# НЕСОИЗМЕРИМАЯ МАГНИТНАЯ СТРУКТУРА В МЕТАБОРАТЕ МЕДИ

#### Г. А. Петраковский\*

Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

## М. А. Попов\*\*

Красноярский государственный университет 660041, Красноярск, Россия

# Б. Россли\*\*\*

Laboratory for Neutron Scattering, ETH Zurich & Paul Scherrer Institute CH-5232 Villigen PSI, Switzerland

### Б. Уладиаф\*\*\*

Institut Laue-Langevin 38042 Grenoble, Cedex 9, France

#### Поступила в редакцию 24 апреля 2001 г.

На основании экспериментальных данных для тетрагонального монокристалла метабората меди по рентгено- и нейтронографическим исследованиям, измерениям теплоемкости, магнитной восприимчивости и мюонной спиновой релаксации предложена феноменологическая теория несоизмеримой магнитной структуры этого кристалла. С учетом его пространственной группы симметрии  $I\bar{4}2d$  в термодинамический потенциал включены инварианты Лифшица. Анализ показывает, что в области температур 10–20 К в формировании магнитной структуры доминирует подсистема спинов меди в позициях 4b элементарной ячейки кристалла. При этом вектор антиферромагнетизма, перпендикулярный к тетрагональной оси, образует вдоль этой оси спираль с исчезающе малым волновым вектором. При температурах ниже 10 К в формировании магнитной структуры метабората меди существенно возрастает роль магнитной подсистемы спинов меди в позициях 8d элементарной ячейки кристалла. Это приводит к резкому росту волнового вектора несоизмеримой структуры при понижении температуры. Проведено численное моделирование температурной зависимости волнового вектора спирали и теплоемкости кристалла, удовлетворительно описывающее результаты эксперимента. На основании этого моделирования оценены параметры феноменологического термодинамического потенциала магнитной системы метабората меди.

PACS: 75.25.+z, 75.40.Cx

### 1. ВВЕДЕНИЕ

Известно, что модулированные (несоизмеримые) магнитные структуры возникают в большинстве случаев как результат конкуренции обменных взаимодействий [1]. В этом случае кристаллическая структура не накладывает каких-либо ограничений на

возможность реализации таких магнитных структур. Менее распространенными являются случаи возникновения несоизмеримых магнитных структур за счет релятивистских взаимодействий. Впервые на такую возможность указал Дзялошинский [2]. Физической причиной появления несоизмеримых структур в этих случаях является так называемое антисимметричное обменное взаимодействие Дзялошинского-Мориа. Формально несоизмеримые структуры релятивистского происхождения могут быть опи-

<sup>\*</sup>E-mail: gap@iph.krasn.ru

E-mail: rsa@iph.krasn.ru

<sup>\*\*\*</sup>B. Roessli, B. Ouladdiaf.

саны путем включения в термодинамический потенциал инварианта Лифшица [1], содержащего линейно первые производные по координатам от двухкомпонентного параметра порядка. Следует отметить, что в этом случае на симметрию кристалла накладывается важное ограничение. Именно, инвариант Лифшица может быть включен в термодинамический потенциал только для кристаллов без центра инверсии. Магнитное состояние системы с инвариантом Лифшица в общем случае представляет решетку магнитных солитонов. В простейшем случае, если не учитывается влияние магнитной кристаллографической анизотропии, распределение магнитных моментов подчиняется простому синусоидальному закону. Малость релятивистских взаимодействий приводит и к малости волнового вектора несоизмеримой магнитной структуры. Вблизи перехода магнитной системы в несоизмеримую фазу должно наблюдаться сильное диффузное рассеяние нейтронов [1]. Солитонный характер магнитного упорядочения приводит к сложной структуре магнитных сателлитов в дифракционной картине рассеяния нейтронов.

