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We study the collective elastic interaction in a system of many macroparticles embedded in a nematic liquid
crystal. A theoretical approach to the interaction of macroparticles via deformation of the director field [1] is
developed. It is found that the director field distortion induced by many particles leads to the screening of
the elastic pair interaction potential. This screening strongly depends on the shape of the embedded particles:
it exists for anisotropic particles and is absent for spherical ones. Our results are valid for the homeotropic
and the planar anchoring on the particle surface and for different Frank constants. We apply our results to
cylindrical particles in a nematic liquid crystal. In the system of magnetic cylindrical grains suspended in a
nematic liquid crystal, the external magnetic field perpendicular to the grain orientation results in inclining the
grains to the director and induces an elastic Yukawa-law attraction between the grains. The appearance of this
elastic attraction can explain the cellular texture in magnetically doped liquid crystals in the presence of the

magnetic field [2].
PACS: 61.30.Gd, 82.70.Dd, 64.70.Md

1. INTRODUCTION

Suspensions in liquids were recently given an inten-
sive consideration in science and technology. Colloid
suspensions of solid particles coated with a surfactant
and dispersions of liquid droplets form a medium have
attracted great interest in different practical applica-
tions including medicine [3, 4]. Small particles sus-
pended in a nematic liquid crystal make a new compos-
ite material with unique physical properties that origi-
nate from the orientational ordering of the liquid crys-
tal. Mechanical and optical properties of this medium
are primarily determined by the collective behavior of
these particles. Depending on their size and anchor-
ing energies, the particles form chains [5-7], anisotropic
clusters [8-10], or periodic structures [1, 11].

The origin of the structure formation is the over-
lapping distortions of the director field n caused by
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single particles. These distortions interfere and re-
sult in a fascinating anisotropic interaction between
particles. The director deformations greatly depend
on the particle sizes and anchoring energy. For the
normal anchoring, the director prefers to be normal
to the surface of the particles; for the planar anchor-
ing, the director prefers to be parallel to the surface.
For a strong anchoring, the boundary conditions on
n are fixed and impose topological constrains on the
director field around the particle. Topological defects
arising in this case cannot be removed from the par-
ticle. A single spherical particle with a strong nor-
mal anchoring induces a point topological defect called
the hyperbolic hedgehog. The droplet and the defect
form a dipole that was theoretically described with the
help of ansatz functions using the electrostatic anal-
ogy [5, 12]. Such dipoles play the dominant role in the
formation of chains. Terentjev et al. introduced the
Saturn-ring configuration with the quadrupole symme-
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try where a —1/2 disclination ring surrounds the sphere
along the equator. It was investigated by both ana-
lytical and numerical methods [13, 14]. For a finite
anchoring strength of the molecules at the surface, a
ring configuration occurs. In this configuration, the
director field is smooth everywhere, and a ring of tan-
gentially oriented molecules is located at the equator of
the sphere [14]. Using a Monte-Carlo simulation, Ruh-
wandl and Terentjev showed that the surface ring is
the preferred configuration for a sufficiently small an-
choring [15]. Stark showed that the transition from the
dipole to the Saturn-ring configuration can be achieved
by either decreasing the particle size or applying the
magnetic field or decreasing the anchoring [17].

In all the papers cited above, the behavior of spher-
ical droplets in a nematic liquid crystal was studied.
However, it was shown that there can be interest-
ing properties and new structures in suspensions of
anisotropic particles [1]. In 1970, Brochard and de
Gennes for the first time showed that the doping of
a nematic liquid crystal with ferromagnetic cylindrical
grains leads to a macroscopic collective behavior [19].
This behavior is manifested as a distortion of the uni-
form molecular orientation of the entire matrix upon
application of an external magnetic field. In other
words, magnetic grains rule over the orientation of the
entire nematic liquid crystal matrix. This was exper-
imentally confirmed by Chen and Amer [2, 20]. They
found that the doped nematic exhibits a cellular tex-
ture with the cells of the order of tens of micrometers at
the critical magnetic field H ~ 30 G. The magnetically
doped nematic liquid crystal system (DNLC) in the
magnetic field was theoretically examined by Burylov
and Raikher [21, 22|, but because the elastic interac-
tion between the grains was not taken into account, the
cellular texture itself has not found a satisfactory theo-
retical explanation. The first attempt to find the elas-
tic interaction between cylindrical grains in a nematic
matrix was made by Lopatnikov and Namiot [24], who
found the pair interaction potential for the weak an-
choring when the grains lie along the director.

A new approach to finding the pair interaction
potential between arbitrarily shaped particles for the
weak anchoring was proposed in [1]. This approach
allows finding the interaction potential for any orienta-
tion of the particles with respect to the director. The
pair interaction potential was found as the result of the
overlapping of distortions of the director field from two
particles. The general potential obtained in [1] reduces
to the results of Ramaswamy et al. [23] and Lubensky
et al. [12] for spherical particles and to the result of
Lopatnikov and Namiot [24] for cylindrical particles.
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For spherical particles, this potential differs from that
obtained by Ruhwandl and Terentjev only by the angu-
lar dependence of the interacting macroparticles with
respect to the director.

