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Numerical solutions are obtained of the full self-consistent system of equations for the counter-rotating polar-
ization components of the field of a short optical pulse propagating in a birefringent nonlinear fiber and in the
ensemble of the energy-level degenerate doped resonance atoms implanted in the fiber material. In every cross-
section of the fiber, the ellipticity of the polarized wave experiences a complex evolution in time accompanied
by rapid changes of the azimuthal angle due to the interplay of the dispersion and the Kerr nonlinear self- and
cross-phase modulation. The reciprocal effect of the impurities on the traveling pulse causes oscillations of the
pulse envelope that can completely distort the shape of the input signal, while the resonance absorption can
drive the birefringence process from the nonlinear regime back to the linear one.

PACS: 42.81.Gs, 42.65.Tg, 42.50.Md

1. INTRODUCTION

Much is known about the propagation of short op-
tical pulses in nonlinear fibers [1-3]. In a nonlinear op-
tical fiber, the propagation of distortionless pulses can
be realized under conditions where the amplitude self-
modulation effects compensate for the linear dispersion.
In particular, for intensities at which the dielectric po-
larizability has a cubic field response (the Kerr non-
linearity), the envelopes of quasimonochromatic pulses
are approximated by optical solitons. In the axisym-
metric optical fiber, the fundamental mode consists of
two copropagating and perpendicularly polarized lin-
ear fields. Non-axisymmetric imperfections to the fiber
destroy this polarization degeneracy and introduce the
linear birefringence — a difference in the propagation
characteristic between the two polarizations. Further-
more, for a nonlinear fiber, the amplitude coupling
causes an additional self-induced birefringence via the
cross-phase modulation. Activating the fiber by reso-
nance impurities, e.g., rare-earth ions, has given rise to
an entire industry of fiber lasers and amplifiers whose
physics is extensively discussed in the literature (see [4]
and references therein).

In this paper, our approach is to consider the phys-
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ical system in two associated parts. The first is a short
optical pulse propagating in a nonlinear, dispersive and
birefringent fiber. The second is an ensemble of two-
level resonance atoms immersed in the fiber host ma-
terial. The first part is modeled by the full fiber equa-
tions, broadly in the form of two coupled nonlinear
Schrodinger (NLS) equations. The second is governed
by a system of Bloch equations coupled to the fiber
part by the resonance polarization.

Disregarding the linear birefringence, the difference
of the group velocities of the polarized modes (i.e., the
walk-off effect), and the polarization induced in the res-
onant subsystem, the nonlinear equations for the field
components are an example of a completely integrable
system [5,6]. Under certain conditions, a short optical
pulse in a resonant medium can in turn evolve into a
steady-state solitary wave (a 2m-pulse) [7]. This means
that in a model of this type, one could ideally observe
the coexistence of the self-induced transparency (SIT)
and NLS solitons [8-10]. But this can hardly occur for
a moderately intense pulse in realistic doped fibers be-
cause the disparity in the spatial scales and the pulse
energy for the SIT solitons and optical solitons are very
substantial in a nonlinear fiber: one 27 SIT pulse cor-
responds to hundreds of NLS solitons by power.

The general problem then apparently reduces to two
characteristic cases: (i) the Kerr nonlinearity and bire-



MIT®, Tom 120, Beim. 4 (10), 2001

3

Short optical pulse polarization dynamics ...

fringence effect on the coherent propagation of short
pulses in a short doped fiber when the dispersion of
group velocities and the walk-off effect are insignificant,
(i) the weak effect of the resonant absorption and re-
fraction on the coupled soliton-like pulse propagation in
a nonlinear birefringent fiber. In this paper, we concen-
trate on the latter case. Basically, both the fiber effects
and the two-level medium can affect the polarization
state of the propagating light wave. In vector nonlin-
ear wave equations, all the cross terms (linear birefrin-
gence, power-dependent cross-phase modulation, and
the group velocity mismatch) contribute to variations
of the polarization states [11]. At the same time, level-
degenerate atoms possess their own polarization prop-
erties that have been discussed in numerous papers de-
voted, e.g., to polarization features of the photon—echo
effect [2]. The eccentricity and polarization ellipse ori-
entation can alter across the width of a 2m-pulse in
degenerate self-induced transparency [12,13].

In this paper, we consider a short optical pulse
propagation in a nonlinear birefringent doped fiber by
numerically solving the self-consistent system of equa-
tions for the optical field and the degenerate two-level
medium. In the course of discussion, we introduce in
succession the conventional fiber attributes (birefrin-
gence, dispersion, Kerr nonlinearity, and walk-off ef-
fect) followed by the resonance interaction of the light
pulse with the impurity atoms in order to observe both
the separate and the combined influence of these effects
on the dynamics of polarization states and the wave-
forms of polarization modes.

2. POLARIZED WAVES IN A CUBIC MEDIUM
WITH RESONANT IMPURITIES

We consider the electromagnetic wave propagation
in an optical birefringent fiber with the cubic (Kerr)
nonlinearity. We let this fiber contain doped two-level
atoms with the transition energy in resonance with the
frequency of the carrier. The description of the solitary
wave propagation is conventionally based on the re-
duced Maxwell equations [9, 14-16] complemented with
the Bloch equations [5] determining the evolution of the
resonance subsystem. Hereafter, we follow the works by
Boardman and Cooper [9,14], where the propagation
of polarized pulses in the Kerr medium was thoroughly
observed. The resonance contribution is considered in
the same way as in [5].

