ИЗМЕРЕНИЕ МАГНИТНОГО МОМЕНТА ОТРИЦАТЕЛЬНОГО МЮОНА В СВЯЗАННОМ СОСТОЯНИИ В РАЗЛИЧНЫХ АТОМАХ

Т. Н. Мамедов^a^{*}, Д. Герлах^{b^{*}}, К. И. Грицай^a, О. Корманн^{c**},
 Я. Майор^{c,d**}, А. В. Стойков^a, У. Циммерманн^{b**}

^а Объединенный институт ядерных исследований 141980, Дубна, Московская обл., Россия

> ^b Paul Scherrer Institut CH-5232 Villigen PSI, Switzerland

^c Max-Planck-Institut für Metallforschung D-70569 Stuttgart, Germany

^d Universität Stuttgart, Institut für Theoretische und Angewandte Physik D-70569 Stuttgart, Germany

Поступила в редакцию 8 июня 2001 г.

Представлены результаты измерения магнитного момента отрицательного мюона в 1s-состоянии в углероде, кислороде, магнии, кремнии, сере и цинке. Достигнутые точности позволяют проверить зависимость величины релятивистской поправки к магнитному моменту связанного мюона от заряда ядра.

PACS: 14.60.Ef, 36.10.Dr, 76.75.+i

1. ВВЕДЕНИЕ

В связи с появлением новых экспериментальных возможностей в последние годы существенно возрос интерес к измерению магнитного момента электрона в 1*s*-состоянии различных атомов. В 1928 г. Брейтом [1] было показано, что магнитный момент электрона атома, находящегося в 1s-состоянии, должен, вследствие его релятивистского движения, отличаться от магнитного момента свободного электрона. Более детально данный эффект был рассмотрен позднее в работе [2]. Однако измерение магнитного момента электрона атома в 1s-состоянии весьма сложно (кроме случае водорода), поскольку для осуществления подобных экспериментов требуются потоки высокой плотности многократно ионизованных атомов (ионов с одним электроном). Действительно, до недавнего времени существовали измерения *g*-фактора электрона только для водорода в 1*s*-состояния [3, 4]. В 2000 г. в литературе появилось сообщение [5] об измерении магнитного момента электрона на 1*s*-уровне атома с зарядом ядра отличным от единицы. В [6] проведены теоретические расчеты *g*-фактора электрона, находящегося на 1*s*-уровне атома с зарядом ядра вплоть до Z = 92.

В 1958 г. Хьюз и Телегди [7] обратили внимание на тот факт, что релятивистское изменение магнитного момента должно иметь место также для отрицательного мюона в атоме. Релятивистская поправка к магнитному моменту отрицательного мюона в 1s-состоянии может быть измерена для любого атома с нулевым ядерным магнитным моментом, что позволяет изучить ее зависимость от заряда ядра Z вплоть до атомов свинца.

Как показывают теоретические расчеты [6, 8], к магнитному моменту электрона в 1*s*-состоянии кроме релятивистской поправки, на наличие которой впервые обратил внимание Брейт, имеются дополнительные радиационные поправки, обусловленные на-

^{*}E-mail: tmamedov@nu.jinr.ru

^{**}D. Herlach, O. Kormann, J. Major, U. Zimmermann

хождением электрона в сильном кулоновском поле ядра. Соответственно *g*-фактор 1*s*-электрона в водороде и водородоподобных ионах можно представить в виде

$$g_e^{1s} = 2 \left(1 + a_e^{free} + a_e^{BS} + a_e^{rel} \right), \tag{1}$$

где a_e^{free} — радиационная поправка к величине *g*-фактора для свободного электрона, $a_e^{BS} \equiv a_e^{BS}(QED)$ — дополнительная радиационная (квантово-электродинамическая) поправка для связанного электрона, a_e^{rel} — релятивистская поправка для 1*s*-электрона.

Радиационная поправка к магнитному моменту свободного электрона измерена с точностью, близкой к точности теоретических расчетов [9], и составляет [10] $a_e^{free} = 0.001159652193(10)$.

Дополнительная радиационная поправка для 1*s*-электрона, согласно теоретическим расчетам [8], определяется как

$$a_e^{BS}(QED) = \frac{(\alpha Z)^2}{4} \frac{\alpha}{\pi} + \dots$$
 (2)

Для величины релятивистской поправки в [1,2,6,8] получена следующая зависимость от Z:

$$a_e^{rel} = \frac{2}{3} \left(\sqrt{1 - (\alpha Z)^2} - 1 \right). \tag{3}$$

Из (3) видно, что релятивистская поправка становится близкой по величине к радиационной поправке для свободного электрона a_e^{free} при $Z \approx 6$ и превосходит последнюю примерно на порядок при Z = 25.

