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COLLECTIVE EFFECTS IN DOPED NEMATICLIQUID CRYSTALSS. B. Chernyshuk a*, B. I. Lev a;b, H. Yokoyama ba Department of theoreti
al physi
s, Institute of Physi
sNational A
ademy of S
ien
es of Ukraine03039, Kyiv, Ukraineb Japan S
ien
e and Te
hnology Corporation,Yokoyama Nano-stru
tured Liquid Crystal Proje
tTsukuba Resear
h Consortium 5-9-9Tokodai,Tsukuba, Ibaraki 300-2635, JapanSubmitted 28 February 2001We study the 
olle
tive elasti
 intera
tion in a system of many ma
roparti
les embedded in a nemati
 liquid
rystal. A theoreti
al approa
h to the intera
tion of ma
roparti
les via deformation of the dire
tor �eld [1℄ isdeveloped. It is found that the dire
tor �eld distortion indu
ed by many parti
les leads to the s
reening ofthe elasti
 pair intera
tion potential. This s
reening strongly depends on the shape of the embedded parti
les:it exists for anisotropi
 parti
les and is absent for spheri
al ones. Our results are valid for the homeotropi
and the planar an
horing on the parti
le surfa
e and for di�erent Frank 
onstants. We apply our results to
ylindri
al parti
les in a nemati
 liquid 
rystal. In the system of magneti
 
ylindri
al grains suspended in anemati
 liquid 
rystal, the external magneti
 �eld perpendi
ular to the grain orientation results in in
lining thegrains to the dire
tor and indu
es an elasti
 Yukawa-law attra
tion between the grains. The appearan
e of thiselasti
 attra
tion 
an explain the 
ellular texture in magneti
ally doped liquid 
rystals in the presen
e of themagneti
 �eld [2℄.PACS: 61.30.Gd, 82.70.Dd, 64.70.Md1. INTRODUCTIONSuspensions in liquids were re
ently given an inten-sive 
onsideration in s
ien
e and te
hnology. Colloidsuspensions of solid parti
les 
oated with a surfa
tantand dispersions of liquid droplets form a medium haveattra
ted great interest in di�erent pra
ti
al appli
a-tions in
luding medi
ine [3, 4℄. Small parti
les sus-pended in a nemati
 liquid 
rystal make a new 
ompos-ite material with unique physi
al properties that origi-nate from the orientational ordering of the liquid 
rys-tal. Me
hani
al and opti
al properties of this mediumare primarily determined by the 
olle
tive behavior ofthese parti
les. Depending on their size and an
hor-ing energies, the parti
les form 
hains [5�7℄, anisotropi

lusters [8�10℄, or periodi
 stru
tures [1, 11℄.The origin of the stru
ture formation is the over-lapping distortions of the dire
tor �eld n 
aused by*E-mail: 
hernysh�iop.kiev.ua

single parti
les. These distortions interfere and re-sult in a fas
inating anisotropi
 intera
tion betweenparti
les. The dire
tor deformations greatly dependon the parti
le sizes and an
horing energy. For thenormal an
horing, the dire
tor prefers to be normalto the surfa
e of the parti
les; for the planar an
hor-ing, the dire
tor prefers to be parallel to the surfa
e.For a strong an
horing, the boundary 
onditions onn are �xed and impose topologi
al 
onstrains on thedire
tor �eld around the parti
le. Topologi
al defe
tsarising in this 
ase 
annot be removed from the par-ti
le. A single spheri
al parti
le with a strong nor-mal an
horing indu
es a point topologi
al defe
t 
alledthe hyperboli
 hedgehog. The droplet and the defe
tform a dipole that was theoreti
ally des
ribed with thehelp of ansatz fun
tions using the ele
trostati
 anal-ogy [5, 12℄. Su
h dipoles play the dominant role in theformation of 
hains. Terentjev et al. introdu
ed theSaturn-ring 
on�guration with the quadrupole symme-871
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lination ring surrounds the spherealong the equator. It was investigated by both ana-lyti
al and numeri
al methods [13, 14℄. For a �nitean
horing strength of the mole
ules at the surfa
e, aring 
on�guration o

urs. In this 
on�guration, thedire
tor �eld is smooth everywhere, and a ring of tan-gentially oriented mole
ules is lo
ated at the equator ofthe sphere [14℄. Using a Monte-Carlo simulation, Ruh-wandl and Terentjev showed that the surfa
e ring isthe preferred 
on�guration for a su�
iently small an-
horing [15℄. Stark showed that the transition from thedipole to the Saturn-ring 
on�guration 
an be a
hievedby either de
reasing the parti
le size or applying themagneti
 �eld or de
reasing the an
horing [17℄.In all the papers 
ited above, the behavior of spher-i
al droplets in a nemati
 liquid 
rystal was studied.However, it was shown that there 
an be interest-ing properties and new stru
tures in suspensions ofanisotropi
 parti
les [1℄. In 1970, Bro
hard and deGennes for the �rst time showed that the doping ofa nemati
 liquid 
rystal with ferromagneti
 
ylindri
algrains leads to a ma
ros
opi
 
olle
tive behavior [19℄.This behavior is manifested as a distortion of the uni-form mole
ular orientation of the entire matrix uponappli
ation of an external magneti
 �eld. In otherwords, magneti
 grains rule over the orientation of theentire nemati
 liquid 
rystal matrix. This was exper-imentally 
on�rmed by Chen and Amer [2, 20℄. Theyfound that the doped nemati
 exhibits a 
ellular tex-ture with the 
ells of the order of tens of mi
rometers atthe 
riti
al magneti
 �eld H � 30 G. The magneti
allydoped nemati
 liquid 
rystal system (DNLC) in themagneti
 �eld was theoreti
ally examined by Burylovand Raikher [21, 22℄, but be
ause the elasti
 intera
-tion between the grains was not taken into a

