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RADIATIVE CORRECTIONS TO POLARIZED INELASTICSCATTERING IN THE COINCIDENCE SETUPA. V. Afanasev a;b, I. Akushevi
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, N. P. Merenkov 
 **a North Carolina Central University, Durham, NC 27707, USAb TJNAF, Newport News, VA 23606, USA
 NSC �Kharkov Institute of Physi
s and Te
hnology�63108, Kharkov, UkraineSubmitted 2 April 2001We 
ompletely analyze the model-independent leading radiative 
orre
tions to the 
ross-se
tion and polarizationobservables in the semi-in
lusive deep-inelasti
 ele
tron�nu
leus s
attering with the dete
tion of a proton andthe s
attered ele
tron in 
oin
iden
e. The 
al
ulations are based on representing the spin-independent andspin-dependent parts of the 
ross-se
tion in terms of the ele
tron stru
ture fun
tions similarly to the Drell�Yanrepresentation. As the appli
ations, we 
onsider the polarization transfer e�e
t from a longitudinally polarizedele
tron beam to the dete
ted proton and the s
attering by a polarized target.PACS: 12.20.-m, 13.40.-f, 13.60.-Hb, 13.88.+e1. INTRODUCTIONCurrent experiments at the new-generation ele
trona

elerators rea
hed a new level of pre
ision. This pre-
ision requires a new approa
h to the data analysis andthe in
lusion of all possible systemati
 un
ertainties.One of the important sour
es of systemati
 un
ertain-ties are the ele
tromagneti
 radiative e�e
ts 
aused byphysi
s pro
esses in the next orders of perturbation the-ory.The purpose of this paper is to develop a uni�edapproa
h to the 
omputation of radiative e�e
ts forthe inelasti
 s
attering of polarized ele
trons in the 
o-in
iden
e setup, namely, in the 
ase where one pro-du
ed hadron is dete
ted in 
oin
iden
e with the s
at-tered ele
tron. A broad range of measurements fall intothe 
ategory of the 
oin
iden
e ele
tron s
attering ex-periments. This in
ludes deep-inelasti
 semi-in
lusiveleptoprodu
tion of hadrons, (e; e0h), and quasielasti
nu
leon kno
k-out pro
esses, (e; e0N). Experimentsof the former 
lass give a

ess to the �avor stru
tureof quark�parton distributions and fragmentation fun
-*On leave of absen
e from the National Center of Parti
le andHigh Energy Physi
s, 220040, Minsk, Belarus.**E-mail: merenkov�kipt.kharkov.ua

tions. They are in the fo
us of experimental programsat CERN, DESY, SLAC, and Je�erson Lab. Some ex-periments have already been 
ompleted and some arein preparation. The detailed modern review of the a
-tivities 
an be found in [1℄. The quasielasti
 nu
leonkno
k-out pro
ess allows studying single-nu
leon prop-erties in nu
lear medium and probing the nu
lear wavefun
tion [2; 3℄.The di�erent theoreti
al aspe
ts of strong inter-a
tions in the semi-in
lusive deep-inelasti
 s
attering(DIS) were studied in a number of papers [4; 5℄. Themost dire
t experimental probe of the momentum dis-tribution in nu
lei that is presently available is providedby the rea
tion A(e; e0N)B (see reviews [6℄). Spe
i�
polarization e�e
ts in rea
tions of this type have beeninvestigated in Ref. [7℄ at the level of the Born approxi-mation with respe
t to the ele
tromagneti
 intera
tion.There are several papers dealing with radiative ef-fe
ts for 
oin
iden
e experiments. The lowest-order
orre
tion was treated in [8℄ using the approa
h ofthe 
ovariant 
an
ellation of infrared divergen
es. Theleading logarithmi
 
orre
tion was studied in [9℄ for the
harm produ
tion. Finally, the radiative 
orre
tion inquasielasti
 s
attering was re
ently studied in [10℄. Dif-ferent approa
hes were used in 
al
ulations and di�er-515 2*
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al
u-lations adopted some spe
i�
 models for the stru
turefun
tions. Be
ause the 
urrent experimental data donot 
over su�
iently wide kinemati
al ranges, the ex-trapolation and interpolation pro
edures must be usedin 
al
ulating radiative e�e
ts. Therefore, the modeldependen
e of the results redu
es their generality andhen
e their appli
ability. Furthermore, higher-order ef-fe
ts, whi
h are important at the 
urrent level of theexperimental a

ura
y, were not systemati
ally 
onsi-dered.The method of the ele
tron stru
ture fun
tions [11℄allows the same treatment to be applied to the observed
ross-se
tion in the lowest order and in higher orders.This results in 
lear and physi
ally transparent formu-las for radiative e�e
ts. In this paper, we restri
t our
onsideration to the leading a

ura
y. This allows us toavoid 
hoosing a preferred model for the hadron stru
-ture fun
tions and thus to obtain some general formu-las for a wide 
lass of physi
al pro
esses. Wheneverneeded, the next-to-leading order 
orre
tion to somespe
i�
 pro
ess 
an be obtained by the standard pro
e-dure. Good examples are the re
ent 
al
ulations of theleading order and the next-to-leading order 
orre
tionsto polarization observables in DIS [12℄ and elasti
 [13℄pro
esses.In this paper, we 
onsider the model-independentradiative 
orre
tions to the 
ross-se
tion and polar-ization observables in the semi-in
lusive deep-inelasti
s
attering of the longitudinally polarized ele
tron o�nu
leus targets in the 
ase where the target and thedete
ted hadron 
an be polarized. In Se
. 2, we usethe ele
tron stru
ture fun
tion approa
h to 
al
ulatethe radiative 
orre
tions and to derive the master for-mulas for the radiatively 
orre
ted spin-independentand spin-dependent parts of the 
orresponding 
ross-se
tions in the form of the Drell�Yan type representa-tion in ele
trodynami
s [14℄. The result of this se
tionis appli
able to leptoni
 variables if the s
attered ele
-tron is dete
ted. In Se
. 3, we apply our master for-mulas to the 
ase where the polarization of the �nalnu
leon is measured. The radiative 
orre
tions to thesemi-in
lusive DIS on the nu
leus target with a ve
torpolarization are 
al
ulated in Se
. 4. In Se
. 5, we applyour approa
h to des
ribe the e�e
ts of the polarizationtransfer from the target to the dete
ted nu
leon. Thesee�e
ts in
lude the double spin (hadron�hadron) andtriple spin (ele
tron�hadron�hadron) 
orrelations. InSe
. 6, we derive the modi�
ation of the master formu-las for hadroni
 variables (when the total 4-momentumof all the hadrons is measured instead of the s
atteredele
tron) and 
onsider some appli
ations. In Con
lu-