В настоящее время магнитный момент 1*s*-электрона наиболее точно измерен в водороде [4]. Для отношения магнитных моментов (*g*-факторов) связанного g_e^{1s} и свободного g_e^{free} электрона получено значение [4]:

$$\frac{g_e^{1s}}{g_e^{free}} - 1 = -17.709(13) \cdot 10^{-6}.$$

Это значение хорошо согласуется с расчетной величиной, которая составляет [8]

$$\frac{g_e^{1s}}{g_e^{free}} - 1 = -17.7051 \cdot 10^{-6}.$$

Однако ошибка измерений [4] близка к ожидаемому значению a_e^{BS} в водороде, что не позволяет определить величину a_e^{BS} непосредственно из данного эксперимента.

Недавно [5] было проведено измерение магнитного момента электрона в 1*s*-состоянии пятикратно

ионизованного атома углерода. Для этого была создана специальная установка, работающая по принципу непрерывного эффекта Штерна-Герлаха. Ионы С⁵⁺ удерживались в магнитной ловушке, в средней части которой постоянное магнитное поле составляло 3.8 Тл, и параллельно магнитному полю были приложены электрическое квадрупольное поле и дополнительное магнитное поле, квадратично меняющееся вдоль аксиальной оси. Переходы между состояниями с проекцией спина электрона ±1/2 индуцировались микроволновым полем. Частота аксиального движения ионов углерода в указанном поле зависит от проекции спина электрона на направление магнитного поля. Одновременное измерение аксиальной и циклотронной частот движения ионов позволило определить магнитный момент электрона в ионе C^{5+} :

$$g_e(\mathbf{C}^{5+}) = 2.001042(2)$$

и, соответственно,

$$g_e(\mathbf{C}^{5+}) - g_e^{free} = -0.001277(2),$$
$$g_e^{free} = 2.002319304386(20)$$

(см. [10]). Полученный в [5] результат хорошо согласуется с вычисленным по формуле (3) значением релятивистской поправки к магнитному моменту электрона в 1*s*-состоянии углерода (-0.001278), но точность измерений недостаточна для проверки предсказаний теории относительно a_e^{BS} .

2. МАГНИТНЫЙ МОМЕНТ ОТРИЦАТЕЛЬНОГО МЮОНА В АТОМАХ

Поправки к магнитному моменту отрицательного мюона в связанном состоянии в атомах с нулевым ядерным спином и нулевым моментом электронной оболочки были рассмотрены в работах [11, 12]. Согласно [11, 12], g-фактор отрицательного мюона в 1s-состоянии атома с диамагнитной электронной оболочкой может быть представлен как

$$g_{\mu}^{1s} = 2\left(1 + \sum_{i=1}^{7} a_{\mu}^{(i)}\right),\tag{4}$$

где $g_{\mu}^{1s} - g$ -фактор мюона в 1*s*-состоянии атома, $a_{\mu}^{(1)}, \ldots, a_{\mu}^{(7)}$ — поправки к величине *g*-фактора: $a_{\mu}^{(1)}$ — радиационная поправка для свободного мюона, $a_{\mu}^{(2)}$ — радиационная поправка, обусловленная нахождением мюона в кулоновском поле ядра, $a_{\mu}^{(3)}$ —

релятивистская поправка, $a_{\mu}^{(4)}$ — поправка, учитывающая поляризацию ядра, $a_{\mu}^{(5)}$ — поправка на поляризацию электронной оболочки атома, $a_{\mu}^{(6)}$ — поправка на диамагнитное экранирование внешнего магнитного поля электронной оболочкой, $a_{\mu}^{(7)}$ — поправка на центр масс. Для свободного мюона

$$g_{\mu}^{free} = 2 \left(1 + a_{\mu}^{(1)} \right)$$

Поправки $a_{\mu}^{(1)}$, $a_{\mu}^{(2)}$ и $a_{\mu}^{(3)}$ аналогичны поправкам a_{e}^{free} , a_{e}^{BS} и a_{e}^{rel} для 1s-электрона $(a_{\mu}^{(1)} \equiv a_{\mu}^{free}, a_{\mu}^{(2)} \equiv a_{\mu}^{BS}, a_{\mu}^{(3)} \equiv a_{\mu}^{rel})$.

