
ÆÝÒÔ, 2001, òîì 120, âûï. 3 (9), ñòð. 515�528  2001
RADIATIVE CORRECTIONS TO POLARIZED INELASTICSCATTERING IN THE COINCIDENCE SETUPA. V. Afanasev a;b, I. Akushevih a;b *, G. I. Gakh , N. P. Merenkov  **a North Carolina Central University, Durham, NC 27707, USAb TJNAF, Newport News, VA 23606, USA NSC �Kharkov Institute of Physis and Tehnology�63108, Kharkov, UkraineSubmitted 2 April 2001We ompletely analyze the model-independent leading radiative orretions to the ross-setion and polarizationobservables in the semi-inlusive deep-inelasti eletron�nuleus sattering with the detetion of a proton andthe sattered eletron in oinidene. The alulations are based on representing the spin-independent andspin-dependent parts of the ross-setion in terms of the eletron struture funtions similarly to the Drell�Yanrepresentation. As the appliations, we onsider the polarization transfer e�et from a longitudinally polarizedeletron beam to the deteted proton and the sattering by a polarized target.PACS: 12.20.-m, 13.40.-f, 13.60.-Hb, 13.88.+e1. INTRODUCTIONCurrent experiments at the new-generation eletronaelerators reahed a new level of preision. This pre-ision requires a new approah to the data analysis andthe inlusion of all possible systemati unertainties.One of the important soures of systemati unertain-ties are the eletromagneti radiative e�ets aused byphysis proesses in the next orders of perturbation the-ory.The purpose of this paper is to develop a uni�edapproah to the omputation of radiative e�ets forthe inelasti sattering of polarized eletrons in the o-inidene setup, namely, in the ase where one pro-dued hadron is deteted in oinidene with the sat-tered eletron. A broad range of measurements fall intothe ategory of the oinidene eletron sattering ex-periments. This inludes deep-inelasti semi-inlusiveleptoprodution of hadrons, (e; e0h), and quasielastinuleon knok-out proesses, (e; e0N). Experimentsof the former lass give aess to the �avor strutureof quark�parton distributions and fragmentation fun-*On leave of absene from the National Center of Partile andHigh Energy Physis, 220040, Minsk, Belarus.**E-mail: merenkov�kipt.kharkov.ua

tions. They are in the fous of experimental programsat CERN, DESY, SLAC, and Je�erson Lab. Some ex-periments have already been ompleted and some arein preparation. The detailed modern review of the a-tivities an be found in [1℄. The quasielasti nuleonknok-out proess allows studying single-nuleon prop-erties in nulear medium and probing the nulear wavefuntion [2; 3℄.The di�erent theoretial aspets of strong inter-ations in the semi-inlusive deep-inelasti sattering(DIS) were studied in a number of papers [4; 5℄. Themost diret experimental probe of the momentum dis-tribution in nulei that is presently available is providedby the reation A(e; e0N)B (see reviews [6℄). Spei�polarization e�ets in reations of this type have beeninvestigated in Ref. [7℄ at the level of the Born approxi-mation with respet to the eletromagneti interation.There are several papers dealing with radiative ef-fets for oinidene experiments. The lowest-orderorretion was treated in [8℄ using the approah ofthe ovariant anellation of infrared divergenes. Theleading logarithmi orretion was studied in [9℄ for theharm prodution. Finally, the radiative orretion inquasielasti sattering was reently studied in [10℄. Dif-ferent approahes were used in alulations and di�er-515 2*



