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THE DOUBLING OF THE ANOMALOUS MAGNETIC MOMENTOF ELECTRON IN A VERY STRONG CONSTANTHOMOGENIOUS ELECTRIC FIELDV. I. Ritus *Tamm Department of Theoretial Physis, Lebedev Physial Institute, Russian Aademy of Sienes117924, Mosow, RussiaSubmitted 18 April 2001Calulated earlier by the author [8℄, the anomalous magneti moment (AMM) of the eletron in an intenseonstant eletri �eld hanges nonmonotonially as the �eld inreases, passing through a minimum and tendingto the doubled Shwinger value for very strong �elds. In the present paper, it is supposed that the AMM isrelated by the Lande fator to the angular momentum of a virtual eletron aompanied by a virtual photon.This fator hanges its e�etive value beause of the in�uene of the external �eld on the motion of the virtualeletron and its self-ation. With the inrease of the eletri �eld, the virtual eletron an suessively oupythe exited states l = 1, j = 1=2 and l = 1, j = 3=2 in addition to the original state with the orbital angularmomentum l = 0 and the total angular momentum j = 1=2. The �rst of these exited states dereases theAMM and the seond inreases and doubles it if only this state is oupied for a very strong �eld. The latterondition is equivalent to the alignment of the spin and the orbital angular momentum of the eletron alongthe �eld, while the total angular momentum of the entire system of the virtual eletron and the virtual photonremains equal to 1/2.PACS: 12.20.Ds 1. INTRODUCTIONThe purpose of this paper is to draw attention toan interesting dependene of the anomalous magnetimoment of eletron on the intensity of the external on-stant homogeneous eletri �eld. The dependene ofthe AMM on the onstant magneti or rossed �eld wasonsidered by Demeur [1℄, Newton [2℄, Ternov et al. [3℄,Ritus [4℄, Janovii [5℄, Tsai Wu-yang and Yildiz [6℄,and Baier et al. [7℄. It was shown that the AMM tendsto zero for a very strong magneti or rossed �eld. Thedependene of the AMM on the onstant eletri �eldannot be obtained from its dependene on the mag-neti �eld by the analyti ontinuation H2 ! �E2 be-ause of the nonanalytiity at zero �eld.In my paper [8℄, the eigenvalue of the mass operatorof eletron in a onstant homogeneous eletromagneti�eld of an arbitrary intensity was found. In partiular,this eigenvalue, or more preisely, the orrespondingelasti sattering amplitude involves the dependene of*E-mail: ritus�lpi.a.ru

the AMM �� on the eletri and magneti �elds. Ifone keeps only the dependene on the eletri �eld "and on�nes oneself to the state with p? = 0, the ratioof �� to the Bohr magneton �0 is given by���0 = �� J(�); � = ~je"jm23 ; (1)where � is the eletri �eld " in harateristi QEDunits and J(�) = 1� I(�);I(�) = 1� 1Z0 dy sin(y=�)�(y);�(y) = 1Zy dx u2x(1 + u)2 ;u = x[th (x� y)� thx℄: (2)
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�Fig. 2.It was shown that in a weak �eld (� � 1),J(�) = 12 � 43 �2�ln 2� � 2312��� 1283 �4�ln 2� � 8170�(3)� 2091120�+ : : : (3)and in a strong �eld (� � 1),J(�) = 1� �4� �ln 2� � 1�+ : : : ; (4)where  = 1; 781 : : : and �(3) = 1:202 : : :Thus, as the �eld inreases, the AMM �rst de-reases from the Shwinger value �=2�, reahes a min-imum, and then inreases and approahes the doubledShwinger value �=�.This intriguing dependene is also on�rmed by thenumerial alulation of the integral J(�), see Fig. 1and Fig. 2. The minimum of J(�) is loated at� � 0:179 and is equal to J(0:179) � 0:49040:

