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Calculated earlier by the author [8], the anomalous magnetic moment (AMM) of the electron in an intense
constant electric field changes nonmonotonically as the field increases, passing through a minimum and tending
to the doubled Schwinger value for very strong fields. In the present paper, it is supposed that the AMM is
related by the Lande factor to the angular momentum of a virtual electron accompanied by a virtual photon.
This factor changes its effective value because of the influence of the external field on the motion of the virtual
electron and its self-action. With the increase of the electric field, the virtual electron can successively occupy
the excited states [ =1, j =1/2 and [ = 1, 7 = 3/2 in addition to the original state with the orbital angular
momentum [ = 0 and the total angular momentum j = 1/2. The first of these excited states decreases the
AMM and the second increases and doubles it if only this state is occupied for a very strong field. The latter
condition is equivalent to the alignment of the spin and the orbital angular momentum of the electron along
the field, while the total angular momentum of the entire system of the virtual electron and the virtual photon
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remains equal to 1/2.
PACS: 12.20.Ds

1. INTRODUCTION

The purpose of this paper is to draw attention to
an interesting dependence of the anomalous magnetic
moment of electron on the intensity of the external con-
stant homogeneous electric field. The dependence of
the AMM on the constant magnetic or crossed field was
considered by Demeur [1], Newton [2], Ternov et al. [3],
Ritus [4], Jancovici [5], Tsai Wu-yang and Yildiz [6],
and Baier et al. [7]. Tt was shown that the AMM tends
to zero for a very strong magnetic or crossed field. The
dependence of the AMM on the constant electric field
cannot be obtained from its dependence on the mag-
netic field by the analytic continuation H2 — —E? be-
cause of the nonanalyticity at zero field.

In my paper [8], the eigenvalue of the mass operator
of electron in a constant homogeneous electromagnetic
field of an arbitrary intensity was found. In particular,
this eigenvalue, or more precisely, the corresponding
elastic scattering amplitude involves the dependence of
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the AMM Ap on the electric and magnetic fields. If
one keeps only the dependence on the electric field e
and confines oneself to the state with p; = 0, the ratio
of Ay to the Bohr magneton gy is given by
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where [ is the electric field ¢ in characteristic QED
units and

J(B) =1-1(8),
umzéfwmwmm@,
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u = x[cth (z —y) — ctha].
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I1B)=1—-J(B) The most striking property of J(/3) is the doubling
0.5 ' ' ' ' ' '] of this function and of the AMM in the strong-field

’ N limit compared to its value in the weak field limit,
0.4+ |
o J(co) 5 (5)
0.3 | § J) 7
02l . In all other fields (magnetic, crossed) the AMM is equal
to zero in the strong-field limit.
0.1 . Another interesting property of J(f3) is its non-
. . . . . . monotonic dependence with one minimum.
0 1 2 3 4 5 6 The formula for the AMM is nothing else than the
s Fourier sine transform of the function ¢(y). This func-
_ tion has a maximum at zero, which is equal to 1/2, and
Fig.1 monotonically decreases to zero as y — oc,
1 ,/2, 1 5
I(B)=1-J(B) ¢(y)=§— <31 @_E>
0.51 T o000y T T T
/MM ST <1
. y? 3t e,y ,
0.50 + . - (y) 1 (In2 1) (6)
= — (In — —
) 2% )
1 9 w2
Qualitatively, a similar nonmonotonic behaviour for
0.48 ! ! ! ! . J(B) with the minimum at 3 ~ 1 and the doubling at
0 0.1 0.2 0.3 0.4 3 0.5 infinity, J(o00) = 2.J(0), would be given by the Gaussian
1 _ -
Fig. 2. oy) = 56 !
and the Lorentzian
It was shown that in a weak field (8 < 1), 1 B
o(y) = 5(1+y*) "
1 4 23
J(B) =5 — —52 <1 lﬂ - ﬁ) functions of y.
We consider the physical meaning of the function
128 128 s (1g 2 8Lpgy 2 209 (3)  ¢(y) and its argument
2,6’ 70 1120 o '
and in a strong field (5> 1), 2. THE MASS OPERATOR OF ELECTRON IN
A CONSTANT ELECTROMAGNETIC FIELD
2
J(B) =1~ 1——1 : (4)
4p The law of motion of a relativistic classical charge

where vy =1,781... and ((3) = 1.202...

