6:6)where g(�) = �G(�) = �2 + ��3. Starting with thisequation and boundary onditions (4.8), (4.9), we de-rive our main equations in the next setion.7. THE MAIN EQUATIONSIn this setion, we derive the equations for � andjT j2 = �(b) on whih we base our analysis. We ob-serve that the right-hand side of Eq. (6.6) ontains twointegration onstants (or onservation onstants). We1161



Yu. N. Ovhinnikov, I. M. Sigal ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001use boundary onditions (4.8), (4.9) to express theseonstants in terms of �(0) and �(b).The boundary ondition at x = b gives12 �0p� + i�0p�p� ��������x=b = in ; (7:1)whih implies�0(b) = 1n and �0(b) = 0: (7:2)Equation (6.5) and the �rst equation in (7.2) yieldC1 = �(b)=n, and therefore,�0 = �(b)n� : (7:3)Equations (6.6) and C1 = �(b)=n give�02 = f(�); (7:4)where f(�) = 4�� �(b)2n2 + C�� g(�)�: (7:5)Equations (7.2) and (7.4), (7.5) imply that �(b) = jT j2is a root of f1(�(b)) = 0; (7:6)where f1(u) = Cu� 1n2u2 � g(u): (7:7)Equations (7.4)�(7.7) onstitute all the basi equa-tions of our analysis exept one eqaution. We now �ndthe onstant C as a funtion of �(b) by solving (7.6),(7.7) for C, C = �1 + 1n2� �(b) + ��(b)2: (7:8)This is a quadrati relation between �(0) and �(b). Sub-stituting (7.8) in (7.5), we �ndf(�) = 4�� �(b)2n2 + �(b)�1 + 1n2 ��++ ��(b)2�� �2 � ��3�: (7.9)Finally, we �nd the remaining basi equation using theboundary ondition at x = 0. Using (6.4), (7.3), and(7.4), we rewrite Eq. (4.9) as��(0)� in2 pf(�(0)) + �(b)� ei�(0)p�(0) = 2; (7:10)

�(0) f(�)�1
Fig. 4. A trajetory of �0 = �pf(�)whih implies, after taking the absolute value,��(0) + �(b)�2 + 14n2f��(0)� = 4�(0): (7:11)Inserting expression (7.9) for f(�) in (7.11), we obtain,after simple transformations,'��(b); �(0)� = 0; (7:12)where'(u; v) = �n2v2 + (n2 � 1)v �� (n2 + 3)u� n2�u2 + 4: (7.13)We now an formulate the problem as follows. Wemust solve the di�erential equation �02 = f(�) withthe boundary values �(0) and �(b) satisfying the equa-tion '��(b); �(0)� = 0, where f and ' are given by therespetive equations (7.9) and (7.13).We split our task as follows:(i) Using Eqs. (7.4) and (7.9), we �rst determine�(0) as a funtion of �(b). Here, we onsider �(b) as aninitial ondition for the dynamial system�0 = �pf(�)+; (7:14)where x+ = max(x; 0). We then solve (7.14) bak-wards, from x = b to x = 0 (with the hange of signs atturning points, f(�) = 0!) and �nd �(0) as a funtionof �(b), n, and �. Here, the ases where �0(0) > 0 and�0(0) < 0 an be onsidered separately.(ii) We then insert �(0) found at step (i) inEq. (7.12). The result is an algebrai equation for�(b) = jT j2. In general, this algebrai equation hasseveral solutions depending on � and n.The essene of this analysis an be inferred from theform of Eqs. (7.9) and (7.14), without solving them.Indeed, let �1, �2 and �3 be the roots of the equationf(�) = 0. As we already know, one of these roots is�(b), for example �1 = �(b). We let �3 < �2. It isnot di�ult to show (see below) that �2 < �1 (in fat,�2 < (1 + ��1)�1n�2�1) and �3 < 0. The roots of f(�)1162