We write the electric field vector of the optical wave
as E = E e, + Eye,, where e, and e, are orthogonal
vectors in the x and y directions. The wave propagates
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in the z direction. Using the slowly varying (complex)
envelope approximation (SVEA), we can write

E, =&:(2,)¥(z,y) exp[i(Bzz — wot)],

Ey = &y(z,t)¥(x,y) exp[i(Byz — wot)] ,

where wy is the carrier frequency and 3, () is the lin-
ear propagation constant of the slow (fast) principal
axis of the birefringent fiber [9, 14-16].

The radial distribution of the electric field in the
fiber is described by the mode function ¥(z,y). We
assume that the propagation constants slightly vary
from some average value 8 such that 8, = § + Ap
and #, = f — AB. The complex envelopes are ex-
pressed in terms of real amplitudes and phases slowly
varying in space and time, &, = R,expliy,] and
&y = Ry expliy,]. The phases are given by ¢, = ¢+ ¢
and ¢, = ¢ — ¢, where ¢ is the average value. Finally,
the electric field components are given by

E, = A, (z,t)¥(x,y) exp [ifz — iwpt],

E,=A,(2,t)¥(2,y) exp [ifz — iwot],

where
Ay =Ryexpli(@¢+ ¢+ ABz)],
Ay =Ryexpli(¢— ¢ — ABz)].

The presentation of the phase terms in the above
form is attributable to the following effects: the in-
trinsic birefringence (i.e., the birefringence that would
exist in the linear limit) is represented by £ASz and
the self-phase modulation is described by £¢(t, z). In a
weakly nonlinear and weakly birefringent medium, such
as the typical glasses of optical fibres, the nonlinearity
is assumed to be instantaneous. Generally speaking,
the validity of this assumption depends on the pulse
rise time. If the optical pulse becomes narrower, the
assumption is no longer valid. We ignore this effect in
this paper. We consider a Kerr-type nonlinear medium
assuming that (i) the dielectric medium is isotropic, (ii)
the third harmonic generation can be neglected, and
(iii) the second-order nonlinear susceptibility is identi-
cally zero. Therefore, the slowly varying envelope of
the nonresonance cubic polarization PXe" (2, ¢) is

PRt — o (€€ + D (£ - )€,

where the spatial and temporal dispersion is assumed
to be absent. The above equality written in projections
becomes

PmKerr — [(a + b)‘Am|2+

+{a+bexp[~4i(¢ + A} A, ] Ae, (1)
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PR = [(a+b)|A, >+

+ {a+bexp[4i(¢ + AB2)]} [A:[*] 4y, (2)

where we use the notation 2)&‘?22 = a and X@m =b.

The Maxwell equations with nonlinear terms (1)
and (2) and the resonance polarization included pro-
vide a set of coupled evolutionary equations for the
amplitudes A, and A,, with the second-order group
velocity dispersion taken into account:

0A,
0z

0A %A
) z z
+ iv, 5 Oz iz + ABA, +

+ my (a11|Am‘2 + alQ‘Ay‘Q) Az + qu =0,

i

(3)

04,

"oz

. _,0A 0?A
+iv, la—ty — oy 8t2y - ABA, +

+my (a21|Aq|? + an|Ay|?) Ay +qP, = 0. (4)

In Egs. (3) and (4), the effect of the resonance im-
purities is referred to by the slowly varying polariza-
tion envelopes P, and P,. The coefficient is defined
in Eq. (15) in what follows. Nonresonance losses are
ignored in (3) and (4) while the terms proportional to
P, and Py, represent the resonance absorption and re-
fraction effects. In Eqgs. (3) and (4), the following coef-
ficients are introduced:

e dBa.y
T,y dw

d?Ba.y
dw? ’

wh
My y = .
Y 262/3m,y

1
) Uﬂﬂ,y:i

The self-modulation effect is represented by ai; and
as2. The factors aio and as; are responsible for cross-
modulation. The effective nonlinear interaction param-
eter xepr is taken as a factor exclusively depending on
the ratio of the material susceptibility tensor elements,
ie., on {3, /x (P, Th h

.€., ON X{991/X1192- Thus, we have

_a+bexp[—4i(¢+ ABz)]
a+b

_a+bexpldi(o+ Apz)]
21 = a+b

where the effective nonlinear interaction parameter sy
is defined as

11 = a22 = Xeff, @12

€ i

v = LX) ¥(p)
W TR e)Pdp

For the silica optical fiber, the third-order susceptibil-
ity mainly occurs because of a nonlinear electronic re-
sponse and because a = 2b, and therefore,

2
-+

2+ e l—dilo+ A52)])

12 = Xeff <

Xeff s
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If we use the relations

a21 = Xeff < %QXP [4i(o + ABz)]) ‘

E.E; A, A%

*

o OAxAL

_EE;

exp [—4i(¢ + ABz)] = T E
y xr

the nonlinear terms in Eqs. (3) and (4) become
(a11 |Am ‘2 + ai2 ‘Ay ‘2) Am =

2 1
— 2 2 * A2
= Xeff <|Aac Ay + glAy\ A + §AIAy> ,

(a21|Am‘2 + a22\Ay\2) Ay =
2 1
= Xeff <|Ay2Ay + §|Ax‘2Ax + gAZAi) .
The system of equations (3), (4) can now be rewritten
in the final form

iaAz+iv’1aAm— 04
R TR TD

2 1
+ My Xeff <|Am2Am+§Ay2Am + §A§2A3> +

 + ABA, +

+qu:07 (5)