ount, the
ellular texture itself has not found a satisfa
tory theo-reti
al explanation. The �rst attempt to �nd the elas-ti
 intera
tion between 
ylindri
al grains in a nemati
matrix was made by Lopatnikov and Namiot [24℄, whofound the pair intera
tion potential for the weak an-
horing when the grains lie along the dire
tor.A new approa
h to �nding the pair intera
tionpotential between arbitrarily shaped parti
les for theweak an
horing was proposed in [1℄. This approa
hallows �nding the intera
tion potential for any orienta-tion of the parti
les with respe
t to the dire
tor. Thepair intera
tion potential was found as the result of theoverlapping of distortions of the dire
tor �eld from twoparti
les. The general potential obtained in [1℄ redu
esto the results of Ramaswamy et al. [23℄ and Lubenskyet al. [12℄ for spheri
al parti
les and to the result ofLopatnikov and Namiot [24℄ for 
ylindri
al parti
les.

For spheri
al parti
les, this potential di�ers from thatobtained by Ruhwandl and Terentjev only by the angu-lar dependen
e of the intera
ting ma
roparti
les withrespe
t to the dire
tor.In this paper, we use the approa
h in [1℄ to 
on-sistently a

ount for the interferen
e of the deforma-tions of the dire
tor �eld from all parti
les embeddedin the liquid 
rystal. Distortions of the dire
tor �eldfrom the other parti
les a�e
t the intera
tion potentialbetween two 
hosen parti
les. We show that the 
ol-le
tive s
reening e�e
t arises when the 
on
entration ofparti
les is high. This s
reening e�e
t is shown to beessentially depending on the shape and orientation ofthe parti
les and on the an
horing strength. For exam-ple, the s
reening is absent for spheri
al parti
les andis signi�
ant for anisotropi
 parti
les, e.g., 
ylinders.When the 
ylinders are pla
ed at an angle to the di-re
tor, the s
reened Coulomb attra
tion of the Yukawaform arising between them 
an lead to nontrivial 
on-sequen
es. In this paper, we show that this potentialis responsible for the 
ellular texture in ferronemati
sthat was observed by Chen and Amer [2℄. We show thatthe e�e
tive 
harge in the s
reened Coulomb attra
-tion greatly depends on the angle between the grainsand the dire
tor. It is zero in the equilibrium stateswhen the grains are parallel or perpendi
ular to thedire
tor in the 
ase of the planar or homeotropi
 an-
horing. The external magneti
 �eld that is not parallelto the initial orientation of the magneti
 grains takesthem out of the equilibrium state; the e�e
tive 
hargethen arises be
ause of the angle between the grains andthe dire
tor. We also show that the s
reening is notalways exponential but 
an be trigonometri
al undersome 
onditions. It 
an o

ur only in the presen
e ofthe external �eld when the angle between the grainsand the dire
tor ex
eeds the 
riti
al threshold.In Se
. 2, we formulate the problem of �nding theelasti
 energy of a doped nemati
 liquid 
rystal follow-ing the approa
h in Ref. [1℄. In Subse
. 2.1, we �nd thedire
tor distribution resulting from the interferen
e ofthe distortions indu
ed by all parti
les. In Subse
. 2.2,we 
onsider the energy of these dire
tor distortions andextra
t the s
reened pair intera
tion potentials from it.In Subse
. 2.3, we �nd an analyti
al expression for thepair intera
tion potential in the diagonal approxima-tion. In Se
. 3, we �nd the elasti
 Yukawa attra
tionof the magneti
 grains in the liquid 
rystal in the pres-en
e of the external magneti
 �eld. We 
onsider thesystem of many parti
les attra
ting in a

ordan
e withthe Yukawa law and �nd the 
onditions for the 
lump-ing to o

ur in it. This allows us to explain the 
ellulartexture in ferronemati
s.872



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Colle
tive e�e
ts in doped nemati
 liquid 
rystals2. FORMULATION OF THE PROBLEMThe free energy of a nemati
 liquid 
rystal isgiven byFb = 12 Z d3r �K11(divn)2 ++K22(n � rotn)2 +K33(n� rotn)2	 ; (1)where Kii are the Frank elasti
 
onstants and n is thedire
tor. The ma
roparti
les embedded in a liquid 
rys-tal indu
e deformations of the dire
tor �eld. The sur-fa
e of these parti
les 
an be 
oated with di�erent sur-fa
tants that orient the nemati
 mole
ules either nor-mally or tangentially to the surfa
e. The surfa
e energy
an be written asFs =Xp I dsW (s)(�(s) � n(s))2; (2)where �(s) is the unit normal to the surfa
e at the points on the surfa
e andW (s) is the an
horing 
oe�
ient atthis point. In the general 
ase, W (s) > 0 
orrespondsto the planar an
horing and W (s) < 0 
orresponds tothe normal an
horing. The integral is taken over theentire surfa
e of parti
le p. We assume that all parti-
les have the same orientation in spa
e (for example,with the help of the external �eld), but their 
enters ofmass 
an move freely under the a
tion of the resultingelasti
 potentials in order to minimize the total free en-ergy of the system. The total free energy is the sum ofthe bulk and surfa
e energies:F = Fb + Fs: (3)We do not 
onsider the distribution entropy partof the free energy, be
ause it does not a�e
t the dire
-tor distribution and is irrelevant for �nding the elasti
intera
tion potential between parti
les.We 
onsider the 
ase of the weak an
horing, whereWr0=K � 1 (we imply the absolute value ofW ), wherer0 is the smallest size of the parti
le, e.g., the radiusof the sphere or the 
ylinder. For the homeotropi
 an-
horing and spheri
al droplets, this 
orresponds to thesurfa
e ring 
on�guration [13, 14℄. In this 
ase, weassume that the dire
tor distortion from the homoge-neous state n0 is small everywhere:n(r) = n0 + Æn(r); jÆnj � 1: (4)Under this assumption, the dire
tor smoothly variesfrom point to point and no topologi
al defe
ts arise inthe vi
inity of parti
les. This is a 
onsequen
e of theweak an
horing strength and of the small parti
le size