Поскольку модулированные магнитные структуры релятивистского происхождения встречаются редко, детальное их исследование, особенно на качественных монокристаллах, представляет большой интерес. Монокристаллы метабората меди  $CuB_2O_4$ были впервые синтезированы и исследованы в работах [3–6]. Нейтронографические исследованыя этого кристалла представлены в работе [7]. В настоящей работе на основе анализа совокупности экспериментальных исследований метабората меди дается теоретическая интерпретация магнитного состояния его спиновой системы при различных температурах.

#### 2. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Технология выращивания высококачественных крупных монокристаллов метабората меди описана в работе [4]. Рентгенографические и нейтронографические исследования [7] при комнатной температуре показали, что  $\operatorname{CuB}_2\operatorname{O}_4$  — тетрагональный кристалл пространственная группа  $I\bar{4}2d$  ( $D_{2d}^{12}$ ) с параметрами решетки a = 11.528 Å, c = 5.607 Å. Элементарная ячейка содержит 12 формульных единиц. Ионы меди  $\operatorname{Cu}^{2+}$  занимают две неэквивалентные позиции:  $\operatorname{Cu} A$  — позиция 4b с точечной симметрией  $S_4$  (0,0,0.5), и  $\operatorname{Cu} B$  — позиция 8d с точечной симметрией  $C_2$  (0.0815,0.25,0.125). Ион  $\operatorname{Cu} A$  находится в центре квадрата, образованного четырьмя ионами



Рис.1. Кристаллическая структура метабората меди

кислорода. Ион CuB окружен шестью ионами кислорода, локализованными в вершинах искаженного октаэдра (рис. 1). Специальное нейтронографическое исследование высокого разрешения [7] показало, что вплоть до температуры 1.5 К кристалл не подвержен никаким структурным фазовым переходам. Магнитные рефлексы при температуре 12 К соответствуют брэгговским позициям соизмеримой фазы. Наблюдение при этой температуре запрещенных рефлексов типа (110) или (002) показывает, что магнитная структура антиферромагнитна. Магнитная и кристаллохимическая ячейки совпадают, и магнитная структура описывается вектором распространения  $\mathbf{q} = 0$ .

Магнитные измерения на монокристаллах показали, что на кривой магнитной восприимчивости проявляются резкие особенности при  $T_A = 21$  К и  $T_B = 10$  К. Результаты измерения магнитной восприимчивости, выполненного на СКВИД-магнитометре для ориентаций магнитного поля вдоль и перпендикулярно тетрагональной оси кристалла, приведены на рис. 2 [6]. Обращает внимание резкая анизотропия восприимчивости. Для магнитного поля, приложенного в базисной плоскости кристалла, при температуре 21 К наблюдается скачок восприимчивости и ее быстрый рост при дальнейшем понижении температуры. При температуре 10 К восприимчивость скачком уменьшается примерно на порядок и при дальнейшем снижении температуры до 4.2 К монотонно растет. Для магнитного поля, приложенного вдоль тетрагональной оси кристалла, температурная зависимость восприимчивости является гладкой во всем температурном диапазоне. Парамаг-



Рис. 2. Температурная зависимость магнитной восприимчивости монокристалла метабората меди: 1 — магнитное поле параллельно тетрагональной оси кристалла; 2 — магнитное поле параллельно базисной плоскости кристалла



Рис. 3. Температурная зависимость теплоемкости монокристалла метабората меди: 1 — эксперимент [3]; 2 — результат моделирования; 3 — вклад Дебая; 4 — аномалия типа Шоттки; 5 — вклад Ландау; 6 — оценка Гинзбурга

нитная температура Нееля и эффективный магнитный момент иона меди, определенные из высокотемпературной части магнитной восприимчивости, соответственно равны  $\Theta_N = -9.5$  К и  $\mu_{eff} = 1.77 \mu_B$ .

