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We completely analyze the model-independent leading radiative corrections to the cross-section and polarization
observables in the semi-inclusive deep-inelastic electron—nucleus scattering with the detection of a proton and
the scattered electron in coincidence. The calculations are based on representing the spin-independent and
spin-dependent parts of the cross-section in terms of the electron structure functions similarly to the Drell-Yan
representation. As the applications, we consider the polarization transfer effect from a longitudinally polarized
electron beam to the detected proton and the scattering by a polarized target.

PACS: 12.20.-m, 13.40.-f, 13.60.-Hb, 13.88.++e

1. INTRODUCTION

Current experiments at the new-generation electron
accelerators reached a new level of precision. This pre-
cision requires a new approach to the data analysis and
the inclusion of all possible systematic uncertainties.
One of the important sources of systematic uncertain-
ties are the electromagnetic radiative effects caused by
physics processes in the next orders of perturbation the-
ory.

The purpose of this paper is to develop a unified
approach to the computation of radiative effects for
the inelastic scattering of polarized electrons in the co-
incidence setup, namely, in the case where one pro-
duced hadron is detected in coincidence with the scat-
tered electron. A broad range of measurements fall into
the category of the coincidence electron scattering ex-
periments. This includes deep-inelastic semi-inclusive
leptoproduction of hadrons, (e,e’h), and quasielastic
nucleon knock-out processes, (e,e’N). Experiments
of the former class give access to the flavor structure
of quark—parton distributions and fragmentation func-
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tions. They are in the focus of experimental programs
at CERN, DESY, SLAC, and Jefferson Lab. Some ex-
periments have already been completed and some are
in preparation. The detailed modern review of the ac-
tivities can be found in [1]. The quasielastic nucleon
knock-out process allows studying single-nucleon prop-
erties in nuclear medium and probing the nuclear wave
function [2, 3].

The different theoretical aspects of strong inter-
actions in the semi-inclusive deep-inelastic scattering
(DIS) were studied in a number of papers [4,5]. The
most direct experimental probe of the momentum dis-
tribution in nuclei that is presently available is provided
by the reaction A(e,e'N)B (see reviews [6]). Specific
polarization effects in reactions of this type have been
investigated in Ref. [7] at the level of the Born approxi-
mation with respect to the electromagnetic interaction.

There are several papers dealing with radiative ef-
fects for coincidence experiments. The lowest-order
correction was treated in [8] using the approach of
the covariant cancellation of infrared divergences. The
leading logarithmic correction was studied in [9] for the
charm production. Finally, the radiative correction in
quasielastic scattering was recently studied in [10]. Dif-
ferent approaches were used in calculations and differ-
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ent approximations have been applied. These calcu-
lations adopted some specific models for the structure
functions. Because the current experimental data do
not cover sufficiently wide kinematical ranges, the ex-
trapolation and interpolation procedures must be used
in calculating radiative effects. Therefore, the model
dependence of the results reduces their generality and
hence their applicability. Furthermore, higher-order ef-
fects, which are important at the current level of the
experimental accuracy, were not systematically consi-
dered.

The method of the electron structure functions [11]
allows the same treatment to be applied to the observed
cross-section in the lowest order and in higher orders.
This results in clear and physically transparent formu-
las for radiative effects. In this paper, we restrict our
consideration to the leading accuracy. This allows us to
avoid choosing a preferred model for the hadron struc-
ture functions and thus to obtain some general formu-
las for a wide class of physical processes. Whenever
needed, the next-to-leading order correction to some
specific process can be obtained by the standard proce-
dure. Good examples are the recent calculations of the
leading order and the next-to-leading order corrections
to polarization observables in DIS [12] and elastic [13]
processes.

In this paper, we consider the model-independent
radiative corrections to the cross-section and polar-
ization observables in the semi-inclusive deep-inelastic
scattering of the longitudinally polarized electron off
nucleus targets in the case where the target and the
detected hadron can be polarized. In Sec. 2, we use
the electron structure function approach to calculate
the radiative corrections and to derive the master for-
mulas for the radiatively corrected spin-independent
and spin-dependent parts of the corresponding cross-
sections in the form of the Drell-Yan type representa-
tion in electrodynamics [14]. The result of this section
is applicable to leptonic variables if the scattered elec-
tron is detected. In Sec. 3, we apply our master for-
mulas to the case where the polarization of the final
nucleon is measured. The radiative corrections to the
semi-inclusive DIS on the nucleus target with a vector
polarization are calculated in Sec. 4. In Sec. 5, we apply
our approach to describe the effects of the polarization
transfer from the target to the detected nucleon. These
effects include the double spin (hadron—hadron) and
triple spin (electron—hadron-hadron) correlations. In
Sec. 6, we derive the modification of the master formu-
las for hadronic variables (when the total 4-momentum
of all the hadrons is measured instead of the scattered
electron) and consider some applications. In Conclu-
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sion, we briefly discuss the extension of our results for
the radiatively corrected polarization observables be-
yond the leading-log accuracy.

2. THE MASTER FORMULA

In the recent experiment [15], the polarization
transfer to the detected proton was measured in the
process with the longitudinally polarized electron beam
160 (¢, e, p)'"N. This reaction is a particular case of
the more general semi-inclusive deep-inelastic polarized
process

€7 (k) + Alp1) = e (k2) +plp2) + X. (1)
In this paper, we clarify the problem of calculating
the electromagnetic radiative corrections to the cross-
section and polarization observables in a process of this
type within the framework of the electron structure
function approach.

