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SHORT OPTICAL PULSE POLARIZATION DYNAMICSIN A NONLINEAR BIREFRINGENT DOPED FIBERS. O. Elyutin *, A. I. MaimistovMos
ow State Engineering Physi
s Institute115409, Mos
ow, RussiaSubmitted 29 May 2001Numeri
al solutions are obtained of the full self-
onsistent system of equations for the 
ounter-rotating polar-ization 
omponents of the �eld of a short opti
al pulse propagating in a birefringent nonlinear �ber and in theensemble of the energy-level degenerate doped resonan
e atoms implanted in the �ber material. In every 
ross-se
tion of the �ber, the ellipti
ity of the polarized wave experien
es a 
omplex evolution in time a

ompaniedby rapid 
hanges of the azimuthal angle due to the interplay of the dispersion and the Kerr nonlinear self- and
ross-phase modulation. The re
ipro
al e�e
t of the impurities on the traveling pulse 
auses os
illations of thepulse envelope that 
an 
ompletely distort the shape of the input signal, while the resonan
e absorption 
andrive the birefringen
e pro
ess from the nonlinear regime ba
k to the linear one.PACS: 42.81.Gs, 42.65.Tg, 42.50.Md1. INTRODUCTIONMu
h is known about the propagation of short op-ti
al pulses in nonlinear �bers [1�3℄. In a nonlinear op-ti
al �ber, the propagation of distortionless pulses 
anbe realized under 
onditions where the amplitude self-modulation e�e
ts 
ompensate for the linear dispersion.In parti
ular, for intensities at whi
h the diele
tri
 po-larizability has a 
ubi
 �eld response (the Kerr non-linearity), the envelopes of quasimono
hromati
 pulsesare approximated by opti
al solitons. In the axisym-metri
 opti
al �ber, the fundamental mode 
onsists oftwo 
opropagating and perpendi
ularly polarized lin-ear �elds. Non-axisymmetri
 imperfe
tions to the �berdestroy this polarization degenera
y and introdu
e thelinear birefringen
e � a di�eren
e in the propagation
hara
teristi
 between the two polarizations. Further-more, for a nonlinear �ber, the amplitude 
oupling
auses an additional self-indu
ed birefringen
e via the
ross-phase modulation. A
tivating the �ber by reso-nan
e impurities, e.g., rare-earth ions, has given rise toan entire industry of �ber lasers and ampli�ers whosephysi
s is extensively dis
ussed in the literature (see [4℄and referen
es therein).In this paper, our approa
h is to 
onsider the phys-*E-mail: elyutin�star.mephi.ru, sergeipe�mtu-net.ru

i
al system in two asso
iated parts. The �rst is a shortopti
al pulse propagating in a nonlinear, dispersive andbirefringent �ber. The se
ond is an ensemble of two-level resonan
e atoms immersed in the �ber host ma-terial. The �rst part is modeled by the full �ber equa-tions, broadly in the form of two 
oupled nonlinearS
hrödinger (NLS) equations. The se
ond is governedby a system of Blo
h equations 
oupled to the �berpart by the resonan
e polarization.Disregarding the linear birefringen
e, the di�eren
eof the group velo
ities of the polarized modes (i.e., thewalk-o� e�e
t), and the polarization indu
ed in the res-onant subsystem, the nonlinear equations for the �eld
omponents are an example of a 
ompletely integrablesystem [5; 6℄. Under 
ertain 
onditions, a short opti
alpulse in a resonant medium 
an in turn evolve into asteady-state solitary wave (a 2�-pulse) [7℄. This meansthat in a model of this type, one 
ould ideally observethe 
oexisten
e of the self-indu
ed transparen
y (SIT)and NLS solitons [8�10℄. But this 
an hardly o

ur fora moderately intense pulse in realisti
 doped �bers be-
ause the disparity in the spatial s
ales and the pulseenergy for the SIT solitons and opti
al solitons are verysubstantial in a nonlinear �ber: one 2� SIT pulse 
or-responds to hundreds of NLS solitons by power.The general problem then apparently redu
es to two
hara
teristi
 
ases: (i) the Kerr nonlinearity and bire-846
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al pulse polarization dynami
s : : :fringen
e e�e
t on the 
oherent propagation of shortpulses in a short doped �ber when the dispersion ofgroup velo
ities and the walk-o� e�e
t are insigni�
ant,(ii) the weak e�e
t of the resonant absorption and re-fra
tion on the 
oupled soliton-like pulse propagation ina nonlinear birefringent �ber. In this paper, we 
on
en-trate on the latter 
ase. Basi
ally, both the �ber e�e
tsand the two-level medium 
an a�e
t the polarizationstate of the propagating light wave. In ve
tor nonlin-ear wave equations, all the 
ross terms (linear birefrin-gen
e, power-dependent 
ross-phase modulation, andthe group velo
ity mismat
h) 
ontribute to variationsof the polarization states [11℄. At the same time, level-degenerate atoms possess their own polarization prop-erties that have been dis
ussed in numerous papers de-voted, e.g., to polarization features of the photon�e
hoe�e
t [2℄. The e

entri
ity and polarization ellipse ori-entation 
an alter a
ross the width of a 2�-pulse indegenerate self-indu
ed transparen
y [12; 13℄.In this paper, we 
onsider a short opti
al pulsepropagation in a nonlinear birefringent doped �ber bynumeri
ally solving the self-
onsistent system of equa-tions for the opti
al �eld and the degenerate two-levelmedium. In the 
ourse of dis
ussion, we introdu
e insu

