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We consider the problem of the wave propagation through a nonlinear medium. We derive a dynamical system
that governs the behavior of standing (or solitary) waves. The form of this system alone suffices to understand
the qualitative dependence of solutions of the original equation on the intensity of the incident wave. We solve
this dynamical system in the leading order in the nonlinearity strength. We find multiple solutions of the original
problem for a given incoming wave and turning points of these solutions as a function of the intensity of the
wave. We briefly investigate stability of different branches. Our results yield analytic description of the optical

bistability phenomenon.
PACS: 63.10.+a, 42.65.Tg

1. INTRODUCTION

The problem of the light propagation through non-
linear media is of a great theoretial and practical in-
terest. At large intensities, the dielectric constant e is
not a constant but varies as the intensity does. Even
a tiny dependence of £ on the intensity can produce
significant effects over large distances. Controlling and
utilizing these effects is one of the main challenges of
the theory of wave propagation. In this paper, we con-
sider the propagation of light through a slab of medium
whose dielectric constant depends on the intensity of
light. A key effect of interest here is the bistability
phenomenon — existence of several solutions (with dif-
ferent transmission coefficients) with alternating sta-
bility properties for a given intensity of the incoming
beam. This phenomenon was predicted about 20 years
ago in Ref. [1] and it has been a subject of intensive
research since then. The research in this area further
intensified about 10 years ago with the theoretical dis-
covery of gap solitons in Ref. [2]. See Refs. [2-10] for
some of the important original works and Refs. [11-13]
for recent reviews and the background material.

In this paper, we address the problem of the prop-
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agation of electromagnetic waves through a nonlinear
dialectic slab in a systematic way. To keep the expo-
sition as simple as possible, we consider the simplest
possible dependence of the slab dialectic constant on
the intensity of light. Our goal is to clarify some con-
ceptual points and to perform concrete computations.
Specifically, we

establish a minimum action principle and conse-
quently a Hamiltonian structure for the basic (phe-
nomenological) equation;

find a criterion of bistability in terms of linear reso-
nances, which offers a possibility for multidimensional
extensions;

find the location of turning points;

estimate the number of solutions for incoming waves
of high intensities;

discuss general features of the stability analysis.

To our knowledge, the results summarized above
are new.

2. THE MODEL

In the local and nondissipative approximation, the
equation describing the propagation of light through
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a medium with the dielectric constant ¢ and without
charges or currents is given by (see, e.g., Refs. [14-18])

J2(cE) = AE, (2.1)
where E(x,t) is the electric field at a point x € R? at
time t: the speed of light ¢ is set to 1. This equation
arises from the principle of minimum (or more precisely,
stationary) action. We write the action for the electro-
magnetic field in a medium whose dialectric constant
depends on the amplitude of the electric field E (i.e.,
e = =([E?)) as

sa) =5 [[ (1BP.2) - |BP).

where A is the transverse vector potential, divA = 0
(we work in the Coulomb gauge), E = —0A/dt,
B = rot A (magnetic field), and

3

s

f(s,x) = /s(u.,x)du.

0

Moreover, we set the magnetic permeability p to 1.
Here, we modified only the part of the action related
to the electric field E, leaving the part connected to
the magnetic field B unchanged. The reason for this
is that the electric susceptibility vy, = ¢ — 1 can take
relatively large values, even much larger than 1, while
the magnetic susceptibility y,, = u— 1 is always much
smaller than 1 in nonmagnetic materials, namely of the
order 107°-1078.

The critical points of the above functional are given
by the Euler-Lagrange equation

0 0A

T <6(|E|2,X)—> +AA =0.

= (2.2)

Differentiating this equation with respect to ¢ and us-
ing that 0A /0t = —E, we arrive at (2.1). Conversely,
Eq. (2.1) implies Eq. (2.2) if we require that

1 T
T‘IE‘J/Adt:O’
0

i.e. the vector potential A has no zero harmonic. The
latter is consistent with Eq. (2.2) because that equation
contains only odd powers of A.

A reformulation of Eq. (2.1) (or (2.2)) in terms of
the minimum action principle immediately leads to the
energy conservation with the energy functional

£(A) = / (A9AL) — L.

incident

wave transmitted

nonlinear wave

medium

reflected
wave 0 a

Fig. 1.

where
1

L= [(F0AP.2) - [rotAP)

This functional can be explicitly computed as

£(8) = 5 [(F(B %0 + [rotAP).

Moreover, the variational formulation given above
shows that Eq. (2.2) is Hamiltonian, with the standard
Poisson brackets and with the Hamiltonian functional
found via the Legendre transform as

H(Am) =5 [ (GEF) + roc AP),

where the momentum field m(x) is related to the
electric field E(x) as # = —f'(|E*>)E and we set
o(s) = f'(s)s — f(3)/2.