(we 
onsider parti
les with the size less than 1 �m,whi
h only slightly distort the dire
tor for the real an-
horing strength [15℄). We 
an use the Fourier repre-sentation for the dire
tor in the entire spa
e, thereby
onsiderably simplifying the problem.In the Fourier representation, we haveÆn(r) = 1(2�)3 Z d3q exp(�iq � r)Æn(q): (5)Inserting (5) in bulk Frank energy (1), we obtainFb = 12 1(2�)3 Z d3q nK11 jq � Æn(q)j2++ K22 j[n� q℄ � Æn(q)j2 +K33 j(n � q)Æn(q)j2o : (6)To simplify this expression, we 
hoose the spe
ial basise1 = (q? � n0)q? ; e2 = q?q? ;e3 = n0; q? = n0 � q: (7)We then have q = �q?; 0; qk� and Æn = (Æn1; Æn2; 0),and Eq. (1) therefore redu
es toFb = 12 1(2�)3 ��Xi Z d3q nKiiq2? +K33q2ko jÆni(q)j2 : (8)Be
ause we assume that the dire
tor smoothly variesfrom point to point and relation (4) is true, we 
an 
on-sider the dire
tor to have a given value inside the vol-ume of the parti
le. This assumption is valid if the to-tal volume of the suspended parti
les is mu
h less thanthe entire volume of the system, i.e., the volume fra
-tion of the parti
les is small, 
� � 1; where 
 = N=Vis the 
on
entration and � is the volume of a parti
le(the �gas� approximation). For the real system [2℄,
 = 1010 
m�3, � � 10�15 
m3, and 
� � 10�5, andour assumption is therefore true.The dire
tor on the surfa
e 
an therefore be ex-pressed through the dire
tor at the 
enter of mass Rpof the parti
le and its derivatives,Æn(s) = Æn(Rp) + (�r)Æn(Rp) + 12(�r)2Æn(Rp);where � is the ve
tor drawn from the 
enter of mass tothe point s on the surfa
e. The 
omplete expression forthe dire
tor on the surfa
e through the dire
tor at the
enter of mass of the parti
le is therefore given byn(s) = n0 + Æn(Rp) + (�r)Æn(Rp) ++ 12(�r)2Æn(Rp): (9)873
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oordinate system (x; y; z) where the zaxis is parallel to the undeformed dire
tor n0 and x andy are perpendi
ular to it. This system is �rmly �xedin spa
e. We next substitute dire
tor �eld (9) in thes
alar produ
t (n(s) ��(s))2 and also in
lude the se
ondpowers of the perpendi
ular dire
tor deformations Ænxand Æny: We thus write(�(s) � n(s))2 = (� � n0)2 + 2(� � n0)(� � Æn) ++ 2(� � n0)(� � r)(� � Æn) ++ 2(� � n0)(� � r)2(� � Æn) + (� � Æn)2; (10)where � = �(s); Æn = Æn(Rp):We note that this expression involves two smallness pa-rameters. The �rst is the perpendi
ular 
omponent ofthe dire
tor, jÆnxj ; jÆnyj � "; Æn3 � "2;and the se
ond is the ratio % = �=ln of the parti
lesize to the average deformation length ln of the dire
-tor. In [1℄, the respe
tive terms proportional to ", %";and %2" were taken into a

ount. The expansion in% is equivalent to the multipole expansion in [12℄. Inthis paper, we also take the last term proportional to "2into a

ount. This term is not essential at the distan
es
omparable to the average distan
e between parti
les,as we see below, and it 
an therefore be omitted for thesystems 
onsidered in [6, 7, 12℄, where the 
on
entra-tion of dispersed parti
les is small. It be
omes essentialfor dense 
olloids, where there are too many parti
lesand where the interferen
e of the distortions from allparti
les is 
onsiderable. In [12℄, jÆn�j (with � = x; y)was shown to fall o� as R�2 and R�3; depending of thedipole or quadrupole symmetry. We thus 
on
lude that" � %2 for the third term, whi
h has the dipole symme-try (and "2 � %" in this 
ase), and " � %3 ("2 � %2")for the fourth term with the quadrupole symmetry. Inany 
ase, taking the last term into a

ount gives onlysmall 
orre
tions at the average distan
es and for asmall number of parti
les. As we see below, this is es-sential in the 
olle
tive e�e
t of the s
reening at largedistan
es, where the 
on
entration of parti
les is high.We spe
i�
ally 
larify this problem in what follows.For this, we write the s
alar produ
ts (�(s) � n(s))in the lo
al basis (k1;k2;k3) asso
iated with ea
h par-ti
le. For example,�(s) �n(s) = Xl=1;2;3(� �kl)(Æn �kl) = �lÆn�kl�+�lÆn3kl3 ;where �l = (� � kl); ; kl3 = kl � n0;