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Optial bistabilityare equilibria and turning points of the dynamial sys-tem in Eq. (7.14). At these roots, �0 = 0 and pf(�)+hanges its sign. The behavior of this dynamial sys-tem is shown in Fig. 4.Open Problem. Dynamial system (7.14) is param-eterized by �1. Its phase portrait should qualitativelyhange as �1 goes through a turning point. How?8. EQUATION (7.6)We now show that we an infer muh informationfrom Eq. (7.6) without solving di�erential equation(7.4). We onsider the two simplest ases:(a) linear ase: G(u) = u, and hene, g(u) = u2. Inthis ase, f (lin)1 (u) = Cu��1 + 1n2�u2;and therefore, the equation f (lin)1 (�(b)) = 0 has, in ad-dition to the trivial solution �(b) = 0, one nontrivialsolution �(b) = C1 + n�2 :(b) Cubi nonlinearity: G(u) = u+�u2, and there-fore, g(u) = u2 + �u3. In this ase,f1(u) = Cu� (1 + 1n2 )u2 � �u3:Thus, depending on the oe�ients, the equationf1(�(b)) = 0 has, in addition to the trivial solution�(b) = 0, either none or one or two nontrivial solutions.All the possibilities are listed in Fig. 5.Conlusion. In the linear ase, we always have onenontrivial solution (after the division by u, the funtionf (lin)1 (u) beomes linear). In the simplest, ubi non-linear ase, depending on C and �, there an be none,one or two nontrivial solutions for �(b) = jT j2.9. SOLUTION OF THE NONLINEARPROBLEMWe �rst solve di�erential equation (7.4), �0 == �pf(�)+. Realling that �(b) solves f(�) = 0, weexpress f(�) asf(�) = 4��(b)������2+(1+��(b))���(b)n2 � : (9:1)Integrating the equation �0 = �pf(�)+, we �nd� �1Z�0 d�pf(�) = b (9:2)

(we reall that �1 = �(b) and �0 = �(0)). It is shown inAppendix 2 that Eq. (9.2) is equivalent, modulo O(�)(but keeping terms of the order O(�b)), to the equation4(1� �1)�1 n2(n2 � 1)2 = sin2 b1� 34��1n2 + 1n2 : (9.3)This equation de�nes �1 (= �(b) = jT j2) as a multival-ued funtion of � for given values of the parameters nand b.Of entral interest are turning points of this fun-tion. To �nd them, we di�erentiate Eq. (9.3) with re-spet to �1,� 4�21 n2(n2 � 1)2 = 3�b4 n2 + 1n2 �� sin 2b1� 34��1n2 + 1n2 ; (9.4)and then solve the resulting two equations for �1 and�. Thus, the turning points of �1 as a funtion of � aregiven by solutions of Eqs. (9.3) and (9.4).10. TURNING POINT IN THE LARGE-n CASE(SEMICLASSICAL LIMIT)We investigate Eqs. (9.3) and (9.4) in the ase wheren � 1. In this ase, the fator n2(n2�1)2 in both equa-tions an be replaed by 1=n2. We onsider two ases:(a) j�jb � 1. Beause n � 1, Eq. (9.4) shows thateither �1 � 1=n2 or b is lose to �m, where m is aninteger. We onsider the latter ase and setb = �m+ Æ with jÆj � 1: (10:1)Equation (9.3) an then be redued to the equation4(1� �1) = n2�1�Æ + 3�b4 �1�2 : (10:2)Di�erentiating this equation with respet to �1, we ob-tain the equation for the turning points,� 4 = 3�bn2�12 �Æ + 34b��1�++ n2�Æ + 3�bn �1�2 : (10.3)We now pass from �1 to the variable z de�ned byn�Æ + 3�b4 �1� = � 83z :1163
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f1 uone nontrivial solution

C > 0, � = �rit < 0 f1 C > 0, �rit < � < 0 u
uuone nontrivial solution

C < 0, � < 0f1

f1
uC > 0, � > 0

a unique nontrivial solution no nontrivial solutions
two nontrivial solutions
no nontrivial solutions