For process (1) with a definite spin orientation of
the proton detected in the final state, we define the
cross-section in terms of the leptonic and hadronic ten-
sors as

a2

(254 + 1)V (27)3

LHVHHV d3k2 d3p2
2q* E,’

do = (2)

[Sp)

where S, is the target spin, e2(Es) is the energy of
the scattered electron (the detected proton), and ¢ is
the 4-momentum of the virtual photon that probes the
hadron block. The hadronic tensor can be expressed
through the hadron electromagnetic current .J,, as

H,uv = Z<p1‘Ju(qA)‘p2,X> X
X

X (X, po| Ju (=) |p1)6(P} — M),

Pm:(j+p1_p27

where P, is the total 4-momentum of the undetected
hadron system and M, is its invariant mass.

The electron structure function approach leads to
the summation of the leading-log contributions to the
leptonic tensor in all orders of the perturbation theory.
These contributions arise because of the radiation of
the hard collinear as well as the soft and virtual pho-
tons and the electron—positron pairs by electrons in the
initial and final states. In the leading approximation,
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the electron tensor in the right-hand side of Eq. (2) can
be written as [16]

dxidz
(ke ko) = // D (22, Q7) X
2

< | D(21.Q*)QP, (kr, ko) +iADy (21, Q?)

EAfu(kla ]%2) 3
(3)

. . ko
Q* = —(ki —k2)*, ki =a1ky, ky=—,
T2
where the respective structure functions D(x,Q?) and

Dy (z,Q?) describe the radiation of the unpolarized and
the longitudinally polarized electrons. At the level of
the next-to-leading accuracy, these functions already
differ in the first order of the perturbation theory, but
in the framework of the leading approximation used
here, they only differ in the second order. This dif-
ference is caused by the leading contribution of the
ete -pair production in the singlet channel to the D
function (the effect of the final electron identity). For
the unpolarized and longitudinally polarized electron,
these contributions are different and are given by [16]
(KMS), [17]

2 3
s (oL 2(l—-2%) 1—-=z
D _<_27r> { . + 5 +(1+4+2z)lnzx|,
Q2
L= m?

e (3 52

where m, is the electron mass.

Taking the singlet channel contribution into account
usually leads to very small effects (of the order 10~ %)
because, as one can see, the terms inside the brack-
ets tend to compensate each other (see, e.g. [18]). In
what follows, we do not distinguish between D and D,
which corresponds to taking only the nonsinglet chan-
nel contribution into account (for the corresponding D
functions, see [17,18]). This approximation allows us
to write compact formulas for the radiatively corrected
cross-sections. We also omit the quantity Q? from the
arguments of the D functions.

The quantity A entering the right-hand side of
Eq. (3) is the degree of the longitudinal polariza-
tion of the electron beam. The integration limits are
defined below. Representation (3) follows from the
quasireal electron approximation [19]. The physical
interpretation of the variables x; and x5 is as fol-
1 —x; = w/e; is the ratio of the energy of all
the collinear photons and the eTe -pairs radiated by

(1+)nz]

lows:

the initial electron to the energy of that electron and
(1 —x9) /2o is a similar ratio for the scattered electron.
In the Born approximation, we have

ny(kh]@) = q29uv + Q(klkZ);w
Ep, (ki ka) = 2(uvkiks), (4)
(:uykl k'Q) = fuupaklkaUa

(klkZ)uV - kluk2u + kll/k2u7

In the general case, the hadronic tensor in the
right-hand side of Eq. (2) depends on the 4-momenta
p1, p2, the virtual photon 4-momentum ¢ = ky — 1232.,
and the 4-vector of the hadron spin S that satisfies the
conditions S = —1 and (Sps) = 0. For example, in the
case under consideration,

q=ky — ka.

H,, =HY +HP)

H,(f,f) = h1Guv + haD1uPry + hapaubay +
+ h4(ﬁ1ﬁ2);u/ + Zh5 mlﬁ?]w/a (5)

HD) = (Sp1) [hs (51 N) o Fib [ Ny +hs (52 N) o+
+ihg[pa N ] + (SQ) [0 (P1N ) +
+ iha1 [p1 N pw + ha2 (PN ) o + ih13[ﬁ2N]uy] +
+ (SN) [hMaGuw + hasPrubry +
+ higPauPov + ha7(P192) pw + thas[PrDo] ], (6)

Nu = 6,uvpop1up2p‘jo = (lepzé)a [ab]uu = aubu_aub,u-,
. dud _ (gpi)d
guy:g;u/_%, iu:piu_ (;2 “7 :1’27

where h; (i = 1-18) are the hadron semi-inclusive struc-
ture functions that depend on four invariants in gen-
eral. These invariants can be taken as ¢%, (4p1), (4p2),
and (p1p2). 4

The j-component of the proton polarization P’ that
could be measured experimentally is defined as the
ratio of the spin-dependent part of cross-section (2)
(which is caused by the contraction of the leptonic ten-
sor with the spin-dependent part of the hadronic one
H‘Sﬂ), with the given j-component of the proton spin)
to the spin-independent one (which is caused by the
contraction of L, with H‘(f,ﬁ)),

do®) (X, S7 ki, ko, p1,po)

Pl =
do (X, ky, ks, p1, p2)

(7)
We note that P’ is nonzero even if A = 0 (the case
of the unpolarized electron beam) because of nonzero
single-spin correlations in semi-inclusive processes.
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In principle, three independent components can be
measured in process (1): P! (longitudinal), P! (trans-
verse), and P™ (normal), which could be taken relative
to the definite physical directions and planes created by
3-momenta of the particles participating in the process.
If no additional particle (photons and ete~-pairs) ra-
diated by electrons with the 4-momenta k; and ky are
detected, there are three independent directions along
P2, ki, and ky. In this case, any component of the
proton polarization and the corresponding proton spin
components S’ are defined for the Born kinematics and
their directions are not affected by the radiation.