Thus, as the field increases, the AMM first de-
creases from the Schwinger value a/27, reaches a min-
imum, and then increases and approaches the doubled
Schwinger value a/.

This intriguing dependence is also confirmed by the
numerical calculation of the integral J(3), see Fig. 1
and Fig. 2. The minimum of J(53) is located at
B =~ 0.179 and is equal to J(0.179) =~ 0.49040.

in the homogeneous constant electromagnetic field Fi,3
can be written as

exp(2eF's) — 1
ME) w0

where z,/(s) is the charge 4-coordinate depending on
the proper time s and 24(0) and 74 (0) are the initial
4-coordinate and the kinetic 4-momentum respectively.
In a Lorentz system where the electric and magnetic

rals) = 2a(0) =
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fields are parallel, the electron moves along a helical
line with alternating pitch whose rate of change is de-
fined by the electric field and the period of revolution
is defined by the magnetic field.

Quantum motion of the electron in an external field,
with the radiative corrections taken into account, is de-
scribed by the Dirac wave equation with the mass op-
erator. Roughly speaking, the mass operator is defined
in the e2-approximation by the product of the causal
propagation functions S¢(z,2') and D¢(x — 2') of the
electron in an external field and of the photon in the
vacuum:

M(z,a) 2D —a).  (8)
Here and below, we use the same notation as in [8]. In
the proper time representation, we have

= ie?y, S,

el Vi dse’ne
S¢ =
(z.2') 1671'2 / sin(ens) sh(ees)
0
iec F
X <m—§'sz> exp <—zm s-I-ZZfZ zec; s> ,
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Bag = ﬁag + eFaBa ﬂag = (eF cth (eFS))aB,
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and ¢ and 7 are the strengths of the electric and the
magnetic field in the frame where they are parallel. The
¢ integration goes along the straight line.

After going over to the E,(z)-representation, the
mass operator becomes diagonal and its renormalized
eigenvalue is given by the y-matrix,

sk

—im?%s — ipwp —

ds
t2

(ecws)
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sin(enw )
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sin(ens)

zechw

sh
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zean)
sh (e Fw)

sh (eF's) p] B W_Q
x exp(—im?s—ipw) (2m+ivﬁg)}+M%(ﬁ). (10)

xexp<

X [2m(S +ivsP) +iexp <

x yexp(eF(w + s)) X

S

This is Eq. (52) in [8], where one can find all the details
about the quantities involved here and the notation.
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It is now important to discuss the transformation of
the term Bz entering the electron propagator. This
term, being linear in the field (for a weak field) and lin-
ear in the coordinate difference z = 2 — 2’ gives a con-
tribution to the AMM and contains information about
the motion of the virtual electron between the points z’
and z when it is accompanied by a virtual photon and
its motion is distorted by the external field. Because

i
o (m — 5732) exp < ) Yy =

Yelod
m(S +iysP) + iexp <— zec; 5

tecF's

)VBZ., (11)

the term yBz appears in Mg(p, F') in the second term
in the square brackets as

sh (e Fw)
sh (eF's)
exp(eF's)(exp(2e Fw) — 1)
sh (eF's)
exp(QeeFFw) - 1]5

YBzer = 2y exp (eF(w + s))

i1

he]

=~B (12)
Therefore, after the integration over x and 2z’ performed
in passing from M (z,2') to Mgr(p, F'), we obtain in-
stead of z = x — 2’ the quantity
) Dg;
af

Roeff = <

which is the «mean» or the «effective» coordinate dif-
ference. Here, pg is the constant momentum four-
vector that characterizes the quantum motion of the
electron in the external field and wqg is the 4 x 4 ma-

exp(2eFw) — 1

eF (13)

trix
w = 1 Arcth | cth (eF's) + L (14)
- eF eF't
with two doubly degenerate eigenvalues
1 1
wi (s, t,n) = — Arcctg | ctg(ens) + — |,
en ent
1 1 (15)
wy(s,t,e) = — Arcth <cth(ess) + —>
ec ect

playing the roles of the magnetic and the electric proper
times. Thus, the virtual electron moves between the
points z' and z of the emission and the absorption
of the virtual photon «as a classical charge» with two
proper times.