ession the 
onventional �ber attributes (birefrin-gen
e, dispersion, Kerr nonlinearity, and walk-o� ef-fe
t) followed by the resonan
e intera
tion of the lightpulse with the impurity atoms in order to observe boththe separate and the 
ombined in�uen
e of these e�e
tson the dynami
s of polarization states and the wave-forms of polarization modes.2. POLARIZED WAVES IN A CUBIC MEDIUMWITH RESONANT IMPURITIESWe 
onsider the ele
tromagneti
 wave propagationin an opti
al birefringent �ber with the 
ubi
 (Kerr)nonlinearity. We let this �ber 
ontain doped two-levelatoms with the transition energy in resonan
e with thefrequen
y of the 
arrier. The des
ription of the solitarywave propagation is 
onventionally based on the re-du
ed Maxwell equations [9; 14�16℄ 
omplemented withthe Blo
h equations [5℄ determining the evolution of theresonan
e subsystem. Hereafter, we follow the works byBoardman and Cooper [9; 14℄, where the propagationof polarized pulses in the Kerr medium was thoroughlyobserved. The resonan
e 
ontribution is 
onsidered inthe same way as in [5℄.We write the ele
tri
 �eld ve
tor of the opti
al waveas E = Exex + Eyey, where ex and ey are orthogonalve
tors in the x and y dire
tions. The wave propagates

in the z dire
tion. Using the slowly varying (
omplex)envelope approximation (SVEA), we 
an writeEx = Ex(z; t)	(x; y) exp [i(�xz � !0t)℄ ;Ey = Ey(z; t)	(x; y) exp [i(�yz � !0t)℄ ;where !0 is the 
arrier frequen
y and �x(�y) is the lin-ear propagation 
onstant of the slow (fast) prin
ipalaxis of the birefringent �ber [9; 14�16℄.The radial distribution of the ele
tri
 �eld in the�ber is des
ribed by the mode fun
tion 	(x; y). Weassume that the propagation 
onstants slightly varyfrom some average value � su
h that �x = � + ��and �y = � � ��. The 
omplex envelopes are ex-pressed in terms of real amplitudes and phases slowlyvarying in spa
e and time, Ex = Rx exp[i'x℄ andEy = Ry exp[i'y℄. The phases are given by 'x = ~'+ �and 'y = ~'� �, where ~' is the average value. Finally,the ele
tri
 �eld 
omponents are given byEx = Ax(z; t)	(x; y) exp [i�z � i!0t℄ ;Ey = Ay(z; t)	(x; y) exp [i�z � i!0t℄ ;where Ax = Rx exp [i ( ~'+ �+��z)℄ ;Ay = Ry exp [i ( ~'� ����z)℄ :The presentation of the phase terms in the aboveform is attributable to the following e�e
ts: the in-trinsi
 birefringen
e (i.e., the birefringen
e that wouldexist in the linear limit) is represented by ���z andthe self-phase modulation is des
ribed by ��(t; z). In aweakly nonlinear and weakly birefringent medium, su
has the typi
al glasses of opti
al �bres, the nonlinearityis assumed to be instantaneous. Generally speaking,the validity of this assumption depends on the pulserise time. If the opti
al pulse be
omes narrower, theassumption is no longer valid. We ignore this e�e
t inthis paper. We 
onsider a Kerr-type nonlinear mediumassuming that (i) the diele
tri
 medium is isotropi
, (ii)the third harmoni
 generation 
an be negle
ted, and(iii) the se
ond-order nonlinear sus
eptibility is identi-
ally zero. Therefore, the slowly varying envelope ofthe nonresonan
e 
ubi
 polarization PKerr(z; t) isPKerr = 2�(3)1122(E � E�) + �(3)1221(E � E)E�;where the spatial and temporal dispersion is assumedto be absent. The above equality written in proje
tionsbe
omesPKerrx = �(a+ b)jAxj2++ fa+ b exp [�4i(�+��z)℄g jAyj2�Ax; (1)847



S. O. Elyutin, A. I. Maimistov ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001PKerry = �(a+ b)jAyj2++ fa+ b exp [4i(�+��z)℄g jAxj2�Ay; (2)where we use the notation 2�(3)1122 = a and �(3)1221 = b.The Maxwell equations with nonlinear terms (1)and (2) and the resonan
e polarization in
luded pro-vide a set of 
oupled evolutionary equations for theamplitudes Ax and Ay, with the se
ond-order groupvelo
ity dispersion taken into a

ount:i�Ax�z + iv�1x �Ax�t � �x �2Ax�t2 +��Ax ++mx �a11jAxj2 + a12jAy j2�Ax + qPx = 0; (3)i�Ay�z + iv�1y �Ay�t � �y �2Ay�t2 ���Ay ++my �a21jAxj2 + a22jAyj2�Ay + qPy = 0: (4)In Eqs. (3) and (4), the e�e
t of the resonan
e im-purities is referred to by the slowly varying polariza-tion envelopes Px and Py. The 
oe�
ient is de�nedin Eq. (15) in what follows. Nonresonan
e losses areignored in (3) and (4) while the terms proportional toPx and Py represent the resonan
e absorption and re-fra
tion e�e
ts. In Eqs. (3) and (4), the following 
oef-�
ients are introdu
ed:v�1x;y = d�x;yd! ; �x;y = 12 d2�x;yd!2 ; mx;y = !202
2�x;y :The self-modulation e�e
t is represented by a11 anda22. The fa
tors a12 and a21 are responsible for 
ross-modulation. The e�e
tive nonlinear intera
tion param-eter �eff is taken as a fa
tor ex
lusively depending onthe ratio of the material sus
eptibility tensor elements,i.e., on �(3)1221=�(3)1122. Thus, we havea11 = a22 = �eff ; a12 = a+ b exp [�4i(�+��z)℄a+ b �eff ;a21 = a+ b exp [4i(�+��z)℄a+ b �eff ;where the e�e
tive nonlinear intera
tion parameter �effis de�ned as �eff = R �(3)1122(�)j	(�)j4d�R j	(�)j2d� :For the sili
a opti
al �ber, the third-order sus
eptibil-ity mainly o

urs be
ause of a nonlinear ele
troni
 re-sponse and be
ause a = 2b, and therefore,a12 = �eff �23 + 13 exp [�4i(�+��z)℄� ;