sion, we brie�y dis
uss the extension of our results forthe radiatively 
orre
ted polarization observables be-yond the leading-log a

ura
y.2. THE MASTER FORMULAIn the re
ent experiment [15℄, the polarizationtransfer to the dete
ted proton was measured in thepro
ess with the longitudinally polarized ele
tron beam16O(~e; e; ~p)15N. This rea
tion is a parti
ular 
ase ofthe more general semi-in
lusive deep-inelasti
 polarizedpro
ess ~e�(k1) +A(p1) ! e�(k2) + ~p(p2) +X: (1)In this paper, we 
larify the problem of 
al
ulatingthe ele
tromagneti
 radiative 
orre
tions to the 
ross-se
tion and polarization observables in a pro
ess of thistype within the framework of the ele
tron stru
turefun
tion approa
h.For pro
ess (1) with a de�nite spin orientation ofthe proton dete
ted in the �nal state, we de�ne the
ross-se
tion in terms of the leptoni
 and hadroni
 ten-sors asd� = �2(2SA + 1)V (2�)3 L��H��2q̂4 d3k2"2 d3p2E2 ; (2)where SA is the target spin, "2(E2) is the energy ofthe s
attered ele
tron (the dete
ted proton), and q̂ isthe 4-momentum of the virtual photon that probes thehadron blo
k. The hadroni
 tensor 
an be expressedthrough the hadron ele
tromagneti
 
urrent J� asH�� =XX hp1jJ�(q̂)jp2; Xi �� hX; p2jJ�(�q̂)jp1iÆ(P 2x �M2x);Px = q̂ + p1 � p2;where Px is the total 4-momentum of the undete
tedhadron system and Mx is its invariant mass.The ele
tron stru
ture fun
tion approa
h leads tothe summation of the leading-log 
ontributions to theleptoni
 tensor in all orders of the perturbation theory.These 
ontributions arise be
ause of the radiation ofthe hard 
ollinear as well as the soft and virtual pho-tons and the ele
tron�positron pairs by ele
trons in theinitial and �nal states. In the leading approximation,516
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orre
tions to polarized : : :the ele
tron tensor in the right-hand side of Eq. (2) 
anbe written as [16℄L��(k1; k2) = ZZ dx1dx2x1x22 D(x2; Q2)�� hD(x1; Q2)Q̂B��(k̂1; k̂2)+i�D�(x1; Q2)ÊB��(k̂1; k̂2)i ;(3)Q2 = �(k1 � k2)2; k̂1 = x1k1; k̂2 = k2x2 ;where the respe
tive stru
ture fun
tions D(x;Q2) andD�(x;Q2) des
ribe the radiation of the unpolarized andthe longitudinally polarized ele
trons. At the level ofthe next-to-leading a

ura
y, these fun
tions alreadydi�er in the �rst order of the perturbation theory, butin the framework of the leading approximation usedhere, they only di�er in the se
ond order. This dif-feren
e is 
aused by the leading 
ontribution of thee+e�-pair produ
tion in the singlet 
hannel to the Dfun
tion (the e�e
t of the �nal ele
tron identity). Forthe unpolarized and longitudinally polarized ele
tron,these 
ontributions are di�erent and are given by [16℄(KMS), [17℄DS = ��L2� �2 �2(1� x3)3x + 1� x2 + (1 + x) lnx� ;L = Q2m2e ;DS� = ��L2� �2 �5(1� x)2 + (1 + x) ln x� ;where me is the ele
tron mass.Taking the singlet 
hannel 
ontribution into a

ountusually leads to very small e�e
ts (of the order 10�4)be
ause, as one 
an see, the terms inside the bra
k-ets tend to 
ompensate ea
h other (see, e.g. [18℄). Inwhat follows, we do not distinguish between D and D�,whi
h 
orresponds to taking only the nonsinglet 
han-nel 
ontribution into a

ount (for the 
orresponding Dfun
tions, see [17; 18℄). This approximation allows usto write 
ompa
t formulas for the radiatively 
orre
ted
ross-se
tions. We also omit the quantity Q2 from thearguments of the D fun
tions.The quantity � entering the right-hand side ofEq. (3) is the degree of the longitudinal polariza-tion of the ele
tron beam. The integration limits arede�ned below. Representation (3) follows from thequasireal ele
tron approximation [19℄. The physi
alinterpretation of the variables x1 and x2 is as fol-lows: 1 � x1 = !="1 is the ratio of the energy of allthe 
ollinear photons and the e+e�-pairs radiated by

the initial ele
tron to the energy of that ele
tron and(1�x2)=x2 is a similar ratio for the s
attered ele
tron.In the Born approximation, we haveQB��(k1; k2) = q2g�� + 2(k1k2)�� ;EB��(k1; k2) = 2(��k1k2);(��k1k2) = �����k1�k2� ; (4)(k1k2)�� = k1�k2� + k1�k2�; q = k1 � k2:In the general 
ase, the hadroni
 tensor in theright-hand side of Eq. (2) depends on the 4-momentap1, p2, the virtual photon 4-momentum q̂ = k̂1 � k̂2,and the 4-ve
tor of the hadron spin S that satis�es the
onditions S2 = �1 and (Sp2) = 0: For example, in the
ase under 
onsideration,H�� = H(u)�� +H(p)�� ;H(u)�� = h1~g�� + h2~p1�~p1� + h3~p2�~p2� ++ h4(~p1~p2)�� + ih5[~p1~p2℄�� ; (5)H(p)�� = (Sp1)�h6(~p1N)��+ih7[~p1N ℄��+h8(~p2N)��++ ih9[~p2N ℄���+ (Sq̂)�h10(~p1N)�� ++ ih11[~p1N ℄�� + h12(~p2N)�� + ih13[~p2N ℄���++ (SN)�h14~g�� + h15~p1�~p1� ++ h16~p2�~p2� + h17(~p1~p2)�� + ih18[~p1~p2℄�� ℄; (6)N� = �����p1�p2�q̂� = (�p1p2q̂); [ab℄�� = a�b��a�b�;~g�� = g�� � q̂�q̂�q̂2 ; ~pi� = pi� � (q̂pi)q̂�q̂2 ; i = 1; 2;where hi (i = 1�18) are the hadron semi-in
lusive stru
-ture fun
tions that depend on four invariants in gen-eral. These invariants 
an be taken as q̂2, (q̂p1), (q̂p2),and (p1p2):The j-
omponent of the proton polarization P j that
ould be measured experimentally is de�ned as theratio of the spin-dependent part of 
ross-se
tion (2)(whi
h is 
aused by the 
ontra
tion of the leptoni
 ten-sor with the spin-dependent part of the hadroni
 oneH(p)�� ; with the given j-
omponent of the proton spin)to the spin-independent one (whi
h is 
aused by the
ontra
tion of L�� with H(u)�� ),P j = d�(p)(�; Sj ; k1; k2; p1; p2)d�(u)(�; k1; k2; p1; p2) : (7)We note that P j is nonzero even if � = 0 (the 
aseof the unpolarized ele
tron beam) be
ause of nonzerosingle-spin 
orrelations in semi-in
lusive pro
esses.517
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h, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001In prin
iple, three independent 
omponents 
an bemeasured in pro
ess (1): P l (longitudinal), P t (trans-verse), and Pn (normal), whi
h 
ould be taken relativeto the de�nite physi
al dire
tions and planes 
reated by3-momenta of the parti
les parti
ipating in the pro
ess.If no additional parti
le (photons and e+e�-pairs) ra-diated by ele
trons with the 4-momenta k1 and k2 aredete
ted, there are three independent dire
tions alongp2, k1, and k2: In this 
ase, any 
omponent of theproton polarization and the 
orresponding proton spin
omponents Sj are de�ned for the Born kinemati
s andtheir dire
tions are not a�e
ted by the radiation.Combining formulas (2) for the 
ross-se
tion, de�-nitions (3) and (4) of the lepton and (5) and (6) of thehadron tensors and taking the above dis
ussion intoa

