ОСОБЕННОСТИ КИНЕТИКИ ПОЛЯРИЗАЦИИ РЕЛАКСОРНОГО СЕГНЕТОЭЛЕКТРИКА

В. В. Гладкий, В. А. Кириков, Т. Р. Волк

Институт кристаллографии им. А. В. Шубникова Российской академии наук 117333, Москва, Россия

Л. И. Ивлева

Научный центр лазерных материалов и технологий Института общей физики Российской академии наук 117942, Москва, Россия

Поступила в редакцию 8 февраля 2001 г.

На примере кристаллов SBN, легированных ионами редкоземельных элементов, показано, что релаксорные сегнетоэлектрики имеют ярко выраженные аномалии, проявляющиеся в несовпадении траекторий нескольких первых циклов петель диэлектрического гистерезиса, в отсутствии однозначного коэрцитивного поля и в других особенностях кинетики поляризации и деполяризации. Аномалии связаны со структурным беспорядком кристаллов, со случайным распределением внутреннего электрического поля и наблюдаются только в постоянных и квазистатических электрических полях. Проведен феноменологический анализ термоактивационных стадий релаксации поляризации. Восстановлены спектры распределения потенциальных барьеров по энергии для центров релаксации в приближении их независимости. Отмечается существенная роль электропроводимости в формировании гигантских барьеров.

PACS: 77.80.Fm

1. ВВЕДЕНИЕ

Релаксорные сегнетоэлектрики (релаксоры) твердые оксидные растворы со структурой перовскита [1-3] или вольфрамовой бронзы [2-4]. Наиболее изученными представителями последних являются кристаллы $\mathrm{Sr}_{x}\mathrm{Ba}_{1-x}\mathrm{Nb}_{2}\mathrm{O}_{6}$ (SBN) с концентрациями Sr в интервале $0.75 \ge x \ge 0.25$ [4]. Характерной особенностью релаксоров является существенное разупорядочение структуры, обусловленное различными причинами. Например, в SBN атомы Ва и Sr заполняют лишь 5/6 базисных позиций и статистически распределены по двум имеющимся структурным каналам [5]. В отличие от обычных однородных сегнетоэлектриков фазовый переход в поляризованное состояние и аномалии физических свойств в релаксорах размыты в широкой области температур (область Кюри). Например, функция диэлектрической проницаемости ε имеет пологий максимум и

заметную частотную дисперсию при некоторой температуре $T_m \ [1{-}3].$

Для релаксоров характерны высокие значения диэлектрических, пьезо-, пироэлектрических, электро- и нелинейно-оптических характеристик с большой нелинейностью и слабыми температурными зависимостями благодаря размытию фазовых переходов. По этой причине релаксоры перспективны для применений в оптике и пьезотехнике. Привлекательным в этих материалах является также возможность варьирования их свойств при изменении химического состава. В частности, в кристаллах SBN при увеличении концентрации Sr [2-4] и легировании примесями редкоземельных элементов [6-8] существенно снижается температура T_m , увеличивается ряд практически важных параметров, а характерные для релаксора свойства становятся более выраженными. Кристаллы SBN находят определенные практические применения, например в голографии [9], поскольку при легировании Се, Сг, Со они приобретают хорошую чувствительность к записи

^{*}E-mail: glad@ns.crys.ras.ru

и высокие константы связи («коэффициенты усиления») световых волн при многоволновых взаимодействиях. Кристаллы SBN с некоторыми редкоземельными примесями перспективны также для пьезотехники [6, 8]. Одной из новых возможностей применения SBN является преобразование оптических частот в режиме квазифазового синхронизма на регулярных доменных структурах [10–12].

Общим недостатком всех релаксоров, в частности SBN, является невоспроизводимость свойств и их ухудшение в результате приложения внешних воздействий и прежде всего электрического поля. В связи с этим важное значение приобретает детальное исследование процессов поляризации. Диэлектрические свойства релаксоров исследовались ранее в переменных электрических полях [1–3]. В настоящей статье приводятся результаты измерения поляризации в постоянных и медленноменяющихся (квазистатических) полях, позволяющих учесть вклад долгоживущих метастабильных состояний, присущих всем неоднородным структурам [13]. Наши предварительные данные для одного состава SBN показали [7,14], что процессы поляризации весьма специфичны в релаксорах и не могут быть описаны в рамках традиционных представлений о них в обычных однородных сегнетоэлектриках. Цель настоящей работы — сравнительный экспериментальный анализ кинетики поляризации кристаллов с различными релаксорными свойствами и модельного однородного сегнетоэлектрика триглицинсульфата (TGS).

2. КРИСТАЛЛЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Для выявления связи наблюдаемой специфики поляризации с релаксорными характеристиками выбраны два образца монокристалла SBN с концентрацией Sr 0.61 ат.%, легированные различными примесями редкоземельных металлов, позволяющими регулировать степень размытия фазового перехода и значения электрической проводимости. Базисный состав SBN является конгруэнтным и обладает наилучшим оптическим качеством по сравнению с другими кристаллами SBN [4]. Кристаллы выращены с использованием модифицированной методики Степанова в НЦЛМиТ ИОФ РАН [15]. Один образец, SBN: (La+Ce), легирован 1 вес.% La₂O₃ и 0.1 вес.% Се2О3 в расплаве (концентрации примесей в кристалле составляют 0.44 ат.% La и 0.023 ат.% Се по данным измерения на микроанализаторе Comebax); другой образец, SBN:Nd, легирован 0.5 вес.% Nd_2O_3 (концентрация примеси в кристалле по грубым оценкам составляет 0.7–0.8 ат.% Nd).

Выбор типа легирования для исследуемых кристаллов определялся возможностью контролировать температуру фазового перехода и степень его размытия при введении редкоземельных примесей [8]. Кристалл SBN: (La+Ce), который благодаря высоким значениям электрооптических коэффициентов и коэффициентов усиления света перспективен для динамической голографии [16], имеет наиболее размытый максимум ε при сравнительно низкой температуре $T_m = (310-314) \text{K} [7,8]$. Поэтому ожидаемое аномальное поведение поляризации вблизи T_m более доступно для исследований с помощью используемой нами прецизионной электрометрической регистрации благодаря относительно высокому электросопротивлению (которое, как известно, растет с уменьшением температуры). В кристалле SBN:Nd температура $T_m = 340$ К выше, а электросопротивление ниже, чем у первого кристалла, что дает возможность оценить влияние свободных носителей заряда на процессы поляризации. Интерес к исследованию этого состава обусловлен тем, что в нем обнаружен эффект самоудвоения частоты генерации, возбуждаемой на ионах Nd³⁺, на сегнетоэлектрических микродоменах [12].

Исследуемые образцы — шлифованные пластины полярного *z*-среза кристаллов размером 2.5 × 3 × × 0.7 мм³. Большие грани покрывались серебряной пастой. Температура образцов выдерживалась в криостате с точностью не менее 0.03 К.

Поляризация кристаллов P измерялась прецизионным компенсационным электрометрическим методом. Основной элемент схемы измерения — равноплечий мост. В одном его плече находится образец, во втором — эталонная емкость C, в третьем и четвертом — низкоомные источники постоянных напряжений V и v, подаваемых соответственно на образец и емкость C. В диагональ моста включается нуль-индикатор — электрометр В7-29. При балансировке моста напряжение на электрометре становится равным нулю, а плотность электрического заряда Q на электродах образца площадью S в момент времени t равна

$$\sigma(t) = \frac{Q(t)}{S} = \frac{Cv(t)}{S} = P(t) + \frac{E}{\rho}t, \qquad (1)$$

где E = V/d, d — толщина образца, ρ — удельное электрическое сопротивление. Если ρ велико и вторым членом в (1) можно пренебречь, то изменение заряда $\sigma(t)$ со временем полностью связано только с изменением P(t). В хороших диэлектриках с большим ρ это условие выполняется, поэтому поправок на влияние электропроводимости практически не требуется.

Максимальная чувствительность моста по напряжению равна 20 мкВ, по заряду составляет $2 \cdot 10^{-9}$ мкКл (при C = 10 пкФ). Компенсация напряжения в диагонали моста осуществлялась программным способом на персональном компьютере и периферийных управляемых блоках. Зависимость компенсационного напряжения v(t) воспроизводилась на мониторе в режиме реального времени. Подробное описание всей установки приводится в [13].