Because the virtual electron is accompanied by a
virtual photon with the proper time ¢ (or with the
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squared momentum k? ~ ¢~!), the proper times w »
are always less than s,
0 S w12 S S. (16)

The symbol Arc ctg also indicates that wq is always in
the same period with s,
nr<eqw; <ens<(n+1)wr, n=0,1,2,...

The argument y of ¢(y) is equal to
1
y = ee(s—wy) = ees—Arcth (cth (668)+e_st> , (17)

i.e., it is proportional to the delay of the electric proper
time of the virtual electron compared to the proper
time of the real electron in the field.

3. PHYSICAL INTERPRETATION OF THE
AMM DOUBLING FOR A VERY STRONG
ELECTRIC FIELD

The AMM Ay explicitly appears in the elastic scat-
tering amplitude [8]
T(p, 5, F) =-Tr (MR(pv F) Uf,gl_tf,g) (18)

as the real part of the coefficient at the first of the two
spin-dependent invariants

Here, s is the polarization 4-vector, F;; is the field
tensor dual to Fy,z, and

_ Tr (ui) o L
upcllpe = — (m —ivp)(1 + ivs575), (20)
p’=-m? s =1, sp=0,

is the polarization density matrix. For the state with
p. = 0 and the magnetic field n — 0, Ay is given by
(1) and (2).

The main contribution to the integral I(3) comes
from y ~ . The doubling of the AMM in a strong
field is then related to a large delay y ~ 8> 1 and the
explicit expression for y shows that

-2

1 -2
s~m~ ", t~—<m
ec

1
or k?~ n ~es>m?. (21)
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In other words, in a strong field the virtual electron
is accompanied by a «heavy» virtual photon with the
squared momentum

k2 ~ ec > m?.

We note that

S~ t~m 2

in a weak field.

The phenomenological and very speculative expla-
nation of the doubling of the magnetic moment in the
system of a virtual electron and a photon with the in-
crease of the virtual photon momentum squared may
be as follows.

There is the known relation between the magnetic
moment y and the angular momentum j of an electro-
dynamical system,

e,

= ) 22
2me’ (22)

M= Hogj; Ho
where g is the gyromagnetic ratio. Writing this relation
for the AMM and comparing it with the definition of

the function J(3),
Ap  «a

- %g]a

Ap

Ho o

shows that J(/3) can be considered as half the product
of the gyromagnetic ratio and the angular momentum
of the virtual electron.

In a weak field, gj/2 = 1/2 because the virtual elec-
tron has the quantum numbers s = 1/2, | = 0, and
j = 1/2 and the Lande formula

1) = L gj

5 (23)

2 ).

JG+ D) +s(s+1)—1(1+1)
2j(j +1)

g=1+ (24)
gives ¢ = 2. In a strong field, the virtual electron can
go to the state with s = 1/2, 1 =1, and j = 3/2, for
which g =4/3. Then gj/2 = 1 and the AMM doubles.

For moderate field intensities, the virtual electron
can be in a superposition of the states s = 1/2, 1 = 0,
j=1/2and s =1/2,1=1, j =1/2. Because g = 2/3
and gj/2 = 1/6 for the latter state, the decrease of the
AMM with the increase of 8 becomes clear untill 3 is
sufficiently small and the state with s = 1/2,1 =1, and
J = 3/2 is not perceptibly excited.

Thus, the following physical picture can occur.

The electron interacting with itself via a virtual
photon possesses the total angular momentum J = 1/2,
which can be considered as the vector sum of the virtual
electron angular momentum j = 1/2 and the proper
moment (spin) j, = 1 of the virtual photon. The ex-
ternal electric field changes the motion of the virtual
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electron such that the electron can acquire the orbital
angular momentum [ = 1 and its total angular momen-
tum j can remain equal to 1/2 or become equal to 3/2.
Besides, the vector sum

J :j+j7

of the virtual electron and the virtual photon angular
momenta remains equal to J = 1/2 and their projec-
tions on the electric field direction satisfy the conser-
vation law

my =mg+m; +m,. (25)

If the orbital angular momentum and the spin of the
virtual electron prefer to be parallel as the electric field
increases, such that

j=1+1)2
and
mj =ms+my = £(+1/2),

then the appearance of the states with [ > 1 becomes
impossible.
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