The most striking property of J(�) is the doublingof this funtion and of the AMM in the strong-�eldlimit ompared to its value in the weak �eld limit,J(1)J(0) = 2: (5)In all other �elds (magneti, rossed) the AMM is equalto zero in the strong-�eld limit.Another interesting property of J(�) is its non-monotoni dependene with one minimum.The formula for the AMM is nothing else than theFourier sine transform of the funtion �(y). This fun-tion has a maximum at zero, whih is equal to 1/2, andmonotonially dereases to zero as y !1,�(y) = 12 � y2�23 ln 12y � 518��� y3�13 + 8�245 �+ : : : ; y � 1;�(y) = 12y (ln 2y � 1)�� 18y2 �ln2 2y�8 ln 2y+�23 +4�+ : : : ; y � 1: (6)
Qualitatively, a similar nonmonotoni behaviour forJ(�) with the minimum at � � 1 and the doubling atin�nity, J(1) = 2J(0), would be given by the Gaussian�(y) = 12e�y2and the Lorentzian�(y) = 12(1 + y2)�1funtions of y.We onsider the physial meaning of the funtion�(y) and its argument.2. THE MASS OPERATOR OF ELECTRON INA CONSTANT ELECTROMAGNETIC FIELDThe law of motion of a relativisti lassial hargein the homogeneous onstant eletromagneti �eld F��an be written asx�(s)� x�(0) = �exp(2eFs)� 1eF ��� ��(0); (7)where x�(s) is the harge 4-oordinate depending onthe proper time s and x�(0) and ��(0) are the initial4-oordinate and the kineti 4-momentum respetively.In a Lorentz system where the eletri and magneti987



V. I. Ritus ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001�elds are parallel, the eletron moves along a helialline with alternating pith whose rate of hange is de-�ned by the eletri �eld and the period of revolutionis de�ned by the magneti �eld.Quantum motion of the eletron in an external �eld,with the radiative orretions taken into aount, is de-sribed by the Dira wave equation with the mass op-erator. Roughly speaking, the mass operator is de�nedin the e2-approximation by the produt of the ausalpropagation funtions S(x; x0) and D(x � x0) of theeletron in an external �eld and of the photon in thevauum:M(x; x0) = ie2�S(x; x0)�D(x � x0): (8)Here and below, we use the same notation as in [8℄. Inthe proper time representation, we haveS(x; x0) = � iei'16�2 1Z0 ds e2� "sin(e�s) sh(e"s) ���m� i2Bz� exp��im2s+ iz�z4 + ie�Fs2 � ;D(z) = � i16�2 1Z0 dtt2 exp� iz24t � ; z = x� x0;B�� = ��� + eF�� ; ��� = (eF th (eFs))�� ;' = e xZx0 dy�A�(y);
(9)

and " and � are the strengths of the eletri and themagneti �eld in the frame where they are parallel. The' integration goes along the straight line.After going over to the Ep(x)-representation, themass operator beomes diagonal and its renormalizedeigenvalue is given by the -matrix,MR(�p; F ) = �2� 1Z0 1Z0 ds dtt2 � sin(e�w1) sh(e"w2)sin(e�s) sh(e"s) �� exp��im2s� i�pw�p� ie�Fw2 ��� �2m(S + i5P ) + i exp�� ie�Fs2 � ��  exp(eF (w + s)) sh (eFw)sh (eFs) �p�� !2s2 �� exp(�im2s�ip2!)�2m+i�p!s �o+M0R(�p): (10)This is Eq. (52) in [8℄, where one an �nd all the detailsabout the quantities involved here and the notation.

It is now important to disuss the transformation ofthe term Bz entering the eletron propagator. Thisterm, being linear in the �eld (for a weak �eld) and lin-ear in the oordinate di�erene z = x�x0, gives a on-tribution to the AMM and ontains information aboutthe motion of the virtual eletron between the points x0and x when it is aompanied by a virtual photon andits motion is distorted by the external �eld. Beause� �m� i2Bz� exp� ie�Fs2 � � == 4m(S + i5P ) + i exp�� ie�Fs2 � Bz; (11)the term Bz appears in MR(�p; F ) in the seond termin the square brakets asBzeff = 2 exp (eF (w + s)) sh (eFw)sh (eFs) �p ==  exp(eFs)(exp(2eFw)� 1)sh (eFs) �p == B exp(2eFw)� 1eF �p: (12)Therefore, after the integration over x and x0 performedin passing from M(x; x0) to MR(�p; F ), we obtain in-stead of z � x� x0 the quantityz� eff = �exp(2eFw)� 1eF ��� �p� ; (13)whih is the �mean� or the �e�etive� oordinate dif-ferene. Here, �p� is the onstant momentum four-vetor that haraterizes the quantum motion of theeletron in the external �eld and w�� is the 4� 4 ma-trix w = 1eF Ar th�th (eFs) + 1eF t� (14)with two doubly degenerate eigenvaluesw1(s; t; �) = 1e� Ar tg�tg (e�s) + 1e�t� ;w2(s; t; ") = 1e" Ar th�th(e"s) + 1e"t� (15)playing the roles of the magneti and the eletri propertimes. Thus, the virtual eletron moves between thepoints x0 and x of the emission and the absorptionof the virtual photon �as a lassial harge� with twoproper times.Beause the virtual eletron is aompanied by avirtual photon with the proper time t (or with the988