Поляризация Р регистрировалась в следующих трех режимах измерения: при непрерывном охлаждении и нагревании кристаллов в поле E = 0(пироэлектрический эффект), в переменном квазистатическом поле E при T = const (диэлектрический гистерезис), в присутствии или отсутствии поля E = const при T = const (релаксация поляризации). При измерении пироэлектрического эффекта скорость изменения температуры составляла 0.3 град/мин. При измерении диэлектрического гистерезиса напряжение V, изменяющееся в интервале +300 ÷ -300 В, подавалось от источника Б5-50, управляемого программным блоком. Снималось несколько циклов переполяризации с шагом кратным 1 В и промежутком времени кратным 1 с; максимальное количество шагов составляло 1200. При измерении кинетики поляризации и деполяризации регистрация изменения Р проводилась через интервалы времени от 0.25 до 1 мин.

Электросопротивление R оценивалось при больших временах, после того как релаксация P практически останавливалась и зависимость заряда Qот времени представляла собой прямую линию, dQ/dt = V/R. Все измерения проводились с неполяризованными кристаллами: образцы нагревались выше T_m , а затем охлаждались до заданной температуры в поле E = 0.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Пироэлектрический эффект и диэлектрический гистерезис в релаксорных сегнетоэлектриках. Температурные зависимости ε образцов в переменном поле с частотой 1 кГц приведены на рис. 1. Видно, что максимум ε для SBN:(La+Ce) меньше, а размытие фазового перехода больше, чем для SBN:Nd. Этот факт, а также заметная частотная дисперсия температуры T_m максимума ε в SBN:(La+Ce) [7,8] свидетельствуют о более выраженных релаксорных

 $\varepsilon_{33}, 10^3$

Рис.1. Температурные зависимости диэлектрической проницаемости ε_{33} нелегированного (1) и легированных Nd (2), La, Ce (3) кристаллов SBN. Частота измерения 1 кГц

свойствах этого состава. На рисунке 2 приведены зависимости приращения ΔP от температуры в неполяризованных кристаллах SBN:(Ce+La) и SBN:Nd. Цифры у точек кривых отмечают последовательность изменения температуры и поляризации со временем. Зависимости $\Delta P(T)$ на рис. 2 коррелируют с $\varepsilon(T)$ на рис. 1: первый релаксор характеризуется размытым максимумом ε и плавным изменением ΔP при $T < T_m$, тогда как во втором кристалле более отчетливый максимум ε при T_m согласуется с относительно резким изменением ΔP . Нетрудно проверить, что ΔP с температурой изменяется параболически: $\Delta P = 0.18(\theta - T)^{1/2}$ (вставка на рис. 26). Температура $\theta = 317 \, \text{K}$ несколько ниже T_m , что связано, по-видимому, с хорошо известной низкочастотной дисперсией ε [2].

Наблюдаемый в неполяризованных кристаллах пироэлектрический эффект (рис. 2) свидетельствует прежде всего об униполярности образцов, т.е. о неравенстве объемов областей со взаимно противоположными направлениями спонтанной поляризации P_s. Для более выраженного релаксора SBN:(Ce+La) униполярность значительно выше (рис. 2a). Зависимости $\Delta P(T)$ при охлаждении и нагревании не совпадают, причем величина этого температурного гистерезиса зависит от скорости изменения температуры. Это иллюстрируется релаксацией значения ΔP от точки 4 до 5 при некоторой фиксированной температуре на рис. 2δ (вставка). Релаксация ΔP свидетельствует о формировании в кристаллах после охлаждения долгоживущих метастабильных состояний. Подробнее этот вопрос рассмотрен ниже.