104y

+ 1,

A
Bz at Vo

2 1,
+ My Xefs <|Ay2Ay +314: P40 + gAyA§> +

Y _ ABA, +

+qP,=0. (6)

Equations (5) and (6) describe the propagation of a po-
larized radiation pulse in the birefringent fiber doped
by resonance impurities. The electric field of the pulse
is expressed by the Cartesian components. In order to
emphasize the circular nature of birefringence, it seems
reasonable to express the evolution equations in terms
of the right- and left-hand circularly polarized fields
E,=E,+iE, E,=E,—iE,.

The corresponding complex envelopes can be written
as

A=A, +iA,, A=A, —iA,.
It is worth noting that
[A1” + [ 4]?
= A, A1 = A
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Hereafter, we set 0, = 0y = 0 and m, = m, = m. For
the sake of generality, we also assume that the group
velocities of the different polarization components are
different. To proceed to numerical simulations of the
nonlinear propagation of polarised pulses, it is conve-
nient to introduce the dimensionless quantities

)t
where tg is the characteristic time scale (which can be
equal to the initial pulse duration ¢,0), L and Ag are the
normalizing length and amplitude respectively, and the
velocity of the time frame v is the velocity of the «center
of gravity» of the optical pulse, v = (v;' + vy ')/2.

In terms of the new variables, the system of equa-
tions (4) becomes

A172 = A0€1,2-, z=(L, T= (t -

e 10er s e 1 -
ac " 'l, or 0y o2 " 0.7
L
+ 31 (lerl? + 2lef )e1+( q)P —0, (1)
Ag
Z'862+ l%_i8262+le +
a¢ ", o lg 9> Tl !
1 L
to (P +2aP) et (51 =0 @®
where Py = P, +iP, and P>, = P, —iP,.

In Egs. (7) and (8), the effect of resonance impu-
rities is represented by the slowly varying polarization
envelopes P, and P». The parameters ¢y, (., {},, and {4
are

_ L L 1 1
(7= — = ———,
9 Lg 2t0 Vo
L
(7= = = ABL, 9
S = o= ASL ©)
L w2
Ol = = = Ly A2 —%
k L, Xeff 02626’
signo, (7' = 1= 5o
s =sgigno = — =—lo
g 9 d Ld t% 3
where
12 1
Ld - _0-, c = N o
o] A7 o
Lo = 2662 o 2U1U2t0
k= Wi Xefr A2 97 g —y

The length Ly characterizes the dispersion of the
group velocities in each polarization mode. The quan-
tity L. stands for the coupling length. The correspond-
ing terms in Eqs. (7) and (8) couple the right and
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left circular components of the electromagnetic wave,
thereby implying the linear birefringence effect. The
self- and cross-modulation effects reveal at the length
Lj,. The difference between the group velocities v; and
v of the counter-rotating polarized light waves causes
a spatial divergence of the differently polarized compo-
nents of the optical pulse (the walk-off effect) over the
characteristic length L,. A simple estimate gives the
ratio

~

N
Ar(ctpo)

It follows that in the picosecond pulse range, the terms
related to the group velocities are small compared to
the linear coupling terms. However, the walk-off effect
can be important when we pass to the femto-second
pulse duration domain.

Equations (7) and (8) must be supplemented by
equations describing the temporal behavior of the den-
sity matrix elements for the ensemble of two-level atoms
immersed in the fiber host material whose levels are de-
generate with respect to the projections of the angular
momenta j, and j,. For definiteness, we consider the
case where j, = 1 — j, = 0. The resonance tran-
sition is characterised by the dipole moment element
dig = dag = df; = di, = d. The effective matrix ele-
ment of the dipole transition is given by

p)*dp

[d(p)
fI‘I’ Pdp

The vector p lies in the plane normal to the optical
fiber axis.

c

Em

deff =

The temporal behavior of the resonant impurities
is governed by a system of the generalized Bloch equa-
tions [13]. For slowly varying elements of the density
matrix p describing the transition between the states
aym) = lja = 1, m = £1), and [b) = |jy = 0, m = 0),
we introduce the notation

P12 = <aa _1‘ﬁ|aa+1>a P13 = <a7 _1|pA‘b>7

P23 = <a7+1‘ié|b>7 P11 = <a7 —1\ﬁ|a-, _1>-, (11)

p22 = (a,+1|pla, +1), psz = (b|p[b),

pkl:pz(ka lak:11273'
The initial conditions are given by

p33(0) =1, p22(0) = p11(0) =0,
p12(0) = p13(0) = p23(0) = 0.