In what follows, we consider the symplest model of
the nonlinear wave propagation. We assume that

() the medium in question is uniform in the y and
z directions, i.e. ¢ does not explicitly depend on y and
z;

(B) apart from its dependence on x, ¢ depends on
E only through the amplitude |E|?, i.e.,

e =<(|E]*, z);

() the nonlinear part of the medium forms a slab of
the thickness a perpendicular to the x axis (see Fig. 1),
ie.,

(B2, 2) = 1 ifx <0oraz>a,
’ n’g(|E]?) if0<z<a,

where n is the refractive index. The function z(|E|?) is
taken in the simplest possible form

(2.3)

Z(B?) = 1+ (B[ (2.4)

In real materials, 77 ~ |Eg| 2, where Eq is the inter-
nal (atomic) electric field. Because the electric break-
down already occurs when |E| < |Eq|, the second term
in the right-hand side of (2.4), which is of the order
(|E?/|Eo|)?, is indeed very small,

nE? < 1. (2.5)
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We consider only waves of a fixed polarization, i.e.,
assume that E(x,t) in Eq. (2.1) can be written as
E(x,t) = E(x,t)e, (2.6)
where e is a fixed vector (the polarization vector) prop-
agating in the x direction, i.e., e is perpendicular to the
x axis. In this case, E(x,t) can be assumed to depend
on z only, and therefore, Eq. (2.1) reduces to the equa-
tion 5 5
E
= —3(E),
ox?  Ot?
where E = E(x,t) and ¢ = ¢(|E|?, z).
This equation is subject to the boundary conditions

2.7)

if z <0,

2.8
ifz>a (28)

B(x,t) = { ; :E;—_ti; filz+1)

with the function f given and the functions f; and fs
unknown. These boundary conditions say that the field
on the left of the sample consists of the incoming wave
f(x —t) and some reflected wave fi(x + t), while the
field on the right of the sample consists of only the
outgoing wave fo(x — t). In addition, we specify the
incoming wave as

f(z —t) = Re(eko(e=1) (2.9)

for some kg > 0.

3. SOLITARY WAVES

We study solitary waves for Eq. (2.7), i.e., waves of
the form

E(x,t) = Re (e~ ™oty (x)) (3.1)

where g is a complex function. In the leading ap-
proximation in the nonlinearity parameter 7, it then
follows that 1) satisfies the stationary equation (see
Appendix 1)

Aty + kgegt = 0,

with g9 = ¢((3/4)|¢0]?, ). We are interested in the
problem of the solitary wave passage through the non-
linear slab, which amounts to taking the solutions g
such that

(3.2)

r <0,

xr>a

Aeikor 4 R Ae~ikox for
Yo = { (3.3)

| TAeikoz for

with a given A and for some R and T. Here Aetko®
RAe~ %oz and T Ae' % are the incident, reflected, and
transmitted waves, respectively (see Fig. 2), and R and
T are the reflection and transmission coefficients.

Aeikgm
—_— ikow
nonlinear TAe
medium >
-
RAefikgz

Fig.2. Reflection and transmission coefficients

N L YN

0 a 0 a

Fig.3. Two solutions satisfying b.c. ¢(0) = 0 and

P(a) =0

The flux conservation (see below) implies that R
and T satisfy

R>+|T)* = 1. (3.4)

In the linear case, R and T are independent of A,
and the amplitude A drops out of the equation. This
is not so in the nonlinear case. The goal of this paper
is to find the dependence of |R| (or |T'|) on A. The
main point here is that although two initial conditions
uniquely define a solution of a second-order ODE, two
boundary conditions can be satisfied by several (a finite
number of) solutions of a nonlinear secord-order ODE.
Figure 3 shows two solutions satisfying the boundary
conditions 1 (0) = 0 and (a) = 0. In constrast, in the
linear case, two boundary conditions determine a so-
lution of a second-order ODE uniquely (modulo eigen-
functions).

4. THE BOUNDARY VALUE PROBLEM

Instead of considering Eq. (3.2) and conditions (3.3)
on the entire real axis, we study this problem on the
interval [0, al,

3
6’ + kog <Z|¢0|2> wo = 0., 0 S xr S a, (41)

and use conditions (3.3) to set the boundary conditions
atz =0and x =a as

Go(0) = AL+ R), ¢4(0) = ikeA(1-R)  (4.2)

and
Qﬂo (a) = ATeikoa,

Y (a) = ikoATet*oe, (4.3)

We thus arrive at a boundary value problem on [0, a.
It is convenient to rescale this problem as

Yo(z) = Av(kz),
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where k& = kgn, the wave vector in the medium with and

the refraction coefficient n. The new boundary value ' (n? — 1)(e® — e=b)

problem is given by Rl = (5.2)

P[9P =0, 0<x<b, (4.4)

where b = ka and &1 (|¢|?) = 2((3/4) A%|¢|?), with the
boundary conditions
$(0)=1+R, ¢'(0)

(1-R)  (4.5)

i
n
and

v() =T, ()= LTt (ag)

Because Eq. (4.4) is invariant under the gauge trans-
formation 1) (x) — e (x), we can assume T > 0.
Recalling expression (2.4) for Z, we find

er([Vf?) = 1+ 2ulyP?,

and therefore, the incident beam amplitude A enters
the new equation only through the parameter y and
varying A is the same as varying u.

We note that Eq. (2.5) implies that in real material,
n< 1.