ount, we 
an write the 
ross-se
tion of pro
ess (1)as"2E2 d�(�; Sj ; k1; k2; p1; p2)d3k2d3p2 == ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 �� d�B(�; Sj ; k̂1; k̂2; p1; p2)d3k̂2d3p2 ; (8)where j = l; t; n: The fa
tor 1=x1 that enters the def-inition of L�� is absorbed into the �ow in the redu
edBorn 
ross-se
tion that is by de�nition given by (seeEq. (2))"̂2E2 d�B(�; Sj ; k̂1; k̂2; p1; p2)d3k̂2d3p2 = �2(2SA + 1)V̂ (2�)3 �� LB��(k̂1; k̂2; �)H��(Sj ; q̂; p1; p2)2q̂4 ;where V̂ = x1V: Within the 
hosen a

ura
y, represen-tation (8) is valid for both the spin-dependent (d�(p))and spin-independent (d�(u)) parts of the 
ross-se
tion.In theoreti
al 
al
ulations, it is often useful to pa-rameterize the proton spin 4-ve
tor, whi
h enters thede�nition of the hadron tensor, in terms of the parti
le4-momenta [20℄. In our 
ase, we have four 4-momentato express any 
omponent of the proton spin Sj su
hthat Sj = Sj(k1; k2; p1; p2): (9)We temporarily imagine that the 
hosen parameteriza-tion in the right-hand side of Eq. (9) is stabilized bythe relative substitutionk1 ! k̂1; k2 ! k̂2;

Sjs(k1; k2; p1; p2) = Sjs(k̂1; k̂2; p1; p2):(In what follows, we label su
h stabilized parameteriza-tions by an index with a lower-
ase letter.) In this 
ase,we 
an write the Born 
ross-se
tion in the integrand inthe right-hand side of Eq. (8) as"̂2E2 d�B(�; Sj ; k̂1; k̂2; p1; p2)d3k̂2d3p2 == "̂2E2 d�Bj (�; k̂1; k̂2; p1; p2)d3k̂2d3p2 : (10)If the proton spin SJ is unstable under the abovesubstitution (in this 
ase, we use a 
apital letter index),it 
an always be expressed in terms of the stabilized oneby means of an orthogonal matrix,SJ(k1; k2; p1; p2) =AJj(k1; k2; p1; p2)Sj(k̂1; k̂2; p1; p2);AJj = �SJSj : (11)Using this formula and re
alling that in the 
lass ofpro
esses 
onsidered here, the hadron tensor dependson the proton spin linearly, we 
an write the masterrepresentation for the spin-dependent part (d�(p)) ofthe 
ross-se
tion of pro
ess (1) for an arbitrary orien-tation of the proton spin as"2E2 d�(�; SJ ; k1; k2; p1; p2)d3k2d3p2 == AJj ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 �� d�Bj (�; k̂1; k̂2; p1; p2)d3k̂2d3p2 ; (12)where the summation over the index j = l; t; n is im-plied.This representation is the ele
trodynami
al ana-logue of the Drell�Yan formula well known in QCD [14℄,whi
h has previously been applied to 
al
ulate theele
tromagneti
 radiative 
orre
tions to the total
ross-se
tion of the ele
tron�positron annihilation intohadrons [17℄, to the small-angle Bhabha s
attering
ross-se
tion at LEP1 [18℄, to unpolarized [21℄ andpolarized deep-inelasti
 
ross-se
tions [12℄, and to thepolarized elasti
 ele
tron�proton s
attering [13℄. Inthe next se
tion, we show how this representation 
anbe used to des
ribe the leading radiative 
orre
tions inpolarized semi-in
lusive deep-inelasti
 events. Withinthe leading a

ura
y, we must �nd adequate param-eterizations of the proton spin 4-ve
tor, 
al
ulatethe elements of the orthogonal matrix AJj , derive518



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Radiative 
orre
tions to polarized : : :the spin-independent and spin-dependent parts of theBorn 
ross-se
tion for a given parameterization Sj ; anddetermine the x1 and x2 integration limits in masterformula (12).3. THE ANALYSIS OF SEMI-INCLUSIVEDEEP-INELASTIC EVENTS WITH THEPOLARIZATION TRANSFERWe begin with the parameterizations of the protonspin 4-ve
tor in pro
ess (1). To des
ribe this pro
ess,we use the set of invariant variablesz = 2p1p2V ; z1;2 = 2k1;2p2V ;y = 2p1(k1 � k2)V ;x = �q22p1q ; V = 2p1k1; q = k1 � k2: (13)It is physi
ally justi�ed to determine the longitu-dinal 
omponent of the proton spin along the dire
-tion of �p1 as seen from the rest frame of the dete
ted