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 The doubling of the anomalous magneti moment : : :squared momentum k2 � t�1), the proper times w1;2are always less than s,0 � w1;2 � s: (16)The symbol Ar tg also indiates that w1 is always inthe same period with s,n� � e�w1 � e�s � (n+ 1)�; n = 0; 1; 2; : : :The argument y of �(y) is equal toy = e"(s�w2) � e"s�Ar th�th (e"s)+ 1e"t� ; (17)i.e., it is proportional to the delay of the eletri propertime of the virtual eletron ompared to the propertime of the real eletron in the �eld.3. PHYSICAL INTERPRETATION OF THEAMM DOUBLING FOR A VERY STRONGELECTRIC FIELDThe AMM �� expliitly appears in the elasti sat-tering amplitude [8℄T (�p; �s; F ) = �Tr (MR(�p; F )u�p� �u�p�) (18)as the real part of the oe�ient at the �rst of the twospin-dependent invariants� �sF ��pm Tr (u�u) = �u�p� 12�F u�p� ;�sF �pm Tr (u�u) = �u�p� 12�F � u�p� : (19)Here, �s is the polarization 4-vetor, F ��� is the �eldtensor dual to F�� , andu�p� �u�p� = Tr (u�u)4m (m� i�p)(1 + i5�s);�p2 = �m2; �s2 = 1; �s�p = 0; (20)is the polarization density matrix. For the state withp? = 0 and the magneti �eld � ! 0, �� is given by(1) and (2).The main ontribution to the integral I(�) omesfrom y � �. The doubling of the AMM in a strong�eld is then related to a large delay y � � � 1 and theexpliit expression for y shows thats � m�2; t � 1e" � m�2or k2 � 1t � e"� m2: (21)

In other words, in a strong �eld the virtual eletronis aompanied by a �heavy� virtual photon with thesquared momentumk2 � e"� m2:We note that s � t � m�2in a weak �eld.The phenomenologial and very speulative expla-nation of the doubling of the magneti moment in thesystem of a virtual eletron and a photon with the in-rease of the virtual photon momentum squared maybe as follows.There is the known relation between the magnetimoment � and the angular momentum j of an eletro-dynamial system,� = �0 gj; �0 = ~e2m; (22)where g is the gyromagneti ratio. Writing this relationfor the AMM and omparing it with the de�nition ofthe funtion J(�),���0 = �2� gj; ���0 = �� J(�); J(�) = 12 gj; (23)shows that J(�) an be onsidered as half the produtof the gyromagneti ratio and the angular momentumof the virtual eletron.In a weak �eld, gj=2 = 1=2 beause the virtual ele-tron has the quantum numbers s = 1=2, l = 0, andj = 1=2 and the Lande formulag = 1 + j(j + 1) + s(s+ 1)� l(l + 1)2j(j + 1) (24)gives g = 2. In a strong �eld, the virtual eletron ango to the state with s = 1=2, l = 1, and j = 3=2, forwhih g = 4=3. Then gj=2 = 1 and the AMM doubles.For moderate �eld intensities, the virtual eletronan be in a superposition of the states s = 1=2, l = 0,j = 1=2 and s = 1=2, l = 1, j = 1=2. Beause g = 2=3and gj=2 = 1=6 for the latter state, the derease of theAMM with the inrease of � beomes lear untill � issu�iently small and the state with s = 1=2, l = 1, andj = 3=2 is not pereptibly exited.Thus, the following physial piture an our.The eletron interating with itself via a virtualphoton possesses the total angular momentum J = 1=2,whih an be onsidered as the vetor sum of the virtualeletron angular momentum j = 1=2 and the propermoment (spin) j = 1 of the virtual photon. The ex-ternal eletri �eld hanges the motion of the virtual989



V. I. Ritus ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001eletron suh that the eletron an aquire the orbitalangular momentum l = 1 and its total angular momen-tum j an remain equal to 1/2 or beome equal to 3/2.Besides, the vetor sumJ = j+ jof the virtual eletron and the virtual photon angularmomenta remains equal to J = 1=2 and their proje-tions on the eletri �eld diretion satisfy the onser-vation law mJ = ms +ml +m : (25)If the orbital angular momentum and the spin of thevirtual eletron prefer to be parallel as the eletri �eldinreases, suh that j = l + 1=2and mj = ms +ml = �(l + 1=2);then the appearane of the states with l > 1 beomesimpossible.
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