Combining formulas (2) for the cross-section, defi-
nitions (3) and (4) of the lepton and (5) and (6) of the
hadron tensors and taking the above discussion into
account, we can write the cross-section of process (1)
as

do(\, 87 ki, ks, pr.pa) _
d3kod?py

// dl‘l dl‘g

Y

)D(SUQ)éQEQ X

" doP (A,Sj,k1,/;27p17p2)
d3ka d3ps

, (8)

where j =1, ¢, n. The factor 1/x; that enters the def-
inition of L, is absorbed into the flow in the reduced
Born cross-section that is by definition given by (see

Eq. (2))

B(X, 89,k k a®
éQEQ ( ) s 1y 27p17p2) —

= = X
d3k2d3p2 (QSA + 1)V(27T)3
Lfy(iclvk% /\)HHV(Sj-, ‘japlap2)
X

24" :

where V = 2, V. Within the chosen accuracy, represen-
tation (8) is valid for both the spin-dependent (do(?))
and spin-independent (do(*)) parts of the cross-section.
In theoretical calculations, it is often useful to pa-
rameterize the proton spin 4-vector, which enters the
definition of the hadron tensor, in terms of the particle
4-momenta [20]. In our case, we have four 4-momenta
to express any component of the proton spin S7 such
that
S7 = S (ky, ka,p1,p2). (9)
We temporarily imagine that the chosen parameteriza-
tion in the right-hand side of Eq. (9) is stabilized by
the relative substitution

k1_>]:31-, k‘g—)]:a./
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S9 (ky, ko, p1,p2) = S% (ky, k2, 1, pa).
(In what follows, we label such stabilized parameteriza-

tions by an index with a lower-case letter.) In this case,

we can write the Born cross-section in the integrand in
the right-hand side of Eq. (8) as

B(X, 87, ki, ks, p1, p2)
A3 lead3ps

d
o o

dcrf(/\-, 1231-, ]:327p17p2)

— & F k
. B hadpy

(10)

If the proton spin S” is unstable under the above
substitution (in this case, we use a capital letter index),
it can always be expressed in terms of the stabilized one
by means of an orthogonal matrix,

STk, kaypr,p2) =
Agj(ky, ko, p1,p2)S? (k1 ko, pr, pa),
Ay =-8797.

(11)

Using this formula and recalling that in the class of
processes considered here, the hadron tensor depends
on the proton spin linearly, we can write the master
representation for the spin-dependent part (do () ) of
the cross-section of process (1) for an arbitrary orien-
tation of the proton spin as

do (N, S7 ki, ks, p1,p2) _
A3 ko d®psy

dovd )
:Ah//ﬁéﬁD%ﬂMMQ&x

dU (N k1, ko, p1, pa)
d3k2d3p2

where the summation over the index j = [, ¢, n is im-
plied.

This representation is the electrodynamical ana-
logue of the Drell-Yan formula well known in QCD [14],
which has previously been applied to calculate the
electromagnetic radiative corrections to the total
cross-section of the electron—positron annihilation into
hadrons [17], to the small-angle Bhabha scattering
cross-section at LEP1 [18], to unpolarized [21] and
polarized deep-inelastic cross-sections [12], and to the
polarized elastic electron-proton scattering [13]. In
the next section, we show how this representation can
be used to describe the leading radiative corrections in
polarized semi-inclusive deep-inelastic events. Within
the leading accuracy, we must find adequate param-
eterizations of the proton spin 4-vector, calculate
the elements of the orthogonal matrix Aj;, derive
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the spin-independent and spin-dependent parts of the
Born cross-section for a given parameterization S7, and
determine the x; and x, integration limits in master
formula (12).

3. THE ANALYSIS OF SEMI-INCLUSIVE
DEEP-INELASTIC EVENTS WITH THE
POLARIZATION TRANSFER

We begin with the parameterizations of the proton
spin 4-vector in process (1). To describe this process,
we use the set of invariant variables

L 2p1p2 g 2k1 2p2
v’ k v
= Btk k) -
_q2
T=o V=2pik1, q=k —ks.
P14

It is physically justified to determine the longitu-
dinal component of the proton spin along the direc-
tion of —p; as seen from the rest frame of the detected

St =

(22 =Ami 1) k1 + (22171 —2)p2p+ (272 —221) D1y

proton. This direction is not affected by the lepton

collinear radiation and the corresponding parameteri-

zation is given by

ZP2yu — 2Tepiy M? m?
= — Ty = -,

Sl=F R g .
FT R —dnm VY v

(14)

where M (m) is the mass of the target nucleus (de-
tected proton). It is easy to verify that in the rest
frame of the proton (p2 = (m,0)), this longitudinal
component is equal to (0, —n;), where ny = p1/|p1],
and in the laboratory system (p; = (M, 0)), it is equal
to (|p2|, Eans)/m, where n, is the unit vector in the
direction of the detected proton 3-momentum.

For the fixed longitudinal component, we have seve-
ral possibilities to determine the transverse and normal
components. We first take the transverse component
in the plane (k;, p2) and the normal component in
the plane that is perpendicular to it. The orientations
of these planes do not change under the substitution
k, — Rl, and we therefore have

n _ 2(pkypip2)

o V(22 —4mm)[1] e

[].] = ZZ1 — T2 — Z%Tl.,

o (15)

(§78%) = —45j;.

Totally similarly to the above procedure, we can determine another stabilized set of transverse and normal com-

ponents relative to the plane (ka, pa),

gt (22 — 41 7o)koy + (2201 — 2(1 — y))poy + (272(1 — y) — 220)p1y
m

V(22 - 47'17'2)[2]

~ 2
gn — (pkapipa)

SViETE

b

(16)

2] = z25(1 —y) — (1 — y)? — 2371.