In this paper, we use the approach in [1] to con-
sistently account for the interference of the deforma-
tions of the director field from all particles embedded
in the liquid crystal. Distortions of the director field
from the other particles affect the interaction potential
between two chosen particles. We show that the col-
lective screening effect arises when the concentration of
particles is high. This screening effect is shown to be
essentially depending on the shape and orientation of
the particles and on the anchoring strength. For exam-
ple, the screening is absent for spherical particles and
is significant for anisotropic particles, e.g., cylinders.
When the cylinders are placed at an angle to the di-
rector, the screened Coulomb attraction of the Yukawa
form arising between them can lead to nontrivial con-
sequences. In this paper, we show that this potential
is responsible for the cellular texture in ferronematics
that was observed by Chen and Amer [2]. We show that
the effective charge in the screened Coulomb attrac-
tion greatly depends on the angle between the grains
and the director. It is zero in the equilibrium states
when the grains are parallel or perpendicular to the
director in the case of the planar or homeotropic an-
choring. The external magnetic field that is not parallel
to the initial orientation of the magnetic grains takes
them out of the equilibrium state; the effective charge
then arises because of the angle between the grains and
the director. We also show that the screening is not
always exponential but can be trigonometrical under
some conditions. It can occur only in the presence of
the external field when the angle between the grains
and the director exceeds the critical threshold.

In Sec. 2, we formulate the problem of finding the
elastic energy of a doped nematic liquid crystal follow-
ing the approach in Ref. [1]. In Subsec. 2.1, we find the
director distribution resulting from the interference of
the distortions induced by all particles. In Subsec. 2.2,
we consider the energy of these director distortions and
extract the screened pair interaction potentials from it.
In Subsec. 2.3, we find an analytical expression for the
pair interaction potential in the diagonal approxima-
tion. In Sec. 3, we find the elastic Yukawa attraction
of the magnetic grains in the liquid crystal in the pres-
ence of the external magnetic field. We consider the
system of many particles attracting in accordance with
the Yukawa law and find the conditions for the clump-
ing to occur in it. This allows us to explain the cellular
texture in ferronematics.
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2. FORMULATION OF THE PROBLEM

The free energy of a nematic liquid crystal is
given by

1
Fy, = 5 /d37’ {Kll(divn)z +

+Kss(n-rotn)® + Kz3(n x rotn)®}, (1)
where K;; are the Frank elastic constants and n is the
director. The macroparticles embedded in a liquid crys-
tal induce deformations of the director field. The sur-
face of these particles can be coated with different sur-
factants that orient the nematic molecules either nor-
mally or tangentially to the surface. The surface energy
can be written as

=Y W e e me?

where v(s) is the unit normal to the surface at the point
s on the surface and W (s) is the anchoring coefficient at
this point. In the general case, W(s) > 0 corresponds
to the planar anchoring and W(s) < 0 corresponds to
the normal anchoring. The integral is taken over the
entire surface of particle p. We assume that all parti-
cles have the same orientation in space (for example,
with the help of the external field), but their centers of
mass can move freely under the action of the resulting
elastic potentials in order to minimize the total free en-
ergy of the system. The total free energy is the sum of
the bulk and surface energies:

F =I5+ F. (3)

We do not consider the distribution entropy part
of the free energy, because it does not affect the direc-
tor distribution and is irrelevant for finding the elastic
interaction potential between particles.

We consider the case of the weak anchoring, where
Wro/K < 1 (weimply the absolute value of W), where
ro is the smallest size of the particle, e.g., the radius
of the sphere or the cylinder. For the homeotropic an-
choring and spherical droplets, this corresponds to the
surface ring configuration [13, 14]. In this case, we
assume that the director distortion from the homoge-
neous state ng is small everywhere:

n(r) =ng +0n(r), |dn| <K 1. (4)

Under this assumption, the director smoothly varies
from point to point and no topological defects arise in
the vicinity of particles. This is a consequence of the
weak anchoring strength and of the small particle size
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(we consider particles with the size less than 1 um,
which only slightly distort the director for the real an-
choring strength [15]). We can use the Fourier repre-
sentation for the director in the entire space, thereby
considerably simplifying the problem.

In the Fourier representation, we have

fnr) = ﬁ / Pqexp(~iq-r)én(a).  (5)

Inserting (5) in bulk Frank energy (1), we obtain
1

1
L= =

2 (27)3 /dsq {Kll la- 6H(Q)|2 +

+ K [n % ] - 0n(a)|” + K3 (n- a)dn(a)’} . (6)

To simplify this expression, we choose the special basis

_ (g1 xng) _qL
e =—— e =—,
qL q1L (7)
€3 =ng, (| =ng xX(q.