Although Eqs. (4.5), (4.6) appear to represent four
(complex) constraints, these equations in fact consti-
tute only two conditions because R and T are unknown.
Eliminating the unknowns R and T from boundary con-

ditions (4.5), (4.6), we obtain the conditions
$(0) —iny'(0) = 2, (4.8)
b(b) + ine' (b) = 0. (4.9)
Equation (4.6) shows that a solution of Eq. (4.4)
with boundary conditions (4.8), (4.9) determines the
transmission coefficient 7' = |1(D)|; on the other hand,
knowing 7' determines the solution of (4.4). Our goal

in what follows is to find T'" = |¢(b)|, where 1 solves
(4.4), (4.8), and (4.9) as a function of p.

p = 37lA]*/8, (4.7)

5. RESONANCES AND THE EFFECTIVE
WAVE VECTOR

We now describe the physical mechanism underly-
ing the nonlinear phenomenon under consideration. We
begin with the linear component of this mechanism,
and therefore set yu = 0. In this case, Eq. (4.4) can be
solved explicitly with the result

) 1 ) 1— Rlin )
wltn — 5 <1 +Rlzn + >ezz +
n

1— Rlin

1 :
+—<1+R“”—
2 n

) e~ (5.1)

—(n—1)%e + (n+ 1)2e-i"

The last equation shows that as a function of b = ka,
R'™ has a series of minima and maxima,

b=rka=7mm=|R" =0 (=|R"™|mn),

1 ,
b:ka:w<m+§> :>|R“”\:

n?—1

= n2 +1 (= ‘le|maX)-

For n > 1, this resonance behavior is rather sharp: if
the width a of the slab contains an integer number of
the half-wave lengths, A\/2 = 27 /2k, then the trans-
mission is perfect and the slab is therefore transpar-
ent. If the width of the slab contains an odd number
of quarter-wave lengths, then there is almost no trans-
mission and the slab is opaque.

The resonance structure of the linear case plays a
crucial role in the peculiar behavior of the nonlinear
solution. This solution can be considered as a linear
one with a varying effective wave vector,

ke = ket/? = k(1 + 2u|0[?)"/2. (5.3)

As the intensity (i.e., u) varies, so does the effective
wave-length and the medium goes through a series of
resonances in which it is either perfectly transparent,
|T'| = 1, or almost opaque, |T| ~ 0.

Thus, the presence of sharp minima and maxima
of the reflection (or transmission) coefficient offers a
simple criterion for the occurrence of the bistability
phenomenon. One way to extend this criterion to the
multidimensional case is to relate it to the resonance
structure of the scattering process considered above.
Indeed, we observe that R'" (and therefore, 1!"") dis-
play a resonance structure in the sense that it has com-
plex poles at

1+1/n
1—1/n’

b(= ka) =mm —iln m=0,%+1,... (5.4)
The real parts of these poles exactly give the position
of maxima of the transmission coefficient. If we recall

that b = ka, we can rewrite (5.4) as

1+1/n
1-1/n’

mm i
k=———In
a a

m=0+1,... (5.5)

The real part of this expression takes the values 2rm/a
that coincide with the eigenvalues of the operator
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/—d?/dz? on the interval [0,a] with the periodic
boundary conditions.

To obtain resonance solutions, we must solve the
original wave equations

OE_0
ox2 Ot
(where e = n?) on the interval [0, a] with the boundary

conditions representing an outgoing wave. For this, we
set E = e 7t¢ with ¢ > 0 and

¢ = { Ajeiox for

Aqeio® for

(cE) (5.6)

r <0,

x> a,

(5.7)

where A; and A, are arbitrary constants. Eliminating
these constants, we obtain

€O _ . E)
qo) ~ o g

On the other hand, Eq. (5.6) implies the equation for
3

(5.8)

82

on the interval [0, a]. Solving Eqs. (5.8), (5.9) and re-
calling that e = n?(> 1), we find
™m i

1+1/n
c=———In :
an an 1-—1/n

—e0’ =

m=0,+1,... (5.10)
and the corresponding expression for £, which we omit
here.

We have thus arrived at the following conclusion:
resonances of the transmission coefficient, which are
responsible for the bistable behavior of our nonlinear
system, coincide with the resonances of the linear wave
equation (5.6) (in (5.6), € is n? times the characteris-
tic function of the interval [0,a]). This is important
because there are well developed techniques for finding
resonances in multidimensional linear systems. Thus,
we have a possibility of identifying the bistability phe-
nomenon in the multidimensional case.

We indicate the connection between the above
resonance solutions and the stability problem for
Eqs. (2.7)—(2.9) with g = 0 (the linear problem). In
this case, we seek solutions to Eqs. (2.7)-(2.9) in the
form

E = Re (e” ™y (z) +n(z,1)), (5.11)

where 5] < |¢g]. From (2.8), (2.9) and (3.3), we can
assume that n satisfies the boundary conditions
—io(z+t) f 0
y = e' or x<U, (5.12)
eio(z—1) for x> a,

with o that is complex but close to kg. Clearly, n is of
the form 7 = e~¥9t¢, where ¢ satisfies Egs. (5.8), (5.9),
and consequently, o is given in (5.10). The resonance
eigenvalues therefore serve as the stability exponents
for solution (3.1) in the linear case (because Imo < 0,
the solution e~ oty (z) is stable).

6. CONSERVATION LAWS

In this section, we describe conservation laws
obeyed by Eq. (4.4). We consider x as a time variable.
We first define the «energy» density

e() = [¢']* + G(jv ), (6.1)

where

G(u) = /61(v)dv = u+ pu?. (6.2)
0

Using Eq. (4.4), we conclude that de(¢)/dz = 0, and
therefore,

e() = W'+ [P +uly* = C > 0. (6.3)

In the same way, it follows that the flux density
j = Im(pdep/0z) is also conserved, j = C;. To com-
bine these two conservation laws, it is convenient to
pass to the polar representation

Y =/p e (6.4)
The conservation of the flux then gives
pa' = Cf. (6.5)

In classical mechanics, this equation expresses the an-
gular momentum conservation or the Kepler law: the
rate of change of the area swept by the radius vector of
a particle in a central potential is constant. Together
with the energy conservation equation, this equation
gives

p'? =4(=CF + Cp—g(p)), (6.6)

where g(p) = pG(p) = p® + up®. Starting with this
equation and boundary conditions (4.8), (4.9), we de-
rive our main equations in the next section.