C < 0, � > 0f1
Fig. 5.The resulting equation for z has the solutionsz1;2 = 23�� Æn�pÆ2n2 � 12�: (10:4)Substituting in Eqs. (10.2) and (10.3) �8=3z forn(Æ + 3�b�1=4) and then solving Eq. (10.2) for �1 andEq. (10.3), for �nb we �nd�(k)1 = 9z2k16 + 9z2k and �nb = zk(�(k)1 )2 (10:5)for k = 1; 2. In the region between these turning points,all the three solutions of Eq. (10.2) an be representedas �1 = �4Æ(1 + z)3��m (10:6)and z = �13 +r49 � 163Æ2n2 os'; (10:7)

where ' = 'j , j = 1; 2; 3, is given by'j = 13 0BBB��2 + 2�j++ arsin8>>><>>>:1 + 36Æ2n2 + 81b�2n2Æ3�1� 12Æ2n2�3=2 9>>>=>>>;1CCCA : (10.8)Beause �1 > 0, solutions (10.6) exist only in the regionÆ� < 0.(b) nj�jb � 1. In this ase, n an take an arbi-trary value larger than one. Eliminating trigonometrifuntions from Eqs. (9.3) and (9.4), we arrive at theequation� 4n33�b(n2 + 1)2�2 == �21(1� �1)��1 � 4n2(n2 + 1)2� : (10.9)1164
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14n2

r.h.s. of (10.9) 4n33�b(n2 + 1)2!2 �1Fig. 6. Graphial solution to Eq. (10.9)This equation an have either two positive solutions for�1 or none. In the �rst ase, one of the solutions is loseto 1,�(1)1 = 1� 12 �n2 � 1n2 + 1�2 ++s14 �n2 � 1n2 + 1�4 �� 4n33�b(n2 + 1)2�2; (10.10)while the other one, �(2)1 , is a solution of a ubi equa-tion. For �bn � 1 and n � 1, the ubi equation isgiven by �31 � 4�21n2 �� 43�bn�2 = 0:A positive solution to the last equation is�(2)1 = 83n2 �12 + h�� ;where h 3� = 1 + 38 �n2�b�2 : (10.11)A graphial solution to Eq. (10.9) is shown in Fig. 6.Using values (10.10) and (10.11) for �1, we obtainthe values for � from Eq. (9.3) as�(1) = 43 �m� bb n2n2 + 1 (10:12)and �(2) = n2 + 13 �(m+ 1=2)� bb ; (10:13)provided j�m� bj � b.Equations (10.10)�(10.13) give the top (Eqs. (10.10)and (10.12)) and bottom (Eqs. (10.11) and (10.13))turning points. The distane between the neighboringturning points in the �rst and the seond sets isÆ�1 = 43 �b n2n2 + 1 and Æ�2 = n2 + 13 �b : (10:14)

�
14n2(n2 + 1)2

�1
Fig. 7. Dependene of �1 on �; the number of solutionsfor a given �The dependene of �1 on � is shown graphially inFig. 7.We �nally ompute the number of solutions for agiven � in the region j�jb� 1. It is given byN(�) = 2(Ntop(�)�Nbottom(�)) + 1; (10:15)where Ntop(�) and Nbottom(�) is the number of thetop and bottom turning points in the interval [0; �℄and the oe�ient 2 aounts for the fat that thereare two solutions orresponding to eah turning point(see Fig. 7). We have roughly Ntop(�) � �=Æ�1 andNbottom � �=Æ�2, and therefore,N(�) � 2�� 1Æ�1 � 1Æ�2� � 32��b: (10:15)11. STABILITYIn this setion, we study the general stability prop-erties of solutions to boundary value problem (4.4)�(4.6). A detailed analysis will be given elsewhere.Clearly, given �1 � �(b) � j (b)j2 = T 2, the problem inEqs. (4.4)�(4.6) has a unique solution. In other words,solutions of the latter problem an be parameterizedby �1. (This an be done expliitly by expressing � interms of �1.) In what follows, we taitly assume thatthe urve (=multivalued funtion)  =  (�) is param-eterized by �1. With this parameterization in mind,we sometimes speak about stability of a point (�1; �)understanding by it the stability of the orrespondingpoint ( ; �).Our task is to �nd stability of solutions ofEqs. (2.7)�(2.9) of form (3.1)�(3.3). To �t this prob-lem into the standard framework, one would have torewrite (2.7) as a system of the �rst order Hamiltonianequations and apply to it a rather subtle stabilitytheory for solitary waves (see e.g. [19℄ and referenes1165