Описанные выше аномалии магнитной восприимчивости сопровождаются особенностями температурного поведения теплоемкости [3]. Результаты измерений теплоемкости в интервале температур 2–40 К показаны на рис. 3. На них ясно видны две аномалии при температурах, совпадающих с аномалиями магнитной восприимчивости. Кроме того,



Рис.4. Температурная зависимость вектора распространения  $\mathbf{q}=(3,3,Q)$ 

при температуре около 4 К на кривой  $C_p(T)$  также появляется особенность в виде широкого максимума.

В работе [3] приведены данные измерений мюонной спиновой релаксации ( $\mu SR$ ), которые также подтверждают наличие магнитных превращений при температурах 21 и 10 К. Более поздние измерения до температур меньше 1 К [8] выявили дополнительное магнитное превращение при температуре около 1 К. Можно предполагать, что в спиновой подсистеме метабората меди при этой температуре происходит новая перестройка.

Нейтронографические исследования метабората меди были выполнены на монокристалле, выращенном с использованием изотопа бора <sup>11</sup>В для уменьшения поглощения нейтронов [7]. Было установлено, что магнитная структура в области температур 10-21 К соизмерима и антиферромагнитна и может быть описана как неколлинеарное расположение спинов ионов CuA и CuB вдоль диагоналей тетрагональной плоскости кристалла [7]. Величина магнитного момента иона CuA около  $1.3\mu_B$  при температуре 12 К. Его компонента вдоль тетрагональной оси с мала,  $\mu_z = 0.25 \mu_B$ , что соответствует углу выхода из плоскости ab в 14°. Спины ионов СuB лежат в плоскости ab и имеют малый магнитный момент около  $0.25 \mu_B$  при T = 12 К. Величина магнитного момента иона CuB быстро увеличивается при уменьшении температуры ниже 10 К и равна 0.7µ<sub>B</sub> при  $T = 2 \mathrm{K}.$ 

При температуре ниже  $T_B = 10$  К появляются два магнитных сателлита в симметричных позициях по отношению к точкам обратной решетки соизмеримой фазы (рис. 4). При этом магнитная структура метабората меди становится несоизмеримой вдоль



Рис.5. Моделирование температурной зависимости вектора распространения q с помощью соотношений (1) — сплошная линия, и (11) — штриховая линия

тетрагональной оси кристалла и описывается волной спиновой плотности с фазовой модуляцией [7]. Период спиновой модуляции непрерывно увеличивается от  $\mathbf{q} \approx 0$  вблизи 10 К до  $\mathbf{q} = (0, 0, 0.15)$  при температуре 1.8 К. При этой температуре модуляция спиновой структуры характеризуется периодом  $c/0.15 \approx 40$  Å. Зависимость величины волнового вектора несоизмеримой фазы спиновой структуры от температуры подчиняется степенному закону:

$$q(T) = A(T - T_B)^{0.48}.$$
 (1)

Как показано на рис. 5, соотношение (1) хорошо описывает температурную зависимость волнового вектора несоизмеримой фазы во всем исследованном диапазоне температур.

Так как при увеличении температуры волновой вектор q уменьшается практически до нуля, период несоизмеримой спиновой структуры при T<sub>B</sub> становится большим по сравнению с постоянной решетки. Кроме того, сильное диффузное рассеяние нейтронов накладывается на брэгговские пики для вектора рассеяния нейтронов  $\mathbf{Q}_0$  вдоль кристаллографического направления [001]. Интенсивность диффузного рассеяния увеличивается при увеличении температуры от 1.8 К и достигает максимального значения вблизи температуры  $T_B$  [7]. Диффузное рассеяние наблюдается даже при минимальной температуре, достигнутой в эксперименте. Это резко отличается от обычного поведения спиновой подсистемы 3D-магнетиков с локализованными спинами, для которых критические флуктуации ограничиваются малой температурной областью вблизи фазового перехода. Подгонка магнитной структуры при температуре 2 К дает наилучшее согласие для простой спирали с магнитным моментом  $0.7\mu_B$  для CuB.