We then have q = (¢.,0,q) and én = (dn1,0ns,0),
and Eq. (1) therefore reduces to

1
2m)3

sz X

DO | =

(
x Z/d?’q {Kn’qi + Ks3Qﬁ} |5ni(Q)\2 - (8

Because we assume that the director smoothly varies
from point to point and relation (4) is true, we can con-
sider the director to have a given value inside the vol-
ume of the particle. This assumption is valid if the to-
tal volume of the suspended particles is much less than
the entire volume of the system, i.e., the volume frac-
tion of the particles is small, cv < 1, where ¢ = N/V
is the concentration and v is the volume of a particle
(the «gas» approximation). For the real system [2],
c=10"em 3, v ~ 1071 em?, and cv ~ 1077, and
our assumption is therefore true.

The director on the surface can therefore be ex-
pressed through the director at the center of mass R,
of the particle and its derivatives,

n(s) = n(R,) + (4V)5n(R,) + 1 (o7)"on(Ry).

where p is the vector drawn from the center of mass to
the point s on the surface. The complete expression for
the director on the surface through the director at the
center of mass of the particle is therefore given by

n(s) = ng + én(R,) + (pV)on(R,) +

+ 5 (V)n(R,). (9)
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We now fix a coordinate system (z,y, z) where the z ong = _1(671?5 + 6715)
axis is parallel to the undeformed director ng and z and 2
y are perpendicular to it. This system is firmly fixed ~ The surface energy is then written as
in space. We next substitute director field (9) in the _ () (1) 2)
scalar product (n(s)-v(s))? and also include the second By = BV + Fo7 + B, (11)
powers of the perpendicular director deformations dn,
and dn,. We thus write Fs(o) _ N%dsW(s)(zx(s) ‘no)2, (12)
(v(s) -n(s))*> = (v-mg)? 4+ 2(v -ng)(v - én) +
+2(v-ng)(p-V)(v-on)+ 0
+2(v-m9)(p- V)2 (v-om) + (v-6n)?, (10) o= Z%dsW(s)yt”mkls x
P
where x {20n,ki, + 2(pV)onu ki, + (pV)*0nyuki, },  (13)
v=uv(s), on=odnR,).
We note that this expression involves two smallness pa-
rameters. The first is the perpendicular component of FS(Z) = Z % dsW (s)vivm X
the director, »
Snal, [ny| ~ &, Ong ~ e, X [6nudnyklukmy — (0n2 + 5n§)klgkm3] ,  (14)

and the second is the ratio o = p/l,, of the particle
size to the average deformation length [,, of the direc-
tor. In [1], the respective terms proportional to e, ge,
and p?c were taken into account. The expansion in
o0 is equivalent to the multipole expansion in [12]. In
this paper, we also take the last term proportional to £2
into account. This term is not essential at the distances
comparable to the average distance between particles,
as we see below, and it can therefore be omitted for the
systems considered in [6, 7, 12], where the concentra-
tion of dispersed particles is small. It becomes essential
for dense colloids, where there are too many particles
and where the interference of the distortions from all
particles is considerable. In [12], |dn,| (with u = z,y)
was shown to fall off as R=2 and R~ 3, depending of the
dipole or quadrupole symmetry. We thus conclude that
¢ ~ 0? for the third term, which has the dipole symme-
try (and €2 < gc in this case), and ¢ ~ g% (¢2 < ¢%¢)
for the fourth term with the quadrupole symmetry. In
any case, taking the last term into account gives only
small corrections at the average distances and for a
small number of particles. As we see below, this is es-
sential in the collective effect of the screening at large
distances, where the concentration of particles is high.
We specifically clarify this problem in what follows.

For this, we write the scalar products (v(s) - n(s))
in the local basis (ki, ks, ks) associated with each par-
ticle. For example,

v(s)m(s)= Y (v-k)(On-k) = vdnyki, +vidnsk,,

1=1,2,3

l/[:(l/'k[),, klgzk['l’lg,
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where N is the total number of particles in the entire
volume V of the liquid crystal matrix and the respective
surface terms Fsl) and Fs(2 are linear and quadratic in
on,. Following [1], we now define several tensors in
the basis (ki,ks,ks) that characterize the anchoring
energy,

ap = 2%dsW(s)vk(s)le(s),
Buim = 2 f dsW (5)1 ()1 (5) pm (5),
- f dsW (3)k ()1 (5) P (3) o (5).

The elastic energy F;, i.e., the energy of deformations
of the director field, is then given by

Fu=Fy+F"+F?, (16)
Fs(l) = Z {qu + ﬂlms(ks : V)+
p
+ Yimst (ks : v)(kt : v)} 6nuklu kmga (17)
F® = .
2
X Z A (0001, ki, e, — (6054002 ki, Ky ] - (18)
P

The main difference between this paper and [1] is
in taking term (18) into account. It is quadratic in
the director deformations and can be regarded as the
contribution of all particles to the interference of distor-
tions. Precisely this term leads to the screening effects.
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Fig. 1. Orientation of a cylindrical particle. The parti-
cle lies in the zng plane at the angle 6 with the direc-
tor

Some of its features can be considered without finding
the director. For example, it is clearly seen that it van-
ishes for spherical particles. Indeed, oy, = ady, and
ki, ki, = 0y, for the sphere, and therefore, FS(Q) =0.
For any other shape, Eq. (18) does not vanish. To
describe its effect analytically, we go to the continuum
limit in this expression and replace the summation with
the integration over the entire space,

Z — c/dV,
P
where as before, ¢ = N/V is the concentration of par-
ticles:
RO =g / AV 01,0 (%)510 (%),

5H,, = Qm [k[“ km,, — klgkm35,“,] .