a21 = �eff �23 + 13 exp [4i(�+��z)℄� :If we use the relationsexp [4i(�+��z)℄ = ExE�yE�xEy = AxA�yA�xAy ;exp [�4i(�+��z)℄ = EyE�xE�yEx = AyA�xA�yAx ;the nonlinear terms in Eqs. (3) and (4) be
ome�a11jAxj2 + a12jAy j2�Ax == �eff �jAxj2Ax + 23 jAyj2Ax + 13A�xA2y� ;�a21jAxj2 + a22jAy j2�Ay == �eff �jAyj2Ay + 23 jAxj2Ax + 13A�yA2x� :The system of equations (3), (4) 
an now be rewrittenin the �nal formi�Ax�z + iv�1x �Ax�t � �x �2Ax�t2 +��Ax ++mx�eff �jAxj2Ax+23 jAy j2Ax + 13A�xA2y�++ qPx = 0; (5)i�Ay�z + iv�1y �Ay�t � �y �2Ay�t2 ���Ay ++my�eff �jAyj2Ay + 23 jAxj2Ax + 13A�yA2x�++ qPy = 0: (6)Equations (5) and (6) des
ribe the propagation of a po-larized radiation pulse in the birefringent �ber dopedby resonan
e impurities. The ele
tri
 �eld of the pulseis expressed by the Cartesian 
omponents. In order toemphasize the 
ir
ular nature of birefringen
e, it seemsreasonable to express the evolution equations in termsof the right- and left-hand 
ir
ularly polarized �eldsE1 = Ex + iEy; E2 = Ex � iEy:The 
orresponding 
omplex envelopes 
an be writtenas A1 = Ax + iAy; A2 = Ax � iAy:It is worth noting thatA2x +A2y = A1A2; jAxj2 + jAy j2 = jA1j2 + jA2j22 :848
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al pulse polarization dynami
s : : :Hereafter, we set �x = �y = � and mx = my = m. Forthe sake of generality, we also assume that the groupvelo
ities of the di�erent polarization 
omponents aredi�erent. To pro
eed to numeri
al simulations of thenonlinear propagation of polarised pulses, it is 
onve-nient to introdu
e the dimensionless quantitiesA1;2 = A0e1;2; z = �L; � = �t� zv� t�10 ;where t0 is the 
hara
teristi
 time s
ale (whi
h 
an beequal to the initial pulse duration tp0), L and A0 are thenormalizing length and amplitude respe
tively, and thevelo
ity of the time frame v is the velo
ity of the �
enterof gravity� of the opti
al pulse, v�1 = (v�11 + v�12 )=2.In terms of the new variables, the system of equa-tions (4) be
omesi�e1�� + i 1̀g �e2�� � s̀d �2e1��2 + 1̀
 e2 ++ 13`k �je1j2 + 2je2j2� e1 +�LqA0�P1 = 0; (7)i�e2�� + i 1̀g �e1�� � s̀d �2e2��2 + 1̀
 e1 ++ 13`k �je2j2 + 2je1j2� e2 +�LqA0�P2 = 0; (8)where P1 = Px + iPy and P2 = Px � iPy.In Eqs. (7) and (8), the e�e
t of resonan
e impu-rities is represented by the slowly varying polarizationenvelopes P1 and P2. The parameters `g, `
, `k, and `dare `�1g = LLg = L2t0 � 1v1 � 1v2� ;`�1
 = LL
 = ��L;`�1k = LLk = L�effA20 !202
2� ; (9)s = sign�; `�1d = LLd = Lt20 j�j;where Ld = t20j�j ; L
 = 1�� ;Lk = 2�
2!20�effA20 ; Lg = 2v1v2t0v2 � v1 : (10)The length Ld 
hara
terizes the dispersion of thegroup velo
ities in ea
h polarization mode. The quan-tity L
 stands for the 
oupling length. The 
orrespond-ing terms in Eqs. (7) and (8) 
ouple the right and

left 
ir
ular 
omponents of the ele
tromagneti
 wave,thereby implying the linear birefringen
e e�e
t. Theself- and 
ross-modulation e�e
ts reveal at the lengthLk. The di�eren
e between the group velo
ities v1 andv2 of the 
ounter-rotating polarized light waves 
ausesa spatial divergen
e of the di�erently polarized 
ompo-nents of the opti
al pulse (the walk-o� e�e
t) over the
hara
teristi
 length Lg. A simple estimate gives theratio `
`g � �4�(
tp0) :It follows that in the pi
ose
ond pulse range, the termsrelated to the group velo
ities are small 
ompared tothe linear 
oupling terms. However, the walk-o� e�e
t
an be important when we pass to the femto-se
ondpulse duration domain.Equations (7) and (8) must be supplemented byequations des
ribing the temporal behavior of the den-sity matrix elements for the ensemble of two-level atomsimmersed in the �ber host material whose levels are de-generate with respe
t to the proje
tions of the angularmomenta ja and jb. For de�niteness, we 
onsider the
ase where ja = 1 ! jb = 0. The resonan
e tran-sition is 
hara
terised by the dipole moment elementd13 = d23 = d�31 = d�32 = d. The e�e
tive matrix ele-ment of the dipole transition is given bydeff = R d(�)j	(�)j2d�R j	(�)j2d� :The ve
tor � lies in the plane normal to the opti
al�ber axis.The temporal behavior of the resonant impuritiesis governed by a system of the generalized Blo
h equa-tions [13℄. For slowly varying elements of the densitymatrix �̂ des
ribing the transition between the statesja;mi = jja = 1, m = �1i, and jbi = jjb = 0, m = 0i,we introdu
e the notation�12 = ha;�1j�̂ja;+1i; �13 = ha;�1j�̂jbi;�23 = ha;+1j�̂jbi; �11 = ha;�1j�̂ja;�1i;�22 = ha;+1j�̂ja;+1i; �33 = hbj�̂jbi;�kl = ��lk ; l; k = 1; 2; 3: (11)The initial 
onditions are given by�33(0) = 1; �22(0) = �11(0) = 0;�12(0) = �13(0) = �23(0) = 0:The 
hange of variables �12 = m21, �21 = m12,�11 = m11, �22 = m22, �33 = n, p1 = ��13, p2 = ��236 ÆÝÒÔ, âûï. 4 (10) 849