The sets in Egs. (15) and (16) represent the complete list of stabilized parameterizations of the proton spin

components under the condition that the longitudinal component is chosen in accordance with Eq. (14).

There

are many unstable parameterizations that can be taken relative to an arbitrary plane (ak; + bk, p2) with ar-
bitrary numbers a and b. In what follows, we consider only the physically favorable set with @ = —b = 1. The
corresponding transverse and normal components are given by

T _
S, =

SN _ 2(pgp1p2)

N ETR

(22 —4mim)qu + (2(21 — 22)71 — 2y)poy + (2yTe — 2(21 — 22))p1y
V(2% — 4111)][q] ’

(17)

lq] = 2y(z1 — 22) + xy(ZQ —4mm) — (21 — 22)271 - ?J2T2~

We now consider the relation between the stabilized set (for definiteness, we work with set (15)) and an unstable

one. It is obvious that this relation can be written as

SN = S"cosf + Stsiné,

ST = —8"sinf + St cosé, (18)
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where

_(SNSTL) — _(STst) —

2(z1(1+y) — 22) + 2y(22 —4dmm) — 221(21 — 29)71 — 2yTo

cosf =

i

[1]ld]

sinf = —(SVSY) = (§Tsm) = 1 ,/ [_1]‘[1;]”2

1
V4 (
(p1p2k1 k2) = e,ul/pcrplup%/klpk%ra

. 6
n = sign[(p1pakika)|\/ 5 (P1p2kika)?,

16 k1ks)?
7(]911‘7/24 k) =22y’ (dnm — 2%) +

+2xylz(z2e + 21(1 —y)) —

— 22121 — 2(1 — )] — (22 — 21 (1 — y))*.

One can verify that the necessary condition cos®#é +
+ sin? § = 1 is satisfied.

We can now write the spin-independent part (which
is actually independent of the proton spin only) and
the spin-dependent part of the cross-section of pro-
cess (1) as

dowy,r  _
d3k2d3p2 a

d6B
// dx1dx2 D($2)62E2d¢ (19)

3kod3po
don dl‘ldl‘Q
E
2 Bl py / /
~B

X {cos@i’z +sin€L} ,  (20)
d3k2d3p2 d3k2d3p2

e2Fs

D(I‘Q)égEQ X

dO’T

E
202 B ey P pa

dzqd .
= // lexQD(xl)D(xg)EgEg X

T3
~B ~B

X {— sinf———"2—— + cos@%} , (21)
d3k2d3p2 d3k2d3p2

where d6® with any lower-case index denotes the corre-
sponding Born cross-section given at the shifted values
of k1o — ]221’2. The corresponding shifted dimensionless
variables introduced by relation (13) are given by

. T2y . rixaty—1 N
T = 9 y= 9 V= x1V7
r1x0+y—1 T (22)
~ z “ R Z9
= —, Z1 = Z1, zZ9 = .
T Tr1T2

Equations (19)—(21) are the straightforward conse-
quences of master representation (12). Obviously, in
order to obtain do,, and do; in the left-hand sides of
Egs. (20) and (21), we must set cos# = 1, sinf = 0.

Next, we must derive the Born cross-sections that
enter the right-hand sides of Eqs. (19)—(21). The spin-
independent part of the cross-section for the longitu-
dinally polarized electron beam (with the degree \) is
expressed in terms of the hadron structure functions
hl, e h5 as

doB 2y
(u) @
5 _ H, 23
= Bk, ~ @St e
2y
Hy = ==+ (L—y —aym)ha + (2120 = 2yma)hs +

+ (22 +21(1 —y) — 2y2)hg — Mnhs.

We note that the phase space of the detected proton
can also be expressed in terms of invariant variables
(13) as

d3p2 V
= ——dzdzyd 24
A 2|77\ 21dzodz. (24)

If the proton spin is directed along S!, the spin-
dependent part of the Born cross-section is given by

doP Vi dn T,

BhodPps  8(284 + L)m(27)3¢"
2(z1 — 22) — 2y

— 47’17‘2

Y

x |Hy + Hs|, (25)

A
Hy = (2 —y)he + (21 + 22)hs + — (771h7 + n2hg),

A
Hz = (2 —y)hio+ (21 + 22)hi12 + 5(771h11 + n2ha3),

m =y lza—z1(1—y)—xz(2—y)+2x(21+22)71]
n2 = (21—22) (22—21(1—y)) +2yz(21+22) —22y(2—y) 2.

For the transverse orientation of the spin (along S*),
we have
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contributions to the polarizations caused by the radia-
tive corrections due to the hard collinear radiation are

ey Fy dof _ a*V3y % expressed in terms of different sets of hadron structure
Blad3py  8(2S4 +1)(27)3¢* functions compared to those used in the Born polar-

174 22— 4mTy izations. To make this more transparent, we write the

X/ P — [¢H3 - ——F——H4|, (26) spin-dependent part of the Born cross-section for the

VI

¥
2y (22 —4117)+(2—22171) (21 —22) + (221 =272y

- ]

= 2./[q] cos b,

where H, can be obtained from H; by the simple re-
placement h; — h;q13.

Finally, for the normal orientation of the proton
spin (along S™) the spin-dependent part of the cross-
section of process (1) is given by

B
doy,

d3 kQ d3p2

B a2V V "
©8(284 + 1)(27m)3¢*
2

Vi

We must also determine the integration limits for
z; and xo in master representation (12). They can
be obtained from the condition that the semi-inclusive

=y

H; — ¢H4] - (27)

deep-inelastic process occurs. For the electron—proton
scattering, this is possible under the condition that the
hadron state involves at least a proton and a pion. This
leads to the inequality

(m+my)?—m?