proton. This dire
tion is not a�e
ted by the lepton
ollinear radiation and the 
orresponding parameteri-zation is given bySl� = zp2� � 2�2p1�mpz2 � 4�1�2 ; �1 = M2V ; �2 = m2V ; (14)where M(m) is the mass of the target nu
leus (de-te
ted proton). It is easy to verify that in the restframe of the proton (p2 = (m; 0)), this longitudinal
omponent is equal to (0;�n1); where n1 = p1=jp1j;and in the laboratory system (p1 = (M; 0)), it is equalto (jp2j; E2n2)=m; where n2 is the unit ve
tor in thedire
tion of the dete
ted proton 3-momentum.For the �xed longitudinal 
omponent, we have seve-ral possibilities to determine the transverse and normal
omponents. We �rst take the transverse 
omponentin the plane (k1; p2) and the normal 
omponent inthe plane that is perpendi
ular to it. The orientationsof these planes do not 
hange under the substitutionk1 ! k̂1; and we therefore haveSt� = (z2�4�1�2)k1�+(2z1�1�z)p2�+(2�2�zz1)p1�pV (z2 � 4�1�2)[1℄ ; Sn� = 2(�k1p1p2)pV 3[1℄ ; (15)[1℄ = zz1 � �2 � z21�1; (SjSi) = �Æji:Totally similarly to the above pro
edure, we 
an determine another stabilized set of transverse and normal 
om-ponents relative to the plane (k2; p2),~St� = (z2 � 4�1�2)k2� + (2z2�1 � z(1� y))p2� + (2�2(1� y)� zz2)p1�pV (z2 � 4�1�2)[2℄ ;~Sn� = 2(�k2p1p2)pV 3[2℄ ; [2℄ = zz2(1� y)� �2(1� y)2 � z22�1: (16)The sets in Eqs. (15) and (16) represent the 
omplete list of stabilized parameterizations of the proton spin
omponents under the 
ondition that the longitudinal 
omponent is 
hosen in a

ordan
e with Eq. (14). Thereare many unstable parameterizations that 
an be taken relative to an arbitrary plane (ak1 + bk2; p2) with ar-bitrary numbers a and b: In what follows, we 
onsider only the physi
ally favorable set with a = �b = 1. The
orresponding transverse and normal 
omponents are given byST� = (z2 � 4�1�2)q� + (2(z1 � z2)�1 � zy)p2� + (2y�2 � z(z1 � z2))p1�pV (z2 � 4�1�2)[q℄ ;SN� = 2(�qp1p2)pV 3[q℄ ; (17)[q℄ = zy(z1 � z2) + xy(z2 � 4�1�2)� (z1 � z2)2�1 � y2�2:We now 
onsider the relation between the stabilized set (for de�niteness, we work with set (15)) and an unstableone. It is obvious that this relation 
an be written asSN = Sn 
os � + St sin �; ST = �Sn sin � + St 
os �; (18)519
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h, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001where 
os � = �(SNSn) = �(STSt) = z(z1(1 + y)� z2) + xy(z2 � 4�1�2)� 2z1(z1 � z2)�1 � 2y�22p[1℄[q℄ ;sin � = �(SNSt) = (STSn) = �2sz2 � 4�1�2[1℄[q℄ ;� = sign[(p1p2k1k2)℄r 16V 4 (p1p2k1k2)2;(p1p2k1k2) = �����p1�p2�k1�k2� ;16(p1p2k1k2)2V 4 = x2y2(4�1�2 � z2) ++ 2xy[z(z2 + z1(1� y))�� 2z1z2�1 � 2(1� y)�2℄� (z2 � z1(1� y))2:One 
an verify that the ne
essary 
ondition 
os2 � ++ sin2 � = 1 is satis�ed.We 
an now write the spin-independent part (whi
his a
tually independent of the proton spin only) andthe spin-dependent part of the 
ross-se
tion of pro-
ess (1) as"2E2 d�(u);Ld3k2d3p2 == ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 d�̂B(u);ld3k̂2d3p2 ; (19)"2E2 d�Nd3k2d3p2 = Z Z dx1dx2x22 D(x1)D(x2)"̂2E2 �� �
os � d�̂Bnd3k̂2d3p2 + sin � d�̂Btd3k̂2d3p2 � ; (20)"2E2 d�Td3k2d3p2 = ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 �� �� sin � d�̂Bnd3k̂2d3p2 + 
os � d�̂Btd3k̂2d3p2 � ; (21)where d�̂B with any lower-
ase index denotes the 
orre-sponding Born 
ross-se
tion given at the shifted valuesof k1;2 ! k̂1;2: The 
orresponding shifted dimensionlessvariables introdu
ed by relation (13) are given byx̂ = x1xyx1x2+y�1 ; ŷ = x1x2+y�1x1x2 ; V̂ = x1V;ẑ = zx1 ; ẑ1 = z1; ẑ2 = z2x1x2 : (22)

Equations (19)�(21) are the straightforward 
onse-quen
es of master representation (12). Obviously, inorder to obtain d�n and d�t in the left-hand sides ofEqs. (20) and (21), we must set 
os � = 1, sin � = 0:Next, we must derive the Born 
ross-se
tions thatenter the right-hand sides of Eqs. (19)�(21). The spin-independent part of the 
ross-se
tion for the longitu-dinally polarized ele
tron beam (with the degree �) isexpressed in terms of the hadron stru
ture fun
tionsh1; : : : ; h5 as"2E2 d�B(u)d3k2d3p2 = �2V2(2SA + 1)(2�)3q4H1; (23)H1 = �2xyV h1+(1�y�xy�1)h2+(z1z2�xy�2)h3++ (z2 + z1(1� y)� xyz)h4 � ��h5:We note that the phase spa
e of the dete
ted proton
an also be expressed in terms of invariant variables(13) as d3p2E2 = V2j�jdz1dz2dz: (24)If the proton spin is dire
ted along Sl, the spin-dependent part of the Born 
ross-se
tion is given by"2E2 d�Bld3k2d3p2 = � �2V 3�pz2 � 4�1�28(2SA + 1)m(2�)3q4 �� �H2 + z(z1 � z2)� 2y�2z2 � 4�1�2 H3� ; (25)H2 = (2� y)h6 + (z1 + z2)h8 + �� (�1h7 + �2h9);H3 = (2� y)h10 + (z1 + z2)h12 + �� (�1h11 + �2h13);�1 = y [z2�z1(1�y)�xz(2�y)+2x(z1+z2)�1℄ ;�2 = (z1�z2) (z2�z1(1�y))+xyz(z1+z2)�2xy(2�y)�2:For the transverse orientation of the spin (along St),we have520
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orre
tions to polarized : : :
"2E2 d�Btd3k2d3p2 = �2V 2�8(2SA + 1)(2�)3q4 ��r Vz2 � 4�1�2 " H3 � z2 � 4�1�2p[1℄ H4# ; (26) == xy(z2�4�1�2)+(z�2z1�1)(z1�z2)+(zz1�2�2)yp[1℄ == 2p[q℄ 
os �;where H4 
an be obtained from H1 by the simple re-pla
ement hi ! hi+13:Finally, for the normal orientation of the protonspin (along Sn) the spin-dependent part of the 
ross-se
tion of pro
ess (1) is given by"2E2 d�Bnd3k2d3p2 = �2V 2pV8(2SA + 1)(2�)3q4 �� "� �2p[1℄H3 �  H4# : (27)We must also determine the integration limits forx1 and x2 in master representation (12). They 
anbe obtained from the 
ondition that the semi-in
lusivedeep-inelasti
 pro
ess o