Радиационная поправка к магнитному моменту свободного мюона известна с высокой степенью точности: $a_{\mu}^{(1)} = 0.0011659230(84)$ [10]. Радиационная поправка к магнитному моменту связанного мюона отличается от $a_{\mu}^{(1)}$ на величину $a_{\mu}^{(2)}$. Величина $a_{\mu}^{(2)}$ не превышает 2% от величины релятивистской поправки $a_{\mu}^{(3)}$ даже в случае больших Z [12]. Поправка на центр масс также много меньше релятивистской поправки и составляет $a_{\mu}^{(7)}/a_{\mu}^{(3)} \sim m_{\mu}/M$ [12], где m_{μ} и M — соответственно масса мюона и ядра.

Наибольшая по величине поправка к магнитному моменту связанного мюона обусловлена его релятивистским движением в кулоновском поле ядра [2]:

$$a_{\mu}^{(3)} = -\frac{4}{3} \int F^2 dr, \qquad (5)$$

где *F* — малая компонента радиальной волновой функции мюона.

Расчеты [11, 12] показывают, что релятивистская поправка к магнитному моменту связанного мюона составляет величину порядка 0.1%, 1.1% и 3.2% для атомов соответственно кислорода, цинка и свинца. Таким образом, релятивистская поправка по величине сравнима с радиационной в случае кислорода и примерно на порядок превосходит последнюю для цинка.

Известны экспериментальные работы, где была измерена величина магнитного момента отрицательного мюона в 1*s*-состоянии для легких (С, О, Мg, Si, S) [13, 14] и тяжелых (Zn, Cd, Pb) [15] атомов. Точность измерения [13] поправок к величине *g*-фактора отрицательного мюона в атомах Mg, Si и S составляет примерно 3% и близка к точности теоретических расчетов. В работе [13] было достигнуто удовлетворительное согласие между экспериментальными и расчетными значениями *g*-фактора для C, O, Mg, Si и S. Однако полученные в работе [14] значения $(g_{\mu}^{free} - g_{\mu}^{1s})/g_{\mu}^{free}$ для отрицательных мюонов в Mg, Si и S оказались по абсолютной величине на $(17 \pm 4) \cdot 10^{-4}$ меньше, чем в [13]. Согласно [13],

$$\frac{g_{\mu}^{free} - g_{\mu}^{1s}}{g_{\mu}^{free}} = \begin{cases} (29.6 \pm 0.7) \cdot 10^{-4} & \text{для Mg,} \\ (36.3 \pm 1.1) \cdot 10^{-4} & \text{для Si,} \\ (48.2 \pm 1.6) \cdot 10^{-4} & \text{для S.} \end{cases}$$

Таким образом, по данным работы [14] поправка к магнитному моменту мюона на 1s-уровне атомов Mg и Si примерно в два раза, а атомов S на 30 % меньше, чем следует из теоретических расчетов.

В случае тяжелых атомов точность измерений [15] составляет величину порядка 50%:

$$\frac{g_{\mu}^{free} - g_{\mu}^{1s}}{g_{\mu}^{free}} = \begin{cases} (120 \pm 62) \cdot 10^{-4} & \text{для} & \text{Zn}, \\ (201 \pm 140) \cdot 10^{-4} & \text{для} & \text{Cd}, \\ (468 \pm 220) \cdot 10^{-4} & \text{для} & \text{Pb}. \end{cases}$$

Таким образом, экспериментальные данные для тяжелых атомов не противоречат теоретическим расчетам, но не являются подтверждением изменения магнитного момента дираковской частицы при ее релятивистском движении в кулоновском поле атомного ядра.

Целью настоящей работы являлась проверка наличия существенных расхождений теоретических расчетов и экспериментальных данных по g-фактору мюона на 1s-уровне атомов Mg, Si и S и получение статистически значимых данных для атомов с зарядом ядра $Z \ge 30$. Наши предварительные результаты для атомов C, O(H₂O), Mg и Si опубликованы в [16]. Подобные измерения также проводятся в настоящее время Дж. Брюером в TRIUMF (Канада).