S. O. Elyutin, A. I. Maimistov ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001allows writing the generalized system of Blo
h equa-tions in the 
ompa
t form�p��� = i�p� � if  X�0 e�0m�0� � e�n! ; (12)�m��0�� = �if(e��p�0 � e�0p��); (13)�n�� = �ifX� (e�p�� � e��p�); �; �0 = 1; 2: (14)The initial 
onditions are given by n(0) = 1 for theground level population, p�(0) = 0 for the polariza-tion, and m��0(0) = 0. We also assume that the pulseduration is mu
h shorter than all the relaxation timesin the resonan
e subsystem, whi
h allows us to omit therelaxation terms in Eqs. (12)�(14). The dimensionlessvariables p� entering Eqs. (12)�(14) are related to thepolarization terms in Eqs. (7) and (8) by�LqA0�P� = LLrP� = LLr hp�i = 1̀r hp�i; (15)where q = 2�!0nadeff
n(!0) ;Lr = fL(2�)r , na is the 
on
entration of the impurityatoms, and h i denotes the summation over all atomswith the frequen
y detunings � = �!t0 from the 
en-ter of the inhomogeneously broadened line. In (15), the
hara
teristi
 length of the resonan
e intera
tion isL(2�)r = 
n~�d2eff!0nat0 : (16)In the system of equations (12)�(13) and in expression(15), f = deffA0t02~ = A0A2�is the normalized e�e
tive os
illation frequen
y of thematerial variables of the resonan
e subsystem a�e
tedby the �eld of the amplitude A0 and A2� is the ampli-tude of the SIT 2�-pulse.The 
oupled system of Maxwell-Blo
h equations(7)�(8) and (12)�(14) provides the mathemati
al ba-sis for numeri
ally simulating the propagation of shortpulses of 
ir
ularly polarized light in a nonlinear waveg-uide doped by resonan
e impurities. The solution of�eld equations (7)�(8) was obtained using one of thepopular [17℄ �nite di�eren
e impli
it�expli
it Crank�Ni
olson numeri
al s
hemes, where the desired a

u-ra
y 0.001 was rea
hed by iterations. Blo
h equations

(12)�(14) 
oupled to �eld equations (7)�(8) by the reso-nan
e polarization terms were solved by the predi
tor�
orre
tor pro
edure. The predi
tor�
orre
tor was runat every iteration in the Crank�Ni
olson algorithm un-til the a

ura
y about 0.001 was a
hieved for the polar-ization 
omponents p� in Eqs. (12)�(14). Although the
ode 
ould produ
e the integration over the inhomoge-neously broadened line of the resonan
e absorption, werestri
ted it to the homogeneous 
ase and the exa
tresonan
e at this stage of numeri
al simulation, i.e., to� = 0 in (12). The results of 
al
ulations were theabsolute value of the 
omplex amplitudes e1;2(�; �) ofthe 
ounter-rotating right- and left-handed oppositelypolarized �elds. Following Winful [18℄, we examinedthe polarization state of the �eld in the opti
al pulse interms of the azimuthal angle�(�; �) = arg �2and the ellipti
ity "(�; �) = j�j � 1j�j+ 1 ;where � = e1e�12 is a 
omplex quantity. The 
hara
-teristi
 values of " are given by " = 0 for the linearlypolarized light, " = +1 for the purely right-hand 
ir-
ularly polarized light, and " = �1 for the purely left-hand 
ir
ularly polarized light. The parameter � is theangle between the axis of the polarization ellipse andthe slow prin
ipal axis of the birefringent �ber. It 
anvary within the interval (��=4; �=4).The laun
hed pulses are assumed to have the se
hform, e1;2(0; �) = em1;2 se
h� � � �0Æ � ; (17)where Æ = tp0t�10 and �0 is the temporal 
oordinate ofthe input pulse 
enter.3. NUMERICAL ESTIMATESWe let the group velo
ity dispersion D = 4�
���20of the sili
a-based monomode �ber host material betypi
ally D = 15 ps�nm�1�km�1 at �0 = 1:55�m andthe nonlinear index n2 � 10�13 esu. It then followsthat � = 12 ����d2�d!2 ���� � 10�28 s2 � 
m�1:The e�e
tive nonlinear intera
tion parameter is�eff � n2n2� � 2:3 � 10�14 esu:850



ÆÝÒÔ, òîì 120, âûï. 4 (10), 2001 Short opti
al pulse polarization dynami
s : : :We adopt the value d � 5 � 10�21 esu (the tran-sition 4I5=2 ! 4I5=2 in Er3+ ions) and the impu-rity 
on
entration na � 1018 
m�3 that 
orrespondsto realisti
 samples [19℄. With the input pulse du-ration tp0 = t0 = 0:1 ps, the dispersion length isLd = t20��1 � 102 
m. The polarization mode 
ou-pling e�e
t o

urs over the distan
eL
 = 1�� � �02��n � 25 
m:Here, we set �n � 10�6 [20℄. The e�e
t of the groupvelo
ity mismat
h be
omes noti
eable at the 
hara
ter-isti
 distan
eLg = 2v1v2v2 � v1 t0 � 2
t0�n � 6 � 104 
m:The spatial s
ale of the Kerr self- and 
ross-modulationpro
ess Lk depends on the �eld amplitude A0 asLk � n�0��effA20 :The balan
e between the �ber group velo
ity disper-sion and the nonlinear pulse 
ompression o