Æn3 = �12(Æn2x + Æn2y):The surfa
e energy is then written asFs = F (0)s + F (1)s + F (2)s ; (11)F (0)s = N I dsW (s)(�(s) � n0)2; (12)F (1)s =Xp I dsW (s)�l�mkl3 �� �2Æn�kl� + 2(�r)Æn�kl� + (�r)2Æn�kl�	 ; (13)F (2)s =Xp I dsW (s)�l�m �� �Æn�Æn�kl�km� � (Æn2x + Æn2y)kl3km3� ; (14)where N is the total number of parti
les in the entirevolume V of the liquid 
rystal matrix and the respe
tivesurfa
e terms F (1)s and F (2)s are linear and quadrati
 inÆn�. Following [1℄, we now de�ne several tensors inthe basis (k1;k2;k3) that 
hara
terize the an
horingenergy,�kl = 2 I dsW (s)�k(s)�l(s);�klm = 2 I dsW (s)�k(s)�l(s)�m(s);
klmn = I dsW (s)�k(s)�l(s)�m(s)�n(s): (15)The elasti
 energy Fel, i.e., the energy of deformationsof the dire
tor �eld, is then given byFel = Fb + F (1)s + F (2)s ; (16)F (1)s =Xp f�lm + �lms(ks � r)++ 
lmst(ks � r)(kt � r)g Æn�kl�km3 ; (17)F (2)s = 12 ��Xp �lm �Æn�Æn�kl�km��(Æn2x+Æn2y)kl3km3� : (18)The main di�eren
e between this paper and [1℄ isin taking term (18) into a

ount. It is quadrati
 inthe dire
tor deformations and 
an be regarded as the
ontribution of all parti
les to the interferen
e of distor-tions. Pre
isely this term leads to the s
reening e�e
ts.874
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ts in doped nemati
 liquid 
rystals
K1 K3 x�

y
n0

e1 
K2e2

Fig. 1. Orientation of a 
ylindri
al parti
le. The parti-
le lies in the xn0 plane at the angle � with the dire
-torSome of its features 
an be 
onsidered without �ndingthe dire
tor. For example, it is 
learly seen that it van-ishes for spheri
al parti
les. Indeed, �lm = �Ælm andkl�kl� = Æ�� for the sphere, and therefore, F (2)s � 0:For any other shape, Eq. (18) does not vanish. Todes
ribe its e�e
t analyti
ally, we go to the 
ontinuumlimit in this expression and repla
e the summation withthe integration over the entire spa
e,Xp ! 
 Z dV;where as before, 
 = N=V is the 
on
entration of par-ti
les: F (2)s = 
2 Z dV ea��Æn�(x)Æn�(x);ea�� = �lm �kl�km� � kl3km3Æ��� : (19)We thus 
onsider the interferen
e of only longwave-lengh distortions of the dire
tor �eld. In the Fourierrepresentation, we haveF (2)s = 
2 (2�)3 Z d3qea��Æn�(q)Æn��(q): (20)The tensor ea�� is here taken in the (x; y; z) 
oordi-nate system, whi
h is not 
onvenient. It is mu
h moresuitable to write the surfa
e energy and the bulk energyin Eq. (8) in the same basis (e1; e2; e3). This basis is ro-tated by the angle  (q) with respe
t to (x; y; z) aroundthe z axis (Fig. 1). In the new basis, the dire
tor hasthe 
omponents Æn = (Æn1; Æn2; 0) and Æn� = $�iÆni(with � = x; y and i = 1; 2). The rotation matrix isgiven by $�i = " 
os  � sin sin  
os # :

In the basis (e1; e2; e3), the surfa
e energy be
omesF (1)s =Xp 12 (2�)3 Z d3q �� fexp(�iq � rp)a�m(Æn(q) � km)++ exp(iq � rp)am(Æn�(q) � km)g ; (21)am = (kl � n0) [�lm+i�lms(q � ks)�
lmst(q � ks)(q � kt)℄ ;F (2)s = 
2 (2�)3 Z d3qaijÆni(q)Æn�j (q); (22)aij = $Ti�ea��$�j : (23)We now add the bulk energy Fb and the surfa
eenergy Fs and �nd the total energy of the systemFtotal = F (0)s + Felwith the elasti
 energyFel = 12 (2�)3 Z d3qVij(q)Æni(q)Æn�j (q) ++ b�i (q)Æni(q) + bi(q)Æn�i (q); (24)Vij(q) = (Kiiq2? +K33q2k)Æij + 
aij ; (25)bi(q) =Xp exp(iq � rp)amkmi : (26)Here, m = 1; 2; 3, i; j = 1; 2, and Æni(q) and kmi arethe proje
tions of these ve
tors on the basis (e1; e2; e3).2.1. Dire
tor distribution in the dopednemati
 liquid 
rystalHaving found the 
omplete expression for the elasti
energy of a liquid 
rystal with parti
les, we 
an �nd thedire
tor at any point of the system from the extremum
onditionÆÆn�j (q)Fel = Vij(q)Æni(q) + bj(q) = 0;Æni(q) = �V �1ij (q)bj(q): (27)In the matrix form, the last equation be
omes Æn1(q)Æn2(q) ! == � 1D " V22 �V12�V12 V11 # � b1(q)b2(q) ! ; (28)875