The change of variables pia = ma1, po1 = Mo,
P11 = M1i1, P22 = M22, P33 =N, P1 = —P13, P2 = —pP23
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allows writing the generalized system of Bloch equa-
tions in the compact form

Opa . ‘
o = WWpy —if (; ea'Ma'a — ean> , (12)
a'rnozcy’ _ . * *
ar Zf(eapa’ ea’pa)7 (13)
@——ifZ(e f—elpa), a,a =1,2.  (14)
87_ - ~ Ozpa apoz 3 b - 3 N

The initial conditions are given by n(0) = 1 for the
ground level population, p,(0) = 0 for the polariza-
tion, and maq (0) = 0. We also assume that the pulse
duration is much shorter than all the relaxation times
in the resonance subsystem, which allows us to omit the
relaxation terms in Eqs. (12)—(14). The dimensionless
variables p, entering Eqs. (12)—(14) are related to the
polarization terms in Eqs. (7) and (8) by

Lq L L

1
“A\p, =_—_p =~ —— 1
<A0> (e L, (e L, <pa> ‘ <poz>7 ( 5)
where
27rw0nadeff
q=———""
en(wo)

L, = fL7(«27r)., n, is the concentration of the impurity
atoms, and () denotes the summation over all atoms
with the frequency detunings v = Awtg from the cen-
ter of the inhomogeneously broadened line. In (15), the
characteristic length of the resonance interaction is

L(Qﬂ_) _ cenh

S — 16
ngfwanato ( )
In the system of equations (12)—(13) and in expression
(15),
= degrAoto Ao
2 Agg

is the normalized effective oscillation frequency of the
material variables of the resonance subsystem affected
by the field of the amplitude Ag and As, is the ampli-
tude of the SIT 2w-pulse.

The coupled system of Maxwell-Bloch equations
(7)-(8) and (12)—(14) provides the mathematical ba-
sis for numerically simulating the propagation of short
pulses of circularly polarized light in a nonlinear waveg-
uide doped by resonance impurities. The solution of
field equations (7)—(8) was obtained using one of the
popular [17] finite difference implicit—explicit Crank-
Nicolson numerical schemes, where the desired accu-
racy 0.001 was reached by iterations. Bloch equations
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(12)—(14) coupled to field equations (7)—(8) by the reso-
nance polarization terms were solved by the predictor—
corrector procedure. The predictor—corrector was run
at every iteration in the Crank-Nicolson algorithm un-
til the accuracy about 0.001 was achieved for the polar-
ization components p, in Eqs. (12)—(14). Although the
code could produce the integration over the inhomoge-
neously broadened line of the resonance absorption, we
restricted it to the homogeneous case and the exact
resonance at this stage of numerical simulation, i.e., to
v = 0 in (12). The results of calculations were the
absolute value of the complex amplitudes eq »(¢, 7) of
the counter-rotating right- and left-handed oppositely
polarized fields. Following Winful [18], we examined
the polarization state of the field in the optical pulse in
terms of the azimuthal angle

ar
oc.r) = B8
and the ellipticity
& -1
E(Ca T) = # )

where § = eje; 'is a complex quantity. The charac-
teristic values of ¢ are given by ¢ = 0 for the linearly
polarized light, ¢ = +1 for the purely right-hand cir-
cularly polarized light, and ¢ = —1 for the purely left-
hand circularly polarized light. The parameter 6 is the
angle between the axis of the polarization ellipse and
the slow principal axis of the birefringent fiber. It can
vary within the interval (—7/4,7/4).

The launched pulses are assumed to have the sech

form,

where § = t 0ty and 7y is the temporal coordinate of
the input pulse center.

T—T0

)

€1,2(0,7) = ey 2 sech < (17)

3. NUMERICAL ESTIMATES

We let the group velocity dispersion D = 47700)\52
of the silica-based monomode fiber host material be
typically D = 15 psmm~'-km~! at \g = 1.55 yum and
the nonlinear index ny &~ 1072 esu. It then follows

that
B
dw?

1
773

~ 1072 ¢ . em L.

The effective nonlinear interaction parameter is

Xeff & % ~ 23107 esu.
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We adopt the value d ~ 5 - 1072! esu (the tran-
sition T/ — “I5» in Er®% ions) and the impu-
rity concentration n, ~ 10'® ¢m™2 that corresponds
to realistic samples [19]. With the input pulse du-
ration t,0 = tp = 0.1 ps, the dispersion length is
Ly = t20~! ~ 10% cm. The polarization mode cou-
pling effect occurs over the distance
L. = L ~ L
AB " 2mAn
Here, we set An ~ 1075 [20]. The effect of the group
velocity mismatch becomes noticeable at the character-
istic distance

~ 25 cm.

21)1’02 20t0 4
L,=——ty~ — ~6-10 .
97 vy — 0 An om
The spatial scale of the Kerr self- and cross-modulation
process Lj depends on the field amplitude Ag as

TL)\()
e Af
The balance between the fiber group velocity disper-
sion and the nonlinear pulse compression occurs when
Ly, = Lg. This gives the value of the one-soliton solu-
tion amplitude of a single nonlinear Schrédinger equa-
tion

~
~

Anrs = 02717/\0 ~ 0.5-10* esu
TG Xefs
for the 0.1 ps pulse duration. The corresponding length
scale is LECNLS) ~ 70 cm. The nonlinear Schrédinger
one-soliton peak intensity can be estimated as
2
Inis = 7C(Ag7f5) ~4-10° W/em?.