При имплантации в среду отрицательный мюон замедляется и захватывается атомом среды. В конденсированной среде мюон достигает 1*s*-состояния в атоме за время, меньшее чем 10^{-10} с. Вследствие бо́льшей массы, боровский радиус мюона примерно в 200 раз меньше, чем радиус орбиты *K*-электрона. Отрицательный мюон является нестабильной частицей и распадается преимущественно по схеме

$$\mu^- \to e^- + \nu_\mu + \bar{\nu}_e.$$

Вследствие несохранения четности в этом процессе, пространственное распределение электронов распада асимметрично, что является основой для измерения магнитного момента мюона. В поперечном магнитном поле магнитный момент (и спин) мюона прецессируют с частотой

$$\omega = \frac{2\mu_{\mu}H}{\hbar} = \frac{g\mu_{B}^{\mu}H}{\hbar},$$

где μ_B^{μ} — магнетон Бора для мюона. Для поляризованных мюонов μSR -спектр (временное распределение электронов распада по отношению к моменту остановки мюона в образце) представляет собой экспоненту, модулированную функцией косинуса с частотой ω . Амплитуда модуляции пропорциональна поляризации мюона в 1*s*-состоянии. Измерение частоты прецессии спина мюона позволяет определить величину его магнитного момента в 1*s*-состоянии атома. Поправка к магнитному моменту (*g*-фактору) связанного отрицательного мюона может быть определена как

$$\frac{g_{\mu}^{free} - g_{\mu}^{1s}}{g_{\mu}^{free}} = \frac{\omega^{free} - \omega}{\omega^{free}},\tag{6}$$

где ω^{free} , ω – соответственно частота прецессии спина свободного мюона и частота прецессии спина $\mu^$ в 1*s*-состоянии атома.

3. ИЗМЕРЕНИЯ

Настоящие измерения были выполнены на установке «Stuttgart LFQ-spectrometer» [17], на мюонном канале µЕ4 ускорителя протонов Института Пауля Шеррера (PSI, Швейцария). Импульс пучка мюонов составлял около 68 МэВ/с. Внешнее поперечное спину мюона магнитное поле величиной 0.1-0.2 Тл создавалось на образце с помощью колец Гельмгольца. Стабильность тока в кольцах Гельмгольца контролировалась в течение эксперимента и составила $\Delta I/I \approx 2 \cdot 10^{-5}$. Средний диаметр колец Гельмгольца составлял 510 мм, расстояние между центрами колец — 240 мм. Данные размеры близки к оптимальным для получения магнитного поля с однородностью не хуже, чем 10^{-5} в объеме $3 \times 3 \times 3$ см³. Компоненты магнитного поля Земли и рассеянных полей от магнитных элементов вблизи спектрометра компенсировались тремя парами дополнительных катушек с точностью не хуже, чем 10^{-2} Гс. Остаточное магнитное поле измерялось тремя расположенными взаимно перпендикулярно пермаллоевыми датчиками. Позиционирование колец Гельмгольца относительно оси пучка (коллиматора) осуществлялось с помощью лазера.

Исследуемые образцы изготавливались в виде цилиндров диаметром 30 мм и толщиной 12, 18, 11, 10, 14 и 7 мм в случаях соответственно углерода (реакторный графит), кислорода (вода), магния, кремния, серы и цинка. Вода была упакована в цилиндрический контейнер, изготовленный из пенопласта, с толщиной стенок 2 мм. Вес контейнера составлял 1.7 г. Образец кристаллического кремния имел удельное сопротивление порядка 10⁴ Ом.см. Образцы устанавливались так, чтобы ось образца совпадала с осью пучка мюонов. Диаметр сечения пучка на образце составлял примерно 16 мм. Положение образцов относительно оси пучка фиксировалось с точностью не хуже, чем 1 мм.

С целью определения распределения мюонов в объеме образца была измерена зависимость интенсивности остановок мюонов в графите (толщиной 1 г/см²) от толщины медного замедлителя, т.е. кривая остановок мюонов. Максимум кривой остановок соответствовал толщине замедлителя примерно 4 г/см², полная ширина на полувысоте составляла 0.8 г/см², а на уровне 5% от максимума — 1.4 г/см². Таким образом, объем области остановок мюонов в исследуемых образцах не превышал 6 см³.