S. B. Chernyshuk, B. I. Lev, H. Yokoyama ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001where D = V11V22 � V 212:We 
an make some general 
on
lusions from this ex-pression 
on
erning the behavior of the dire
tor. Dis-tortions de
rease far from the parti
le. However, thedenominator D 
an vanish for some wave ve
tors q,whi
h 
orresponds to the appearan
e of os
illations ofthe dire
tor �eld. The origin of the dire
tor os
illationsis purely 
olle
tive, be
ause the e�e
t depends on the
on
entration V12 � 
a12. It also depends on the shapeof the parti
les and their orientation with respe
t to theundeformed dire
tor n0. We assume that these os
il-lations 
an be observed experimentally, be
ause theymust lead to the s
attering of ele
tromagneti
 waveswith wave lengths 
ommensurate to the os
illations pe-riod. Equation (28) seems to imply that� �pK=
�;where � is the average value of the tensor �lm; fromEq. (15), we have �lm �WS;where W is the an
horing energy and S is the area ofthe parti
le. The resonan
e wave length is thereforeroughly estimated as�res �pK=W
S: (29)For example, in the experiment with 
ylindri
algrains [2℄, the parameters are given by 
 � 1010 
m�3,S � 2�RL, the radius of the grain is R � 0:05�m, thelength L � 0:5�m, the elasti
 
onstant K � 10�7 dynand the an
horing energy W � 10�3 dyn/
m. Wethen �nd �res � 30�m. Be
ause it is always possibleto vary the 
on
entration and the an
horing energy,the resonan
e wave length 
an be in the range � � 10�100�m. In any 
ase, this length must be larger thanthe average distan
e between the parti
les, � � hli.For the experiment in [2℄, hli � 4�m and all theassumptions are therefore valid. In the domain withthe size about 30�m, there are approximately 500parti
les and their 
olle
tive intera
tion 
an indu
elong-wavelength os
illations of the dire
tor �eld.2.2. Elasti
 energy and the pair intera
tionpotential between parti
lesHaving found the dire
tor �eld, we insert Eq. (28)in (24) and obtain the elasti
 energy of the dire
tordeformations in the DNLC:Fel = � 12 (2�)3 Z d3qV �1ij (q)b�i (q)bj(q) < 0: (30)

The negative sign implies that the total free energyF = F (0)s + Felevaluated for solution (28) is less than the energyF = F (0)s for the undeformed dire
tor �eld n0. Thetotal energy Fel 
an be represented as the sum of thepair potentials between two parti
les. Indeed, we in-trodu
e the operator bAm su
h thatbAmeiq�r = ameiq�r; (31)bAm = (kl � n0) [�lm + �lms(ks � r)++ 
lmst(ks � r)(kt � r)℄ : (32)The elasti
 energy Fel then takes the formFel = 12Xp;p0 Upp0 ; (33)Upp0 = � 1(2�)3 bApm bAp0m0 �� Z d3q exp [iq(rp � rp0)℄V �1ij (q)kmikm0j : (34)The expressionUpp0 has the meaning of the pair intera
-tion potential between parti
les p and p0 that is 
ausedby long-range deformations of the dire
tor �eld. Thesubs
ript p indi
ates that we must substituter = ��rpin the operator bApm. This expression is valid for parti-
les of the ordinary shape and orientation. It a

ountsfor s
reening e�e
ts that arise from the interferen
e ofthe dire
tor �eld distortions by all parti
les.2.3. Pair potential in the diagonalapproximation. Analyti
al resultsAlthough expression (34) is exa
t, it is too di�-
ult to �nd the results analyti
ally. In the most gen-eral 
ase, the pair potential U(R;
) depends on all thethree 
omponents of the radius ve
torR = rp�rp0 andon three Euler angles 
 that determine the orientationof parti
les in spa
e (we assume that all parti
les areoriented in the same way, and all of them therefore havethe same Euler angles). To take the s
reening e�e
tsinto a

ount analyti
ally, we 
onsider parti
les with therotational symmetry around one axis. For su
h parti-
les, the pair potential U(R; �) depends on the angle �876
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tive e�e
ts in doped nemati
 liquid 
rystalsbetween this symmetry axis and the dire
tor. If � = 0;all parti
les are parallel to the dire
tor. In this 
ase,the entire DNLC has the rotational symmetry aroundthe dire
tor n0 and the pair potential U(R?; Rk) de-pends on the perpendi
ular and parallel proje
tions ofR with respe
t to n0: But in the 
ase where � 6= 0, these
ond preferential dire
tion arises in the system, thedire
tion along whi
h all the parti
les lie. We proje
tthis dire
tion on the plane perpendi
ular to the dire
torand let s denote the proje
tion,s � n0 = 0:We then have the potential U = U(R?; Rk; '; �), where' is the azimuthal angle between R and s.To obtain analyti
al results, we average over theangle '. For this purpose, we average the tensor aijin Eq. (23) over the angle  and drop the o�-diagonalterms; we 
all this the diagonal approximation:aij( ; �)! haiji == 12 " ea11 + ea22 00 ea11 + ea22 # = a(�)Æij ; (35)where a(�) = 12(ea11 + ea22):This approximation makes the propagator V �1ij (q) di-agonal and allows us to take all the integrals analyt-i
ally. The diagonal approximation is exa
t only for� = 0; when the entire system has the rotational sym-metry in the xy plane. The 
oe�
ient a(�) depends onthe shape of the parti
les. For example, for 
ylinderswith R� L; we havea(�) = �RLW (2� 3 sin2 �);and for �at (pan
ake) parti
les with R� h;a(�) = 2�R2W (1� 3 
os2 �)(where � is the angle between the normal to the pan
akeplane and the dire
tor). In the diagonal approximation,the propagator therefore be
omesV �1ij (q) = (Kiiq2? +K33q2k + 
a(�))�1Æij (36)and the pair potential is given byUpp0 = � 1(2�)3 bApl bAp0l0 [Ill0 (R)℄ ; (37)Ill0 (R) = I1ll0 (R) + I2ll0 (R); (38)