(19)

We thus consider the interference of only longwave-
lengh distortions of the director field. In the Fourier
representation, we have

C

(2) —
2 (27)?

/ P giong(@dni(@). (20

The tensor a, is here taken in the (z,y,z) coordi-
nate system, which is not convenient. It is much more
suitable to write the surface energy and the bulk energy
in Eq. (8) in the same basis (e, e>, e3). This basis is ro-
tated by the angle 1)(q) with respect to (z,y, z) around
the z axis (Fig. 1). In the new basis, the director has
the components dn = (dny,dn2,0) and dn, = w,on;
(with 4 = 2,y and ¢ = 1,2). The rotation matrix is

given by
cos Y
Wi = .

sin v

—siny
cosy)
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In the basis (e, eq, €3), the surface energy becomes
1
> o [ e
~ 2(2m)

x {exp(—iq-rp)a), (0n(q) - kpy)+

+ exp(iq - rp)am(dn*(q) - kn)}, (21)

Am = (kl ' n[)) [alm+iﬂlms(q . ks)_'}/lmst(q : ks)(q ' kt)] s

A c .
F® = 2(2—71_)3 /dgqaij5ni(Q)5nj (a), (22)
aij = wiTua,“,w,,j. (23)

We now add the bulk energy F, and the surface
energy F and find the total energy of the system

Ftotal = Fs(o) +Fel

with the elastic energy

el —

/ d*qVi; (@)dn; (q)on’ () +

2 (27)?
+0; (a)dni(a) + bi(a)dni (a), (24)
Vij(a) = (Kiiql + Kazqf)dij + caij, (25)
bi(q) = Z exp(iq - rp)amkm;. (26)

p

Here, m = 1,2,3, 4,5 = 1,2, and dn;(q) and k,,, are
the projections of these vectors on the basis (eg, €2, e3).

2.1. Director distribution in the doped
nematic liquid crystal

Having found the complete expression for the elastic
energy of a liquid crystal with particles, we can find the
director at any point of the system from the extremum
condition

1)
WFel = Vij(@)oni(q) + bj(q) =0, 2
ni(a) = =Vy; (a)bj(a).

In the matrix form, the last equation becomes
éni(q)

( nz(q) )

1

D

Vs
~Via

—Via
Vi
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where
D =V Vo — V3.

We can make some general conclusions from this ex-
pression concerning the behavior of the director. Dis-
tortions decrease far from the particle. However, the
denominator D can vanish for some wave vectors q,
which corresponds to the appearance of oscillations of
the director field. The origin of the director oscillations
is purely collective, because the effect depends on the
concentration Vis ~ cais. It also depends on the shape
of the particles and their orientation with respect to the
undeformed director ng. We assume that these oscil-
lations can be observed experimentally, because they
must lead to the scattering of electromagnetic waves
with wave lengths commensurate to the oscillations pe-
riod. Equation (28) seems to imply that

A~/ K/ca,

where «a is the average value of the tensor a;,,; from
Eq. (15), we have

Am, ™~ WS,

where T is the anchoring energy and S is the area of
the particle. The resonance wave length is therefore
roughly estimated as

Ares ~ /KJWeS. (29)

For example,
grains [2], the parameters are given by ¢ ~ 10'° cm
S =~ 2w RL, the radius of the grain is R ~ 0.05 um, the
length L ~ 0.5 um, the elastic constant K ~ 1077 dyn
and the anchoring energy W ~ 1072 dyn/cm. We
then find \,.s &~ 30 um. Because it is always possible
to vary the concentration and the anchoring energy,
the resonance wave length can be in the range A ~ 10—
100 pm. In any case, this length must be larger than
the average distance between the particles, A > (I).
For the experiment in [2], () =~ 4pum and all the
assumptions are therefore valid. In the domain with
the size about 30 um, there are approximately 500
particles and their collective interaction can induce
long-wavelength oscillations of the director field.

in the experiment with cylindrical
-3

2.2. Elastic energy and the pair interaction
potential between particles

Having found the director field, we insert Eq. (28)
in (24) and obtain the elastic energy of the director
deformations in the DNLC:

/ Vs (@b (@)bs(@) < 0. (30)

el = —

2 (2m)?
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The negative sign implies that the total free energy
F=F9% 4+ F,

evaluated for solution (28) is less than the energy
F = FS(O) for the undeformed director field ng. The
total energy F; can be represented as the sum of the
pair potentials between two particles. Indeed, we in-
troduce the operator Em such that

Ape'dT = q,,e' T, (31)
‘Zl\m = (kl : 1'1(]) [alm + ﬂlms(ks . V)-l-
+ 'Ylmst(ks . v)(kt . v)] . (32)
The elastic energy Fy; then takes the form

1

Fa =5 Z Upp' (33)
PP
R V5 T
pp (271_)3 m*tm

X / dqexplig(ry —ry)] Vi (@km k. (34)

The expression Up, has the meaning of the pair interac-
tion potential between particles p and p’ that is caused
by long-range deformations of the director field. The
subscript p indicates that we must substitute

oo 0
ory

in the operator A\ﬁl. This expression is valid for parti-

cles of the ordinary shape and orientation. It accounts

for screening effects that arise from the interference of

the director field distortions by all particles.