В пучке мюонов имеется несколько процентов примеси электронов, что приводит к появлению фона в измеряемых μSR -спектрах временно́го распределения электронов от распада мюонов, остановившихся в мишени. Распределение во времени электронов пучка и обусловленный ими фон имеют периодическую структуру с частотой, равной частоте высокочастотного поля ускорителя. Частота поля ускорителя PSI стабилизируется с точностью 10^{-8} и составляет 50.6330 МГц (см., например, [18]). Таким образом, в измеряемых спектрах присутствует фон, имеющий периодическую структуру с хорошо известной частотой. Это обстоятельство позволяет контролировать временные параметры установки в целом, включая характеристики преобразователя время-код, в рабочих условиях в течение всего эксперимента (в настоящем эксперименте был использован преобразователь время-код фирмы EG&G' ORTEC Model 9308).

На рисунке приведены результаты фурье-анализа экспериментальных данных (μSR -гистограммы) для графита, полученных при стандартной экспозиции (около трех часов) на пучке отрицательных мюонов. На фурье-спектре видна частота прецессии спина мюона во внешнем магнитном поле и частота F_{ac} , обусловленная периодическим фоном. Обработка μSR -гистограммы методом наименьших квадратов показывает, что F_{ac} определяется с точностью 10^{-5} (0.5 кГц) и в пределах ошибки совпадает с частотой поля ускорителя. Значения F_{ac} , определенные из спектров, измеренных в разное время на протяжении сеанса длительностью около 500 ч, в пределах статистической ошибки совпадают друг с другом.

Приведенные выше данные показывают, что па-

4 ЖЭТФ, вып. 5 (11)

Результат фурье-анализа экспериментальных данных (μSR -гистограммы) для графита, полученных при стандартной экспозиции (около трех часов) на пучке отрицательных мюонов в поперечном магнитном поле 2000 Гс (f — амплитуда фурьепреобразования)

раметры настоящей μSR -установки позволяют при необходимом уровне статистики измерять частоту прецессии спина мюона с точностью до 10^{-5} (0.5 кГц).

Частота прецессии спина свободного мю
она определялась по частоте прецессии μ^+ в меди как

$$\omega^{free} = \frac{\omega(\mu^+, \mathrm{Cu})}{1+K}.$$
(7)

Здесь K — сдвиг Найта для положительного мюона в меди, который составляет $(60.0 \pm 2.5) \cdot 10^{-6}$ [19]. Соответственно, сначала была измерена частота прецессии спина положительного мюона в меди и графите. Затем мюонный канал $\mu E4$ был настроен для получения пучка отрицательных мюонов с таким же импульсом, как у пучка положительных мюонов, и были проведены измерения частоты прецессии спина μ^- в C, O(H₂0), Mg, Si, S и Zn. Измерения для образцов O(H₂0), Mg, Si, S и Zn чередовались с измерениями в графите, проводимыми в тех же магнитных полях, что и для исследуемых образцов.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Были получены следующие значения для величины коэффициента асимметрии пространственного распределения:

позитронов от распада μ^+ в Cu — 0.181 ± 0.001, C — 0.218 ± 0.001, электронов от распада μ^- в C — 0.0486 ± 0.0003, O (H₂O) — 0.0177 ± 0.0004, Mg — 0.0324 ± 0.0004, Si — 0.0304 ± 0.0004, ${\rm S}-0.0213\pm0.0002,$

 $Zn - 0.0107 \pm 0.0005.$

Из сравнения данных для частоты прецессии спина положительного мюона в графите и меди было найдено, что парамагнитный сдвиг для μ^+ в углероде составляет

$$\frac{(1+K)\omega(\mu^+, C) - \omega(\mu^+, Cu)}{\omega(\mu^+, Cu)} = +(5.0 \pm 0.3) \cdot 10^{-4}.$$

В табл. 1 для исследованных образцов приведены измеренные значения частоты прецессии спина отрицательного мюона и частоты прецессии спина свободного мюона в данном поле (ω^{free}). В случае углерода ω^{free} была определена из результатов измерений частоты прецессии спина положительного мюона в меди $\omega(\mu^+, Cu)$ при том же магнитном поле, что и $\omega(\mu^-, C)$ для отрицательного мюона в графите (7). Из этих же данных было определено отношение

$$R = \frac{\omega \left(\mu^+, \operatorname{Cu}\right)}{\omega \left(\mu^-, \operatorname{C}\right)}$$

которое не зависит от величины магнитного поля.