A. V. Afanasev, I. Akushevih, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001ent approximations have been applied. These alu-lations adopted some spei� models for the struturefuntions. Beause the urrent experimental data donot over su�iently wide kinematial ranges, the ex-trapolation and interpolation proedures must be usedin alulating radiative e�ets. Therefore, the modeldependene of the results redues their generality andhene their appliability. Furthermore, higher-order ef-fets, whih are important at the urrent level of theexperimental auray, were not systematially onsi-dered.The method of the eletron struture funtions [11℄allows the same treatment to be applied to the observedross-setion in the lowest order and in higher orders.This results in lear and physially transparent formu-las for radiative e�ets. In this paper, we restrit ouronsideration to the leading auray. This allows us toavoid hoosing a preferred model for the hadron stru-ture funtions and thus to obtain some general formu-las for a wide lass of physial proesses. Wheneverneeded, the next-to-leading order orretion to somespei� proess an be obtained by the standard proe-dure. Good examples are the reent alulations of theleading order and the next-to-leading order orretionsto polarization observables in DIS [12℄ and elasti [13℄proesses.In this paper, we onsider the model-independentradiative orretions to the ross-setion and polar-ization observables in the semi-inlusive deep-inelastisattering of the longitudinally polarized eletron o�nuleus targets in the ase where the target and thedeteted hadron an be polarized. In Se. 2, we usethe eletron struture funtion approah to alulatethe radiative orretions and to derive the master for-mulas for the radiatively orreted spin-independentand spin-dependent parts of the orresponding ross-setions in the form of the Drell�Yan type representa-tion in eletrodynamis [14℄. The result of this setionis appliable to leptoni variables if the sattered ele-tron is deteted. In Se. 3, we apply our master for-mulas to the ase where the polarization of the �nalnuleon is measured. The radiative orretions to thesemi-inlusive DIS on the nuleus target with a vetorpolarization are alulated in Se. 4. In Se. 5, we applyour approah to desribe the e�ets of the polarizationtransfer from the target to the deteted nuleon. Thesee�ets inlude the double spin (hadron�hadron) andtriple spin (eletron�hadron�hadron) orrelations. InSe. 6, we derive the modi�ation of the master formu-las for hadroni variables (when the total 4-momentumof all the hadrons is measured instead of the satteredeletron) and onsider some appliations. In Conlu-

sion, we brie�y disuss the extension of our results forthe radiatively orreted polarization observables be-yond the leading-log auray.2. THE MASTER FORMULAIn the reent experiment [15℄, the polarizationtransfer to the deteted proton was measured in theproess with the longitudinally polarized eletron beam16O(~e; e; ~p)15N. This reation is a partiular ase ofthe more general semi-inlusive deep-inelasti polarizedproess ~e�(k1) +A(p1) ! e�(k2) + ~p(p2) +X: (1)In this paper, we larify the problem of alulatingthe eletromagneti radiative orretions to the ross-setion and polarization observables in a proess of thistype within the framework of the eletron struturefuntion approah.For proess (1) with a de�nite spin orientation ofthe proton deteted in the �nal state, we de�ne theross-setion in terms of the leptoni and hadroni ten-sors asd� = �2(2SA + 1)V (2�)3 L��H��2q̂4 d3k2"2 d3p2E2 ; (2)where SA is the target spin, "2(E2) is the energy ofthe sattered eletron (the deteted proton), and q̂ isthe 4-momentum of the virtual photon that probes thehadron blok. The hadroni tensor an be expressedthrough the hadron eletromagneti urrent J� asH�� =XX hp1jJ�(q̂)jp2; Xi �� hX; p2jJ�(�q̂)jp1iÆ(P 2x �M2x);Px = q̂ + p1 � p2;where Px is the total 4-momentum of the undetetedhadron system and Mx is its invariant mass.The eletron struture funtion approah leads tothe summation of the leading-log ontributions to theleptoni tensor in all orders of the perturbation theory.These ontributions arise beause of the radiation ofthe hard ollinear as well as the soft and virtual pho-tons and the eletron�positron pairs by eletrons in theinitial and �nal states. In the leading approximation,516