For comparison, the amplitude of a 0.1 ps 27-pulse is
Aoy = 2hd~'t5" &~ 4-10° esu. The peak intensity of
the pulse reaches the magnitude I, ~ 2-10' W/cm?.

Another balance equality L, = L. yields the electric
field strength A, = (QnAnX;c})l/Q known as the char-
acteristic light wave field for a continuous wave (cw) of
a nonlinear directional coupler [21], A. ~ 10* esu, the
intensity I, ~ 1.5-10'° W/cm?. This broadly means
that for the input field amplitude values higher than
A., the nonlinear birefringence initiated by Kerr pro-
cesses begins to have a noticeable effect.

The quantity

pem _ _ Nhho

" 2m2n,d?ty

is the distance in the sample over which the recip-
rocal reaction of the medium in the form of polar-
ization and population differences develops to pro-
duce coherent transients, e.g., the self-induced trans-
parency [13], photon echoes [22, 23], optical nutations,

~5-10% cm

breather waves [24], etc. For signals with a small pulse
area 6 [24],
o0

6 =dh! / R(z, t)dt,

— o

the parameter L&Zﬁ) serves as the absorption
length. The pulse area of the NLS soliton Ox7.s =
= mdh 'tgAnrs = 3 - 107371 is extremely small in
comparison with 6g;7 = 27.

4. EVOLUTION OF POLARIZATION STATES
IN A FIBER. NUMERICAL ANALYSIS

We can now proceed to examine typical numerical
results. We focus on the diagnostic of the temporal pro-
file of the field amplitude and polarization parameters
¢ and 6 at every cross-section of the nonlinear birefrin-
gent fiber. We assume the light wave to be in exact
resonance with the homogeneously broadened atomic
transition, i.e., v = 0. In order not to overcomplicate
the problem, we also ignore the walk-off effect in this
paper, although we observed some of its obvious results
in our preliminary computations. In the numerical sim-
ulations demonstrated in Figs. 1-5 below, amplitudes
(11) of the input pulses were chosen as e,,; = /3 /2
and e, = 1/2, while the respective initial phases were
0 and 7. We also set f = 0.0015, thus assuming that
the resonance interaction process is not a strong per-
turbation to the fiber effects.

The propagation of a light pulse in a birefrin-
gent fiber is accompanied by the two-way coupling
between the orthogonal counter-rotating polarization
modes with the spatial beat period 27A3~!. No dis-
persion is involved in the numerical simulation at this
stage. For the linear undoped fiber (i.e., when the con-
tribution of the Kerr self- and cross-modulation effect
can be neglected) the solution of Eqs. (7) and (8) is
quite simple (Fig. 1a, b). The period of the partial en-
ergy transfer between the modes is ¢, = w/,.. It is seen
from the 3D plot of the azimuth € and the ellipticity
(Fig. 1e, d) that both functions are uniform across the
pulse and oscillate in the course of propagation inside
the fiber [18]. It is worth to note that if the launched
pulse amplitudes were e,,; = 1, e,;,2 = 0, the azimuth
angle 6 would change from —7/4 to 7/4 and the polar-
ization state would change from the linear polarization
(¢ = 0) to a circular polarization of the opposite direc-
tion (e = £1).

When both polarizations are excited in an asym-
metric manner, the ellipticity oscillates between the el-
liptical clockwise and elliptical anticlockwise polariza-

6*
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Fig.1. a, b — normalized field strengths in counter-rotating polarization modes in birefringent (¢, = 0.25), linear (¢ = c0),

and dispersionless ({4 = oc) fiber; ¢, d — space—time evolution of the azimuthal angle 6 and the ellipticity ¢; e, f— gray scale

surfaces of the functions 8(7,¢) and £(r,¢); g — phase trajectories of # vs ¢ taken at 7 = 7o for a different ) = (emie;})?
ratio (see in text)
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tions. This is clearly seen from the gray scale modular
surface of (¢, 7) and e(¢, 7) (Figs. 1eand 1f). The dark
gray up to black corresponds to the maxima of the plot-
ted function, while the light gray down to white to the
minima. The phase trajectories on the ¢ vs 6 plane
(with ¢ and 6 calculated at the moments of peak inten-
sity of the pulse) parameterized by ( are closed circles
(Fig. 1g). In this picture, each trajectory is associated
with a different 7 = (emi1e,5)? ratio. The outer curve
pertains to n = 999. The subsequent cycles correspond
ton =99, 9, 3, 1.5, 1.22. The biggest circle is the
ultimate trajectory related to a nearly net circularly
right-hand polarized light and small circles correspond
to a nearly linearly polarized light. The circle in open
dots corresponds to the case that was numerically in-
vestigated: e;,1 = \/§/2 and e;,o = 1/2. This numeri-
cal picture is in good agreement with the one presented
in [18] for the cw-waves.

With the Kerr and walk-off effects ignored, the com-
bined action of the linear birefringence (¢, = 0.25) and
dispersion (¢4 = 1.0) provides a well interpretable ef-
fect of the intensity hump spreading (Fig. 2a, b) in the
depth of the fiber, as is clearly seen in the gray scale
map (Fig. 2¢, d). In this case, the polarization proper-
ties of the travelling field (Fig. 2e, f) are quite similar to
those in Fig. 1. The spikes on both sides of the central
area in Fig. 2e, fare the result of numerical fluctuations
provoking random switchovers of the ellipticity ¢ and
the azimuth # on the wings of the propagating pulse,
where the field is extremely weak in both polarizations.
In Fig. 2g, we display the phase plane (¢ vs ) for the
coupling + dispersion case for the parameters n = 999,
9, 3, 1.22. The value n = 3 corresponds to the case
under numerical simulations. The plotted curves are
quite similar to those in Fig. 1g.