)=
v

T12o+y—1—212y > 220, (28)
where m is the pion mass. For the integration limits,

we then have

1+0—y

1—2xy

1—y+ayxr;

1
1‘1—5

1>a > , >z > (29)
For the electron—nucleus scattering process (1) consid-
ered here, we must change the pion mass entering the
definition of ¢ by the bound energy of the ejected pro-
ton in a given nucleus.

It is interesting to note that in the case where the
final proton polarizations are measured relative to sta-
bilized orientations, the corresponding Born values and
the leading radiative corrections to them are expressed
in terms of the same hadron structure functions. The
situation changes radically if the polarizations are mea-

sured relative to unstable orientations. In this case, the
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orientations of the proton spin along SV and S7,

doB a2V?
2 — Ts = L EPWIRY
Fladps  4(25, + 1)(27)%¢
Vig]
——H 30
X 22 —dnmy (30)
ey Es do¥ _ a’V2,/Viq] H, (31)
Pladpy | A28+ V)npg b

These formulas can be derived from Egs. (20) and (21)
if the D(x;) functions are taken to be the J-function,
which corresponds to the radiationless process (or to
the Born approximation).

4. SEMI-INCLUSIVE DEEP-INELASTIC
SCATTERING ON A POLARIZED TARGET

In this section, we apply the master representation
to the analysis of polarized phenomena in the semi-
inclusive deep-inelastic scattering of the polarized nu-
cleus,

&7 (k) + A(p1) = e" (ko) + H(p2) + X, (32)
where H is an arbitrary hadron and the nucleus A has a
definite vector polarization P. In this case, the leptonic
tensor is the same as above (see Eqs. (3) and (4)) and
the hadronic tensor has the same structure as defined
by Egs. (5) and (6), where the nucleus polarization P
must be used instead of the proton spin S and (Sp)
must be replaced with (Pps). We also use the nota-
tion g1, ... , gig for the corresponding hadron structure
functions.

To find the various asymmetries measured in study-
ing the polarization phenomena, it is necessary to
know the polarization-independent and polarization-
dependent parts of the cross-section at different orien-
tations of the target polarization. The corresponding
analysis can therefore be performed in the same way as
in Sec. 2.

We first define parameterizations of the nucleus po-
larization 4-vector in terms of the 4-momenta. As a
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stabilized set, we can choose the longitudinal and trans-
verse components given in Ref. [12],

271ky, —
| aTiRiy — Pip
e M 7 33
pt — ko= (1 —y = 2aym)ki — zypi (33)
g VVay(l—y —ayn)
and for the normal component, we use
2(ukik
n _ (:u 1 Qpl) (34)

L VBry(T—y —ayn)

Tt is easy to verify that parameterizations (33) and (34)
are not changed after the substitution k3, — lAﬁ’g. In
the laboratory system, this set corresponds to the lon-
gitudinal polarization directed along ki, the transverse
polarization in the plane (ki,ks), and the normal one
in the plane that is perpendicular to the (k;, ko) plane.

Another set of polarizations can be chosen such that
the longitudinal component is along the q direction in
the laboratory system and the transverse one is in the
plane (q, k;). In this case, the normal component co-
incides with (34) and

pr _ 2k — ko) — yp1y
. My/y? + daym
Pl = (35)

(142271 ) kop— (1—y—2271 ) k1, — 2 (2—y) P1,
VVa(l—y—ayn)(y + 4am)

The transformation between sets (35) and (33) is
implemented by the orthogonal matrix

P! = cos#, P! + sin 6, P,

36
PT = —sin6, P + cosb, P!, (36)

y(1+ 2x7)

Vyly +4am)’

sin 91 = —2\/

Master equation (12) can be applied to the
polarization-independent part of cross-section (32)
and to the polarization-dependent part. Therefore, we
must derive the Born cross-section for the stabilized
set. A simple calculation gives

cos 6

(1 —y —aym)
y + drm ’

B
dcr(u)

o’V e
(254 + 1)(27)3¢* b

E
252 Bl d o

(37)

We note that the numerical coefficient in front of G4
is twice the coefficient in front of H; in the right-hand
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side of Eq. (23). The reason is that we do not fix the
spin state of the final hadron H in this case.

The polarization-dependent part of the cross-
section for the longitudinal stabilized polarization is
given by

B 2773
ey Ey do; _ a’Ven o
d3kod?py 4284 + 1) M (27)3¢*

x [(21121 — 2)Ga — y(1 4+ 2271)G3 + 211 G4],

(38)

where the functions G;, ¢ = 1,... .4, can be derived
from H; by replacing the hadron structure functions
hj with gj-

For the transverse polarization, the corresponding
part of the cross-section can be written as

doP ?V2n/Vay(l —y — aym)
Blad3ps  4(254 + 1)(27)%¢"
20 —ayz — 21 (1 —y — 2zym)
xy(l—y —aym)
14 2xm
(1 —y—ayn)

e2Fs

Ga+

+ 2G5 + 4 (39)
For the normal polarization, the spin-dependent

part of the cross-section is

doB a’v?
goFy = X
ABkodPpy  4(254 +1)(2m)3¢*

v
X X
\/ry(l —y—ym)
X [1726'2 — y(zg(l + 2x7) —
—z21(1—y—2zm) —x2(2— ;y))G4].

(40)

Using master representation (12) leads to the radia-
tively corrected contributions (within the leading accu-
racy) to the cross-section of process (32),

dG(u) N
E )
252 Bl dps
~B
dzid a
- // T2 D(a1)D(wa)éa By —= 2" (41)
x3 dPkod3ps
dGL d$1d$2 A
EzEzm = // = D(21)D(x2)é2Ey x
~B ~B
X [cos@liii + sin 6 Aat } ,  (42)
d3k2d3p2 d3k2d3p2
dor dxidxs N
EzEgm = // x% D(xl)D(xQ)EQEQ X
~B ~B
X {— sinGlflL +COS€1L:| . (43)
3kod3py A3 kod3ps



MKIT®, Tom 120, Bbim. 3(9), 2001

Radiative corrections to polarized ...