7. THE MAIN EQUATIONS

In this section, we derive the equations for p and
'T|*> = p(b) on which we base our analysis. We ob-
serve that the right-hand side of Eq. (6.6) contains two
integration constants (or conservation constants). We
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use boundary conditions (4.8), (4.9) to express these
constants in terms of p(0) and p(b). p(0) £(p)
The boundary condition at x = b gives
’ \ .
Lpy
NG +ia'\/p B i - -
NG " |
r=b
Fig.4. A trajectory of p' = +/f(p)
which implies
! ]' !
o' (b) = o and p'(b) = 0. (7.2) which implies, after taking the absolute value,
Equation (6.5) and the first equation in (7.2) yield (p(O) +p(b))2 + ln2f(p(0)) = 4p(0). (7.11)

C1 = p(b)/n, and therefore,

o = %) (7.3)
Equations (6.6) and C; = p(b)/n give
p'? = f(p), (7.4)
where
f(p) =4(— pf;)? +Cp—g(p))- (7.5)

Equations (7.2) and (7.4), (7.5) imply that p(b) = |T'|?
is a root of
(7.6)

where

fi(u) = Cu — %UQ —g(u). (7.7)

Equations (7.4)—(7.7) constitute all the basic equa-
tions of our analysis except one eqaution. We now find
the constant C' as a function of p(b) by solving (7.6),
(7.7) for C,

C= (1 + %) p(b) + pp(D)?. (7.8)

This is a quadratic relation between p(0) and p(b). Sub-
stituting (7.8) in (7.5), we find

o) = (- 2

+p(b)(1+ %)p-l—
+up(b)p = p* — pp®). (7.9)

Finally, we find the remaining basic equation using the
boundary condition at z = 0. Using (6.4), (7.3), and
(7.4), we rewrite Eq. (4.9) as

(o0) % VTGN + 59

i (0)

p(0)

4

Inserting expression (7.9) for f(p) in (7.11), we obtain,
after simple transformations,

¢(p(b),p(0)) =0, (7.12)
where
o(u,v) = un*v? + (n? — 1) —
—(n? +3)u—nuu’® +4. (7.13)

We now can formulate the problem as follows. We
must solve the differential equation p'2 = f(p) with
the boundary values p(0) and p(b) satisfying the equa-
tion ¢ (p(b), p(0)) = 0, where f and ¢ are given by the
respective equations (7.9) and (7.13).

We split our task as follows:

(i) Using Eqs. (7.4) and (7.9), we first determine
p(0) as a function of p(b). Here, we consider p(b) as an
initial condition for the dynamical system

f(p)+7

where 1 = max(z,0). We then solve (7.14) back-
wards, from z = b to x = 0 (with the change of signs at
turning points, f(p) = 0!) and find p(0) as a function
of p(b), n, and u. Here, the cases where p'(0) > 0 and
p'(0) < 0 can be considered separately.

(ii) We then insert p(0) found at step (i) in
Eq. (7.12). The result is an algebraic equation for
p(b) = |T]?. In general, this algebraic equation has
several solutions depending on u and n.

The essence of this analysis can be inferred from the
form of Eqs. (7.9) and (7.14), without solving them.
Indeed, let py, p2 and p3 be the roots of the equation
f(p) = 0. As we already know, one of these roots is
p(b), for example p; = p(b). We let p3 < po. It is
not difficult to show (see below) that ps < p; (in fact,
p2 < (14 pp1) tn~2p1) and p3 < 0. The roots of f(p)

p ==+ (7.14)
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are equilibria and turning points of the dynamical sys-
tem in Eq. (7.14). At these roots, p' = 0 and /f(p)+
changes its sign. The behavior of this dynamical sys-
tem is shown in Fig. 4.

Open Problem. Dynamical system (7.14) is param-
eterized by p;. Its phase portrait should qualitatively
change as p; goes through a turning point. How?

8. EQUATION (7.6)

We now show that we can infer much information
from Eq. (7.6) without solving differential equation
(7.4). We consider the two simplest cases:

(a) linear case: G'(u) = u, and hence, g(u) = u?.
this case,

In

fl(lm) (u) = Cu — <1 + %) u?,

and therefore, the equation £'™ (p(b)) = 0 has, in ad-
dition to the trivial solution p(b) = 0, one nontrivial
solution

C
b) = .
p( ) 1 + n_2
(b) Cubic nonlinearity: G(u) = u+ pu?, and there-
fore, g(u) = u® + pu?. In this case,

filu)=Cu—(1+ %)u2 — .

Thus, depending on the coefficients, the equation
fi(p(b)) = 0 has, in addition to the trivial solution
p(b) = 0, either none or one or two nontrivial solutions.
All the possibilities are listed in Fig. 5.

Conclusion. In the linear case, we always have one
nontrivial solution (after the division by u, the function
fl(lm) (u) becomes linear). In the simplest, cubic non-
linear case, depending on C' and p, there can be none,
one or two nontrivial solutions for p(b) = |T'|?.