I1ll0 (R) == Z d3qeiq�R (kl � [q? � n0℄) (kl0 � [q? � n0℄)q2? �K11q2? +K33q2k + 
a(�)� ; (39)I2ll0 (R) == Z d3qeiq�R (kl � q?) (kl0 � q?)q2? �K22q2? +K33q2k + 
a(�)� : (40)It is easy to integrate over q in Eqs. (39) and (40)using the 
oordinate system with the basisr1 = R? � n0R? ; r2 = R?R? ;r3 = n0; R? = n0 �R: (41)This basis is rotated with respe
t to the one in (7) bysome angle ' about the axis n0. The quantities q? andqk are similar in both bases. We therefore haveexp(�iq �R) = exp��i �q?R? 
os'+ qkRk�	and the denominators of the fra
tions involved in (39)and (40) do not depend on the angle ': Integrating over', we obtainI�ll0 (R) = � 1Z0 dq?q? �� nQ+l;l0J0(q?R?) + (�1)�Q�l;l0J2(q?R?)o�� 1Z�1 dqk exp(�iqkRk)(K��q2? +K33q2k + 
a(�)) ; (42)where � = 1; 2 andQ(�)l;l0 = (r1 � kl)(r1 � kl0 )� (r2 � kl)(r2 � kl0)and J0 and J2 are the Bessel fun
tions.In order to 
al
ulate these integrals, we must thor-oughly s
rutinize the fun
tion a(�): As mentionedabove, a(�) = �RLW (2� 3 sin2 �)for 
ylindri
al grains. The 
ase where W > 0 
orre-sponds to the planar an
horing, and W < 0 
orre-sponds to the normal an
horing. For the planar an-
horing, the equilibrium state of the grains is � = 0and aplanar(0) = 2�RLW > 0;and for the normal an
horing, the equilibrium state is� = �=2 andanormal(�=2) = ��RLW > 0:877



S. B. Chernyshuk, B. I. Lev, H. Yokoyama ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001We thus see that a(�) > 0 in the equilibrium stateindependently of the an
horing type. But if the grainshave a magneti
 moment, the external magneti
 �eld
an lead the grains into the states where a(�) < 0. Thiso

urs if ar
sinp2=3 < � < �=2for the planar an
horing and if0 < � < ar
sinp2=3for the homeotropi
 an
horing. These states exist onlybe
ause of the magneti
 �eld. Both 
ases must there-fore be 
onsidered. We �rst 
onsider the 
ase wherea(�) > 0; whi
h 
orresponds to the equilibrium statesor the 
ase of weak external �elds. We write Iexp�ll0 (R)for I�ll0 (R) in this 
ase. We introdu
ep� =rK��K33 Rk; s = R?; z� =s
a(�)K�� :After the integration over the qk, Iexp�ll0 (R) be
omesIexp�ll0 (R) = �2pK��K33 1Z0 dq?q? �� exp��p�qq2? + z2� �qq2? + z2� �� nQ+l;l0J0(sq?) + (�1)�Q�l;l0J2(sq?)o : (43)For the Bessel fun
tions, we have the relation2�J�(x) = xJ�+1(x) + xJ��1(x);whi
h for � = 1 givesJ2(x) = 2xJ1(x)� J0(x):The 
orresponding integrals involving J1(x) and J0(x)are given by1Z0 dq?q? e�p�pq2?+z2�qq2? + z2� J0(sq?) = e�z�pp2�+s2qp2� + s2 ; (44)1Z0 dq? e�p�pq2?+z2�qq2? + z2� J1(sq?) == 1sz� he�p�z� � e�z�pp2�+s2 i : (45)

Using these relations, we �ndIexp�ll0 (R) = �2pK��K33 nhQ+l;l0 + (�1)�+1Q�l;l0i �� exp��z�qp2� + s2 �qp2� + s2 + (�1)�Q�l;l0 2s2z� �� hexp (�p�z�)� exp��z�qp2� + s2 �io : (46)The pair intera
tion potential is then given byUpp0 = � 1(2�)3 �� bApl bAp0l0 [Iexp1ll0 (rp � rp0) + Iexp2ll0 (rp � rp0)℄ : (47)This is the potential of the elasti
 intera
tion betweenany parti
les in the diagonal approximation. It de-pends on the three 
omponents of the radius-ve
torR = rp � rp0 between parti
les.In the one-
onstant approximation whereK�� = K33 = K, the potential depends only onthe s
alar of the ve
tor R,Upp0 = �Q+l;l04�K bApl bAp0l0 �exp(�� jrp � rp0 j)jrp�rp0 j � ; (48)��1 (�) =s K
a(�) : (49)It is 
learly seen that 
olle
tive distortions of thedire
tor lead to the s
reening of the pair intera
tionpotential with the s
reening length��1 �pK=W
S(where W is the absolute value of the an
horing en-ergy and S is the area of the parti
le). This s
reeningo

urs both for the homeotropi
 and for the planar an-
horing. Be
ause the 
on
entration is only involved inthe inverse s
reening length �, the limit as 
 �! 0 gives� = 0 and brings us ba
k to the uns
reened result of Levand Tom
huk [1℄, whi
h is equivalent to the result ofLopatnikov and Namiot [24℄ for asymmetri
 