We also write the cross-sections in the left-hand
sides of Eqgs. (42) and (43) in the Born approximation,

B 2773
62E2 dO'L _ Q V n X
Plad’py — 4(284 + 1)(27)3 Mg*
— 2z —
yz —2(z1 — )1 Gy +yly + 4am)Gs |, (44)
y(y +4zm)
dO’? aQVQU\/V
erBy—L— = 3,1 <
Blydpy 4284 + 1)(27)3¢
4
. &Gﬂﬁ
(1 —y—ayn)
+ 2z(2=y)—z+an(1-y)-22n (21+22)G2 . (45)
Vely +4en)(1 -y — ayn)

Thus, the polarization-dependent parts of the Born
cross-section involve fewer hadron structure functions
than the radiatively corrected cross-sections.

We can also use the 4-vector ps to parameterize the
nucleus polarization 4-vector. With the longitudinal
polarization chosen along p, in the laboratory system,
the stabilized set can be defined with respect to the
plane (k;, p2) and the unstable set with respect to
the plane (q, p2) as in Sec. 2; the corresponding cal-
culations are very similar to those in Sec. 2. But the
parameterizations used in this section look more phys-
ical and can also be used to describe the polarization
phenomena in inclusive deep-inelastic events.

5. POLARIZATION TRANSFER FROM THE
TARGET TO THE DETECTED PROTON

We now consider the effects of the polarization
transfer from the vector polarized target to the detected
proton in the process

€ ~(k1) + Ap1) = € (ko) + flp2) + X (46)
for the longitudinally polarized electron beam and the
vector polarization of the target. In this case, the ge-
neral form of the hadronic tensor is given by

Hyy =HY +HS +H)Y) + HSW), (47)
where S(W) labels the vector polarization of the tar-
get (the spin of the detected proton). All the effects
caused by the first three terms in the right-hand side
of Eq. (47) were considered in previous sections and we
now investigate the radiative corrections to the hadron
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double-spin correlations that precisely arise due to the
last term,

SW) _
H}w ) =

(Sp2)(Wp1) [ f1Guv+ fobryBro+ faPaubov+
+ fa(BrP2) uw + i f5[Pr1Pa)uw] +
+(Sp2) (W) [foGuw + frPrubro + fsPauboy +
+ fo(Pr1P2)uw + i fro[P1P2] ] +
+ (Sp2)(WN) [fn(ﬁlN),w + i fra[p1 N pw +
+ fiz3(P2N) o + if14[ﬁ2N]uy] +
+ (Sq)(Wp1) [ f15Guv + FrePrubrv + firbeubav +
+ fis(P152) v + i fro[P1P2]un] +
+ (SQ)(Wq) [f20duv + fo1Prubrv + fa2Poubov +
+ foz3(P1P2) v + i f2a[P1D2] ] +
+ (Sq)(WN) [fos (51 N) o + i o651 N +
+ for(PaN)yw + i fos[P2 N | +
+ (SN)(Wpr) [f29(151N),w + i fso[p1 N puw +
+ f31 (P2 N ) o + if32[ﬁ2N]uy] +
+ (SN)(Wq) [f33(1 N) o + i f3a[P1 N +
+ f35(P2N) o + i f36[P2 N | +
+(SN)(WN) [ f373uv~+FfasPrubro+ fsoPouBov+

+ fa0(P152) v + i far [1paluw].  (48)

Thus, the coefficients of the polarization transfer from
the target to the detected proton are described, in gen-
eral, by 41 structure functions. If the electron beam is
unpolarized, only the symmetric part of the hadronic
tensor contributes, which corresponds to double-spin
(hadron—hadron) correlations in the cross-section of
process (46). The antisymmetric part of the hadron
tensor contributes in the case of the longitudinally
polarized electron beam due to triple-spin (electron—
hadron-hadron) correlations.

The corresponding radiatively corrected parts of the
cross-section for the unstable orientations of the target
nucleus polarization S’ (given by Eq. (35)) and the
detected proton spin W' (given by Eq. (17)) can be
written as

dor
b I
dad 65
X// ﬂ1612962D(ﬂh)D(ﬂh)ézEzAija (49)
5 d3kad3py

where the Born cross-section in the integrand is defined
for the stable orientations of S7 (given by Eqs. (33) and
(34)) and W (given by Egs. (14) and (15)) and depends
on the shifted variables
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I,J=LT.N: ij=1Itn.

~B
2, E, ijaji = &, B, doB (N, 7, Wi ki, ka.pi, pz) If we write the hadron-hadron spin correlations en-
A3 kad3py d3k2d3p2 tering the Born cross-section as
In accordance with the calculations in Secs. 3 and B )
. ) . dCT'l- [e% V4X
4, the matrices Ay; and By; are given by g9 Ey J (51)
d? ko d3ps 16(271')32(25,4 + 1)g*
1 0 0
Asj=| 0 cosh —sing |, the quantities X;; can be written as
0 sinf cosf
(50)
cosf; sin6; 0
B[l' = —sin 91 COS 91 0
0 0 1
le 9 2
Xy =2 ; n (R29 + ngg) + VTTl [b(Fl + EFg) — d(F15 + fFQO)] , (52)
Xy =n? lefl] {bRn — dRys + 211 F37 — 2Vz ——57 V1 (2bFs — 2dFy + 1°V T1R33)} ' (53)
2 .
Xin = % Y(bR11 — dRas + 21 F37) + V2 /(1] (20Fs — 2dFso + n°V>71 Ry3) (54)
Xu =/ % {772d(329 + ERs3) + 7z [2T(F15 + {Fy) + C(F1 + fFG)]} (55)
Xy = 772 M 7"[)01] <R11 + 2rRos + dF3r — ¢2V2 ’I7 V2dR33 +4CFs + STFQ()) R (56)
. -
Xin = % U(CR11 + 2rRos + dF37) + V2 /T (1*V?dRss + 4CFs + 87'F20)_ ; (57)
f 4
X =1 m (Rag + ER33) — 7o (F1 + EFs) | (58)
Xt = —= |4 < 42F6 771Rs3> L (m Fsr —n’Rur) | (59)
VNG VI
772 1 4 m
Xnn = _W ﬁ WFG —mRs ) = 77_2F37 - Rpy ) (60)