Yu. N. Ovhinnikov, I. M. Sigal ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001therein). We adopt a diret approah instead. We seeksolutions of Eqs. (2.7)�(2.9) in the formE = 8><>: Re[e�i!t( 0 + e�t�)℄ if � is real (11:2)Re[e�i!t( 0 + e�t�1 + e��t�2)℄if � is omplex, (11:3)where ! = k0,  0 satis�es Eqs. (3.2), (3.3), and � aresmall and suh thate�i(!+i�)t� is an outgoing wavefor x < 0 and x > a (11.4)and similarly for � omplex. This implies� = ( A1e�i(!+i�)x for x < 0;A2ei(!+i�)x for x > a (11:5)for some onstants A1 and A2, whih gives�0(0)�(0) = �i(! + i�) and �0(a)�(a) = i(! + i�) (11:6)for � real. For � omplex, the boundary onditions are�01(0)�1(0) = �i(! + i�); �01(a)�1(a) = i(! + i�) (11:7)and �02(0)�2(0) = �i(! + i��); �02(a)�2(a) = i(! + i��): (11:8)For simpliity, we deal only with the ase Eq. (11.2),the ase (11.3) is treated in a similar way. Substituting(11.2) in (2.7), we derive the linearized equation for �(see Appendix 1 for a similar derivation),L�(�) = 0; (11:9)where, with � = ! + i� and "0(s; x) = �"(s; x)=�s,L�(�) = �2x� + �2"(j 0j2; x)� ++ �2"0(j 0j2; x) 0 Re( 0�): (11.10)Equation (11.9) is a nonlinear eigenvalue problem.We observe that the operator family L� satis�es,L�� = L��, with respet to the inner produt(�; �) = ReZ ��: (11:11)A ruial role in our analysis is played by the fol-lowing result whih is stated diretly for the resaledfuntion  (x) = A�1 0(x=k), k = k0n.

x = stable (� < 0)o = unstable (� > 0)x x x x x x x�1
4n2(n2 + 1)2 �o xo o o o o o o oxx Fig. 8.Theorem. ( ; �) is a turning point i�� ��1 solves L0(�) = 0 (11:12)at that pointProof. We write Eq. (4.4) as F ( ; �) = 0 and let =  (�1) and � = �(�1). Di�erentiating the lastequation with respet to �1, we obtainF ( ; �) � ��1 + �F�� ( ; �) ����1 = 0; (11:13)where F ( ; �) is the variational derivative of F ( ; �)with respet to  . We note that F ( ; �) is equalto L0 up to a resaling. Now, ( ; �) is a turningpoint i� ��=��1 = 0 at that point, and therefore, i�F ( ; �)� =��1 = 0:This theorem implies that� = 0 is an eigenvalue of (resaled)Eq. (11.9)$ (�1; �) is a turning point. (11.14)We laim that � hanges its sign as �1 passes a turningpoint,����1 < 0 at a top turning point> 0 at a bottom turning point, (11:15)where top and bottom refers to the turning points of�1 = �1(�).Equations (11.14) and (11.15) suggest that thereal eigenvalue �, is negative on the top branhes of�1 = �1(�) (see Fig. 8), while � > 0 on the bottomones. Hene, the bottom branhes are unstable. Inorder to understand the stability properties of the topbranhes, one has to envoke the remaining, omplexeigenvalues. We expet that they are stable near thetop turning points and unstable elsewhere.Equation (11.15) is proved by a perturbation the-ory, whih requires the information about solutions to1166