urs. For the ele
tron�protons
attering, this is possible under the 
ondition that thehadron state involves at least a proton and a pion. Thisleads to the inequalityx1x2+y�1�x1xy � x2Æ; Æ = (m+m�)2�m2V ; (28)where m� is the pion mass. For the integration limits,we then have1 > x2 > 1� y + xyx1x1 � Æ ; 1 > x1 > 1 + Æ � y1� xy : (29)For the ele
tron�nu
leus s
attering pro
ess (1) 
onsid-ered here, we must 
hange the pion mass entering thede�nition of Æ by the bound energy of the eje
ted pro-ton in a given nu
leus.It is interesting to note that in the 
ase where the�nal proton polarizations are measured relative to sta-bilized orientations, the 
orresponding Born values andthe leading radiative 
orre
tions to them are expressedin terms of the same hadron stru
ture fun
tions. Thesituation 
hanges radi
ally if the polarizations are mea-sured relative to unstable orientations. In this 
ase, the


ontributions to the polarizations 
aused by the radia-tive 
orre
tions due to the hard 
ollinear radiation areexpressed in terms of di�erent sets of hadron stru
turefun
tions 
ompared to those used in the Born polar-izations. To make this more transparent, we write thespin-dependent part of the Born 
ross-se
tion for theorientations of the proton spin along SN and ST ,"2E2 d�BTd3k2d3p2 = �2V 2�4(2SA + 1)(2�)3q4 ��s V [q℄z2 � 4�1�2H3; (30)"2E2 d�BNd3k2d3p2 = � �2V 2pV [q℄4(2SA + 1)(2�)3q4H4: (31)These formulas 
an be derived from Eqs. (20) and (21)if the D(xi) fun
tions are taken to be the Æ-fun
tion,whi
h 
orresponds to the radiationless pro
ess (or tothe Born approximation).4. SEMI-INCLUSIVE DEEP-INELASTICSCATTERING ON A POLARIZED TARGETIn this se
tion, we apply the master representationto the analysis of polarized phenomena in the semi-in
lusive deep-inelasti
 s
attering of the polarized nu-
leus,~e�(k1) + ~A(p1)! e�(k2) +H(p2) +X; (32)whereH is an arbitrary hadron and the nu
leus A has ade�nite ve
tor polarization P: In this 
ase, the leptoni
tensor is the same as above (see Eqs. (3) and (4)) andthe hadroni
 tensor has the same stru
ture as de�nedby Eqs. (5) and (6), where the nu
leus polarization Pmust be used instead of the proton spin S and (Sp1)must be repla
ed with (Pp2). We also use the nota-tion g1; : : : ; g18 for the 
orresponding hadron stru
turefun
tions.To �nd the various asymmetries measured in study-ing the polarization phenomena, it is ne
essary toknow the polarization-independent and polarization-dependent parts of the 
ross-se
tion at di�erent orien-tations of the target polarization. The 
orrespondinganalysis 
an therefore be performed in the same way asin Se
. 2.We �rst de�ne parameterizations of the nu
leus po-larization 4-ve
tor in terms of the 4-momenta. As a521
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h, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001stabilized set, we 
an 
hoose the longitudinal and trans-verse 
omponents given in Ref. [12℄,P l� = 2�1k1� � p1�M ;P t� = k2� � (1� y � 2xy�1)k1� � xyp1�pV xy(1� y � xy�1) ; (33)and for the normal 
omponent, we usePn� = 2(�k1k2p1)pV 3xy(1� y � xy�1) : (34)It is easy to verify that parameterizations (33) and (34)are not 
hanged after the substitution k1;2 ! k̂1;2: Inthe laboratory system, this set 
orresponds to the lon-gitudinal polarization dire
ted along k1; the transversepolarization in the plane (k1;k2), and the normal onein the plane that is perpendi
ular to the (k1; k2) plane.Another set of polarizations 
an be 
hosen su
h thatthe longitudinal 
omponent is along the q dire
tion inthe laboratory system and the transverse one is in theplane (q; k1): In this 
ase, the normal 
omponent 
o-in
ides with (34) andPL� = 2�1(k1� � k2�)� yp1�Mpy2 + 4xy�1 ;P T� == (1+2x�1)k2��(1�y�2x�1)k1��x(2�y)p1�pV x(1� y � xy�1)(y + 4x�1) : (35)The transformation between sets (35) and (33) isimplemented by the orthogonal matrixPL = 
os �1P l + sin �1P t;P T = � sin �1P l + 
os �1P t; (36)
os �1 = y(1 + 2x�1)py(y + 4x�1) ;sin �1 = �2sx�1(1� y � xy�1)y + 4x�1 :Master equation (12) 
an be applied to thepolarization-independent part of 
ross-se
tion (32)and to the polarization-dependent part. Therefore, wemust derive the Born 
ross-se
tion for the stabilizedset. A simple 
al
ulation gives"2E2 d�B(u)d3k2d3p2 = �2V(2SA + 1)(2�)3q4G1: (37)We note that the numeri
al 
oe�
ient in front of G1is twi
e the 
oe�
ient in front of H1 in the right-hand

side of Eq. (23). The reason is that we do not �x thespin state of the �nal hadron H in this 
ase.The polarization-dependent part of the 
ross-se
tion for the longitudinal stabilized polarization isgiven by"2E2 d�Bld3k2d3p2 = � �2V 3�4(2SA + 1)M(2�)3q4 �� [(2�1z1 � z)G2 � y(1 + 2x�1)G3 + 2�1G4℄ ; (38)where the fun
tions Gi, i = 1; : : : ; 4; 
an be derivedfrom Hi by repla
ing the hadron stru
ture fun
tionshj with gj .For the transverse polarization, the 
orrespondingpart of the 
ross-se
tion 
an be written as"2E2 d�Btd3k2d3p2 = ��2V 2�pV xy(1� y � xy�1)4(2SA + 1)(2�)3q4 �� �z2 � xyz � z1(1� y � 2xy�1)xy(1� y � xy�1) G2++ 2G3 + 1 + 2x�1x(1� y � xy�1)G4� : (39)For the normal polarization, the spin-dependentpart of the 
ross-se
tion is"2E2 d�Bnd3k2d3p2 = �2V 24(2SA + 1)(2�)3q4 ��s Vxy(1� y � xy�1) �� ��2G2 � y�z2(1 + 2x�1)�� z1(1� y � 2x�1)� xz(2� y)�G4�: (40)Using master representation (12) leads to the radia-tively 
orre
ted 
ontributions (within the leading a

u-ra
y) to the 
ross-se
tion of pro
ess (32),"2E2 d�(u);Nd3k2d3p2 == ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 d�̂B(u);nd3k̂2d3p2 ; (41)"2E2 d�Ld3k2d3p2 = ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 �� �
os �1 d�̂Bld3k̂2d3p2 + sin �1 d�̂Btd3k̂2d3p2 � ; (42)"2E2 d�Td3k2d3p2 = ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 �� �� sin �1 d�̂Bld3k̂2d3p2 + 
os �1 d�̂Btd3k̂2d3p2 � : (43)522