9. SOLUTION OF THE NONLINEAR
PROBLEM

We first solve differential equation (7.4), p' =
0,

= +./f(p)+. Recalling that p(b) solves f(p) = 0, we
express f(p) as

f(p) = 4(p(0)~p) <up2+(1+up(b))p—%> - (9.1)

Integrating the equation p' = £/ f(p)+, we find

(9.2)

(we recall that p; = p(b) and po = p(0)). It is shown in
Appendix 2 that Eq. (9.2) is equivalent, modulo O(u)
(but keeping terms of the order O(ub)), to the equation

41—p) n? 5 b
55 = sin 5 .
3 (n2-1) 3 n*+1
1- s
n

(9.3)

This equation defines p; (= p(b) = |T|?) as a multival-
ued function of u for given values of the parameters n
and b.

Of central interest are turning points of this func-
tion. To find them, we differentiate Eq. (9.3) with re-
spect to pq,

4w w1
AW-DI 4
2b
X sin ————, (94
sml_§ SR (9.4)
e

and then solve the resulting two equations for p; and
p. Thus, the turning points of p; as a function of u are
given by solutions of Egs. (9.3) and (9.4).

10. TURNING POINT IN THE LARGE-n CASE
(SEMICLASSICAL LIMIT)

We investigate Eqs. (9.3) and (9.4) in the case where
n > 1. In this case, the factor ﬁ in both equa-
tions can be replaced by 1/n%. We consider two cases:

(a) |ulb < 1. Because n > 1, Eq. (9.4) shows that
either p; ~ 1/n? or b is close to 7m, where m is an
integer. We consider the latter case and set

b=mm+46 with |J] < 1. (10.1)

Equation (9.3) can then be reduced to the equation

3ub \?
41— p1) =n2p (6 + %m) . (10.2)

Differentiating this equation with respect to p;, we ob-
tain the equation for the turning points,

3pbn? 3
_4:7“72191 <6+Zbup1>+

3ub \’
+n? (5+%p1> . (10.3)

We now pass from p; to the variable z defined by

3ub 8
n <5+ TPl) = —3—2.
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ik o>o0, u>o0 ik C>0, < perie <0
u
A u
a unique nontrivial solution no nontrivial solutions
fih C>0, p=pierie <0 ik C>0, peri<p<0
/
b \/ !
one nontrivial solution two nontrivial solutions
fl f J
C<0, p<o 1 C<0, u>0
U \ u
one nontrivial solution no nontrivial solutions
Fig.5.
The resulting equation for z has the solutions where ¢ = ¢;, j =1,2,3, is given by
2
22 = 5( —on /02 — 12). (10.4) e
;= g B + 275+
Substituting in Eqgs. (10.2) and (10.3) —8/3z for
n(0 + 3ubp1 /4) and then solving Eq. (10.2) for p; and 36 31b
Eq. (10.3), for punb we find 14+ 5=+ —M
. 0%n?2 ~ 2n24°
+ arcsin (10.8)
19\ /2
2 1—
k) = 9% g b= —F 10.5 ( 52n2>
P 16 + 923 a pn (pgk))Q (10.5)

for k = 1,2. In the region between these turning points,
all the three solutions of Eq. (10.2) can be represented
as

40(1+ z
= _% (10.6)
TUm
and
1 4 16
2=-3 5 e e (107)

Because p; > 0, solutions (10.6) exist only in the region
ou < 0.

(b) n|ulb > 1. In this case, n can take an arbi-
trary value larger than one. Eliminating trigonometric
functions from Eqgs. (9.3) and (9.4), we arrive at the

equation
4n? ?
(3,ub(n2 + 1)2>
=p(1=p) (ﬂl -

4n?

m) . (10.9)
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r.h.s. of (10.9)

/ N\
/ % 1\ P1

Fig.6. Graphical solution to Eq. (10.9)

This equation can have either two positive solutions for
p1 or none. In the first case, one of the solutions is close
to 1,

2 2
m_,_Llfn"-1
A1 2<n2+1 *

1 /n2-1\" 4n3 ’
- | —— 10.10
+\/4 <n2+1> (3,ub(n2+1)2> » )
while the other one, p§2)7 is a solution of a cubic equa-
tion. For pubn > 1 and n > 1, the cubic equation is

given by
2
pe— 4_p% — 4 =0
Lop2 3ubn
A positive solution to the last equation is
2 _ 8 1
=g (5“‘”) v

3 (n2\’
where ch3f=1+<-{— ] . (10.11)
8 \ ub

A graphical solution to Eq. (10.9) is shown in Fig. 6.
Using values (10.10) and (10.11) for p;, we obtain
the values for p from Eq. (9.3) as

2

4dm™m -0 n
(n _ =290 =7
Fo=3

—_ 10.12
b n2+1 (10.12)

and )
" 3“ ’T(m+;/2) -0 (10.13)

provided |mm — b| < b.

Equations (10.10)—(10.13) give the top (Egs. (10.10)
and (10.12)) and bottom (Egs. (10.11) and (10.13))
turning points. The distance between the neighboring
turning points in the first and the second sets is

T n? n2+1
— d dus =
b2l ne ok 3

6,u1 =

W =

™
5+ (1014)

\

4n?
(n? 4 1)?