urs whenLk = Ld. This gives the value of the one-soliton solu-tion amplitude of a single nonlinear S
hrödinger equa-tion ANLS =s �n�0�t20�eff � 0:5 � 104 esufor the 0.1 ps pulse duration. The 
orresponding lengths
ale is L(NLS)k � 70 
m. The nonlinear S
hrödingerone-soliton peak intensity 
an be estimated asINLS = 
(ANLS)28� � 4 � 109 W/
m2:For 
omparison, the amplitude of a 0.1 ps 2�-pulse isA2� = 2~d�1t�10 � 4 � 106 esu. The peak intensity ofthe pulse rea
hes the magnitude I2� � 2 � 1015 W/
m2.Another balan
e equality Lk = L
 yields the ele
tri
�eld strength A
 = (2n�n��1eff )1=2 known as the 
har-a
teristi
 light wave �eld for a 
ontinuous wave (
w) ofa nonlinear dire
tional 
oupler [21℄, A
 � 104 esu, theintensity I
 � 1:5 � 1010 W/
m2. This broadly meansthat for the input �eld amplitude values higher thanA
, the nonlinear birefringen
e initiated by Kerr pro-
esses begins to have a noti
eable e�e
t.The quantityL(2�)r = n~�02�2nad2t0 � 5 � 102 
mis the distan
e in the sample over whi
h the re
ip-ro
al rea
tion of the medium in the form of polar-ization and population di�eren
es develops to pro-du
e 
oherent transients, e.g., the self-indu
ed trans-paren
y [13℄, photon e
hoes [22; 23℄, opti
al nutations,

breather waves [24℄, et
. For signals with a small pulsearea � [24℄, � = d~�1 1Z�1 R(z; t)dt;the parameter L(2�)r serves as the absorptionlength. The pulse area of the NLS soliton �NLS == �d~�1t0ANLS = 3 � 10�3� is extremely small in
omparison with �SIT = 2�.4. EVOLUTION OF POLARIZATION STATESIN A FIBER. NUMERICAL ANALYSISWe 
an now pro
eed to examine typi
al numeri
alresults. We fo
us on the diagnosti
 of the temporal pro-�le of the �eld amplitude and polarization parameters" and � at every 
ross-se
tion of the nonlinear birefrin-gent �ber. We assume the light wave to be in exa
tresonan
e with the homogeneously broadened atomi
transition, i.e., � = 0. In order not to over
ompli
atethe problem, we also ignore the walk-o� e�e
t in thispaper, although we observed some of its obvious resultsin our preliminary 
omputations. In the numeri
al sim-ulations demonstrated in Figs. 1�5 below, amplitudes(11) of the input pulses were 
hosen as em1 = p3 =2and em2 = 1=2, while the respe
tive initial phases were0 and �. We also set f = 0:0015, thus assuming thatthe resonan
e intera
tion pro
ess is not a strong per-turbation to the �ber e�e
ts.The propagation of a light pulse in a birefrin-gent �ber is a

ompanied by the two-way 
ouplingbetween the orthogonal 
ounter-rotating polarizationmodes with the spatial beat period 2����1. No dis-persion is involved in the numeri
al simulation at thisstage. For the linear undoped �ber (i.e., when the 
on-tribution of the Kerr self- and 
ross-modulation e�e
t
an be negle
ted) the solution of Eqs. (7) and (8) isquite simple (Fig. 1a, b). The period of the partial en-ergy transfer between the modes is `b = �`
. It is seenfrom the 3D plot of the azimuth � and the ellipti
ity "(Fig. 1
, d) that both fun
tions are uniform a
ross thepulse and os
illate in the 
ourse of propagation insidethe �ber [18℄. It is worth to note that if the laun
hedpulse amplitudes were em1 = 1, em2 = 0, the azimuthangle � would 
hange from ��=4 to �=4 and the polar-ization state would 
hange from the linear polarization(" = 0) to a 
ir
ular polarization of the opposite dire
-tion (" = �1).When both polarizations are ex
ited in an asym-metri
 manner, the ellipti
ity os
illates between the el-lipti
al 
lo
kwise and ellipti
al anti
lo
kwise polariza-851 6*
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Fig. 1. a, b � normalized �eld strengths in 
ounter-rotating polarization modes in birefringent (`
 = 0:25), linear (`k =1),and dispersionless (`d =1) �ber; 
, d� spa
e�time evolution of the azimuthal angle � and the ellipti
ity "; e, f� gray s
alesurfa
es of the fun
tions �(�; �) and "(�; �); g � phase traje
tories of � vs " taken at � = �0 for a di�erent � = (em1e�1m2)2ratio (see in text)852
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s : : :tions. This is 
learly seen from the gray s
ale modularsurfa
e of �(�; �) and "(�; �) (Figs. 1e and 1f). The darkgray up to bla
k 
orresponds to the maxima of the plot-ted fun
tion, while the light gray down to white to theminima. The phase traje
tories on the " vs � plane(with " and � 
al
ulated at the moments of peak inten-sity of the pulse) parameterized by � are 
losed 
ir
les(Fig. 1g). In this pi
ture, ea
h traje
tory is asso
iatedwith a di�erent � = (em1e�1m2)2 ratio. The outer 
urvepertains to � = 999. The subsequent 
y
les 
orrespondto � = 99, 9, 3, 1.5, 1.22. The biggest 
ir
le is theultimate traje
tory related to a nearly net 
ir
ularlyright-hand polarized light and small 
ir
les 
orrespondto a nearly linearly polarized light. The 
ir
le in opendots 
orresponds to the 
ase that was numeri
ally in-vestigated: em1 = p3 =2 and em2 = 1=2. This numeri-
al pi
ture is in good agreement with the one presentedin [18℄ for the 
w-waves.With the Kerr and walk-o� e�e
ts ignored, the 
om-bined a
tion of the linear birefringen
e (`
 = 0:25) anddispersion (`d = 1:0) provides a well interpretable ef-fe
t of the intensity hump spreading (Fig. 2a, b) in thedepth of the �ber, as is 
learly seen in the gray s
alemap (Fig. 2
, d). In this 
ase, the polarization proper-ties of the travelling �eld (Fig. 2e, f) are quite similar tothose in Fig. 1. The spikes on both sides of the 
entralarea in Fig. 2e, f are the result of numeri
al �u
tuationsprovoking random swit
hovers of the ellipti
ity " andthe azimuth � on the wings of the propagating pulse,where the �eld is extremely weak in both polarizations.In Fig. 2g, we display the phase plane (" vs �) for the
oupling + dispersion 
ase for the parameters � = 999,9, 3, 1.22. The value � = 3 
orresponds to the 
aseunder numeri
al simulations. The plotted 
urves arequite similar to those in Fig. 1g.The interplay between the linear 
oupling and theKerr nonlinear phase modulation yields the pi
turethat was not immediately evident (Fig. 3). We inje
tedthe pulses of the 
ounter rotating polarization in the�ber, with the amplitudes of the pulses expressed inphysi
al units satisfying the 
onditions Am1 � 2A
 andAm2 � A
. This 
orresponds to 
hoosing `
 = 0:25 and`k = 0:05 for the 
hara
teristi
 lengths. In this 
ase,one 
ould expe
t the Kerr 
ompressing every time theenergy 
ouples ba
k to the mode from the 
onjun
tedpolarization state. Instead, we observe the interferen
ebetween the 
oupling pro
esses with di�erent beat pe-riods. The 
oupling is revealed in the form of the in-serted 
y
les when every new growth of the amplitudebegins while the previous one has not yet �nished. Thephysi
al explanation may be found if one notes thatboth input amplitudes are 
hosen to be of the order