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Radiative 
orre
tions to polarized : : :We also write the 
ross-se
tions in the left-handsides of Eqs. (42) and (43) in the Born approximation,"2E2 d�BLd3k2d3p2 = �2V 3�4(2SA + 1)(2�)3Mq4 �� "yz � 2(z1 � z2)�1py(y + 4x�1) G2 +py(y + 4x�1)G3# ; (44)"2E2 d�BTd3k2d3p2 = �2V 2�pV4(2SA + 1)(2�)3q4 �� "�s y + 4x�1x(1� y � xy�1)G4++ xz(2�y)�z2+z1(1�y)�2x�1(z1+z2)px(y + 4x�1)(1� y � xy�1) G2# : (45)Thus, the polarization-dependent parts of the Born
ross-se
tion involve fewer hadron stru
ture fun
tionsthan the radiatively 
orre
ted 
ross-se
tions.We 
an also use the 4-ve
tor p2 to parameterize thenu
leus polarization 4-ve
tor. With the longitudinalpolarization 
hosen along p2 in the laboratory system,the stabilized set 
an be de�ned with respe
t to theplane (k1; p2) and the unstable set with respe
t tothe plane (q; p2) as in Se
. 2; the 
orresponding 
al-
ulations are very similar to those in Se
. 2. But theparameterizations used in this se
tion look more phys-i
al and 
an also be used to des
ribe the polarizationphenomena in in
lusive deep-inelasti
 events.5. POLARIZATION TRANSFER FROM THETARGET TO THE DETECTED PROTONWe now 
onsider the e�e
ts of the polarizationtransfer from the ve
tor polarized target to the dete
tedproton in the pro
ess~e �(k1) + ~A(p1) ! e�(k2) + ~p(p2) +X (46)for the longitudinally polarized ele
tron beam and theve
tor polarization of the target. In this 
ase, the ge-neral form of the hadroni
 tensor is given byH�� = H(u)�� +H(S)�� +H(W )�� +H(SW )�� ; (47)where S(W ) labels the ve
tor polarization of the tar-get (the spin of the dete
ted proton). All the e�e
ts
aused by the �rst three terms in the right-hand sideof Eq. (47) were 
onsidered in previous se
tions and wenow investigate the radiative 
orre
tions to the hadron

double-spin 
orrelations that pre
isely arise due to thelast term,H(SW )�� = (Sp2)(Wp1)�f1~g��+f2~p1�~p1�+f3~p2�~p2�++ f4(~p1~p2)�� + if5[~p1~p2℄���++ (Sp2)(Wq)�f6~g�� + f7~p1�~p1� + f8~p2�~p2� ++ f9(~p1~p2)�� + if10[~p1~p2℄���++ (Sp2)(WN)�f11(~p1N)�� + if12[~p1N ℄�� ++ f13(~p2N)�� + if14[~p2N ℄���++ (Sq)(Wp1)�f15~g�� + f16~p1�~p1� + f17~p2�~p2� ++ f18(~p1~p2)�� + if19[~p1~p2℄���++ (Sq)(Wq)�f20~g�� + f21~p1�~p1� + f22~p2�~p2� ++ f23(~p1~p2)�� + if24[~p1~p2℄���++ (Sq)(WN)�f25(~p1N)�� + if26[~p1N ℄�� ++ f27(~p2N)�� + if28[~p2N ℄���++ (SN)(Wp1)�f29(~p1N)�� + if30[~p1N ℄�� ++ f31(~p2N)�� + if32[~p2N ℄���++ (SN)(Wq)�f33(~p1N)�� + if34[~p1N ℄�� ++ f35(~p2N)�� + if36[~p2N ℄���++(SN)(WN)�f37~g��+f38~p1�~p1�+f39~p2�~p2�++ f40(~p1~p2)�� + if41[~p1~p2℄���: (48)Thus, the 
oe�
ients of the polarization transfer fromthe target to the dete
ted proton are des
ribed, in gen-eral, by 41 stru
ture fun
tions. If the ele
tron beam isunpolarized, only the symmetri
 part of the hadroni
tensor 
ontributes, whi
h 
orresponds to double-spin(hadron�hadron) 
orrelations in the 
ross-se
tion ofpro
ess (46). The antisymmetri
 part of the hadrontensor 
ontributes in the 
ase of the longitudinallypolarized ele
tron beam due to triple-spin (ele
tron�hadron�hadron) 
orrelations.The 
orresponding radiatively 
orre
ted parts of the
ross-se
tion for the unstable orientations of the targetnu
leus polarization SJ (given by Eq. (35)) and thedete
ted proton spin W I (given by Eq. (17)) 
an bewritten as"2E2 d�JId3k2d3p2 =Xj;i AJjBIi �� ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 d�̂Bjid3k̂2d3p2 ; (49)where the Born 
ross-se
tion in the integrand is de�nedfor the stable orientations of Sj (given by Eqs. (33) and(34)) andW i (given by Eqs. (14) and (15)) and dependson the shifted variables523



A. V. Afanasev, I. Akushevi
h, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001"̂2E2 d�̂Bjid3k̂2d3p2 = "̂2E2 d�B(�; Sj ;W i; k̂1; k̂2; p1; p2)d3k̂2d3p2 :In a

ordan
e with the 
al
ulations in Se
s. 3 and4, the matri
es AJj and BIi are given byAJj = 0B� 1 0 00 
os � � sin �0 sin � 
os � 1CA ;BIi = 0B� 
os �1 sin �1 0� sin �1 
os �1 00 0 1 1CA ; (50)
I; J = L; T;N ; i; j = l; t; n:If we write the hadron�hadron spin 
orrelations en-tering the Born 
ross-se
tion as"2E2 d�Bjid2k2d3p2 = �2V 4Xji16(2�)32(2SA + 1)q4 ; (51)the quantities Xji 
an be written as