#### 3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Совокупность представленных выше экспериментальных данных указывает на то, что в метаборате меди при температурах 21 и 10 К спиновая система претерпевает перестройки. Кроме того, весьма возможна также перестройка магнитной структуры при температуре около 1 К. В соизмеримой фазе магнитная структура антиферромагнитна и обладает спонтанным магнитным моментом [6]. Магнитная и кристаллохимическая ячейки совпадают, чему соответствует вектор распространения  $\mathbf{q} = 0$ . Так как операция симметрии решетки І является также магнитной трансформацией, когда  $\mathbf{q} = 0$ , соответствующие неприводимые представления магнитной структуры есть представления точечной группы 42m. Эта точечная группа содержит восемь элементов и имеет пять неприводимых представлений [9]. Четыре из них ( $\Gamma_1$ ,  $\Gamma_2$ ,  $\Gamma_3$  и  $\Gamma_4$ ) являются одномерными, а одно, обозначаемое Г<sub>5</sub>, — двумерным. Разложение представления дает

$$\Gamma_{4b} = \Gamma_3 + \Gamma_4 + 2\Gamma_5, \quad \Gamma_{8d} = \Gamma_1 + 2\Gamma_2 + \Gamma_3 + 2\Gamma_4 + 3\Gamma_5.$$

Магнитные моды  $\Gamma_3$  и  $\Gamma_4$  позиции 4b отвечают соответственно коллинеарным ферромагнитному и антиферромагнитному упорядочениям вдоль оси с. Моды, связанные с представлением Г<sub>5</sub>, описывают неколлинеарную магнитную структуру. Подобные магнитные моды для позиции 8d также могут быть получены из теории групп. Анализ картины дифракции нейтронов, включающей 25 чисто магнитных пиков [7], показал, что магнитная структура метабората меди CuB<sub>2</sub>O<sub>4</sub> представляет собой неколлинеарное расположение спинов как CuA, так и CuB вдоль диагоналей тетрагональной плоскости с выходом магнитных моментов СиА из плоскости. Симметрийный анализ структуры метабората меди показывает, что допустимо взаимодействие Дзялошинского-Мориа между спинами CuA и, следовательно, это взаимодействие способствует спиновой неколлинеарности, которая и наблюдается экспериментально. В несоизмеримой области магнитного порядка имеет место упорядочение типа спирали [7].

Из сказанного следует, что совокупная спиновая система метабората меди состоит из двух подсистем: подсистемы A — ее образуют спины ионов CuA, картина распределения спинов этой подсистемы соответствует смеси неприводимых представлений  $\Gamma_4$  и

11 ЖЭТФ, вып. 4 (10)

 $\Gamma_5$  (осевая антиферромагнитная и неколлинеарная плоскостная конфигурации); и подсистемы B — ее образуют спины ионов CuB, картина распределения спинов этой подсистемы соответствует неприводимому представлению  $\Gamma_5$  (неколлинеарная плоскостная конфигурация). При написании феноменологического термодинамического потенциала спиновой системы метабората меди в отсутствие внешнего магнитного поля необходимо, следовательно, иметь в виду два двухкомпонентных параметра порядка, соответствующих представлениям  $\Gamma_5[CuA]$  и  $\Gamma_5[CuB]$ , и один однокомпонентный параметр порядка, соответствующий представлению  $\Gamma_4[CuA]$ . Важно также учесть, что симметрия допускает инварианты Лифшица для обеих подсистем.