2.3. Pair potential in the diagonal
approximation. Analytical results

Although expression (34) is exact, it is too diffi-
cult to find the results analytically. In the most gen-
eral case, the pair potential U(R, ) depends on all the
three components of the radius vector R = r, —r, and
on three Euler angles 2 that determine the orientation
of particles in space (we assume that all particles are
oriented in the same way, and all of them therefore have
the same Euler angles). To take the screening effects
into account analytically, we consider particles with the
rotational symmetry around one axis. For such parti-
cles, the pair potential U(R,6) depends on the angle 6
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between this symmetry axis and the director. If § = 0,
all particles are parallel to the director. In this case,
the entire DNLC has the rotational symmetry around
the director ng and the pair potential U(RL, R) de-
pends on the perpendicular and parallel projections of
R with respect to ng. But in the case where 6 # 0, the
second preferential direction arises in the system, the
direction along which all the particles lie. We project
this direction on the plane perpendicular to the director
and let s denote the projection,

s-ng = 0.

We then have the potential U = U(R L, R)|, ¢, ), where
¢ is the azimuthal angle between R and s.

To obtain analytical results, we average over the
angle ¢. For this purpose, we average the tensor a;;
in Eq. (23) over the angle ¢ and drop the off-diagonal
terms; we call this the diagonal approximation:

aij (1, 0) = (aij)y =
aip +az 0

1
= E 0 = a(G)dij, (35)

a1 + a2

where

a(G) = 5(611 +622).
This approximation makes the propagator V. ( ) di-
agonal and allows us to take all the 1ntegrals analyt-
ically. The diagonal approximation is exact only for
# = 0, when the entire system has the rotational sym-
metry in the zy plane. The coefficient a(f) depends on
the shape of the particles. For example, for cylinders
with R <« L, we have

a(f) = TRLW (2 — 3sin26),
and for flat (pancake) particles with R > h,
a(f) = 2nR*W (1 — 3cos? 6)

(where 6 is the angle between the normal to the pancake
plane and the director). In the diagonal approximation,
the propagator therefore becomes

Vil(q) =

ij

(I(,’iqi + K’33qﬁ + ca(G))’léij (36)

and the pair potential is given by

L o .
Upp = _WAl Ap [T (R)], (37)
Iy (R) = Iy (R) + Ly (R), (38)

Lip(R) =
/dSqelq R( [ql X 1’10] (kl' i [ql X 110]) (39)
a (lﬁnql + B3sqﬁ + ca(@))

/dgqe (o -a0) (i a)
a? I&ggqj_ + A33qH + ca(t‘)))

(40)

It is easy to integrate over q in Eqs. (39) and (40)
using the coordinate system with the basis

r_RJ_Xl’lg r_&
' R ! R (41)
rs = nop, RJ_:IIOXR.

This basis is rotated with respect to the one in (7) by
some angle ¢ about the axis ny. The quantities ¢; and
q are similar in both bases. We therefore have

exp(—iq-R) = exp {—i [QJ_RJ_ cosp + qHRH] }

and the denominators of the fractions involved in (39)
and (40) do not depend on the angle ¢. Integrating over
©, we obtain

o0
Lur (R W/dquu X

0
x { Qi (gL R) + (~1)"Qp a(arR1) |
7 exp(—quRH)
d
x / a (Kuug? + Kggqﬁ + ca(f))

— 00

;o (42)

where © = 1,2 and
Q) = (r k)(r k) £ (r

and Jy and Js are the Bessel functions.

In order to calculate these integrals, we must thor-
oughly scrutinize the function a(f). As mentioned
above,

2 - ky)(ra - ky)

a(f) = TRLW (2 — 3sin26)

for cylindrical grains. The case where W > 0 corre-
sponds to the planar anchoring, and W < 0 corre-
sponds to the normal anchoring. For the planar an-
choring, the equilibrium state of the grains is § = 0
and

Aplanar(0) = 2rRLW > 0,

and for the normal anchoring, the equilibrium state is
6 =7/2 and

anormal(ﬂ'/2) = —m7RLW > 0.

877
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We thus see that a(f) > 0 in the equilibrium state
independently of the anchoring type. But if the grains
have a magnetic moment, the external magnetic field
can lead the grains into the states where a(f) < 0. This
occurs if

arcsin\/2/3 <0 < /2

for the planar anchoring and if

0 < 0 < arcsiny/2/3

for the homeotropic anchoring. These states exist only
because of the magnetic field. Both cases must there-
fore be considered. We first consider the case where
a(f) > 0, which corresponds to the equilibrium states

or the case of weak external fields. We write I;7(R)
for I, (R) in this case. We introduce
_ K _ _[ca(8)
Dy = Kas RH, s=R;, z,= Ko .