Xll = 2rf�1�2 ��2(R29 + �R33) + 2V 2�1 �b(F1 + �F6)� d(F15 + �F20)�� ; (52)Xlt = �2s f�1[1℄ �bR11 � dR25 + 2�1F37 � 2 �2V 2fp[1℄(2bF6 � 2dF20 + �2V 2�1R33)� ; (53)Xln = �p�1 " (bR11 � dR25 + 2�1F37) + 2V 2p[1℄ (2bF6 � 2dF20 + �2V 2�1R33)# ; (54)Xtl =r fr�2 ��2d(R29 + �R33) + 4V 2 �2r(F15 + �F20) + �(F1 + �F6)�� ; (55)Xtt = �2s fr[1℄ "�R11 + 2rR25 + dF37 �  p[1℄�2V 2f (�2V 2dR33 + 4�F6 + 8rF20)# ; (56)Xtn = �pr " (�R11 + 2rR25 + dF37) + 1V 2p[1℄ (�2V 2dR33 + 4�F6 + 8rF20)# ; (57)Xnl = �r fr�2 ��1(R29 + �R33)� 4V 2 (F1 + �F6)� ; (58)Xnt = �pfr " � 4V 2F6 � �1R33�+ fp[1℄ (�1F37 � �2R11)# ; (59)Xnn = � �2pr " 1p[1℄ � 4V 2F6 � �1R33��  ��1�2F37 �R11�# ; (60)where we used the notationb = 2z1�1 � z; d = y(1 + 2x�1); f = z2 � 4�1�2; r = xy(1� y � xy�1);524



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Radiative 
orre
tions to polarized : : :� = z2 � z1(1� y � 2xy�1)� xyz; � = z(z1 � z2)� 2y�2z2 � 4�1�2 :The fun
tions Rl and Fl entering the expressions for Xji are de�ned by the hadron stru
ture fun
tions fn inEq. (48) as Rl = (2� y)fl + (z1 + z2)fl+2 + �� ��1fl+1 + �2fl+3�; (61)Fl = �2xyV fl + (1� y � xy�1)fl+1 + (z1z2 � xy�2)fl+2 + (z2 + z1(1� y)� xyz)fl+3 � ��fl+4: (62)6. HADRONIC VARIABLESThere exists the exprerimental possibility of mea-suring the total 4-momentum of the hadron systemX instead of re
ording the s
attered ele
tron in semi-in
lusive rea
tions. In su
h experiments, the momen-tum qh of the heavy intermediate photon that probes
the hadron stru
ture 
an be determined expli
itly. The
orresponding set of dynami
al variables is usually re-ferred to as the hadroni
 one.For the hadroni
 variables, we must eliminate thephase spa
e of the s
attered ele
tron and introdu
e theheavy photon phase spa
e using the identitiesd3k2"2 = 2x22xh d4qhQ2h Æ(x1 � xh); d4qhQ2h = dQ2hdxhdyhdzh4x2hj�hj ;xh = � Q2h2k1qh ; yh = 2p1qhV ; zh = 2p2qhV ; Q2h = �q2h; (63)�2h = Q2hV �(4�1�2 � z2) Q2hx2hV + 2�1� yhxh� (zz1 � 2�2) + 2�z1 � zhxh� (z � 2z1�1)�� (zh � z1yh)2:Therefore, 
ombining this with representation (3) for the leptoni
 tensor and also bearing in mind that thehadroni
 tensor is independent of x2; we 
an express the quantity L��d3k2="2 through the hadroni
 variables asd3k2"2 L�� = D(xh; Q2h)x2h LB��(k̂1; k̂1 � qh; �)dxhdyhdzhdQ2h2j�hj : (64)We note that for the events with the undete
ted s
attered ele
tron, the lower integration limit with respe
t to x2in Eq. (3) is equal to 0. In a

ordan
e with the Kinoshita�Lee�Nauenberg theorem [22℄, the mass singularities
aused by the �nal-state radiation must disappear in this 
ase. In the language of the ele
tron stru
ture fun
tions,this fa
t exhibits itself due to the relation 1Z0 D(x;Q2)dx = 1;whi
h was used in writing Eq. (64).In the Born approximation, the lepton tensor 
an be rewritten asLB��(k1; k1 � qh) = 2(k1qh)~g�� + 4~k1�~k1� � 2i�(��k1qh); (65)and the physi
ally founded parameterizations for Sj in pro
ess (1) and for P j in pro
ess (32) remain stable withrespe
t to the s
aling transformation k1 ! xhk1: For example, one set 
an be 
hosen as in Eqs. (14) and (15) andthe other asSLh� = Sl�; STh� = (z2 � 4�1�2)qh� + (2zh�1 � zyh)p2� + (2yh�2 � zzh)p1�pV (z2 � 4�1�2)[qh℄ ; SNh� = 2(�qhp1p2)pV 3[qh℄ ;[qh℄ = zzhyh + Q2hV (z2 � 4�1�2)� z2h�1 � y2h�2; (66)525



A. V. Afanasev, I. Akushevi
h, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001with the transverse 
omponent belonging to the plane (qh;p2) in the laboratory system.Two physi
al sets of the target polarizations, ea
h with the normal 
omponent perpendi
ular to the plane(k1;qh); 
an be 
hosen asP lh� = 2�1k1� � p1�M ; P th� = ��qh� +�yh + 2Q2h�1xhV � k1� � Q2hxhV p1��K�1; Pnh� = �2(�k1qhp1)V K ; (67)with the longitudinal 
omponent along k1 in the laboratory system andPLh� = 2�1qh� � yhp1�MG ;P Th� = ��y2h + 4�1Q2hV � k1� ��yh + 2Q2h�1xhV � qh� � Q2hV �2� yhxh� p1�� (KG)�1;PNh� = Pnh�; K =sQ2h�1� yhxh � Q2h�1x2hV �; G =ry2h + 4Q2h�1V ; (68)
with the longitudinal 
omponent along qh: The diffe-rent 
omponents of P Jh in the laboratory system arePLh = �0; nq); P Th =  0; n1 � (n1 � nq)nqp1� (n1 � nq)2 ! ;PNh =  0; nq � n1p1� (n1 � nq)2! ;nq = qhjqhj ; n1 = k1jk1j :All these sets of the proton spin and target polariza-tions given by Eqs. (66), (67), and (68) are stable withrespe
t to the initial-state 
ollinear radiation. This 
anbe veri�ed by repla
ing k1 with xhk1, whi
h impliesk1 ! xhk1; xh ! 1; yh ! yhxh ;zh ! zhxh ; z ! zxh ; V ! xhV; �1;2 ! �1;2xh : (69)To make the invarian
e of P j (j = l; t; n) andP J(J = L; T;N) under repla
ement (69) more trans-parent, we express xh in terms of Q2h and (k1qh): Then,e.g., K =rQ2h + yh2(k1qh)� 4(k1qh)2�1V ;and it is easy to see that this quantity is not 
hangedunder substitution (69). We also note that the quantity�h 
an be derived using the rule�h = xh��;where �� is determined from � with xy repla
ed byQ2h=V , z2 repla
ed with z1 � zh, and with the subse-quent repla
ement (69).