В случае O(H₂O), Mg, Si, S и Zn значения ω^{free} определялись по частоте прецессии спина отрицательного мюона в графите, измеренной в соответствующем магнитном поле, как

$$\omega^{free} = R \frac{\omega(\mu^-, \mathbf{C})}{1+K}.$$

Полученные в настоящей работе значения поправки к величине *g*-фактора отрицательного мюона в 1*s*-состоянии атомов углерода, кислорода, магния, кремния, серы и цинка сравниваются в табл. 2 с аналогичными данными, полученными в работах [13, 15], и с теоретическими расчетами [12]. В последнем столбце таблицы приведено расчетное значение [12] величины релятивистской поправки к магнитному моменту связанного отрицательного мюона.

Полученные нами значения поправки к g-фактору (магнитному моменту) отрицательного мюона в 1s-состоянии для углерода, кислорода, магния, кремния и серы близки к данным [13] и отличаются от результатов работы [14], где для отрицательных мюонов в Mg, Si и S величина $(g_{\mu}^{free} - g_{\mu}^{1s})/g_{\mu}^{free}$ была меньше на $(17 \pm 4) \cdot 10^{-4}$. Точность настоящих измерений g_{μ}^{1s} в легких атомах (C, O, Mg, Si, S) близка к точности измерений [13] и в Mg и Si примерно в 3 раза, а в сере примерно в 1.5 раза выше, чем она была в работе [14]. В случае Zn точность измерений, по сравнению с данными [15], улучшена в три раза. В

Образец	<i>H</i> , Гс	$\omega,{ m pag}/{ m {mkc}}$	$\omega^{free}, \mathrm{pad}/\mathrm{mkc}$	$\frac{\omega^{free} - \omega}{\omega^{free}} \cdot 10^4$
С	1000	$85.048 {\pm} 0.006$	85.115 ± 0.002	$7.9 {\pm} 0.7$
$O(H_2O)$	1000	127.455 ± 0.009	$127.545 {\pm} 0.011$	$7.0{\pm}1.1$
Mg	1000	$127.264 {\pm} 0.006$	$127.558 {\pm} 0.010$	$23.1 {\pm} 0.9$
Si	1500	$127.087 {\pm} 0.009$	$127.545 {\pm} 0.011$	$35.9{\pm}1.1$
S	1500	127.022 ± 0.025	127.563 ± 0.011	$42.4{\pm}2.1$
Zn	2000	168.93 ± 0.38	170.243 ± 0.014	77±22

Таблица 1. Экспериментальные значения частоты прецессии спина свободного мюона и частоты прецессии спина μ^- в исследуемых образцах во внешнем магнитном поле H

Таблица 2. Поправки к величине *g*-фактора связанного отрицательного мюона для образцов углерода, кислорода (вода), магния, кремния, серы и цинка

Образец	$\frac{g_\mu^{free}-g_\mu^{1s}}{g_\mu^{free}}\cdot 10^4$	$\frac{g_\mu^{free}-g_\mu^{1s}}{g_\mu^{free}}\cdot 10^4$	теор. [12]	
	наст. эксп.	эксп. [13, 15]	$\frac{g_{\mu}^{free}-g_{\mu}^{1s}}{g_{\mu}^{free}}\cdot 10^4$	$a_\mu^{(3)}\cdot 10^4$
С (графит)	7.9 ± 0.7	7.6 ± 0.3	8.2 ± 0.1	6.29
		7.1 ± 0.6		
		8.0 ± 0.5		
О, в Н ₂ О	7.0 ± 1.1	9.4 ± 1.0	14.3 ± 0.2	11.04 ± 0.01
Мg, метал.	23.1 ± 0.9	26.4 ± 0.7	29.8 ± 0.6	23.79 ± 0.06
Mg, в MgH_2		29.6 ± 0.7		
Si, кристал.	35.9 ± 1.1	36.3 ± 1.1	39.1 ± 1.0	31.70 ± 0.10
S, аморф.	42.4 ± 2.1	48.2 ± 1.6	49.1 ± 1.5	40.35 ± 0.15
Zn, метал.	77 ± 22	130 ± 63	117.3	112.6 ± 1.0