The interplay between the linear coupling and the
Kerr nonlinear phase modulation yields the picture
that was not immediately evident (Fig. 3). We injected
the pulses of the counter rotating polarization in the
fiber, with the amplitudes of the pulses expressed in
physical units satisfying the conditions A,,; ~ 24, and
Ao & A.. This corresponds to choosing (. = 0.25 and
lr, = 0.05 for the characteristic lengths. In this case,
one could expect the Kerr compressing every time the
energy couples back to the mode from the conjuncted
polarization state. Instead, we observe the interference
between the coupling processes with different beat pe-
riods. The coupling is revealed in the form of the in-
serted cycles when every new growth of the amplitude
begins while the previous one has not yet finished. The
physical explanation may be found if one notes that
both input amplitudes are chosen to be of the order
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of the critical strength of the electric field A, for cw
switching. For such intensities, the Kerr processes be-
come sufficiently strong to make the birefringence a
nonlinear process and the beat period can even grow
unlimitedly [25-28]. Attention must be drawn to the
fact that the periodicity of the onsets of the back and
forth coupling cycles approaches the value prescribed
by the choice ¢, = 0.25 (compare with Fig. 1). The
linear behavior occurs only on the slopes of the pulse
envelope, where the field intensity has not reached the
critical value. The further growth of the pulse field
strength in a pulse envelope forces the beat period to
increase as well. The result is seen in Fig. 3a, b and
¢, d showing the 3D picture and the gray scale map of
the polarization mode dynamics. The envelopes of the
field in both polarization modes experience a tempo-
ral counter-phase modulation in the central part of the
propagating waveform (Fig. 3h). The modulation of the
amplitudes of the counter rotating polarization modes
leads to the oscillation of € and # over 7 in the propa-
gating light wave that is clearly seen from the gray scale
maps in Fig. 3e, f and on the comparative plots of the
fields, ellipticity, and azimuth at the exit from fiber
placed in Fig. 3h. Picture ¢ in Fig. 3 shows the (e, 0)
phase plane for the same values of the parameter 1 as
above. Unlike the previous cases, the ultimate circle is
distorted, which agrees with the analysis in [18]. This
cycle is smeared because the spatial modulation of the
peak intensity of polarization components is complex.

Our calculations presented in Fig. 4 illustrate the
combined action of the linear birefringence, Kerr non-
linearity, and dispersion. The dispersion length (45 = 1
serves as a scale length, while the coupling length ¢,
and the Kerr length (; are shorter, ¢, = 0.1 and
(. = 0.25. The choice of parameters dictates the val-
ues of the polarization mode amplitudes at the en-
trance to the fiber: A, ~ V2A. ~ 2.7AnLs and
Amo = 0.84, ~ 1.6 Axrs. Weak ripples at the edges of
the computational grid are due to the time boundary
conditions.

The current case is not a completely integrable
problem because of the inter-mode coupling. The prop-
agating pulse cannot find a stable form at least over
the distance considered here. In one of our preliminary
computations under the conditions similar to those in
Fig. 4, but with £, ~ 0.05 (i.e., for a greater amplitude),
we observed the breaking up of the input pulses of both
polarizations into two separate subpulses subsequently
scattering aside.

The periodical squeezing of the pulse shape, a fea-
ture of a high-order NLS solution, produces new os-
cillations on the wings of the pulse (Fig. 4a, b) be-
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Fig.2. a, b — the same as in Fig. 1 for the parameters chosen as (;, = oo, ¢, = 0.25, and 4 = 1.0; ¢, d — gray scale
maps of the central parts of pictures a and b; e, f— gray scale maps of the azimuthal angle 6 and the ellipticity ¢; ¢ — the
same as in Fig. 1
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Fig.3. a, b — normalized field strengths in polarization components of the pulse propagating in birefringent nonlinear and
dispersionless fiber with ¢, = 0.25, ¢, = 0.05; ¢, d, e, and f— the same as in Fig. 2; g — the same as in Fig. 1; h — from
top to bottom: the azimuthal angle 6, the ellipticity £, and the polarization mode modules at the exit of the fiber
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Fig.4. a, b — normalized field strengths in polarization components of the pulse for ¢, = 0.25, {4 = 1.0, and ¢}, = 0.1; ¢,
d, e, and f— the same as in Fig. 2; ¢ — polarization mode shapes (absolute values) at the entrance (dashed line) and at
the exit (solid line) of the fiber
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cause the Kerr processes and dispersion are spatially
mismatched. The dispersion spreading is noticeable at
several (¢ ~ 4) normalized lengths when the disper-
sion chirp fills almost the entire time window (Fig. 4c,
d). Tt is then natural that polarization properties of
the light wave (i.e., the alternation of dark and light
shades of the gray) map the broadening area of the
spatial-temporal oscillation of the polarization compo-
nents (Fig. 4e, f) caused by the dispersion, thereby
making the entire picture rather complicated. As in
Fig. 3h, the oscillations of the field remain out of phase
in polarization modes (Fig. 49). We note that there
are fewer coupling periods in Fig. 4a, b than in Fig. 1
or Fig. 2. Clearly, the nonlinear narrowing and peak
amplification drive the propagation of the pulse into
a nonlinear birefringent regime. A further growth of
the pulse input amplitudes strengthens the inequality
U < L4, thereby making the process somewhat anal-
ogous to that in Fig. 3, plus the dispersion-originated
oscillations spreading away of the sharp central peak.