Рис.2. Измерение поляризации ΔP при охлаждении и нагревании кристаллов SBN (La+Ce) (a) и SBN:Nd (δ) в поле E = 0. На вставках — релаксация ΔP от точки 4 до точки 5 и парабола $\Delta P(T)$

Рис. 3. Петли диэлектрического гистерезиса SBN:(La+Ce) (a) и SBN:Nd (b). Цифры у кривых отмечают последовательность изменения поляризации P. На вставке — схематическое изображение локальной функции свободной энергии F как функции P

Квазистатические петли диэлектрического гистерезиса релаксоров приведены на рис. 3. Черные кружки — начало процессов переполяризации. Цифры у кривых — последовательность изменения *P*. В отличие от обычных однородных сегнетоэлектриков первые циклы петель — незамкнутые и несовпадающие кривые с уменьшающейся амплитудой *P*. Через несколько циклов уменьшение амплитуды *P* практически прекращается, и все последующие траектории *P* совпадают, т. е. становятся воспроизводимыми и петли принимают привычный вид. Видно, что эти аномалии низкочастотной переполяризации больше у первого кристалла, имеющего, как отмечено выше, более выраженные другие релаксорные свойства.

Необычная форма петель — прямое подтверждение предложенных ранее представлений об особенностях полярной структуры релаксоров [3] и может быть феноменологически объяснена следующим образом. Разупорядочение определенных ионов по различным позициям в структуре (например, в SBN разупорядочение Ва и Sr по двум катионным позициям [4, 5]) должно приводить к градиенту их концентрации, локальным внутренним электрическим полям E_i и, как следствие, к понижению локальной симметрии. Локальная свободная энергия для такой системы будет асимметричной двухминимумной функцией поляризации,

$$F = -\alpha P^2 + \beta P^4 - (E_i + E)P, \qquad (2)$$

где E — внешнее поле [2, 3]. На вставке рис. 3 схематически показана F для $E_i + E < 0$. Поле E_i , глубина минимумов и потенциальные барьеры между ними — случайные величины, которые распределены по объему кристалла в широком интервале значений. При E = 0 различные области кристалла находятся в стабильных или в метастабильных состояниях, отвечающих соответственно глубоким и мелким минимумам F как с P > 0, так и с P < 0. В переменном поле определенной амплитуды Е могут наблюдаться переходы некоторых областей кристалла в стабильные состояния, поскольку присутствие поля способствует понижению барьеров и ускорению релаксации. Обратный процесс практически невозможен до тех пор, пока $|E| \leq |E_i|$. В результате эти области не участвуют в дальнейшем процессе переполяризации и амплитуда Р уменьшается. Мерой относительного объема не участвующих («замороженных») областей может являться разность значений *P* в начале и в конце цикла изменения *E*. Например, на рис. 3a относительный объем «замороженных» областей составляет величину примерно 40%. Качественно сходные результаты были получены при исследовании SBN в импульсных полях [8]. При понижении температуры или уменьшении поля Е увеличиваются все потенциальные барьеры и уменьшается амплитуда изменения Р [7]. Полная воспроизводимая переполяризация всего объема кристалла возможна только в поле E, большем максимального E_i в образце, значение которого, по-видимому, велико.

3.2. Релаксация поляризации в релаксорных сегнетоэлектриках. Более полную информацию о структуре барьеров можно получить в результате анализа релаксации поляризации P в различных постоянных полях E. Напомним, как выглядит такая релаксация в обычном однородном сегнетоэлектрике, у которого везде $E_i = 0$, F в (2) — симметричная функция P при E = 0, спонтанная поляризация $P_s = (\alpha/2\beta)^{1/2}$, а коэрцитивное поле $E_c = (2\alpha/3)[(2\alpha/3)/\beta]^{1/2}$ совпадает с полушириной петли и четко определено. При $E > E_c$ идет быстрый лавинообразный процесс поляризации, при любом $E < E_c$ — медленный термоактивационный процесс без начального скачка P. В обоих случаях равновесная поляризация равна P_s , а скорость релаксации увеличивается с ростом E [2]. В качестве примера на рис. 4a показана релаксация P кристалла TGS для полей, меньших E_c [13].

Релаксация поляризации в исследуемых кристаллах SBN характеризуется принципиально другими зависимостями. При включении поля Е, как меньшего, так и большего полуширины петли (т. е. формально меньшего и большего E_c), P сначала изменяется скачком, а затем термоактивационно (рис. 4δ), Скачки, наблюдаемые в широком интервале значений Е, свидетельствуют об отсутствии однозначного коэрцитивного поля E_c , которое различно в различных точках кристалла. При увеличении Е скачок Р, конечно, увеличивается, поскольку поляризуется больший объем кристалла. Феноменологический анализ термоактивационных стадий релаксации показывает, что к релаксору также неприменимо представление об определенной равновесной поляризации P_e , так как каждому значению E соответствует некоторая предельная величина P_e , увеличивающаяся с ростом Е при вовлечении в процесс поляризации других областей кристалла (рис. 46), которые в меньших полях оставались «замороженными».