пределах трех стандартных ошибок (3σ) приведенные в настоящей работе экспериментальные данные для C, Si, S и Zn согласуются с результатами теоретических расчетов. Однако в случаях O(H₂O) и Mg расхождение экспериментальных и расчетных значений составляет около 7 σ . Причиной расхождений экспериментальных данных и теоретических расчетов [12] может являться то обстоятельство, что в расчетах [12] не учтены возможный сдвиг Найта и химический сдвиг. Напомним, что при захвате отрицательного мюона в C, H₂O, Mg, Si, S и Zn в среде образуется единичный атом, который является аналогом атома соответственно B, N, Na, Al, P и Cu. Поскольку вода является диамагнитным соединением, причиной наблюдаемого различия экспериментальных и расчетных значений частоты прецессии спина мюона может быть химический сдвиг частоты прецессии. Из настоящих данных следует, что химический сдвиг азота в воде составляет $+(7.3 \pm 1.1) \cdot 10^{-4}$. Эта величина не противоречит известным из исследований по ЯМР данным по химическому сдвигу азота в различных соединениях, который меняется в широких пределах: от $-400 \cdot 10^{-6}$ до $+400 \cdot 10^{-6}$ (см., например, [20]).

В случае Mg, данные о сдвиге Найта в таком сплаве как Mg+Na, которые могли бы быть непо-

средственно учтены в сдвиге частоты прецессии спина мюона, мы в литературе не нашли. Однако в ЯМР-измерениях в сплаве $Mg_{17}Al_{12}$ был обнаружен большой сдвиг Найта на Mg и Al. Величина сдвига составляет [21] $1.3 \cdot 10^{-3}$ на Mg и $1.7 \cdot 10^{-3}$ на Al. Если считать, что отличие экспериментального значения g_{μ}^{1s} (Mg) от расчетного обусловлено сдвигом Найта, то величина сдвига Найта на Na в сплаве Mg+Na составляет (6.2 ± 1.0) $\cdot 10^{-4}$. Как видно, данное значение по порядку величины близко к измеренным значениям для сдвига Найта на Mg и Al в сплаве Mg₁₇Al₁₂.

Из ЯМР-измерений в кремнии с примесью бора $2.1 \cdot 10^{19}$ см⁻³ известно, что сдвиг Найта на боре составляет $(0.65 \pm 0.05) \cdot 10^{-4}$ [22]. Эта величина хорошо согласуется с оценкой на основе данных по магнитной восприимчивости кремния с примесью бора $5.2 \cdot 10^{19}$ см⁻³ [23]. В настоящей работе и в измерениях [13] были использованы «чистые» образцы кремния с концентрацией примесей не более 10^{13} см⁻³. Концентрация свободных носителей заряда в таких образцах на несколько порядков меньше, чем в образцах, использованных в ЯМР-измерениях [22] и в измерениях магнитной восприимчивости [23]. Соответственно в нашем случае сдвиг Найта будет пренебрежимо мал (см. также оценки работы [13]).

Верхний предел вклада сдвига Найта, который необходимо учесть при определении g-фактора мюона в Zn, следует из ЯМР-измерений в сплаве $\operatorname{Cu}_x \operatorname{Zn}_{1-x}$ [24]. Из результатов [24] следует, что при уменьшении x от 1.0 до 0.25 сдвиг Найта на Cu уменьшается примерно в три раза и при x = 0.3 составляет $(7\pm1)\cdot10^{-4}$. Эта величина в три раза меньше ошибки настоящих измерений для цинка и, следовательно, сдвигом Найта в Zn можно пренебречь.

По-видимому, было бы уместным анализировать существующие экспериментальные данные по магнитному моменту электрона и мюона в 1s-состоянии атомов с точки зрения возможности измерения квантово-электродинамической поправки $a^{BS}(QED)$ к магнитным моментам электрона и мюона в кулоновском поле ядра. В табл. 3 приведены достигнутые к настоящему моменту точности измерений и ожидаемая величина данной поправки для некоторых атомов. Как видно из таблицы, расчетное значение $a^{BS}(\text{QED})$ в случае мюона примерно на порядок выше, чем для электрона, однако и ошибка σ измерения поправок к величине *g*-фактора для мюона больше, чем в измерениях для электрона. Тем не менее в атомах с зарядом ядра Z > 10 измерения с отрицательными мюонами, по-видимому, имеют не меньше шансов на успех, чем измерения для электрона. Кро-

Таблица 3. Расчетные значения поправок a_e^{BS} , a_μ^{BS} к магнитному моменту электрона [8] и мюона [12] и достигнутая на сегодняшний день точность (σ) измерения поправок к величине g-фактора электрона и мюона в 1s-состоянии некоторых атомов

	e^{-}		μ^-	
	$a_e^{BS} \cdot 10^6$	$\sigma \cdot 10^6$	$a_{\mu}^{BS} \cdot 10^6$	$\sigma \cdot 10^6$
Η	0.0102	0.013		_
С	0.4	1.0	8	30
Si	2.9	—	40	100
Zn	≈ 20	_	153	2000

ме того, при данном Z мюон в 1s-состоянии находится в примерно на два порядка более сильном кулоновском поле, чем электрон. Соответственно, отклонение значений $a^{BS}(QED)$ от теоретических предсказаний, если оно имеет место, может быть более масштабным для мюона.