For hadroni
 variables, the 
ross-se
tion for boththe spin-independent and spin-dependent parts 
antherefore be written asE2 d�jd3p2dQ2hdxhdyhdzh == D(xh; Q2h)x2h E2 d�̂Bjd3p2dQ2hdŷhdẑh ; (70)whereE2 d�̂Bjd3p2dQ2hdŷhdẑh = �2C(2�)3(2SA + 1)V̂ Q4h2j��j �� L��(k̂1; k̂1 � qh; �)H��(qh; p1; p2;Sj(P j))and C is equal to 1/2 or 1 for the respe
tive pro
ess(1) or (32).Representation (70) shows that using the hadronvariables allows us to tag the initial-state radiated pho-ton. Indeed, for a �xed 4-momentum Px, we 
an re-
onstru
t the 4-momentum qh, and 
onsequently, thevariable xh that is the energy fra
tion of the photonradiated by the initial ele
tron (see Eq. (63)).The Born 
ross-se
tion in the right-hand side ofEq. (70) has the form that is very similar to the 
or-responding 
ross-se
tion for the leptoni
 variables. We
an formulate the following rules to write it:i) 
hange the phase spa
e di�erentials in the left-hand sides of the expressions valid for the leptoni
 vari-ables as"2d3k2 ! 2j�1hjdQ2hdyhdzh ; �1h = �h(xh = 1);526



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Radiative 
orre
tions to polarized : : :ii) apply the substitutionxy ! Q2hV ; y ! yh; z2 ! z1 � zhto the right-hand sides.These rules lead, e.g., to the formula for the spin-dependent part of the 
ross-se
tion of pro
ess (1) inthe 
ase of the longitudinal polarization (whi
h followsfrom Eq. (25))E2 d�BLd3p2dQ2hdyhdzh == � �2V 3�1hpz2 � 4�1�28m(2SA + 1)(2�)3Q4h2j�1hj �� �H(h)2 + zzh � 2yh�2z2 � 4�1�2 H(h)3 � ; (71)H(h)2 = (2�yh)h6+(2z1�zh)h8+ ��1h (�(h)1 h7+�(h)2 h9);�(h)1 = Q2hV [2(2z1 � zh)�1 � z(2� yh)℄ + z1y2h � zhyh;�(h)2 = Q2hV [z(2z1 � zh)� 2(2� yh)�2℄� z2h + z1zhyh;where H(h)3 is derived from H(h)2 by the repla
ementhi ! hi+4:For the normal target polarization that follows fromEq. (40), the spin-dependent part of the 
ross-se
tionof pro
ess (32) is given byE2 d�BNd3p2dQ2hdyhdzh == � �2V 34(2SA + 1)(2�)3Q4hK(xh = 1)2j�1hj ����21hG(h)2 � �yh(z1yh � zh)++ Q2hV �2�1(2z1 � zh)� z(2� yh)��G(h)4 � : (72)The remaining spin-dependent and spin-independentparts of the 
ross-se
tions for pro
esses (1) and (32)
an be obtained totally similarly using the above rulesand the results in Se
s. 3 and 4.The variable xh 
hara
terizes the inelasti
ity of theinitial-state ele
tron and is equal to 1 in the absen
e ofradiation. The ele
tron stru
ture fun
tion D(xh; Q2h)has a singularity at xh = 1 and representation (70)shows that this singularity is su
h thatlimxh!1D(xh; Q2h)dxh = 1; (73)

be
ause in this limiting 
ase, the left-hand side ofEq. (70) multiplied by dxh must 
oin
ide with the Born
ross-se
tion. 7. CONCLUSIONIn this paper, we 
onsider radiative 
orre
tions tothe polarization observables in a wide 
lass of semi-in
lusive deep-inelasti
 pro
esses. We restri
t ourselvesto the leading-log a

ura
y and negle
t the 
ontributionof the pair produ
tion in the singlet 
hannel. This al-lows us to write a 
ompa
t formulas for the radiatively
orre
ted spin-independent and spin-dependent partsof the 
orresponding 
ross-se
tions in the form of theDrell�Yan representation in ele
trodynami
s by meansof the ele
tron stru
ture fun
tions. The parameteriza-tion of the hadron spin 4-ve
tors in terms of the parti
le4-momenta is very important in the 
al
ulations. If themomentum of the intermediate photon that probes thehadron stru
ture is determined in terms of the hadroni
variables, the tra
es of the �nal-state radiation disap-pear in the �nal result within the adopted approxima-tion.In pra
ti
e, the 
orre
tions 
an be 
omputed adopt-ing some spe
i�
 model for the stru
ture fun
tions. The
orre
tion then a
quires some model dependen
e that
an 
ontribute to the systemati
al error in experimentalmeasurements. Another possibility is related to someiteration pro
edure, where the �t of the pro
essed ex-perimental data is used for the 
hosen model. We notethat the obtained leading-log formulas have a partlyfa
torized form, whi
h is very 
onvenient for this pro-
edure. The examples for the DIS 
ase 
an be foundin [20; 23℄.Apart from the 
lasses of experiments dis
ussedabove, the results 
an also be adopted to ex
lusiveele
troprodu
tion pro
esses, where the unobservablehadron state is one parti
le. In this 
ase, the stru
turefun
tions involve an additional Æ-fun
tion, and there-fore, some analyti
al manipulations 
ould be ne
essary.The a

ura
y that is higher than the leading onesometimes be
omes ne
essary. To go beyond the lead-ing a

ura
y, one must modify the master representa-tions. This modi�
ation a�e
ts both the ele
tron stru
-ture fun
tion and the 
ross-se
tion (the hard part) thatdepends on the shifted variables. To improve the hardpart, it su�
ies to take the radiation of a single addi-tional non
ollinear photon into a

ount and to add thenon-leading part of the one-loop 
orre
tion. The 
orre-sponding pro
edure is des
ribed in Ref. [21℄ for the un-polarized deep-inelasti
 s
attering and in the se
ond of527



A. V. Afanasev, I. Akushevi
h, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001Refs. [20℄ for the quasi-elasti
 polarized ele
tron�protons
attering. To be 
omplete, one must also improve thestru
ture fun
tions by adding the se
ond-order next-to-leading 
ontributions of the double 
ollinear photonemission and the pair produ
tion. The non-leading 
on-tributions to the D fun
tion 
aused by the one-loop
orre
ted 
ollinear single-photon emission and the two-loop 
orre
tion must also be added properly. These
ontributions are di�erent for symmetri
 and asymmet-ri
 parts of the leptoni
 tensor and 
an be extra
tedfrom the results in Ref. [16℄ (for the two-loop 
orre
-tion, see [24℄). In this 
ase, we must therefore distin-guish between D and D� at the level of the nonsinglet
hannel 
ontribution. The spe
i�
 
al
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