Анализ термоактивационных стадий релаксации проводился так же, как в [17], в приближении независимости центров релаксации, когда их вклад в поляризацию можно считать аддитивным. Тогда безразмерная поляризация имеет вид

$$p(t) = \frac{P_e - P(t)}{P_e - P_0} = \int_0^\infty f(\tau) \exp\left(-\frac{t}{\tau}\right) d\tau.$$
 (3)

Здесь P_0 — начальная поляризация, P_e — равновесная, P(t) — в момент времени $t, f(\tau)$ — нормированная функция распределения времен релаксации τ . Функции $\tau^2 f(\tau)$ и p(t) связаны интегральным преобразованием Лапласа.

Наши экспериментальные данные следуют степенному временному закону

$$p(t) = 1/(1+t/a)^n.$$
 (4)

Аппроксимация данных измерений P(t) зависимостями (3) и (4) с тремя свободными параметрами, P_e , a, n, проводилась методом наименьших квадратов по стандартной программе. На рис. 4a, δ сплошные кривые — расчет, а кружки — эксперимент. Отклонение последних от кривых не превышает 0.5%. Существенно, что ошибки определения параметров P_e , a, n тем меньше, чем больше интервал времени регистрации релаксации [17]. Значения параметров для TGS и SBN: (La+Ce) приведены в табл. 1.

Рис. 4. Релаксация поляризации $P(a, \delta)$ и спектры $g(\ln \tau)$ (a, c) для TGS (a, b) и SBN (La+Ce) (δ, c): a, b = nоле E = 5.6 (1), 16 (2), 25 В/см (3), T = 293 К; $\delta, c = n$ оле E = 300 (1), 600 В/см (2), T = 274 К. Сплошные кривые — расчет, кружки — эксперимент. Штриховые линии — равновесные значения $P_e, t_0 = 1$ мин. На вставке — начало релаксации SBN в поле E = 300 В/см (скачок P отмечен стрелкой)

Кристалл	T, K	$E, \mathrm{B/cm}$	P_e , мкКл/см ²	a, мин	n	$ au_m, \mathrm{M}$ ин	ΔU , эВ	S
TGS	293	5.6		242.2	0.063	3800 ± 270	0.14	0.013
		16	3.0	269.4	0.220	1225 ± 85	0.09	0.027
		25		223.6	0.589	$380{\pm}30$	0.06	0.168
$_{ m SBN}$	274	300	$24.5 {\pm} 0.016$	3.724 ± 0.012	0.045 ± 0.001	82.2 ± 0.3	0.15	0.14
		400	$26.97 {\pm} 0.019$	4.35 ± 0.013	$0.038 {\pm} 0.001$	114.5 ± 0.4	0.16	0.11
		600	38.41 ± 0.013	$4.799 {\pm} 0.07$	$0.058 {\pm} 0.001$	$82.74 {\pm} 0.15$	0.14	0.16

Таблица 1. Параметры релаксации и спектров распределения $g(\tau)$ при поляризации кристаллов TGS и SBN (La+Ce)

Эмпирический закон (4), по-видимому, является универсальным для неоднородных систем различного типа. Многие наблюдавшиеся ранее неэкспоненциальные зависимости являются его частными случаями. Например, $p(t) \sim 1/t^n$ при $t \gg a$, $p(t) \sim 1 - (n/a)t$ при $t \ll a$ [18], $p(t) \sim 1 - n \ln(1 + t/a)$ при $n \ll 1$ [19]. Закону (4) подчиняется также релаксация p(t) в смешанных кристаллах $K_{1-x}Li_x TaO_3$ в состоянии стекла [20]. По сравнению с давно известным законом Кольрауша:

$$p(t) \sim \exp\left(-\frac{t}{\tau}\right)^{\beta} \quad (\beta < 1),$$

который справедлив на больших временах и для наших кристаллов, закон (4) имеет два преимущества. Во-первых, он правильно описывает релаксацию даже на малых временах. Во-вторых, при любых значениях параметров a и n ему соответствует простая функция $f(\tau)$.