Обозначим однокомпонентный параметр порядка  $\eta$ , а два двухкомпонентных параметра порядка,  $(\eta_{A1}, \eta_{A2})$  и  $(\eta_{B1}, \eta_{B2})$ , соответственно для подсистем A и B. Тогда термодинамический потенциал всей спиновой системы представим в виде

$$\Phi = \int \left\{ \frac{\alpha}{2} \eta^2 + \frac{\beta}{4} \eta^4 + \frac{\alpha_A}{2} \eta_A^2 + \frac{\beta_A}{4} \eta_A^4 + \frac{\gamma_A}{4} \eta_A^4 + \frac{\gamma_A}{4} \eta_A^4 \cos(4\varphi_A) + \frac{\delta_A}{2} \left[ (\nabla \eta_A)^2 + \eta_A^2 (\nabla \varphi_A)^2 \right] - \sigma_A \eta_A^2 \varphi_A' + \frac{\alpha_B}{2} \eta_B^2 + \frac{\beta_B}{4} \eta_B^4 + \frac{\gamma_B}{4} \eta_B^4 \cos(4\varphi_B) + \frac{\delta_B}{2} \left[ (\nabla \eta_B)^2 + \eta_B^2 (\nabla \varphi_A)^2 \right] - \sigma_B \eta_B^2 \varphi_B' + \frac{\delta_B}{2} \cos(\varphi_A - \varphi_B) + \frac{\kappa_A}{2} \eta_A^2 \eta_A^2 + \frac{\kappa_B}{2} \eta_A^2 \eta_B^2 \right\} dV, \quad (2)$$

где

$$\alpha_A = \alpha_{A0}(T - T_A), \quad \alpha_B = \alpha_{B0}(T - T_B),$$
$$\eta_A^2 = \eta_{A1}^2 + \eta_{A2}^2, \quad \eta_B^2 = \eta_{B1}^2 + \eta_{B2}^2,$$
$$\varphi_A = \operatorname{arctg}(\eta_{A2}/\eta_{A1}), \quad \varphi_B = \operatorname{arctg}(\eta_{B2}/\eta_{B1}),$$

 $\alpha_{A0} > 0, \ \alpha_{B0} > 0, \ \beta_A > 0, \ \beta_B > 0, \ \delta_A > 0, \ \delta_B > 0, \ \nabla$ — оператор набла,  $f' \equiv df/dz$ . Связь между подсистемами A и B, описываемая в (2) инвариантом с коэффициентом  $\kappa$ , приводит к появлению геликоида в обеих подсистемах при одной и той же температуре.

Однокомпонентный параметр порядка  $\eta$  описывает осевую составляющую спинов CuA и несуществен для анализа несоизмеримой структуры типа

простой спирали с осью геликоида вдоль тетрагональной оси кристалла. Поэтому сведем термодинамический потенциал (2) к форме

$$\Phi = \int \left\{ \frac{\alpha_A}{2} \eta_A^2 + \frac{\beta_A}{4} \eta_A^4 + \frac{\gamma_A}{4} \eta_A^4 \cos(4\varphi_A) + \frac{\delta_A}{2} \left[ (\nabla \eta_A)^2 + \eta_A^2 (\nabla \varphi_A)^2 \right] - \sigma_A \eta_A^2 \varphi_A' + \frac{\alpha_B}{2} \eta_B^2 + \frac{\beta_B}{4} \eta_B^4 + \frac{\gamma_B}{4} \eta_B^4 \cos(4\varphi_B) + \frac{\delta_B}{2} \left[ (\nabla \eta_B)^2 + \eta_B^2 (\nabla \varphi_A)^2 \right] - \sigma_B \eta_B^2 \varphi_B' + \kappa \eta_A \eta_B \cos(\varphi_A - \varphi_B) \right\} dV, \quad (3)$$