Iezp

After the integration over the ¢, il

(R) becomes

Jerp

pll’ (R) =

5 [
m
f/dqiqi X
\/Iﬁuulﬁgg )

exp (—p,“ [ + zﬁ)
Vit

X {QZ,L[/JO(SM) + (=1)"Q;J2(sq1)

X

X

}

(43)
For the Bessel functions, we have the relation
v, (x) = ey (x) + ady 1 (),

which for v = 1 gives

2

JQ(QE) = Ejl(x) - Jo(év)
The corresponding integrals involving J; (2) and Jo(x)

are given by

e_pu qi+23
/dqi Ji(sqr) =
0 i + z;
= |:e_17u2u — e vV py+s? (45)
SZN
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Using these relations, we find

7].2

Niomet LR
exp (20 )

erp
Iull’

(R)

X

2
+(-D)*Q; , —— %
L s2z,

X [exp (—Ppzu) — exp (—zm /P2 + s )} } . (46)
The pair interaction potential is then given by
1
pp = _(27)3 X
x AP AP (I8P (v, — 1) + ISP (v, — )] (47)

This is the potential of the elastic interaction between
any particles in the diagonal approximation. It de-
pends on the three components of the radius-vector
R =r, —r, between particles.

In the one-constant approximation where
K,, = K3 = K, the potential depends only on
the scalar of the vector R,

Qi 2y [exp(=E[r, — 1y)
Upp = ———AVAJ, L__P 48
pp dp [ lrp—ry | ' (48)
K
-1
0) = . 49
0=\ (49)

It is clearly seen that collective distortions of the
director lead to the screening of the pair interaction
potential with the screening length

¢~ JE/WeS

(where W is the absolute value of the anchoring en-
ergy and S is the area of the particle). This screening
occurs both for the homeotropic and for the planar an-
choring. Because the concentration is only involved in
the inverse screening length &, the limit as ¢ — 0 gives
& = 0 and brings us back to the unscreened result of Lev
and Tomchuk [1], which is equivalent to the result of
Lopatnikov and Namiot [24] for asymmetric cylinders.
All this is true only if £=! >> (1), where (I) = 1/¥c is
the average distance between particles. We thus write
the condition on the anchoring strength under which
our approach is applicable:
K

WL —7.

7es (50)
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2.3.1. Field-induced trigonometric screening

If the grains have the magnetic or electric moment,
the external magnetic or electric field can change the
angle f between them and the director, which can re-
sult in a(f) < 0. To find the potential in this case, we

must replace
2z, — tiz,

in (46) and take half the sum of the two expressions,

I”p(—izu,R)] . (51

trig
I pll’

1
ull’ ~3 [Iew(izuvR) +

(R) = [

which gives
2

m " e
E—— 1 + _1 et i X
VK K33 { [Ql’l (=1 Ql’l]
oS ( 244 /D% + 82

\/Pi + 8
2 Ty ; [p2 1 g2
X —— |sin(puzy) — sin(zuy/p3 + 5 )} . (52)

The pair interaction potential then takes the form

]irig

pll! (I{)

+ (—1)u+1Qz_,z' X

1
(2)°

-~ ~_ 1 .
P AD trig
x A A} [qu' (rp

X

Upp’ = —

I vy —vp)| - (53)

—rp) +

In the one-constant approximation, this becomes

Qlfl’ wp 7 [ cos(€rp —rp)
UIDP’ - _471_1(141 Al’ [ﬁ} 3 (54)
where
K
€1 (0) =
&=\

The screening becomes trigonometrical. We have ob-
tained this result in the diagonal approximation after
averaging over the azimuthal angle . Beyond the di-
agonal approximation, the screening length ¢~ (¢, 6)
actually depends on the azimuth, and the exponential
screening €71 (¢, 0.) is therefore different in different
directions. Changing the external field changes the an-
gle 0, and at a certain critical angle 6., the screen-
ing length £~ (p,6.) can become infinite in some di-
rections determined by ¢; the screening thus vanishes
along these directions. Subsequently increasing the
field makes the screening trigonometrical along these
directions. The screening is therefore exponential along
certain directions and is trigonometrical along others,
but it is absent on the intersections.

T ; R
— 1 1 1 [ e | 1 1 1 T
I e e
| m—— ' ) —— 1 | —— i | —
e R T T S T o A S -
<L R T T R
! R T U Y N B
~. I~ -. ! H
Ho: TSN~ TN~ T~
h e S
h Lo
h h

/

v
e

.