The resonance interaction of a short pulse with the
ensemble of resonance atoms is now added to the con-
ventional fiber effects as indicated in Eqs. (7)—(8) and
(12)—(14). The evolutionary behavior of the counter
circularly polarized components with the input ampli-
tudes Aml ~ 214(: ~ 4ANLS-, Am2 ~ Ac ~ 2ANLS is
plotted in Fig. 5a, b and ¢, d. We assume the resonance
interaction to be weak by setting f = 0.0015. Under
this condition, the population differences insignificantly
deviate from their initial values. The spatial scale of
the process is {4 = 1.0, whereas ¢, = 0.05, ¢, = 0.25,
and ¢, = 0.01. The value of the resonance interac-
tion length L™ can be estimated as L™ ~ 7Ly (see
(6)). This means that the total length of the fiber in
Fig. 5 is about 0.6L$2”) or 4L,4. The resonance interac-
tion process transfers energy more effectively than the
dispersion off the pulse to the radiation born by the re-
ciprocal reaction of the medium in the pulse after the
action region. It is then clear that in comparison with
Fig. 4, the amplitudes of the humps rapidly decrease in
the propagation direction (Fig. 5a, b).

Attention should be drawn to two humps in the cen-
ter of Fig. 5¢. These are the above-mentioned relics of
the NLS N-soliton break up. The visible asymmetry
of the pattern relative to the initial pulse position re-
sults from the delayed response of the resonance subset.
Generally, we can predict that at longer distances in-
side the doped fiber, the well-evolved dispersion and
coherent «ring» effects can hardly be distinguished.

The polarization properties of the light pulse are
displayed in the gray scale maps in Fig. 5e, f. It is inter-
esting to note that these pictures preserve the periodic
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alternation of the regions with the opposite ellipticity
and azimuthal angle owing to the linear coupling (see
Fig. 2¢, f). In our further computations (not shown),
when we set ¢, = 0.001 for the ten times larger concen-
tration of impurities, we saw the resonance oscillations
already filling the entire (¢,7) computational area at
an early stage of the pulse propagation. It was inter-
esting to observe how the increase of the dopant con-
centration developed the generic picture of the periodic
azimuth and ellipticity variations with the same beat
period seen in Figs. 1 and 2. Qualitatively, this can be
regarded as a result of the resonance absorption when
the progressive dumping of the field humps decreases
the field amplitude below the critical value of the elec-
tric field strength A., thereby driving the process back
into the linear regime, when ¢, begins to be shorter
than ¢;. Anyway, because the dispersion and the res-
onance interaction are time-dependent processes, they
introduce a temporal modulation to the basic polariza-
tion picture consistently with the linear birefringence.

The comparison of our numerical simulation with
the known results [25] is displayed in Figs. 6 and 7.
The parameters introduced in this paper correspond to
the analogous quantities in [25, Fig. 1b] if we set (4 = 2,
(. =4, =0.33, and €2 ; = 1.25. This yields the esti-
mate A,y ~ 4A. ~ 3ANLs, Ama = 0 in physical units
for the input field amplitudes in the cases depicted in
Figs. 6 and 7. In both pictures, we kept the origi-
nal [25] length of the fiber, although it corresponds to
Ctiver = 84 in our conventions. The discrepancy orig-
inates from renormalizing the factor in the dispersion
term in (5) by the coefficient 1/2. In Fig. 6, we re-
produce the results of [25] observing the formation of
two distinct periodicities of the coupling process be-
tween the modes. The pulse shape dynamics (Fig. 6a,
b and ¢, d) can be physically interpreted in terms of
the ¢./{}, ratio, which in the current case is the biggest
of all those described above, namely ¢./¢;, = 12. The
coupling process between the modes must then reveal
a nonlinear behavior because of the power dependence
of the energy exchange period. In the Ly units, the
linear coupling length (i.e., at low power) should have
been (, = L;,L;1 = ﬂLchl = 27. As a matter of fact,
the visual estimate of the beat period in Fig. 6a, b and
¢, d yields (7! = L;)”L;l ~ 4.5 > (,. We note that
in the case under consideration, the period of the typi-
cal higher-order soliton compressions became power de-
pendent. This manifests the difference between our ap-
proach and the ideal completely integrable model [29].

Figure 6e, fshows the gray scale (7, () maps of the
azimuthal angle 6 and the ellipticity parameter . It is
seen that the time—space features of the dispersion pro-
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Fig.5. a, b — normalized field strengths in polarization components of the pulse propagating in a fiber with impurities
(¢» = 0.01). Other parameters are (. = 0.25, {4 = 1.0, and ¢, = 0.05. ¢, d, e, and f — the same as in Figs. 2-4; g —
polarization mode modules at the entrance (dashed line) and at the exit (solid line) of the fiber
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Fig.6. Pictures a—d show the same as Fig. 4a—d with the parameters (; = 2.0, (. = 4.0, {;, = 0.33

cess are distinctly reproduced. The brightest lines and
spots in the region of pulse slopes demonstrate abrupt
changes of the polarization state due to a rapid growth
or drop of the field in one polarization mode compared
to the other.