of the 
riti
al strength of the ele
tri
 �eld A
 for 
wswit
hing. For su
h intensities, the Kerr pro
esses be-
ome su�
iently strong to make the birefringen
e anonlinear pro
ess and the beat period 
an even growunlimitedly [25�28℄. Attention must be drawn to thefa
t that the periodi
ity of the onsets of the ba
k andforth 
oupling 
y
les approa
hes the value pres
ribedby the 
hoi
e `
 = 0:25 (
ompare with Fig. 1). Thelinear behavior o

urs only on the slopes of the pulseenvelope, where the �eld intensity has not rea
hed the
riti
al value. The further growth of the pulse �eldstrength in a pulse envelope for
es the beat period toin
rease as well. The result is seen in Fig. 3a, b and
, d showing the 3D pi
ture and the gray s
ale map ofthe polarization mode dynami
s. The envelopes of the�eld in both polarization modes experien
e a tempo-ral 
ounter-phase modulation in the 
entral part of thepropagating waveform (Fig. 3h). The modulation of theamplitudes of the 
ounter rotating polarization modesleads to the os
illation of " and � over � in the propa-gating light wave that is 
learly seen from the gray s
alemaps in Fig. 3e, f and on the 
omparative plots of the�elds, ellipti
ity, and azimuth at the exit from �berpla
ed in Fig. 3h. Pi
ture g in Fig. 3 shows the ("; �)phase plane for the same values of the parameter � asabove. Unlike the previous 
ases, the ultimate 
ir
le isdistorted, whi
h agrees with the analysis in [18℄. This
y
le is smeared be
ause the spatial modulation of thepeak intensity of polarization 
omponents is 
omplex.Our 
al
ulations presented in Fig. 4 illustrate the
ombined a
tion of the linear birefringen
e, Kerr non-linearity, and dispersion. The dispersion length `d = 1serves as a s
ale length, while the 
oupling length `
and the Kerr length `k are shorter, `k = 0:1 and`
 = 0:25. The 
hoi
e of parameters di
tates the val-ues of the polarization mode amplitudes at the en-tran
e to the �ber: Am1 � p2A
 � 2:7ANLS andAm2 = 0:8A
 � 1:6ANLS. Weak ripples at the edges ofthe 
omputational grid are due to the time boundary
onditions.The 
urrent 
ase is not a 
ompletely integrableproblem be
ause of the inter-mode 
oupling. The prop-agating pulse 
annot �nd a stable form at least overthe distan
e 
onsidered here. In one of our preliminary
omputations under the 
onditions similar to those inFig. 4, but with `k � 0:05 (i.e., for a greater amplitude),we observed the breaking up of the input pulses of bothpolarizations into two separate subpulses subsequentlys
attering aside.The periodi
al squeezing of the pulse shape, a fea-ture of a high-order NLS solution, produ
es new os-
illations on the wings of the pulse (Fig. 4a, b) be-853
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Fig. 2. a, b � the same as in Fig. 1 for the parameters 
hosen as `k = 1, `
 = 0:25, and `d = 1:0; 
, d � gray s
alemaps of the 
entral parts of pi
tures a and b; e, f � gray s
ale maps of the azimuthal angle � and the ellipti
ity "; g � thesame as in Fig. 1854
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Fig. 3. a, b � normalized �eld strengths in polarization 
omponents of the pulse propagating in birefringent nonlinear anddispersionless �ber with `
 = 0:25, `k = 0:05; 
, d, e, and f � the same as in Fig. 2; g � the same as in Fig. 1; h � fromtop to bottom: the azimuthal angle �, the ellipti
ity ", and the polarization mode modules at the exit of the �ber855
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Fig. 4. a, b � normalized �eld strengths in polarization 
omponents of the pulse for `
 = 0:25, `d = 1:0, and `k = 0:1; 
,d, e, and f � the same as in Fig. 2; g � polarization mode shapes (absolute values) at the entran
e (dashed line) and atthe exit (solid line) of the �ber856
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ause the Kerr pro
esses and dispersion are spatiallymismat
hed. The dispersion spreading is noti
eable atseveral (� � 4) normalized lengths when the disper-sion 
hirp �lls almost the entire time window (Fig. 4
,d). It is then natural that polarization properties ofthe light wave (i.e., the alternation of dark and lightshades of the gray) map the broadening area of thespatial�temporal os
illation of the polarization 
ompo-nents (Fig. 4e, f) 
aused by the dispersion, therebymaking the entire pi
ture rather 
ompli
ated. As inFig. 3h, the os
illations of the �eld remain out of phasein polarization modes (Fig. 4g). We note that thereare fewer 
oupling periods in Fig. 4a, b than in Fig. 1or Fig. 2. Clearly, the nonlinear narrowing and peakampli�
ation drive the propagation of the pulse intoa nonlinear birefringent regime. A further growth ofthe pulse input amplitudes strengthens the inequality`k < `d, thereby making the pro
ess somewhat anal-ogous to that in Fig. 3, plus the dispersion-originatedos
illations spreading away of the sharp 
entral peak.The resonan
e intera
tion of a short pulse with theensemble of resonan
e atoms is now added to the 
on-ventional �ber e�e
ts as indi
ated in Eqs. (7)�(8) and(12)�(14). The evolutionary behavior of the 
ounter
ir
ularly polarized 
omponents with the input ampli-tudes Am1 � 2A
 � 4ANLS , Am2 � A
 � 2ANLS isplotted in Fig. 5a, b and 
, d. We assume the resonan
eintera
tion to be weak by setting f = 0:0015. Underthis 
ondition, the population di�eren
es insigni�
antlydeviate from their initial values. The spatial s
ale ofthe pro
ess is `d = 1:0, whereas `k = 0:05, `
 = 0:25,and `r = 0:01. The value of the resonan
e intera
-tion length L(2�)r 
an be estimated as L(2�)r � 7Ld (see(6)). This means that the total length of the �ber inFig. 5 is about 0:6L(2�)r or 4Ld. The resonan
e intera
-tion pro
ess transfers energy more e�e
tively than thedispersion o� the pulse to the radiation born by the re-
ipro
al rea
tion of the medium in the pulse after thea
tion region. It is then 
lear that in 
omparison withFig. 4, the amplitudes of the humps rapidly de
rease inthe propagation dire
tion (Fig. 5a, b).Attention should be drawn to two humps in the 
en-ter of Fig. 5g. These are the above-mentioned reli
s ofthe NLS N -soliton break up. The visible asymmetryof the pattern relative to the initial pulse position re-sults from the delayed response of the resonan
e subset.Generally, we 
an predi
t that at longer distan
es in-side the doped �ber, the well-evolved dispersion and
oherent �ring� e�e
ts 
an hardly be distinguished.The polarization properties of the light pulse aredisplayed in the gray s
ale maps in Fig. 5e, f. It is inter-esting to note that these pi
tures preserve the periodi