Потенциальный барьер U для центра релаксации связан со временем τ соотношением Аррениуса $U = kT \ln(\tau/\tau_0)$, где τ_0 — кинетический коэффициент. В связи с этим удобнее пользоваться вместо $f(\tau)$ безразмерной функцией $g(\ln \tau) = \tau f(\tau)$, характеризующей распределение $\ln \tau$ или распределение барьеров по энергии U. Для закона (4) эта функция имеет вид [21]

$$g = \frac{1}{\Gamma(n)} \left(\frac{a}{\tau}\right)^n \exp\left(-\frac{a}{\tau}\right),\tag{5}$$

где $\Gamma(n)$ — гамма-функция.

Максимум $g(\ln \tau)$ находится при $\tau_m = a/n$. При медленной релаксации, $n \ll 1$, весь спектр смещается к большим значениям U и τ , ширина его возрастает, а максимум уменьшается. За меру ширины спектра можно принять разность

$$\Delta(\ln \tau) = \ln \tau_2 - \ln \tau_1$$

или

$$\Delta U = kT \ln(\tau_2/\tau_1),$$

где τ_2 , τ_1 — времена релаксации τ , соответствующие точкам перегиба на кривой спектра $g(\ln \tau)$, в которых $d^2g/d(\ln \tau)^2 = 0$. Тогда, пользуясь выражением (5), получим

$$\Delta U = 2kT \ln \frac{(2n+1) + (4n+1)^{1/2}}{2n}$$

или

$$\Delta U = -2kT\ln n \quad \text{при} \quad n \ll 1.$$

Точки на спектрах рис. 4 соответствуют значениям τ , равным временам регистрации релаксации $t_{max}.$ При $\tau > t_{max}$ спектры — результат экстраполяции экспериментальных данных на большие времена. Например, при $\ln(\tau/t_0) = 10~(t_0 = 1~{\rm мин})$ $\tau = 15$ суток, при $\ln(\tau/t_0) = 30~\tau = 10$ лет. Очевидно, что доля регистрируемых в эксперименте процессов релаксации, равная площади S, ограниченной кривой $g(\ln\tau)$ до точки $\ln(t_{max}/t_0)$, как правило, невелика. Параметры спектров и площади S приведены в табл. 1.

Различие спектров $g(\ln \tau)$ для TGS и релаксора SBN очевидно. При увеличении поля E, не превышающего полуширины петли гистерезиса, спектр g для TGS монотонно смещается к малым au и резко сужается, демонстрируя тенденцию к одновременному сближению и уменьшению энергий U всех барьеров при приближении Е к E_c (рис. 4*в*). Для SBN такой четкой зависимости g от E нет (рис. 4r): спектры для двух различных значений Е практически совпадают. Этот факт является следствием того, что для используемого интервала значений Е в поляризации, как отмечалось выше, принимает участие только часть всего кристалла, которая, конечно, увеличивается с ростом E, но вклад медленных процессов при этом для различных Е может случайно оказаться практически одинаковым.

3.3. Влияние электропроводимости на процессы релаксации поляризации. При медленных процессах измерения должен быть заметным вклад ΔQ электропроводимости в регистрируемый заряд. Вклад ΔQ и удельное сопротивление ρ можно оценить, если разделить линейную и нелинейную составляющие релаксации заряда Q. Для кристаллов SBN:(La+Ce) и SBN:Nd такие оценки дают соответственно $\rho = 2 \cdot 10^{13}$ Ом·см и 5 · 10¹¹ Ом·см, $\Delta Q =$ = Et/
ho = 0.03 мкКл/см² и 0.7 мкКл/см² при включении поля E = 600 B/см на 15 мин при T = 273 K. Видно, что для первого кристалла вклад электропроводимости ΔQ по сравнению с регистрируемой поляризацией Р мал, а для второго — достаточно велик (см. рис. 3). Данные измерения поляризации на рис. 3 и 4 получены с учетом поправок на проводимость. Для второго кристалла кривые релаксации поляризации не приводятся и не анализируются из-за большой ошибки, возникающей из-за электропроводимости при разделении линейной и нелинейной составляющих регистрируемого электрического заряда.