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Optial bistability(11.9) only at the turning point. The details will bepresented elsewhere.Comparing Eqs. (11.6) and (11.9) with Eqs. (5.8)and (5.9), i.e. with the equations for the resonane so-lution in the linear ase, we onlude that the formerequations desribe the resonane solution in the non-linear ase (the nonlinear resonane). It is remarkablethat while the orresponding problem is always stablein the linear ase (see Eq. (5.10)), the stable and un-stable branhes alternate in the nonlinear ase.12. EXPRESSION FOR  In this setion, we �nd an approximate form of thesolution  to Eq. (4.4). This information is needed, inpartiular, for a more detailed study of the stability ofvarious branhes.We �rst �nd the funtion �(x) for 0 < x < b. Forthis, we replae Eq. (9.2) with the equation� �(x)Z�0 d�pf(�) = x;whih is integrated in the same way as (9.2) to yield(see Appendix 2)�(x) = 12�1�1 + 1n2 +�1� 1n2� os 2(x)� ; (12:1)where (x) = b� x1� 3��14 (1 + 1n2 ) : (12:2)We next �nd the expression for � = arg( ) thatmathes (12.1). Observing that1 + 1n2 +�1� 1n2� os 2 == (n+ 1)22n2 ����ei + n� 1n+ 1e�i����2 ;we seek � in the form�(x) = �(x) + �(x); (12:3)where �(x) = � artg �n�1 tg (x)� and where the fun-tion � is to be found using Eq. (7.3) for �. The lattergives, modulo O(�),�(x) = �3��14 �1 + 1n2� (�(x)��(0))+�(0): (12:4)

The initial ondition �(0) is found from�(0) = �(0)� artg� 1n tg (0)� (12:5)and �(0) = artg � n�02(�+ �1)�����x=0 : (12:6)The funtion �(x) an also be represented as (againmodulo O(�))�(x) = �(0)� 3��12n �1 + 1n2��� xZ0 dy1 + 1n2 +�1� 1n2� os 2(y) : (12.7)Putting Eqs. (12.1) and (12.3) together, we write (x) =p�(x)ei�(x) as (x) = n+ 12n p�1eiÆ(x) �� �e�i(x) + n� 1n+ 1ei(x)� ; (12.8)where (x) is given by Eq. (12.2) andÆ(x) = onst+ ��12n (b� x):The expliit form of  re�ets the piture of a non-linear wave propagation: it is a superposition of twowaves travelling in opposite diretions with slightly dif-ferent speed. The nonlinearity leads to a renormaliza-tion of the wave vetor,k0 ! k0�1� 3��14 �1 + 1n2���1 ;and to the appearane of a slowly varying phase �(x).Expression (12.8) for  will be used in the study ofthe stability problem whih will appear elsewhere.13. CONCLUSIONAs we see from Fig. 8, a small hange of the lightintensity (i.e., of �) near a turning point is apable ofswithing the system from one state (solution  ) to an-other. Namely, moving around a turning point hangesa stable solution into an unstable one; under the ationof a random perturbation, the system then jumps to astable solution as shown in Fig. 9. This either turns onor turns o� the light passing through the slab.1167
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�

�1 unstablestable
Fig. 9. Swithing of solutionsAt the next step, we would like to address thenonlinear stability problem, in other words, to studysolutions of Eqs. (2.7)�(2.9) with the initial onditionslose to the solitary wave e�ik0t 0(x) in the aseswhere  0 is on a stable branh and, more interestingly,in the ase where  0 is on the unstable branh (seeEq. (5.11)). In the latter ase, it is desirable to �nda mathematial desription to the proesses desribedabove (see Fig. 9).The seond author is grateful to Doug Mills foruseful disussions and enouragement. Supported byNSERC under Grant NA7901.APPENDIX 1One-mode approximationIn this appendix, we derive Eq. (3.2), whih is a one-mode approximation to Eq. (2.7). We seek a solutionto Eq. (2.7) in the formE(x; t) = 1Xn=0Re �e�i(2n+1)k0t n(x)�: (A1.1)Substituting (A1.1) in (2.7), we obtain an in�nite sys-tem of oupled equations for the oe�ients  n(x),n = 0; 1; : : : , the �n-th equation read o� from theoe�ient in front of e�i(2n+1)k0t. Beause of bound-ary onditions (2.8), (2.9), it is easy to show that n = O(�n). Hene, the ontribution of  n, n � 1,to the n = 0 equation is of the order O(�2), and wedrop this ontribution in the leading-order approxima-tion. Finally, to derive the n = 0 equation, we use therelation

�2�t2 �jRe(e�ik0t 0)j2 Re(e�ik0t 0)� == �2�t2 �142j 0j2�12e�ik0t 0��++ �2�t2 �14e�2ik0t 20�12eik0t � 0��++ terms proportional to eik0t and e�3ik0t == �2�t2 �34 j 0j2�12e�ik0t 0��++ terms proportional to eik0t and e�3ik0t: (A1.2)In the above approximation, this expression immedi-ately implies Eq. (3.2).APPENDIX 2Computation of Z d�pf(�)The derivative of (9.3). We set �1 = �(b) and reallexpression (9.1) for f(�),f(�) = 4(�1 � �) h��2 + (1 + ��1)�� �1n2 i : (A2.1)We observe that �1 is a root of the equation f(�) = 0.We �nd the other two roots,�2;3 = (2�)�1 "�(1+��1)�r(1+��1)2+4��1n2 # == 1 + ��12� "�1�s1 + 4��1n2(1 + ��1)2 # : (A2.2)The expansion in powers of � shows that�2 = �1n2(1 + ��1) �1� ��1n2 �+O(�2) == �1n2 �1� ��1�1 + 1n2��+O(�2) (A2.3)and �3 = � 1� �1 + ��1�1 + 1n2��+O(�): (A2.4)Clearly, for � small and n � 1, a safe way to expandf�1=2(�) is by expanding(��� ��3)�1=2 == �1 + ��1�1 + 1n2�+ ��+O(�2)��1=2 == 1� 12���1 + �1n2 + ��+O(�2):1168



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Optial bistabilityHene, forf(�) = �4(�� �1)(�� �2)(��� ��3) (A2.5) we obtain, modulo O(�2),
2f�1=2(�) = 1� 12���1 + �1n2 + ��[�(�� �1)(�� �2)℄1=2 : (A2.6)Our aim is to integrate this expression. For this, we present it as2f�1=2(�) = 1� 12��32�1 + 12�2 + �1n2�p�(�� �1)(�� �2) + 12� ��+ 12(�1 + �2)p�(�� �1)(�� �2) : (A2.7)We let �0 = �(0) and reall that �1 = �(b). We then have�1Z�0 d� ��+ 12(�1 + �2)p�(�� �1)(�� �2) =p�(�� �1)(�� �2) ���1�0 = �p(�1 � �0)(�0 � �2): (A2.8)Using that �arsin x� pq �0 = 1s1� (x� p)2q2 1q = 1pq2 � (x � p)2 = 1p(p+ q � x)(x � p+ q)and setting p = (�1 + �2)=2 and q = (�1 � �2)=2, we obtain�1Z�0 d�p(�1 � �)(�� �2) = arsin 2 0B��� �1 + �22�1 � �2 1CA��������1�0 = �2 � arsin�2�0 � (�1 + �2)�1 � �2 � : (A2.9)Combining Eqs. (A2.7)�(A2.9), we obtain2 �1Z�0 d�pf(�) = �12�p(�1 � �0)(�0 � �2) + �1� 14��3�1 + �2 + 2 �1n2���� ��2 � arsin�2�0 � (�1 + �2)�1 � �2 �� : (A2.10)Together with Eqs. (9.2) and (A2.3), this gives, modulo O(�2),�1� 34��1 + 1n2� �1� ��2 � arsin�2�0 � (�1 + �2)�1 � �2 ��� 12�p(�1 � �0)(�0 � �2) = �2b: (A2.11)This an be rewritten as 2�0 � (�1 + �2)�1 � �2 = os �2b+ �p(�1 � �0)(�0 � �2)=21� 34��1 + 1n2� �1 : (A2.12)Equations (7.11)�(7.12) now imply�0 = (n2 + 3)�1 � 4n2 � 1 + n2�n2 � 1 "�21 � �(n2 + 3)�1 � 4�2(n2 � 1)2 #+O(�2): (A2.13)9 ÆÝÒÔ, âûï. 5 (11) 1169