alternation of the regions with the opposite ellipti
ityand azimuthal angle owing to the linear 
oupling (seeFig. 2e, f). In our further 
omputations (not shown),when we set `r = 0:001 for the ten times larger 
on
en-tration of impurities, we saw the resonan
e os
illationsalready �lling the entire (�; �) 
omputational area atan early stage of the pulse propagation. It was inter-esting to observe how the in
rease of the dopant 
on-
entration developed the generi
 pi
ture of the periodi
azimuth and ellipti
ity variations with the same beatperiod seen in Figs. 1 and 2. Qualitatively, this 
an beregarded as a result of the resonan
e absorption whenthe progressive dumping of the �eld humps de
reasesthe �eld amplitude below the 
riti
al value of the ele
-tri
 �eld strength A
, thereby driving the pro
ess ba
kinto the linear regime, when `
 begins to be shorterthan `k. Anyway, be
ause the dispersion and the res-onan
e intera
tion are time-dependent pro
esses, theyintrodu
e a temporal modulation to the basi
 polariza-tion pi
ture 
onsistently with the linear birefringen
e.The 
omparison of our numeri
al simulation withthe known results [25℄ is displayed in Figs. 6 and 7.The parameters introdu
ed in this paper 
orrespond tothe analogous quantities in [25, Fig. 1b℄ if we set `d = 2,`
 = 4, `k = 0:33, and e2m1 = 1:25. This yields the esti-mate Am1 � 4A
 � 3ANLS , Am2 = 0 in physi
al unitsfor the input �eld amplitudes in the 
ases depi
ted inFigs. 6 and 7. In both pi
tures, we kept the origi-nal [25℄ length of the �ber, although it 
orresponds to`fiber = 8`d in our 
onventions. The dis
repan
y orig-inates from renormalizing the fa
tor in the dispersionterm in (5) by the 
oe�
ient 1/2. In Fig. 6, we re-produ
e the results of [25℄ observing the formation oftwo distin
t periodi
ities of the 
oupling pro
ess be-tween the modes. The pulse shape dynami
s (Fig. 6a,b and 
, d) 
an be physi
ally interpreted in terms ofthe `
=`k ratio, whi
h in the 
urrent 
ase is the biggestof all those des
ribed above, namely `
=`k = 12. The
oupling pro
ess between the modes must then reveala nonlinear behavior be
ause of the power dependen
eof the energy ex
hange period. In the Ld units, thelinear 
oupling length (i.e., at low power) should havebeen `b = LbL�1d = �L
L�1d = 2�. As a matter of fa
t,the visual estimate of the beat period in Fig. 6a, b and
, d yields `nlb = Lnlb L�1d � 4:5� > `b. We note thatin the 
ase under 
onsideration, the period of the typi-
al higher-order soliton 
ompressions be
ame power de-pendent. This manifests the di�eren
e between our ap-proa
h and the ideal 
ompletely integrable model [29℄.Figure 6e, f shows the gray s
ale (�; �) maps of theazimuthal angle � and the ellipti
ity parameter ". It isseen that the time�spa
e features of the dispersion pro-857
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Fig. 5. a, b � normalized �eld strengths in polarization 
omponents of the pulse propagating in a �ber with impurities(`r = 0:01). Other parameters are `
 = 0:25, `d = 1:0, and `k = 0:05. 
, d, e, and f � the same as in Figs. 2�4; g �polarization mode modules at the entran
e (dashed line) and at the exit (solid line) of the �ber858
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Fig. 6. Pi
tures a�d show the same as Fig. 4a�d with the parameters `d = 2:0, `
 = 4:0, `k = 0:33
ess are distin
tly reprodu
ed. The brightest lines andspots in the region of pulse slopes demonstrate abrupt
hanges of the polarization state due to a rapid growthor drop of the �eld in one polarization mode 
omparedto the other.The re
ipro
al rea
tion of resonan
e impurities onthe �eld of the propagating short pulse 
an noti
eably
hange the spa
e�time pi
ture of polarization dynam-i
s in the analysis of nonlinear e�e
ts in a pure �berby Trillo et al. [25℄. For the 
omputational variant pre-sented in Fig. 7, all the �ber parameters and input pulse
amplitudes remain unaltered with respe
t to the 
ase inFig. 6. But in 
ontrast to the variant in Fig. 6, the �eldof a short propagating pulse is now 
oupled to the reso-nan
e subsystem, and therefore, the 
omplete system inEqs. (7)�(8) and (12)�(14) must be solved numeri
ally.The value of the normalized resonan
e length was setas `r = 0:01, with the 
orresponding physi
al length ofthe resonan
e intera
tion L(2�)r � 3Ld and the parame-ter f = 0:0015. The population di�eren
e between theresonan
e levels (whi
h was 
omputed but is not shownhere) remains pra
ti
ally un
hanged be
ause the areas859
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Fig. 7. Pi
tures a�d show the same as Fig. 5a�d with the parameters `d = 2:0, `
 = 4:0, `k = 0:33, `r = 0:01of the 
oherent pulses are small.The resonan
e response 
hanges the waveform ofthe polarized light. In the 
urrent 
ase, the intensityof the intera
tion pro
ess is higher than in Fig. 5 be-
ause the resonan
e intera
tion length is shorter. Theenergy of the input pulse is rapidly transferred to os-
illations of the resonan
e polarization (Fig. 7a, b) inthe region of the retarded a
tion of the propagatingpulse (Fig. 7
, d). The resonan
e absorption noti
e-ably weakens the humps for greater �, moving themout of the 
al
ulation window. It is interesting that
the intensity damping leads to the restoration of thelinear beat period `b � 2�, and the propagation pro-
ess is therefore 
onverted from a nonlinear regime tothe linear one. Thus, the nonlinear phase modulationand dispersion do not play the leading role in the dy-nami
s of the pulse. This explains why the maps ofpolarization parameters (Fig. 7e, f) are so �at. In fa
t,the slow variations in the form of dark and light stripesdue to the linear 
oupling pro
ess period (Fig. 7e, f)are the only prominent feature of the displayed plots.It is interesting that the os
illations of the �eld enve-860
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s : : :lope 
aused by the retarded re
ipro
al rea
tion of themedium, being in phase, do not produ
e a modulationof the polarization parameters " and � ex
ept in thevi
inities of espe
ially rapid 
hanges of the �eld.Passing to a higher 
on
entration (`r = 0:001)demonstrates the typi
al features of the 
oherent phe-nomena in a resonan
e medium. In the depth of the�ber, there is no solitary wave; instead, we have a wave-form with the os
illating envelope. This wave pa
ketrapidly shifts towards the later times, leaving the 
al
u-lation grid somewhere at � = 6. The polarization prop-erties remain indi�erent to the 
omplete destru
tion ofthe pulse and the linear birefringen
e beat period ispreserved. 5. CONCLUSIONSIn this paper, we have tried to give an indi
a-tion of a ri
h spa
e�time dynami
s arising from thepropagation of an ellipti
ally polarized light pulse ina nonlinear birefringent doped �ber. The resonan
eimpurities in the form of two-level atoms were in
ludedin the model in addition to the full set of nonlinear�ber e�e
ts. We have 
on
entrated on the 
ase ofa weak input �eld, for whi
h the amplitude of thepulse is about the amplitude of a single NLS pulseand the 
oupling to the resonan
e system is thereforenot strong. A trivial a