ylinders.All this is true only if ��1 � hli ; where hli = 1= 3p
 isthe average distan
e between parti
les. We thus writethe 
ondition on the an
horing strength under whi
hour approa
h is appli
able:W � K3p
S : (50)878
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tive e�e
ts in doped nemati
 liquid 
rystals2.3.1. Field-indu
ed trigonometri
 s
reeningIf the grains have the magneti
 or ele
tri
 moment,the external magneti
 or ele
tri
 �eld 
an 
hange theangle � between them and the dire
tor, whi
h 
an re-sult in a(�) < 0. To �nd the potential in this 
ase, wemust repla
e z� ! �iz�in (46) and take half the sum of the two expressions,Itrig�ll0 (R) = 12 hIexp�ll0 (iz�;R) + Iexp�ll0 (�iz�;R)i ; (51)whi
h givesItrig�ll0 (R) = �2pK��K33 �hQ+l;l0 + (�1)�+1Q�l;l0i �� 
os�z�qp2� + s2 �qp2� + s2 + (�1)�+1Q�l;l0 �� 2s2z� hsin(p�z�)� sin(z�qp2� + s2)i� : (52)The pair intera
tion potential then takes the formUpp0 = � 1(2�)3 �� bApl bAp0l0 hItrig1ll0 (rp � rp0 ) + Itrig2ll0 (rp � rp0)i : (53)In the one-
onstant approximation, this be
omesUpp0 = �Q+l;l04�K bApl bAp0l0 �
os(� jrp � rp0 j)jrp � rp0 j � ; (54)where ��1 (�) =s K
 ja(�)j :The s
reening be
omes trigonometri
al. We have ob-tained this result in the diagonal approximation afteraveraging over the azimuthal angle ': Beyond the di-agonal approximation, the s
reening length ��1 ('; �)a
tually depends on the azimuth, and the exponentials
reening ��1 ('; �
) is therefore di�erent in di�erentdire
tions. Changing the external �eld 
hanges the an-gle �; and at a 
ertain 
riti
al angle �
; the s
reen-ing length ��1 ('; �
) 
an be
ome in�nite in some di-re
tions determined by '; the s
reening thus vanishesalong these dire
tions. Subsequently in
reasing the�eld makes the s
reening trigonometri
al along thesedire
tions. The s
reening is therefore exponential along
ertain dire
tions and is trigonometri
al along others,but it is absent on the interse
tions.

H1H0
nm �H00 < � < �=2Fig. 2. Aggregation of magneti
 grains in a ferrone-mati
 upon appli
ation of the magneti
 �eld3. EXPLANATION OF THE CELLULARTEXTURE IN FERRONEMATICSIn 1970, Bro
hard and de Gennes proposed dop-ing the liquid 
rystal matrix with ferromagneti
 grainsto allow the 
oupling of the liquid 
rystal mole
ularorientation to weak external �elds [19℄. The authorstreated su
h a system theoreti
ally and predi
ted theFreederi
ks e�e
t in weak magneti
 �elds H � 10 G.The doped matrix therefore exhibits a 
olle
tive orien-tational distortion in weak magneti
 �elds. They alsopredi
ted segregation e�e
ts, i.e., a smooth 
hange ofthe grain 
on
entration 
(R) from point to point inthe magneti
 �eld. In [2℄, the authors experimentallyobserved the 
olle
tive behavior in the MBBA dopedwith magneti
 grains, whi
h is exhibited as a long-rangeuniform distortion of the mole
ular orientation of theentire sample upon appli
ation of a weak magneti
 �eldH < 1 G. In that experiment, the grains were 
oatedwith DMOAP, whi
h provides homeotropi
 an
horingon their surfa
es, thereby making the magneti
 grainslie perpendi
ular to the nemati
 dire
tor in the absen
eof the magneti
 �eld.This system was theoreti
ally studied by Burylovand Raikher [21, 22℄. It was shown that under apply-ing the magneti
 �eld H , there is an angle between thegrain dipole moment dire
tionm (whi
h is the unit ve
-tor along the grain) and the dire
tor n0; the angle isdi�erent from �=2 or 0 for a �nite an
horing, as shownin Fig. 2.879



S. B. Chernyshuk, B. I. Lev, H. Yokoyama ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001To des
ribe the experimental results on the depen-den
e of the �eld-indu
ed birefringen
e on the strengthof the applied �eld, on the 
on
entration of the mag-neti
 dopant, and on the thi
kness of the nemati
 
ell,Burylov and Raikher proposed the free energy densityfun
tionalF = 12 �K11(divn)2 +K22(n � rotn)2++ K33[n� rotn℄2���Msf(m �H) + fkbT ln fv � fWA(n �m)2d ; (55)where f = 
v is the volume fra
tion o

upied by theparti
les, v is the parti
le volume,Ms is the magnetiza-tion inside the grains, d is the diameter, and A � 1 is a
onstant. This fun
tional di�ers from the one proposedby Bro
hard and de Gennes only by the last term. Thelast term a

ounts for the weak an
horing under whi
h0 < � < �=2. Minimization with respe
t to f (keepingthe number of parti
les �xed) leads tof = f0 exp ��(m �H)kbT + WAv(n �m)2dkbT � ; (56)where f0 is found from the total number of grainsf = Nv = Z f(r)dV:It was found that the parti
les a

umulate in the 
enterof the 
ell under applying the magneti
 �eld (Fig. 2).For weak �elds H < 10 G, the dependen
e f(z) (wherez is the axis perpendi
ular to the 
ell, with z = 0 inthe 
enter) is given by [21℄f(z) = f �1 + �2D2(1� 12z2=D2)48�2 � (57)where � = � K33v2fkbT �1=2 ;D is the thi
kness of the 
ell (D � 100�m),� =MsvH=kbT; Ms � 340 G;and � � 2 � 10�15 
m3: At higher �elds, the 
on
entra-tion in the 
enter is in
reased faster, whi
h was provedby 
omputer simulations. But on rea
hing the �eldH � 30 G, experiment shows [2℄ that the uniform ori-entational distortion is repla
ed by a new �eld-indu
ed
ellular texture with the 
ells having dimensions on theorder of tens mi
rometers. At the 
riti
al 
on
entrationin the 
enter, magneti
 parti
les 
lump into aggregates.