Роль электропроводимости в формировании потенциальных барьеров для центров релаксации отчетливо проявляется в процессах деполяризации. В этом случае внешнее поле E = 0, поэтому отсутствует сквозная проводимость, маскирующая релак-

Рис. 5. Деполяризация (a, δ) и спектры $g(\ln \tau)$ (e, e, d) для SBN (La+Ce) (a, e) и SBN:Nd (δ, e) : a, e - поляризующее поле E = 500 (1), 800 В/см (2); δ , e - поле E = 1000 (1), 2000 В/см (2). Сплошные кривые – расчет, кружки – эксперимент. Штриховые линии – равновесные значения P_e , T = 274 K, $t_0 = 1$ мин; d - спектры SBN: (La+Ce) (1) и SBN:Nd (2), восстановленные для E = 1000 В/см соответственно при температурах 243 К и 273 К. На вставке – начало деполяризации SBN: (La+Ce) при выключении поля E = 500 В/см (скачок P отмечен стрелкой)

сацию, регистрацию и анализ которой можно провести с достаточно высокой точностью. Кристаллы поляризовались в различных электрических полях E в течение 5 мин. Затем поле отключалось и регистрировалась деполяризация (рис. 5, вставка). Так же, как при поляризации, изменение P после скачка следует степенному временному закону (4). Точки на кривых — экспериментальные данные, сплошные кривые — расчет. Штриховые линии — равновесные значения P_e . Чем больше величина E, тем больше значение P_e . Точки на спектрах $g(\ln \tau)$ соответствуют моменту времени, до которого проводилась регистрация деполяризации.

Для кристалла SBN:Nd спектр шире и включает гигантские времена релаксации. На рисунке 5*д* для сравнения приведены спектры для двух кристаллов SBN, полученные после предварительной поляризации в поле 1 кВ при температурах ниже температуры, при которой наблюдаются максимумы ε , на 60° С. Параметры релаксации и спектров приведены в табл. 2.

В уширении спектра и появлении гигантских барьеров и времен релаксации роль свободных носителей заряда очевидна. Действительно, времена экранирования $\tau_s = \epsilon \rho / 4\pi$ равны $\tau_s = 1000$ мин и $\tau_s = 10$ мин соответственно для SBN:(La+Ce) и SBN:Nd. За время измерений t = 120 мин после предварительной поляризации процесс экранирования наблюдается только у второго кристалла. При этом происходит перераспределение пространственного заряда и возникает дополнительное внутреннее поле, увеличивающее асимметрию локальной свободной энергии F. Таким образом, экранирование в кристалле с меньшим сопротивлением способствует

При- месь	T, K	E, B/cm	<i>P</i> ₀ , мкКл/см ²	$P_y,$ мкКл/см ²	а, мин	n	$ au_m, $ мин	$\Delta U,$ $\mathbf{\mathfrak{B}}$	S
		~00	1 88	$1.217\pm$	$0.82 \pm$	$0.273 \pm$	$2.98 \pm$	0.001	0.05
La, Ce	274	500	1.75	± 0.003	± 0.06	± 0.004	± 0.26	0.061	0.65
		800	4 398	$2.866 \pm$	$0.094 \pm$	$0.081\pm$	$1.16\pm$	0.118	0.29
		800	4.520	± 0.006	± 0.004	± 0.001	± 0.06		
Nd	273	1000	4.432	$1.312\pm$	$1.998\pm$	$0.012\pm$	$166.5\pm$	0.208	0.043
				± 0.11	± 0.3	± 0.0004	± 30		
		2000	000 18.26	$13.198\pm$	$2.92\pm$	$0.022\pm$	$132.7\pm$	0.18	0.076
				± 0.057	± 0.128	± 0.0003	± 7.4		

Таблица 2. Параметры релаксации и спектров распределения g(au) при деполяризации кристаллов SBN

замедлению деполяризации и увеличению равновесного значения P_e (памяти кристалла); в кристалле с большим сопротивлением, SBN:(La+Ce), роль экранирования незначительна. При оценках τ_s для статической диэлектрической проницаемости $\varepsilon = 4\pi P/E$ использовались данные, показанные на рис. 3. Отметим также, что экранирование, по-видимому, ответственно и за бо́льшую ширину петли гистерезиса второго кристалла.