I

Fig. 7. Dependence of p1 on p; the number of solutions
for a given

The dependence of p; on p is shown graphically in
Fig. 7.
We finally compute the number of solutions for a
given p in the region |u|b > 1. It is given by
N(,u) = 2(]Vtop(,u) - Nbottom(,u)) +1, (1015)
where Niop(p) and Npotrom (1) is the number of the
top and bottom turning points in the interval [0, u]
and the coefficient 2 accounts for the fact that there
are two solutions corresponding to each turning point
(see Fig. 7). We have roughly Niop(p) &~ p/dp; and
Niottom & /02, and therefore,

1 1 3
N(p) ~2u <— - —> ~ —ub.

10.1
o1 Oue 27 (10.15)

11. STABILITY

In this section, we study the general stability prop-
erties of solutions to boundary value problem (4.4)-
(4.6). A detailed analysis will be given elsewhere.
Clearly, given p; = p(b) = [1(b)|> = T?, the problem in
Eqs. (4.4)-(4.6) has a unique solution. In other words,
solutions of the latter problem can be parameterized
by p1. (This can be done explicitly by expressing u in
terms of p;.) In what follows, we tacitly assume that
the curve (—multivalued function) ¢ = ¥ (u) is param-
eterized by p;. With this parameterization in mind,
we sometimes speak about stability of a point (py, i)
understanding by it the stability of the corresponding
point (¢, ).

Our task is to find stability of solutions of
Eqs. (2.7)-(2.9) of form (3.1)-(3.3). To fit this prob-
lem into the standard framework, one would have to
rewrite (2.7) as a system of the first order Hamiltonian
equations and apply to it a rather subtle stability
theory for solitary waves (see e.g. [19] and references
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therein). We adopt a direct approach instead. We seek
solutions of Eqs. (2.7)—(2.9) in the form

Rele (g + eME]if A is real  (11.2)
E=q Rele™™(yg + e M + eMé)]
if A is complex, (11.3)

where w = kg, 1o satisfies Eqgs. (3.2), (3.3), and ¢ are
small and such that

e~ WMt e jg an outgoing wave
forx <0 andz >a (114)
and similarly for A complex. This implies
A —i(w+iN)z f
¢ = 1e» » or x <0, (11.5)
Ayeilwtir)z for z>a
for some constants A; and As, which gives
£'(0) , : §a) . .
= —i(w+1\) and =i(w+iA 11.6
£0) ( ) £(a) ( ) (11.6)
for A real. For A complex, the boundary conditions are
£(0) . §la) .
= —i(w + iN), = i(w+ A 11.7
G0) - W g T D
and
£(0) oy &la) s
= —i(w +1A), =i(w+iN). 11.8
G0) - W g T )

For simplicity, we deal only with the case Eq. (11.2),
the case (11.3) is treated in a similar way. Substituting
(11.2) in (2.7), we derive the linearized equation for £

(see Appendix 1 for a similar derivation)

3

Lx(§) =0, (11.9)

where, with 0 = w + i) and &'(s,z) = 0e(s, x)/0s,

La(§) = 026 + 0% (o], )€ +

+ 0% (|0, 2)00 Re(Pg€).  (11.10)

Equation (11.9) is a nonlinear eigenvalue problem.
We observe that the operator family L) satisfies,
LY = L_,, with respect to the inner product

(&mn) = Re/@r (11.11)
A crucial role in our analysis is played by the fol-

lowing result which is stated directly for the rescaled
function ¢ (z) = A=Y (z/k), k = kon.

MIT®, Tom 120, Boin. 5 (11), 2001
PO i ecemeee
x = stable (A < 0)
o = unstable (A > 0)
4n?
(n241)2 | Ty
u
Fig. 8.
Theorem. (¢, 7i) is a turning point iff
9 olves Lo(€) = 0 (11.12)
dp1

at that point

Proof. We write Eq. (4.4) as F(¢,u) = 0 and let
Y = ¢Y(p1) and u = u(pr). Differentiating the last
equation with respect to p;, we obtain

oy | OF Ay

Fw(w’u)8—p1+8p 8—p1:

(4, ) 0. (11.13)

where Fy (¢, 1) is the variational derivative of F'(¢), )
with respect to ¢». We note that Fy (¢, p) is equal
to Lo up to a rescaling. Now, (¥,71) is a turning
point iff du/dp1 = 0 at that point, and therefore, iff

Fy (6,700 /0p1 = 0.
This theorem implies that

A =0 is an eigenvalue of (rescaled)

Eq. (11.9) < (p1, u) is a turning point. (11.14)

We claim that A changes its sign as p; passes a turning
point,

o <0
op1 >0

at a top turning point
P & bomt (11.15)
at a bottom turning point,

where top and bottom refers to the turning points of
p1 = pr(p).

Equations (11.14) and (11.15) suggest that the
real eigenvalue ), is negative on the top branches of
p1 = p1(u) (see Fig. 8), while A > 0 on the bottom
Hence, the bottom branches are unstable. In
order to understand the stability properties of the top
branches, one has to envoke the remaining, complex
eigenvalues. We expect that they are stable near the
top turning points and unstable elsewhere.

Equation (11.15) is proved by a perturbation the-
ory, which requires the information about solutions to

ones.
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(11.9) only at the turning point. The details will be
presented elsewhere.