This 
lumping had no explanation, be
ause the mag-neti
 dipole�dipole intera
tion is mu
h smaller than theintera
tion with the external magneti
 �eld. Indeed,the magneti
 moment � =Msv indu
es the intera
tionEdd = �2=R3;where R is the average distan
e between parti
les,R�3 � 
 � 1010 
m3, and therefore, Edd � 4�10�15 erg.The energy of the intera
tion with the external mag-neti
 �eld H � 10 G is EH = �H � 3 � 10�12 erg, andhen
e, EH � Edd.We explain this �eld-indu
ed 
ellular texture by the
lumping of the grains 
aused by elasti
 deformationsof the dire
tor, i.e., by the elasti
 intera
tion betweenparti
les. In the one-
onstant approximation, this po-tential is given by Eq. (48). In the operators bApl in (32),we keep only the �rst termbAl = �lm (kl � n0) ;be
ause the other terms give higher powers in 1=R. Forthe 
ylinder, the tensor�lm = 2 I dsW (s)�l(s)�m(s)has the 
omponents�11 = �22 = dL�W; �33 = d2�W;and �lm = 0 for the others. Hen
e,�33=�11 = d=L � 0:1;and we 
an negle
t �33. We thus obtainU
yl(R) = ��211 sin2 � 
os2 �4�K exp(�� (�)R)R : (58)Cylindri
al grains therefore attra
t ea
h other in a
-
ordan
e with the Yukawa law if � 6= 0; �=2, whi
h ispossible in the in
lined external �eld. In the absen
eof the �eld, the equilibrium orientations are � = 0; �=2(dependening on the planar or normal an
horing [25℄)and the potential be
omes that obtained by Lopatnikovand Namiot [24℄, whi
h is proportional to 1=R3. We sete = �211 sin2 � 
os2 �4�K :We next 
onsider the system of parti
les with the
on
entration 
 and the intera
tion lawU(r) = �eexp(��r)r :880



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Colle
tive e�e
ts in doped nemati
 liquid 
rystalsThe free energy density of this system is written asF = kTv Z f(R) ln f(R)dV ++ 12v2 Z f(R)f(R+ r)U(r)dRdr: (59)We must �nd the 
ondition for the loss of stabil-ity in this system of attra
ting parti
les. We write the
on
entration as f(R) = f0 + Æf(R);where f0 is the ground volume fra
tion. Expandingf(R+ r) � f(R) + (r � r)f(R) + 12(r � r)2f(R);we obtainF � F0 = 12 Z NÆf2(R) +M (rÆf)2 ; (60)N = 2kTv + 1v2 1Zr0 U(r)dr;
M = � 12v2 1Zr0 U(r)r2dr;where r0 is the size of the parti
le. Inasmu
h as U < 0,a phase transition o

urs for N < 0. In our 
ase,�r0 � 1 and we 
an therefore writeN � 2kTf0v � 4�e�2v2 ;M � 12�e�4v2 :Below the 
riti
al point,N � 4�e�2v2 :The length of the �rst instability islinst =r2MN � 1� : (61)As dis
ussed above, linst � 30�m, whi
h is in a goodagreement with the experimental size of the 
ells [2℄.

4. CONCLUSIONSWe have derived the potential intera
tion for parti-
les of the ordinary shape doped in the nemati
 liquid
rystal. We have taken the 
olle
tive s
reening e�e
tsinto a

ount, whi
h is essential for the real 
olloid sys-tems. It is found that the shape of the parti
les es-sentially in�uen
es the s
reening e�e
ts, whi
h existfor both the homeotropi
 and the planar an
horing.S
reening is absent for spheri
al parti
les. Anisotropi
parti
les (e.g., 
ylinders) with the magneti
 or ele
tri
moment in the presen
e of the in
lined external mag-neti
 or ele
tri
 �eld indu
e os
illations in the dire
tordistribution with the period about � � 10�100�m de-pending on the an
horing, the 
on
entration, and themagnitude of the external �eld. In this 
ase, sele
tives
attering of the ele
tromagneti
 waves on these os
il-lations may be observed for ele
tromagneti
 waves inthis range.It is found that 
ylindri
al grains in
lined to the di-re
tor attra
t via the Yukawa law. This explains the
ellular texture in ferronemati
s. Appli
ation of theexternal magneti
 �eld 
hanges the orientation of themagneti
 grains with respe
t to the dire
tor, whi
h 
anlead to essentially 
hanging the s
reening e�e
ts. Inparti
ular, this 
an lead to the trigonometri
 s
reeningof the pair intera
tion.Colle
tive e�e
ts in doped nemati
 liquid 
rystalsstrongly depend on the an
horing strength, on theparti
le shape and 
on
entration, and on external�elds and make DNLC a marvellous medium for afurther experimental and theoreti
al exploration of thedi�erent stru
tures originating from deformations ofthe dire
tor �eld.We thank P. M. Tom
huk for very helpful dis
us-sions and H. Stark for sending us his results before pub-li
ation. One of us (B. I. L.) gratefully a
knowledgesthe �nan
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