/
-/

i
T A
e 1N ! L=

0<0<m/2

Fig.2. Aggregation of magnetic grains in a ferrone-

matic upon application of the magnetic field

3. EXPLANATION OF THE CELLULAR
TEXTURE IN FERRONEMATICS

In 1970, Brochard and de Gennes proposed dop-

ing the liquid crystal matrix with ferromagnetic grains
to allow the coupling of the liquid crystal molecular
orientation to weak external fields [19]. The authors
treated such a system theoretically and predicted the
Freedericks effect in weak magnetic fields H ~ 10 G.
The doped matrix therefore exhibits a collective orien-
tational distortion in weak magnetic fields. They also
predicted segregation effects, i.e., a smooth change of
the grain concentration ¢(R) from point to point in
the magnetic field. In [2], the authors experimentally
observed the collective behavior in the MBBA doped
with magnetic grains, which is exhibited as a long-range
uniform distortion of the molecular orientation of the
entire sample upon application of a weak magnetic field
H < 1 G. In that experiment, the grains were coated
with DMOAP, which provides homeotropic anchoring
on their surfaces, thereby making the magnetic grains
lie perpendicular to the nematic director in the absence
of the magnetic field.

This system was theoretically studied by Burylov
and Raikher [21, 22]. Tt was shown that under apply-
ing the magnetic field H, there is an angle between the
grain dipole moment direction m (which is the unit vec-
tor along the grain) and the director ng; the angle is
different from 7 /2 or 0 for a finite anchoring, as shown

in Fig. 2.
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To describe the experimental results on the depen-
dence of the field-induced birefringence on the strength
of the applied field, on the concentration of the mag-
netic dopant, and on the thickness of the nematic cell,
Burylov and Raikher proposed the free energy density
functional

1
F= 5 [Kn(div n)? 4+ Ko (n - rotn)?+

+ [(33[1’1 X rot n]2] —
fEoTIn f fWA(m - m)?
v d ’

— M,f(m-H) + (55)
where f = cv is the volume fraction occupied by the
particles, v is the particle volume, Mj is the magnetiza-
tion inside the grains, d is the diameter, and A ~ 1 is a
constant. This functional differs from the one proposed
by Brochard and de Gennes only by the last term. The
last term accounts for the weak anchoring under which
0 < 6 < 7/2. Minimization with respect to f (keeping
the number of particles fixed) leads to

where fo is found from the total number of grains

p(m - H)
ky T

W Av(n - m)?
dkyT

f = foexp [ (56)

f=Nv= /f(r)dV.

It was found that the particles accumulate in the center
of the cell under applying the magnetic field (Fig. 2).
For weak fields H < 10 G, the dependence f(z) (where
z is the axis perpendicular to the cell, with z = 0 in
the center) is given by [21]

= p>D?*(1 — 1222/ D?)
K33v

1/2
A - < f ) '
2fkyT

D is the thickness of the cell (D > 100 um),

(57)

where

p=MuH/kT, M, ~340 G,

and v ~ 2 - 107 cm?. At higher fields, the concentra-
tion in the center is increased faster, which was proved
by computer simulations. But on reaching the field
H ~ 30 G, experiment shows [2] that the uniform ori-
entational distortion is replaced by a new field-induced
cellular texture with the cells having dimensions on the
order of tens micrometers. At the critical concentration
in the center, magnetic particles clump into aggregates.
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This clumping had no explanation, because the mag-
netic dipole—dipole interaction is much smaller than the
interaction with the external magnetic field. Indeed,
the magnetic moment u = M v induces the interaction

Eqa = 0’/ R?,

where R is the average distance between particles,
R? ~ ¢~ 10' cm?, and therefore, By ~ 4-1071° erg,
The energy of the interaction with the external mag-
netic field H ~ 10 G is B = uH ~ 3-10~'% erg, and
hence, Efg > Fgq.

We explain this field-induced cellular texture by the
clumping of the grains caused by elastic deformations
of the director, i.e., by the elastic interaction between
particles. In the one-constant approximation, this po-
tential is given by Eq. (48). In the operators A\f in (32)
we keep only the first term

3

A =i (k; - ng),

because the other terms give higher powers in 1/R. For
the cylinder, the tensor

A, = 27{d8W(s)yl(s)ym(s)
has the components
Q11 = Qo = dL7W, azz = d27rW,
and oy, = 0 for the others. Hence,
agz/a; =d/L ~0.1,

and we can neglect agz. We thus obtain

a2, sin? f cos® § exp(—¢ (6) R)

Uey(R) ArK R

(58)

Cylindrical grains therefore attract each other in ac-
cordance with the Yukawa law if 6 # 0, 7/2, which is
possible in the inclined external field. In the absence
of the field, the equilibrium orientations are § = 0, /2
(dependening on the planar or normal anchoring [25])
and the potential becomes that obtained by Lopatnikov
and Namiot [24], which is proportional to 1/R3. We set

a3, sin® A cos? f
AT K

We next consider the system of particles with the
concentration ¢ and the interaction law

exp(=¢r)

e— > 7

U(r) = .
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The free energy density of this system is written as

T
F= %/f(R) In f(R)dV +
1
T o /f(R)f(R+r)U(r)der. (59)
We must find the condition for the loss of stabil-

ity in this system of attracting particles. We write the
concentration as

f(R) = fo+f(R),

where fo is the ground volume fraction. Expanding

FR41) % fR) + (0 V)F(R) + 3 (e VP f(R),
we obtain
F—FO:%/N6f2(R)+M(V5f)2., (60)

T
o v

1 o0
N + U—Q/U(r)dr.,

oo

1 2
M = —W/U(r)r dr,

To

where rq is the size of the particle. Inasmuch as U < 0,
a phase transition occurs for N < 0. In our case,
érg < 1 and we can therefore write

__2KT  4me
T fov €02
N 127e
~ W.
Below the critical point,

N 4me
~ —521)2'

The length of the first instability is

2M 1
inst — -~ . 1
lnst =\ 2 % ¢ (61)

As discussed above, l;,5; & 30 um, which is in a good
agreement with the experimental size of the cells [2].