Отвечающие равновесному состоянию системы условия экстремума  $\Phi$  по параметрам порядка имеют вид

$$\frac{\delta \Phi}{\delta \eta_A} = \alpha_A \eta_A + \beta_A \eta_A^3 + \gamma_A \eta_A^3 \cos(4\varphi_A) + \\ + \delta_A \eta_A (\nabla \varphi_A)^2 - 2\sigma_A \eta_A \varphi_A' - \\ - \delta_A \Delta \eta_A + \kappa \eta_B \cos(\varphi_A - \varphi_B) = 0, \quad (4)$$

$$\frac{\delta\Phi}{\delta\varphi_A} = -\gamma_A \eta_A^4 \sin(4\varphi_A) - \delta_A \nabla(\eta_A^2 \nabla\varphi_A) + \\ + \sigma_A (\eta_A^2)' - \kappa \eta_A \eta_B \sin(\varphi_A - \varphi_B) = 0, \quad (5)$$

$$\frac{\delta\Phi}{\delta\eta_B} = \alpha_B\eta_B + \beta_B\eta_B^3 + \gamma_B\eta_B^3\cos(4\varphi_B) + \\ + \delta_B\eta_B(\nabla\varphi_B)^2 - 2\sigma_B\eta_B\varphi_B' - \\ - \delta_B\Delta\eta_B + \kappa\eta_A\cos(\varphi_A - \varphi_B) = 0, \quad (6)$$

$$\frac{\delta\Phi}{\delta\varphi_B} = -\gamma_B \eta_B^4 \sin(4\varphi_B) - \delta_B \nabla(\eta_B^2 \nabla\varphi_B) + \sigma_B (\eta_B^2)' + \kappa \eta_A \eta_B \sin(\varphi_A - \varphi_B) = 0, \quad (7)$$

где  $\Delta$  — оператор Лапласа. Поскольку возмущение однородного состояния магнитной системы инвариантом Лифшица одномерно и поперечные к оси z отклонения в равновесном состоянии исключены положительностью  $\delta_A$  и  $\delta_B$ , в полученных условиях следует заменить оператор набла на однократное дифференцирование по z, а оператор Лапласа — на двукратное.

Нахождение равновесного состояния системы в аналитической форме из уравнений (4)–(7) является сложной задачей. Воспользуемся приближением постоянного модуля параметров порядка:  $\eta_A \neq \eta_A(z)$ и  $\eta_B \neq \eta_B(z)$  [2]. Как следует из уравнений (4) и (6), такое приближение допустимо при малости инвариантов Лифшица, анизотропии и взаимодействия между подсистемами по сравнению с остальными инвариантами, причем от взаимодействия между подсистемами на самом деле требуется лишь пренебрежимо малая зависимость разницы между фазами геликоида в подсистемах A и B от координаты z вдоль тетрагональной оси. В результате термодинамический потенциал (3) для равновесного состояния разбивается на две части:

$$\Phi = \Phi_{\eta} + \Phi_{\varphi}$$

$$\Phi_{\eta} = V \left\{ \frac{\alpha_A}{2} \eta_A^2 + \frac{\beta_A}{4} \eta_A^4 + \frac{\alpha_B}{2} \eta_B^2 + \frac{\beta_B}{4} \eta_B^4 - |\kappa| \eta_A \eta_B \right\},$$
$$\Phi_{\varphi} = \int \left\{ \frac{\gamma}{2} \cos(4\varphi) + \frac{\delta}{2} \varphi'^2 - \sigma \varphi' \right\} dV,$$

где  $\varphi=\varphi_A=\varphi_B+\pi\theta(\kappa), \, \theta(\kappa)$  — функция Хевисайда,

$$\gamma = \gamma_A \eta_A^4 + \gamma_B \eta_B^4, \quad \delta = \delta_A \eta_A^2 + \delta_B \eta_B^2,$$
$$\sigma = \sigma_A \eta_A^2 + \sigma_B \eta_B^2.$$

Соответственно условия равновесия принимают вид

$$\begin{aligned} \alpha_A \eta_A + \beta_A \eta_A^3 - |\kappa| \eta_B &= 0, \\ \alpha_B \eta_B + \beta_B \eta_B^3 - |\kappa| \eta_A &= 0, \\ \delta \varphi'' + \gamma \sin(4\varphi) &= 0, \end{aligned} \tag{8}$$

где  $f'' \equiv d^2 f/dz^2$ .