4. ЗАКЛЮЧЕНИЕ

Обнаруженные аномалии кинетики поляризации и деполяризации релаксорных сегнетоэлектриков (несовпадение нескольких первых циклов петель диэлектрического гистерезиса, отсутствие однозначного коэрцитивного поля и др.) увеличиваются с усилением релаксорных свойств, являются ярко выраженными признаками и мерой структурного беспорядка этих материалов, для которых характерно наличие долгоживущих метастабильных состояний. Существенно, что аномалии проявляются поэтому только в постоянных или медленноменяющихся (квазистатических) электрических полях и ранее не отмечались, по-видимому, из-за слишком быстрых процессов измерения. Аномалии поляризации SBN могут качественно объяснить известную из литературы невоспроизводимость свойств и их ухудшение под действием полей. Результаты работы можно использовать при исследовании трансформации в электрическом поле любых физических свойств релаксоров и для контроля за состоянием их структуры, которая становится более стабильной, а экспериментальные данные воспроизводимыми после нескольких циклов медленной переполяризации.

Отметим также, что некоторые из аналогичных признаков беспорядка в менее выраженной форме можно наблюдать и в обычных однородных сегнетоэлектриках.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 99-02-17303 и 00-02-16624).

ЛИТЕРАТУРА

- Г. А. Смоленский, В. А. Исупов, А. И. Агррановская, ФТТ 1, 167 (1959).
 ДАН СССР 97, 653 (1954).
- 2. М. Лайнс, А. Гласс, Сегнетоэлектрики и родственные им материалы, Мир, Москва (1981).
- 3. L. E. Cross, Ferroelectrics 76, 241 (1987).
- Ю. С. Кузьминов, Сегнетоэлектрические кристаллы для управления лазерным излучением, Наука, Москва (1982).
- P. B. Jamieson, S. C. Abrahams, and J. L. Bernstein, J. Chem. Phys. 48, 5048 (1968).
- R. R. Neurgaonkar, J. R. Oliver, W. K. Cory et al., Ferroelectrics 160, 265 (1994).
- В. В. Гладкий, В. А. Кириков, С. В. Нехлюдов и др., Письма в ЖЭТФ 71, 38 (2000).
- Т. Р. Волк, В. Ю. Салобутин, Л. И. Ивлева и др., ФТТ 42, 2066 (2000).
- 9. G. L. Wood, W. W. Clark, M. J. Miller et al., IEEE J. Q. E. 23, 2126 (1987).

- Y. Y. Zhu, J. S. Fu, R. F. Xiao et al., Appl. Phys. Lett. 70, 1793 (1997).
- S. Kawai, T. Ogawa, H. S. Lee et al., Appl. Phys. Lett. 73, 768 (1998).
- **12**. А. А. Каминский, Х. Гарсия-Золе, С. Н. Багаев и др., КЭ **25**, 1059 (1998).
- В. В. Гладкий, В. А. Кириков, С. В. Нехлюдов и др., ФТТ **39**, 2046 (1997).
- В. В. Гладкий, В. А. Кириков, С. В. Нехлюдов и др., ФТТ 42, 1296 (2000).
- L. I. Ivleva, N. V. Bogodaev, N. M. Polozkov et al., Optical Materials 4, 168 (1995).

- T. Volk, Th. Woike, U. Doerfler et al., Ferroelectrics 203, 457 (1997).
- 17. В. В. Гладкий, В. А. Кириков, Е. С. Иванова и др., ФТТ 41, 499 (1999).
- A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectric Press Ltd, London (1983).
- **19**. В. В. Гладкий, В. А. Кириков, Е. С. Иванова, ЖЭТФ **110**, 1 (1996).
- F. Alberici, P. Doussineau, and A. Levelut, J. Phys. I France 7, 329 (1997).
- 21. В. И. Диткин, А. П. Прудников, Справочник по операционному исчислению, Высш. школа, Москва (1965).