where we used the notation

b=2um —2z d=y(l+2zm), f=2>—dnmn, r=zy(l—y—zyn),
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(21 — 22) — 2ym
22 — 47’17’2 '

z
(=zm—znl-y—-2zyn)-zyz, {=

The functions R; and F; entering the expressions for X;; are defined by the hadron structure functions f,, in
Eq. (48) as

A
Ri=2-y)fi+ (21 + 22) fig2 + 5(?71fz+1 + 12 fit3), (61)
2zy
F, = -5 fi + (1 —y—aym) fizr + (2120 — 2ym) fiao + (22 + 21(1 — y) — 2y2z) fias — A\ fiza. (62)
\
6. HADRONIC VARIABLES the hadron structure can be determined explicitly. The

corresponding set, of dynamical variables is usually re-

There exists the exprerimental possibility of mea- ferred to as the hadronic one.

suring the total 4-momentum of the hadron system

X instead of recording the scattered electron in semi- For the hadronic variables, we must eliminate the
inclusive reactions. In such experiments, the momen-  phase space of the scattered electron and introduce the
tum ¢y of the heavy intermediate photon that probes heavy photon phase space using the identities

% = 2x§xhd4ﬂ5(1‘1 —xp), dign = dQjdzydyndz
o= G W 20 Q2 =~
2k1Qh \% 1%
2 Q% 2 Q%L Yn Zh 2
M= (4mi70 — 2 )xi—V +2 <1 - a) (221 — 279) + 2 <21 - E) (z = 2217'1)] — (zn — 21yn)".

Therefore, combining this with representation (3) for the leptonic tensor and also bearing in mind that the
hadronic tensor is independent of x5, we can express the quantity Luud3k2 /€2 through the hadronic variables as
d3k2 D(xh QQ) ~ A dxhdyhdzth2
Ly = DB (B ke — g ) ——
oy H xi uv( 1, k1 —qn, A) 20|

(64)

We note that for the events with the undetected scattered electron, the lower integration limit with respect to xs
in Eq. (3) is equal to 0. In accordance with the Kinoshita-Lee-Nauenberg theorem [22], the mass singularities
caused by the final-state radiation must disappear in this case. In the language of the electron structure functions,
this fact exhibits itself due to the relation

1
| Ple.@?yis =1,
0

which was used in writing Eq. (64).
In the Born approximation, the lepton tensor can be rewritten as

LB (k1 k1 — qn) = 2(k1qn) v + 4k1uk1, — 200 (uvkian), (65)

and the physically founded parameterizations for S7 in process (1) and for P/ in process (32) remain stable with
respect to the scaling transformation k; — x, k1. For example, one set can be chosen as in Eqs. (14) and (15) and
the other as

(22 =411 72)qny + (22071 — 2Yn)P2y + (2yunT2 — 221)P1p GN _ 2(ugnp1p2)
s hy = T

VV(e2 = 4mi7m2) ] VPl T (e

L _ ql T _
Shu_sw Shu_

o

lan] = zznyn + v (2° —4mim) — 23T — Y72,
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with the transverse component belonging to the plane (qs,p2) in the laboratory system.
Two physical sets of the target polarizations, each with the normal component perpendicular to the plane
(k1,qn), can be chosen as

21 k P 205 T Q? L —2(puk1gnp
Phu $7 P}iu - {_qh“ + (yh * th1> i = h—hplu K, Fi = %’ (67)

with the longitudinal component along k; in the laboratory system and

pL — 271 qny — yhplul/

w MG
2 2 2
T _ Q@ 2Q,m Q@ - —1
iy e e
PN =pp, K= \/Q% <1 Yn _ hﬁ) /
\
with the longitudinal component along qp. The diffe- For hadronic variables, the cross-section for both
rent components of P,;] in the laboratory system are the spin-independent and spin-dependent parts can

therefore be written as

PE= (0 ng), PT = (0w> |

T~ (m 0, - do’ _
* BpodQdrydyndzy
P,{V _ (07 1nq X 1nq 2) ’ B D(ﬂfh-,Q%)E d&f -0
(n; -n,) = 22 2d3p2dQ%dyhd2h’ (70)
l’lq = i n; = ﬁ
lan|’ 13% where
All these sets of the proton spin and target polariza-
tions given by Eqs. (66), (67), and (68) are stable with 5 do P B a’C
respect to the initial-state collinear radiation. This can > d3p2dQ3 dyndzy, a (27)3 (254 + 1)VQ;1L2|77*‘ %
be verified by replacing ky with x,k;, which implies % Ly (it b1 = s A) Houw (4, D1t Sj(Pj))
k1 —>xhk17 xh—>1, yh—>y—h
., . T, - (69) and C is equal to 1/2 or 1 for the respective process
2= —, z—= —, V—ox,V, mo— == (1) or (32).
h h 4 o Representation (70) shows that using the hadron
To make the invariance of P/ (j = [,t,n) and variables allows us to tag the initial-state radiated pho-
P7(J = L,T,N) under replacement (69) more trans-  ton. Indeed, for a fixed 4-momentum P,, we can re-
parent, we express x5, in terms of Q3 and (k1gn). Then, construct the 4-momentum ¢, and consequently, the
eg., variable x;, that is the energy fraction of the photon
AL radiated by the initial electron (see Eq. (63)).
K= \/Q2 + yn2(kiqn) — Mv The Born cross-section in the right-hand side of
h 1% g