ount of the weak e�e
t ofthe resonan
e system on the propagating opti
al pulseleads to a linear absorption. Generally speaking, the
oherent intera
tion of short pulses with resonan
eatoms is a non-Markovian pro
ess [24; 30℄. Moreover,the degeneration of resonan
e levels gives the 
on-tribution to birefringen
e that is nonlo
al in time.With the ex
eption of big detunings o� the resonan
e,the analyti
al 
onsideration of all these e�e
ts isextremely di�
ult. Therefore, a dire
t numeri
alsimulation of the pulse evolution is preferable. Buteven within the weak-intera
tion approximation, thegeneral pi
ture proved to be su�
iently 
omplex.The polarization properties of the pulsed light arenonstationary a
ross the pulse width and 
an alsodrasti
ally 
hange in spa
e. Our numeri
al simula-tions show that the polarization dynami
 is basi
allyfeatured by the interplay between the Kerr nonlinearself- and 
ross-phase modulation and dispersion, whilethe linear birefringen
e leads to a spatial modulationof the azimuthal angle and the ellipti
ity. There is arange of the input amplitudes where the birefringen
ebe
omes a nonlinear power dependent pro
ess be
auseof the Kerr 
ross-phase modulation, and the power

beat period 
an therefore grow. At the same time,when the spatial s
ale of the resonan
e intera
tionbe
omes less than or about the 
hara
teristi
 lengthsof the �ber e�e
ts, the propagating pulse experien
esa strong distortion and a resonan
e absorption. Theintensity damping leads to the restoration of thelinear beat period, thereby 
onverting the propagationpro
ess from the nonlinear regime to the linear one.To observe per
eptible 
oherent e�e
ts su
h as theSIT or the photon e
ho, one must take many timesmore powerful pulses, whi
h in their turn ex
ite ahigher-order N -soliton e�e
t. Therefore, the problemrequires a spe
ial treatment.We are grateful to S. Kozlov, V. Sazonov, andV. Kozlov for useful dis
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