8 ZKOT®, Bem. 4 (10)

4. CONCLUSIONS

We have derived the potential interaction for parti-
cles of the ordinary shape doped in the nematic liquid
crystal. We have taken the collective screening effects
into account, which is essential for the real colloid sys-
tems. It is found that the shape of the particles es-
sentially influences the screening effects, which exist
for both the homeotropic and the planar anchoring.
Screening is absent for spherical particles. Anisotropic
particles (e.g., cylinders) with the magnetic or electric
moment in the presence of the inclined external mag-
netic or electric field induce oscillations in the director
distribution with the period about A\ ~ 10-100 ym de-
pending on the anchoring, the concentration, and the
magnitude of the external field. In this case, selective
scattering of the electromagnetic waves on these oscil-
lations may be observed for electromagnetic waves in
this range.

It is found that cylindrical grains inclined to the di-
rector attract via the Yukawa law. This explains the
cellular texture in ferronematics. Application of the
external magnetic field changes the orientation of the
magnetic grains with respect to the director, which can
lead to essentially changing the screening effects. In
particular, this can lead to the trigonometric screening
of the pair interaction.

Collective effects in doped nematic liquid crystals
strongly depend on the anchoring strength, on the
particle shape and concentration, and on external
fields and make DNLC a marvellous medium for a
further experimental and theoretical exploration of the
different structures originating from deformations of
the director field.
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Ne637.

REFERENCES

1. B. I. Lev and P. M. Tomchuk, Phys. Rev. E 59, 591
(1999).

2. S. H. Chen and N. M. Amer, Phys. Rev. Lett. 51, 2298
1983).

3. D. A. Soville, W. B. Russel, and W. R. Schowaiter, Col-
loidal Dispersions, Cambridge University Press, Cam-
bridge (1989).



S. B. Chernyshuk, B. I. Lev, H. Yokoyama

MIT®, Tom 120, Bein. 4 (10), 2001

3

10.

11.

12.

13.

14.

15.

A. P. Ruhwandl and E. M. Zukoski, Adv. Collid. In-
terface Sci. 30, 153 (1989).

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz,
Science 275, 1770 (1997).

P. Poulin and D. A. Weitz, Phys. Rev. E 57, 626
(1998).

P. Poulin, V. Cabuil, and D. A. Weitz, Phys. Rev. Lett.
79, 4862 (1997).

P. Poulin, V. A. Raghunathan, P. Richetti, and
D. Roux, J. de Phys. I 4, 1557 (1994).

V. A. Raghunathan, P. Richetti, and D. Roux, Lang-
muir 12, 3789 (1996).

V. A. Raghunathan et al., Mol. Cryst. Liq. Cryst. 288,
181 (1996).

B. I. Lev, H. M. Aoki, and H. Yokoyama, submitted to
Phys. Rev. E.

T. C. Lubensky, D. Pettey, N. Currier, and H. Stark,
Phys. Rev. E 57, 610 (1998).

E. M. Terentjev, Phys. Rev. E 51, 1330 (1995).

0. V. Kuksenok, R. W. Ruhwand]l, S. V. Shiyanovskii,
and E. M. Terentjev, Phys. Rev. E 54, 5198 (1996).

R. W. Ruhwandl and E. M. Terentjev, Phys. Rev. E
56, 5561 (1997).

882

16

17.

18.

19.

20.

21.

22,

23.

24.

25.

. R. W. Ruhwandl and E. M. Terentjev, Phys. Rev. E
55, 2958 (1997).

H. Stark, submitted to Eur. Phys. J. B.

H. Stark, J. Stelzer, and R. Bernhard, submitted to
Eur. Phys. J. B.

F. Brochard and P. G. De Gennes, J. de Phys. 31, 691
(1970).

B. J. Liang and S. H. Chen, Phys. Rev. A 39, 1441
(1989).

S. V. Burylov and Yu. L. Raikher, Mol. Cryst. Liq.
Cryst. 258, 123 (1995); Izv. Akad. Nauk. SSSR, Ser.
Fiz. 55, 1127 (1991).

S. V. Burylov and Yu. L. Raikher, J. Magn. Magn.
Mater. 122, 62 (1993).

S. Ramaswamy, R. Nityananda, V. A. Raghunathan,
and J. Prost, Mol. Cryst. Liq. Cryst. 288, 175 (1996).

S. L. Lopatnikov and V. A. Namiot, Zh. Eksp. Teor.
Fiz. 75, 361 (1978).

S. V. Burylov and Yu. L. Raikher, Phys. Rev. E 50,
358 (1994).