Два первых уравнения системы (8) определяют температурные зависимости модулей параметров порядка  $\eta_A$  и  $\eta_B$ . Физически отсутствие в них слагаемых, зависящих от фазы  $\varphi(z)$ , оправдывается тем, что  $\eta_A$  и  $\eta_B$  определяются практически целиком обменными взаимодействиями в спиновой системе метабората меди.

Третье уравнение системы (8) определяет зависимость фазы геликоида от координаты z вдоль тетрагональной оси и от модулей параметров порядка. Его решением является амплитудная функция Якоби [10]:

$$\varphi(z) = am \left(2q_0[z + \Delta z], k_1\right)/2,\tag{9}$$

где  $q_0 = \sqrt{\gamma/\delta}/k_1$ ,  $k_1$  и  $\Delta z$  — постоянные интегрирования. Постоянная  $\Delta z$  отвечает произвольности выбора точки отсчета вдоль тетрагональной оси и в последующем полагается равной нулю. Постоянная

 $k_1$  определяется минимизацией выражения для  $\Phi_{\varphi}$  после подстановки в него (9):

$$\Phi_{\varphi} = \frac{V}{\lambda} \int_{0}^{\lambda} \left\{ \frac{\gamma}{4} \cos(4\varphi) + \frac{\delta}{2} \varphi'^{2} - \delta\varphi' \right\} dz =$$
$$= V \left\{ \frac{4q_{0}\delta E(k_{1}) - 2\pi\sigma}{\lambda} + \frac{\gamma(1 - 2k_{1}^{-2})}{4} \right\}, \quad (10)$$

где

$$\lambda = \int_{0}^{\lambda} dz = \int_{0}^{2\pi} \frac{d\varphi}{|\varphi'|} = \frac{4K(k_1)}{q_0},$$
 (11)

— длина периода геликоида,

$$K(k_1) = \int_{0}^{\pi/2} \frac{du}{\sqrt{1 - k_1^2 \sin^2(u)}}$$

И

$$E(k_1) = \int_{0}^{\pi/2} \sqrt{1 - k_1^2 \sin^2(u)} \, du$$

— полные эллиптические интегралы соответственно первого и второго рода. Минимизация (10) по  $k_1$  приводит к результату

$$\frac{k_1}{E(k_1)} = \frac{2\sqrt{\gamma\delta}}{\pi\sigma} \,,$$

которому отвечает

$$\Phi_{\varphi} = \frac{V\gamma(1-2k_1^{-2})}{4} \,.$$

Из-за отсутствия в CuB<sub>2</sub>O<sub>4</sub> магнитных сателлитов в спектрах неупругого рассеяния нейтронов в температурном диапазоне 10–21 К можно предполагать, что параметр  $\sigma_A \ll \sigma_B$  и, следовательно, им можно пренебречь. Параметр порядка  $\eta_A$  при температуре  $T_B$  уже не мал, и анизотропия в подсистеме A через взаимодействие между подсистемами препятствует появлению геликоида. Поэтому в настоящей работе параметр  $\gamma_A$  также положим пренебрежимо малым.

Полученные выше соотношения позволили смоделировать температурные зависимости  $\eta_A$ ,  $\eta_B$  и волнового числа  $q = 2\pi/\lambda$ , а с помощью известного соотношения  $C_p = -T\partial^2 \Phi/\partial T^2$  — температурную зависимость удельной теплоемкости кристалла  $c_p = C_p/V$  для следующих параметров термодинамического потенциала (в градусах Кельвина):