Comparing Eqgs. (11.6) and (11.9) with Eqs. (5.8)
and (5.9), i.e. with the equations for the resonance so-
lution in the linear case, we conclude that the former
equations describe the resonance solution in the non-
linear case (the nonlinear resonance). It is remarkable
that while the corresponding problem is always stable
in the linear case (see Eq. (5.10)), the stable and un-
stable branches alternate in the nonlinear case.

12. EXPRESSION FOR v

In this section, we find an approximate form of the
solution ¢ to Eq. (4.4). This information is needed, in
particular, for a more detailed study of the stability of
various branches.

We first find the function p(z) for 0 < 2 < b. For
this, we replace Eq. (9.2) with the equation

Po

which is integrated in the same way as (9.2) to yield
(see Appendix 2)

p(z) = %pl {1 + % + (1 - %) cosQ'*y(x)} . (12.1)

where
b—a
) = . 12.2
)= T (122
4 n2

We next find the expression for a = arg(y) that
matches (12.1). Observing that

1 1
1+—2+<1——2>00527=
n n

_ (11217:21)2 o Z;ieﬂw ’
we seek a in the form
a(z) =a(z) + B(x), (12.3)
where @(z) = — arctg [n~! tgy(z)] and where the func-

tion f is to be found using Eq. (7.3) for . The latter
gives, modulo O(pu),

B(x) = —3‘1”1 (1 + %) (a(z) —@(0)) + B(0). (12.4)

The initial condition £(0) is found from
1
B(0) = a(0) — arctg <ﬁ tg 7(0)) (12.5)

and

a(0) = arcctg <2(pniflpl)> (12.6)

The function B(xz) can also be represented as (again
modulo O(p))

Ba) = 5(0) - 22 (14 )

i d
></ Y
1 1
0

1+ 3 + <1 - ﬁ) cos 2v(y)

=0

(12.7)

Putting Eqs. (12.1) and (12.3) together, we write

P(x) = \/p(w)e™® as
n+1 .
¥(z) = —- Vpre®) x
—iv(@) 4 ML i) 12
X [e + T } ,  (12.8)

where v(z) is given by Eq. (12.2) and

HP1
d(x) = const + %(b —z).

The explicit form of ¢ reflects the picture of a non-
linear wave propagation: it is a superposition of two
waves travelling in opposite directions with slightly dif-
ferent speed. The nonlinearity leads to a renormaliza-
tion of the wave vector,

3up1 1)\
ko — ko [1— 1+ —
oo (1= (14 55))

and to the appearance of a slowly varying phase 3(z).
Expression (12.8) for ¢» will be used in the study of
the stability problem which will appear elsewhere.

13. CONCLUSION

As we see from Fig. 8, a small change of the light
intensity (i.e., of ©) near a turning point is capable of
switching the system from one state (solution ) to an-
other. Namely, moving around a turning point changes
a stable solution into an unstable one; under the action
of a random perturbation, the system then jumps to a
stable solution as shown in Fig. 9. This either turns on
or turns off the light passing through the slab.
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P1 stable
unstable

Fig.9. Switching of solutions

At the next step, we would like to address the
nonlinear stability problem, in other words, to study
solutions of Eqs. (2.7)-(2.9) with the initial conditions
close to the solitary wave e~#ofy(2) in the cases
where g is on a stable branch and, more interestingly,
in the case where v is on the unstable branch (see
Eq. (5.11)). In the latter case, it is desirable to find
a mathematical description to the processes described
above (see Fig. 9).

The second author is grateful to Doug Mills for
useful discussions and encouragement. Supported by
NSERC under Grant NA7901.

APPENDIX 1

One-mode approximation

In this appendix, we derive Eq. (3.2), which is a one-
mode approximation to Eq. (2.7). We seek a solution
to Eq. (2.7) in the form

E(x,t) = i Re (e_i(2”+1)k°t¢n(x)).

n=0

(A1.1)

Substituting (A1.1) in (2.7), we obtain an infinite sys-
tem of coupled equations for the coefficients ), (z),
n = 0,1,..., the £n-th equation read off from the
coefficient in front of eFi(27+kot  Because of bound-
ary conditions (2.8), (2.9), it is easy to show that
1, = O(a"™). Hence, the contribution of ¢,, n > 1,
to the n = 0 equation is of the order O(z?), and we
drop this contribution in the leading-order approxima-
tion. Finally, to derive the n = 0 equation, we use the
relation

2

G (IRe(e™ 0" g) 2 Re(e o) =

_ 62 1 2 1 —ikot
=50 <121/)0 (56 %)) +

O (1 _gins ol ipet -
g (i)

ikot £3ikot _

+ terms proportional to e and e

92 (3 1,
=92 <1|¢0|2(§€ k°t¢o)> +

ikot +3ikot

+ terms proportional to e and e (A1.2)

In the above approximation, this expression immedi-
cately implies Eq. (3.2).