The reciprocal reaction of resonance impurities on
the field of the propagating short pulse can noticeably
change the space—time picture of polarization dynam-
ics in the analysis of nonlinear effects in a pure fiber
by Trillo et al. [25]. For the computational variant pre-
sented in Fig. 7, all the fiber parameters and input pulse
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amplitudes remain unaltered with respect to the case in
Fig. 6. But in contrast to the variant in Fig. 6, the field
of a short propagating pulse is now coupled to the reso-
nance subsystem, and therefore, the complete system in
Eqgs. (7)-(8) and (12)—(14) must be solved numerically.
The value of the normalized resonance length was set
as (. = 0.01, with the corresponding physical length of
the resonance interaction LS«QW) ~ 3L, and the parame-
ter f = 0.0015. The population difference between the
resonance levels (which was computed but is not shown
here) remains practically unchanged because the areas
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Fig. 7. Pictures a—d show the same as Fig. 5a—d with the parameters (; = 2.0, (. = 4.0, {;, = 0.33, ¢, = 0.01

of the coherent pulses are small.

The resonance response changes the waveform of
the polarized light. In the current case, the intensity
of the interaction process is higher than in Fig. 5 be-
cause the resonance interaction length is shorter. The
energy of the input pulse is rapidly transferred to os-
cillations of the resonance polarization (Fig. 7a, b) in
the region of the retarded action of the propagating
pulse (Fig. 7¢, d). The resonance absorption notice-
ably weakens the humps for greater ¢, moving them
out of the calculation window. It is interesting that

the intensity damping leads to the restoration of the
linear beat period ¢, ~ 2w, and the propagation pro-
cess is therefore converted from a nonlinear regime to
the linear one. Thus, the nonlinear phase modulation
and dispersion do not play the leading role in the dy-
namics of the pulse. This explains why the maps of
polarization parameters (Fig. Te, f) are so flat. In fact,
the slow variations in the form of dark and light stripes
due to the linear coupling process period (Fig. 7e, f)
are the only prominent feature of the displayed plots.
It is interesting that the oscillations of the field enve-
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lope caused by the retarded reciprocal reaction of the
medium, being in phase, do not produce a modulation
of the polarization parameters ¢ and 6 except in the
vicinities of especially rapid changes of the field.

Passing to a higher concentration (¢, = 0.001)
demonstrates the typical features of the coherent phe-
nomena in a resonance medium. In the depth of the
fiber, there is no solitary wave; instead, we have a wave-
form with the oscillating envelope. This wave packet
rapidly shifts towards the later times, leaving the calcu-
lation grid somewhere at ( = 6. The polarization prop-
erties remain indifferent to the complete destruction of
the pulse and the linear birefringence beat period is
preserved.

5. CONCLUSIONS

In this paper, we have tried to give an indica-
tion of a rich space-time dynamics arising from the
propagation of an elliptically polarized light pulse in
a nonlinear birefringent doped fiber. The resonance
impurities in the form of two-level atoms were included
in the model in addition to the full set of nonlinear
fiber effects. We have concentrated on the case of
a weak input field, for which the amplitude of the
pulse is about the amplitude of a single NLS pulse
and the coupling to the resonance system is therefore
not strong. A trivial account of the weak effect of
the resonance system on the propagating optical pulse
leads to a linear absorption. Generally speaking, the
coherent interaction of short pulses with resonance
atoms is a non-Markovian process [24, 30]. Moreover,
the degeneration of resonance levels gives the con-
tribution to birefringence that is nonlocal in time.
With the exception of big detunings off the resonance,
the analytical consideration of all these effects is
extremely difficult.  Therefore, a direct numerical
simulation of the pulse evolution is preferable. But
even within the weak-interaction approximation, the
general picture proved to be sufficiently complex.
The polarization properties of the pulsed light are
nonstationary across the pulse width and can also
drastically change in space. Our numerical simula-
tions show that the polarization dynamic is basically
featured by the interplay between the Kerr nonlinear
self- and cross-phase modulation and dispersion, while
the linear birefringence leads to a spatial modulation
of the azimuthal angle and the ellipticity. There is a
range of the input amplitudes where the birefringence
becomes a nonlinear power dependent process because
of the Kerr cross-phase modulation, and the power
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beat period can therefore grow. At the same time,
when the spatial scale of the resonance interaction
becomes less than or about the characteristic lengths
of the fiber effects, the propagating pulse experiences
a strong distortion and a resonance absorption. The
intensity damping leads to the restoration of the
linear beat period, thereby converting the propagation
process from the nonlinear regime to the linear one.
To observe perceptible coherent effects such as the
SIT or the photon echo, one must take many times
more powerful pulses, which in their turn excite a
higher-order N-soliton effect. Therefore, the problem
requires a special treatment.

We are grateful to S. Kozlov, V. Sazonov, and
V. Kozlov for useful discussions.
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