$$\alpha_A = 1.6(T - 20), \quad \beta_A = 2.7, \quad \gamma_A = 0,$$
  
 $\delta_A = 0.16, \quad \sigma_A = 0, \quad \kappa = 0.01,$ 

 $11^{*}$ 

На рис. 6 видно, что в области температур 10–20 К параметр порядка  $\eta_B$  по сравнению с  $\eta_A$  мал и быстро возрастает при T < 10 К. Аналогичный рост волнового вектора  $q \equiv 2\pi/\lambda$  на рис. 5 совпадает с экспериментально наблюдаемым (рис. 4 и 5), но качественно отличается тем, что  $q \neq 0$  уже при температурах ниже 20 К: в температурной области малости инвариантов анизотропии по сравнению с инвариантами Лифшица ( $k_1 \ll 0$ ) он равен

$$q \approx \sigma / \delta$$

и при  $\sigma_A = 0$  изменяется в основном вслед за  $\eta_B$ .

При расчете теплоемкости кроме описываемого теорией Ландау скачка в точке перехода и оценкой Гинзбурга вклада тепловых флуктуаций параметра порядка учитывались также вклады акустических фононов и аномалии типа Шоттки. При температуре 20 К доминирует присущий фазовому переходу второго рода флуктуационный вклад с максимумом в точке перехода. На экспериментальных кривых (рис. 3) особенность при температуре 9.6 К присутствует в виде ступеньки. Она связана с быстрым ростом во второй спиновой подсистеме параметра порядка, отличного от нуля уже при температурах ниже 20 К из-за билинейного взаимодействия с первой подсистемой. Наводимое таким взаимодействием поле подавляет тепловые флуктуации во второй подсистеме. Поэтому последние при расчете не учитывались. Отметим, что ступенька при температуре 9.6 К наблюдается на фоне растущего с понижением



Рис. 6. Смоделированная температурная зависимость модулей параметров порядка

температуры широкого максимума, который можно отнести к неописываемой феноменологическим подходом аномалии типа Шоттки. Отклонение экспериментальной зависимости от рассчитанной при T < 3.5 К связано с приближением к предполагаемому переходу с низкотемпературной трансформацией магнитной структуры вблизи 1 К.

Таким образом, в настоящей работе на основании экспериментальных данных для метабората меди сформирована феноменологическая модель его магнитной подсистемы, в рамках которой проведен анализ температурного поведения параметра порядка, волнового вектора модуляции магнитной структуры и теплоемкости. В дальнейшем предполагается исследовать свойства этого кристалла при воздействии сильным магнитным полем.

Авторы признательны В. И. Зиненко за многочисленные полезные обсуждения. Работа выполнена при финансовой поддержке РФФИ (проект 01-02-17270) и Красноярского краевого фонда науки (проект 10F071C).

### ЛИТЕРАТУРА

- Ю. А. Изюмов, Дифракция нейтронов на длиннопериодических структурах, Энергоатомиздат, Москва (1987).
- 2. И. Е. Дзялошинский, ЖЭТФ 47, 992 (1964).
- G. Petrakovskii, D. Velikanov, A. Vorotinov et al., J. Magn. Magn. Mat. 205, 105 (1999).
- 4. Г. А. Петраковский, К. А. Саблина, Д. А. Великанов и др., Кристаллография 45, 926 (2000).
- 5. А. И. Панкрац, Г. А. Петраковский, Н. В. Волков, ФТТ 42, 93 (2000).
- **6**. Г. А. Петраковский, А. Д. Балаев, А. М. Воротынов, ФТТ **42**, 313 (2000).
- B. Roessli, J. Schefer, G. Petrakovskii et al., Phys. Rev. Lett. 86, 1885 (2001).
- J. Schefer, B. Roessli, U. Staub et al., PSI Sci. Rep. 3, 42 (1999).
- 9. О. В. Ковалев, Неприводимые и индуцированные представления и копредставления федоровских групп, Наука, Москва (1986).
- 10. Э. Т. Уиттекер, Дж. Ватсон, Курс современного анализа, ч. 1, Физматгиз, Москва (1963).