5. ЗАКЛЮЧЕНИЕ

Таким образом, результаты настоящего исследования согласуются с экспериментальными данными [13] и свидетельствуют о том, что магнитный момент отрицательного мюона в кулоновском поле ядра отличается от магнитного момента свободного мюона. В случае углерода, кремния, серы и цинка настоящие экспериментальные данные согласуются, в пределах точности измерений, с теоретическими расчетами и тем самым подтверждают Z-зависимость релятивистской поправки к магнитному моменту отрицательного мюона в 1*s*-состоянии различных атомов.

Анализ имеющихся экспериментальных данных показывает, что дальнейшее увеличение точности измерения g-фактора отрицательного мюона в кремнии и в цинке, по-видимому, позволит определить $a^{BS}_{\mu}(QED)$ и тем самим проверить предсказания квантовой электродинамики в сильных кулоновских полях.

Авторы выражают благодарность дирекции Института Пауля Шеррера за предоставленную возможность проведения настоящих измерений и И. А. Ютландову за предоставление образца магния.

ЛИТЕРАТУРА

- 1. G. Breit, Nature 122, 649 (1928).
- 2. H. Margenau, Phys. Rev. 57, 383 (1940).
- L. C. Balling and F. M. Pipkin, Phys. Rev. 139, A19 (1965).
- J. S. Tiedeman and H. G. Robinson, Phys. Rev. Lett. 39, 602 (1977).
- N. Hermanspahn, H. Häffner, H.-J. Kluge et.al., Phys. Rev. Lett. 84, 427 (2000).
- H. Persson, S. Salomonson, P. Sunnergren, and I. Lindgren, Phys. Rev. A 56, R2499 (1997).
- V. W. Hughes and V. L. Telegdi, Bull. Amer. Phys. Soc. 3, 229 (1958).
- H. Grotch and R. A. Hegstrom, Phys. Rev. A 4, 59 (1971).
- 9. T. Kinoshita, Phys. Rev. Lett. 75, 4728 (1995).
- Particle Data Group, Review of Particle Properties, Eur. Phys. J. C 3, 1 (1998).
- 11. K. W. Ford and J. G. Wills, Nucl. Phys. 35, 295 (1962).
- 12. K. W. Ford, V. W. Hughes, and J. G. Wills, Phys. Rev. 129, 194 (1963).

- D. P. Hutchinson, J. Menes, G. Shapiro, and A. M. Patlach, Phys. Rev. 131, 1362 (1963).
- 14. J. H. Brewer, Hyperfine Interact. 17-19, 873 (1984).
- T. Yamazaki, S. Nagamiya, O. Hashimoto et.al., Phys. Lett. B 53, 117 (1974).
- 16. T. N. Mamedov, V. N. Duginov, K. I. Gritsaj et al., JINR Preprint E14-2000-158, Dubna, 2000.
- 17. R. Scheuermann, J. Schmidl, A. Seeger et al., Hyperfine Interact. 106, 295 (1997).
- E. Klempt, R. Schulze, H. Wolf et al., Phys. Rev. D 25, 652 (1982).
- 19. A. Schenck, Helv. Phys. Acta 54, 471 (1981).
- 20. Nuclear Magnetic Resonance Spectroscopy of Nuclei Other than Protons, ed. by T. Axenrod and G. A. Webb, Jhon Wiley & Sons, New York (1974).
- 21. T. J. Bastow and E. M. Smith, J. Phys.: Condens. Matter 7, 4929 (1995).
- 22. R. K. Sunders and D. F. Holcomb, Phys. Rev. 136, A810 (1964).
- 23. M. P. Sarachik, D. R. He, W. Li, and M. Levy, Phys. Rev. B 31, 1469 (1985).
- 24. L. Bai-Qin and W. Ye-Ning, Phys. Rev. B 47, 16582 (1993).