APPENDIX 2

Computation of L
fp)
The derivative of (9.3). We set p1 = p(b) and recall
expression (9.1) for f(p),

f(p) = 4(p1 — p) [up2 + (L4 pp1)p — %] . (A21)

We observe that p; is a root of the equation f(p) = 0.
We find the other two roots,

- 4ppr
pr3 = 207" | =(Tkppr) £ 4/ (Ippr )+
1+ pps 4pp1
S oA N R § I A2.2
2p \/ n*(1+ ppr)? (422)

The expansion in powers of p shows that

Y S 2y _
P2 = n2(1+ pp1) (1 n2 ) +O0(n)
P1 1
== (1 — up (1 + §>> +0(p?) (A2.3)
and

p3 = —% [1 + 111 <1 + %)} +O0(p). (A2.4)

Clearly, for p small and n > 1, a safe way to expand
f~2(p) is by expanding

(up — pps) 1% =
1 —1/2
= [1+up1 <1+ §> +up+0(u2)} =

1 P1
:1—§u(p1+§+p)+0(u2).
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Hence, for we obtain, modulo O(u?)

f(p) = —=4(p—p1)(p — p2)(p — p1p3) (A2.5)

3

1 P1
2u p1+n2+p

241/2(p) = . (A2.6)
[=(p = p1)(p = p2)]'/?
Our aim is to integrate this expression. For this, we present it as
173 1 P1 1
2f7 % (p) = +oHu : (A2.7)
V=0 =p1)(p = p) V== p1)(p = p)
We let pg = p(0) and recall that p; = p(b). We then have
ot (o1 +p)
[ do——=2 — V=== | =~ o1 = p0) (o = p2)- (A28)
SVl = (o= p2)
Using that
(a esin T >’ 1 1 1 1
resin = Z = —
q @—p2 1 VE-(@-p? J+a-z)@—p+aq)
1- 7
and setting p = (p1 + p2)/2 and ¢ = (p1 — p2)/2, we obtain
p1 p p1t+p2\ |7
d - 2pg —
P = arcsin2 | ——2 = _ arcsin {w} . (A2.9)
(p1 = p)(p = p2) p1 = P2 2 p1 = p2

Po

Combining Eqs. (A2.7)-(A2.9), we obtain

2/ C]lcp(p) = —%u\/(m — po)(po — p2) + [1— iu (3p1 + p2 +2%)} x

X [E — arcsin {MH . (A2.10)
2 p1r — p2

3

[1 - Z“ (1 + %) pl} [g _ arcsin [WH _ %u\/(pl — 0) (0o — pa) = +2. (A2.11)

Together with Eqgs. (9.2) and (A2.3), this gives, modulo O(u?)

This can be rewritten as

200 — (p1 + p2) ~ cos £2b + p\/(p1 — po)(po — PZ)/Q. (A2.12)

p1— P2 3 1
1-Zp(1+—
4,u< n2>p1

Equations (7.11)—(7.12) now imply

+0(u?). (A2.13)

:(n2+3)p1—4+ n’u | o, ((n2+3)p1—4)2
po n?—1 n?—1 p :

9 2K3T®, sum. 5 (11) 1169
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Inserting this expression for py and Eq. (A2.3) for ps in Eq. (A2.12), we finally obtain an equation for p; only,

41—py) n? . 2n2p
pr (n*—1)? (n? = 1)

((n2 + 1)01 — 2)

_ M} _
n?(n?—1)

sy = om0+ 02— )

= sin?

e 1 , (A2.14)
I—I 1+ﬁ P1

modulo O(p?) terms. We simplify this equation by dropping terms of the order O(u) (but keeping terms of the

order O(ub)!) to obtain Eq. (9.3).

The derivation of (12.1), (12.2). Proceeding as above, we obtain

et ezl

P1 — P2

1

\
(Eq. (A2.15) with 2 = b yields, as it should,
Eq. (A2.10)). Using this expression, we find an ap-
proximate solution of the equation

p(z)
| 77
fp)
pPo
for p(xz) by dropping terms of the order O(u) but keep-
ing terms of the order O(ub). This yields

1 1
p(r) = 5(91 +p2) + 5(91 — p2) cos2y(x), (A2.16)
where
() = ——t
! 1_ 3up1 14 1y
4 n?

Inserting expression (A2.3) for py in the right-hand
side, we arrive at (12.1), (12.2).

APPENDIX 3

In this appendix, we outline another derivation of
the expression for the solution ¢ of Eq. (4.4). In this
derivation, we consider (4.4) as a linear equation for
) by assuming that [¢)|> = p in this equation is given
by (12.1), (12.2). We seek two linearly independent so-
lutions of the resulting equation in the Bloch function

the form
[Aei’y(m) + Be*i’Y(z)]eil’(bfm) + O(,U) (A31)

for some v, A, and B. Inserting this in the equation
in question and using the solvability condition for the

P1 — P2

+ 50 [Vior = p@)p@) = p2) = Vior = po) (oo = p2)] - (A215)

constants A and B, we obtain, after a simple calcula-
tion,

where = ho (A3.2)

2n
With these values for v, we solve for A as

+1
"= p.
n+1

v ==+,

As a result, the general solution of the above linear
equation is given by

v=0C { <1 + l) eiv(@) 4 <1 — l) ei’y(z)} %
n n

% e~ iAb—z) |

+D { (1 + 1) @ 4 (1 - 1) e”(“)} x
n n

x 0= (A3.3)
From boundary condition (4.9), we find
ppr (1 3
D=—|-+4+— . A34
4 (2 * 2n2> ¢ (A3.4)

Hence, the last term in (A3.3) is O(p) and can there-
fore be omitted. Finally, we use that [¢(b)| = \/p1, to
find that |D| = /p1/2, and therefore,

n+tl —inte) 4 ML i)
2n \/p_l[e +n+16 X

% piBHiA(b—2)

1/) =
(A3.5)

where \ is given by Eq. (A3.2) and 3 is some constant
related to «(0) in a simple way.
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The value of || that follows from (A3.5) is the same

as that given by Eq. (12.1).
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