Eq. (70) has the form that is very similar to the cor-
responding cross-section for the leptonic variables. We
can formulate the following rules to write it:

and it is easy to see that this quantity is not changed
under substitution (69). We also note that the quantity

. . he tul
nn can be derived using the rule i) change the phase space differentials in the left-

N, = Tan*, hand sides of the expressions valid for the leptonic vari-
ables as
where n* is determined from n with xy replaced by
Q3 /V, z replaced with z; — 25, and with the subse- €9 2|mn|
quent replacement (69). By dQ2dyndzp’ i = nn(en = 1),
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ii) apply the substitution
Q

2
“h
V 3
to the right-hand sides.

These rules lead, e.g., to the formula for the spin-
dependent part of the cross-section of process (1) in
the case of the longitudinal polarization (which follows
from Eq. (25))

Yy — Y = Yn, 22— 21— Zh

daf
By s 7 — =
d*p2dQ} dyndzy,

VT Tm
© 8m(28a + 1)(27)3Q4 2| min)

—2ynT2 . (h
g, 2%n [0 1
X (H 22 — 4 0|7 (1)
A
HM = 2—yn)hs + (221 — 2)hs + —— (0" by +05" hy),

Mh

2
17§h) = %[2(221 - Zh)Tl - 2(2 - yh)] + Zly%« ~ ZhYh;
2
néh) = %[2(221 — Zh) — 2(2 — yh)Tz] - Z}QL + 212nYh,
where Héh) is derived from HQ(h) by the replacement
hi = hiya.

For the normal target polarization that follows from
Eq. (40), the spin-dependent part of the cross-section
of process (32) is given by

daﬁ
By 3 P) =
d3p2dQ; dyndzp
a2v3
- _ _ X
4(254 + 1)(277)3%]& (zn, = 1)2|m14]

} . (72)

The remaining spin-dependent and spin-independent
parts of the cross-sections for processes (1) and (32)
can be obtained totally similarly using the above rules
and the results in Secs. 3 and 4.

The variable z, characterizes the inelasticity of the
initial-state electron and is equal to 1 in the absence of
radiation. The electron structure function D(zy,Q7)
has a singularity at z, = 1 and representation (70)
shows that this singularity is such that

% {n%hGé’” ~ on(aagn — )+

2
+ % (2T1(221 —zp) —2(2 - yh))]Gflh)

1im1D(xh,Qi)dxh =1, (73)

Tp—
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because in this limiting case, the left-hand side of
Eq. (70) multiplied by dxj, must coincide with the Born
cross-section.

7. CONCLUSION

In this paper, we consider radiative corrections to
the polarization observables in a wide class of semi-
inclusive deep-inelastic processes. We restrict ourselves
to the leading-log accuracy and neglect the contribution
of the pair production in the singlet channel. This al-
lows us to write a compact formulas for the radiatively
corrected spin-independent and spin-dependent parts
of the corresponding cross-sections in the form of the
Drell-Yan representation in electrodynamics by means
of the electron structure functions. The parameteriza-
tion of the hadron spin 4-vectors in terms of the particle
4-momenta is very important in the calculations. If the
momentum of the intermediate photon that probes the
hadron structure is determined in terms of the hadronic
variables, the traces of the final-state radiation disap-
pear in the final result within the adopted approxima-
tion.

In practice, the corrections can be computed adopt-
ing some specific model for the structure functions. The
correction then acquires some model dependence that
can contribute to the systematical error in experimental
measurements. Another possibility is related to some
iteration procedure, where the fit of the processed ex-
perimental data is used for the chosen model. We note
that the obtained leading-log formulas have a partly
factorized form, which is very convenient for this pro-
cedure. The examples for the DIS case can be found
in [20, 23].

Apart from the classes of experiments discussed
above, the results can also be adopted to exclusive
electroproduction processes, where the unobservable
hadron state is one particle. In this case, the structure
functions involve an additional §-function, and there-
fore, some analytical manipulations could be necessary.

The accuracy that is higher than the leading one
sometimes becomes necessary. To go beyond the lead-
ing accuracy, one must modify the master representa-
tions. This modification affects both the electron struc-
ture function and the cross-section (the hard part) that
depends on the shifted variables. To improve the hard
part, it sufficies to take the radiation of a single addi-
tional noncollinear photon into account and to add the
non-leading part of the one-loop correction. The corre-
sponding procedure is described in Ref. [21] for the un-
polarized deep-inelastic scattering and in the second of



A. V. Afanasev, I. Akushevich, G. I. Gakh, N. P. Merenkov

MKIT®, Tom 120, Bbim. 3(9), 2001

Refs. [20] for the quasi-elastic polarized electron—proton
scattering. To be complete, one must also improve the
structure functions by adding the second-order next-
to-leading contributions of the double collinear photon
emission and the pair production. The non-leading con-
tributions to the D function caused by the one-loop
corrected collinear single-photon emission and the two-
loop correction must also be added properly. These
contributions are different for symmetric and asymmet-
ric parts of the leptonic tensor and can be extracted
from the results in Ref. [16] (for the two-loop correc-
tion, see [24]). In this case, we must therefore distin-
guish between D and D, at the level of the nonsinglet
channel contribution. The specific calculations will be
done elsewhere.
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