Yu. N. Ovhinnikov, I. M. Sigal ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001Inserting this expression for �0 and Eq. (A2.3) for �2 in Eq. (A2.12), we �nally obtain an equation for �1 only,4(1� �1)�1 n2(n2 � 1)2 �1� 2n2�(n2 � 1)2 �(n2 + 1)�1 � 2�� ��1(n2 + 1)n2(n2 � 1) � == sin2 2664b+ �2(n2 � 1)q(1� �1)n�2�(n2 + 1)2�1 � 4n2�1� 3�4 �1 + 1n2� �1 3775 ; (A2.14)modulo O(�2) terms. We simplify this equation by dropping terms of the order O(�) (but keeping terms of theorder O(�b)!) to obtain Eq. (9.3).The derivation of (12.1), (12.2). Proeeding as above, we obtain�(x)Z�0 d�pf(�) = �1� 3�4 (1 + 1n2 )�1� �arsin�2�(x)� (�1 + �2)�1 � �2 �� arsin�2�0 � (�1 + �2)�1 � �2 ��++ 12� hp(�1 � �(x))(�(x) � �2)�p(�1 � �0)(�0 � �2)i (A2.15)(Eq. (A2.15) with x = b yields, as it should,Eq. (A2.10)). Using this expression, we �nd an ap-proximate solution of the equation�(x)Z�0 d�pf(�)for �(x) by dropping terms of the order O(�) but keep-ing terms of the order O(�b). This yields�(x) = 12(�1 + �2) + 12(�1 � �2) os 2(x); (A2.16)where (x) = b� x1� 3��14 �1 + 1n2� :Inserting expression (A2.3) for �2 in the right-handside, we arrive at (12.1), (12.2).APPENDIX 3In this appendix, we outline another derivation ofthe expression for the solution  of Eq. (4.4). In thisderivation, we onsider (4.4) as a linear equation for by assuming that j j2 = � in this equation is givenby (12.1), (12.2). We seek two linearly independent so-lutions of the resulting equation in the Bloh funtionthe form[Aei(x) +Be�i(x)℄ei�(b�x) +O(�) (A3.1)for some �, A, and B. Inserting this in the equationin question and using the solvability ondition for the

onstants A and B, we obtain, after a simple alula-tion, � = ��; where � = ��12n (A3.2)With these values for �, we solve for A asA = n� 1n� 1B:As a result, the general solution of the above linearequation is given by = C ��1 + 1n� ei(x) +�1� 1n� e�i(x)��� e�i�(b�x) ++D��1 + 1n� e�i(x) +�1� 1n� ei(x)��� ei�(b�x): (A3.3)From boundary ondition (4.9), we �ndD = ��14 �12 + 32n2�C: (A3.4)Hene, the last term in (A3.3) is O(�) and an there-fore be omitted. Finally, we use that j (b)j = p�1, to�nd that jDj = p�1=2, and therefore, = n+ 12n p�1 �e�i(x) + n� 1n+ 1ei(x)��� ei�+i�(b�x) (A3.5)where � is given by Eq. (A3.2) and � is some onstantrelated to �(0) in a simple way.1170
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