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Radiative orretions to polarized : : :the eletron tensor in the right-hand side of Eq. (2) anbe written as [16℄L��(k1; k2) = ZZ dx1dx2x1x22 D(x2; Q2)�� hD(x1; Q2)Q̂B��(k̂1; k̂2)+i�D�(x1; Q2)ÊB��(k̂1; k̂2)i ;(3)Q2 = �(k1 � k2)2; k̂1 = x1k1; k̂2 = k2x2 ;where the respetive struture funtions D(x;Q2) andD�(x;Q2) desribe the radiation of the unpolarized andthe longitudinally polarized eletrons. At the level ofthe next-to-leading auray, these funtions alreadydi�er in the �rst order of the perturbation theory, butin the framework of the leading approximation usedhere, they only di�er in the seond order. This dif-ferene is aused by the leading ontribution of thee+e�-pair prodution in the singlet hannel to the Dfuntion (the e�et of the �nal eletron identity). Forthe unpolarized and longitudinally polarized eletron,these ontributions are di�erent and are given by [16℄(KMS), [17℄DS = ��L2� �2 �2(1� x3)3x + 1� x2 + (1 + x) lnx� ;L = Q2m2e ;DS� = ��L2� �2 �5(1� x)2 + (1 + x) ln x� ;where me is the eletron mass.Taking the singlet hannel ontribution into aountusually leads to very small e�ets (of the order 10�4)beause, as one an see, the terms inside the brak-ets tend to ompensate eah other (see, e.g. [18℄). Inwhat follows, we do not distinguish between D and D�,whih orresponds to taking only the nonsinglet han-nel ontribution into aount (for the orresponding Dfuntions, see [17; 18℄). This approximation allows usto write ompat formulas for the radiatively orretedross-setions. We also omit the quantity Q2 from thearguments of the D funtions.The quantity � entering the right-hand side ofEq. (3) is the degree of the longitudinal polariza-tion of the eletron beam. The integration limits arede�ned below. Representation (3) follows from thequasireal eletron approximation [19℄. The physialinterpretation of the variables x1 and x2 is as fol-lows: 1 � x1 = !="1 is the ratio of the energy of allthe ollinear photons and the e+e�-pairs radiated by

the initial eletron to the energy of that eletron and(1�x2)=x2 is a similar ratio for the sattered eletron.In the Born approximation, we haveQB��(k1; k2) = q2g�� + 2(k1k2)�� ;EB��(k1; k2) = 2(��k1k2);(��k1k2) = �����k1�k2� ; (4)(k1k2)�� = k1�k2� + k1�k2�; q = k1 � k2:In the general ase, the hadroni tensor in theright-hand side of Eq. (2) depends on the 4-momentap1, p2, the virtual photon 4-momentum q̂ = k̂1 � k̂2,and the 4-vetor of the hadron spin S that satis�es theonditions S2 = �1 and (Sp2) = 0: For example, in thease under onsideration,H�� = H(u)�� +H(p)�� ;H(u)�� = h1~g�� + h2~p1�~p1� + h3~p2�~p2� ++ h4(~p1~p2)�� + ih5[~p1~p2℄�� ; (5)H(p)�� = (Sp1)�h6(~p1N)��+ih7[~p1N ℄��+h8(~p2N)��++ ih9[~p2N ℄���+ (Sq̂)�h10(~p1N)�� ++ ih11[~p1N ℄�� + h12(~p2N)�� + ih13[~p2N ℄���++ (SN)�h14~g�� + h15~p1�~p1� ++ h16~p2�~p2� + h17(~p1~p2)�� + ih18[~p1~p2℄�� ℄; (6)N� = �����p1�p2�q̂� = (�p1p2q̂); [ab℄�� = a�b��a�b�;~g�� = g�� � q̂�q̂�q̂2 ; ~pi� = pi� � (q̂pi)q̂�q̂2 ; i = 1; 2;where hi (i = 1�18) are the hadron semi-inlusive stru-ture funtions that depend on four invariants in gen-eral. These invariants an be taken as q̂2, (q̂p1), (q̂p2),and (p1p2):The j-omponent of the proton polarization P j thatould be measured experimentally is de�ned as theratio of the spin-dependent part of ross-setion (2)(whih is aused by the ontration of the leptoni ten-sor with the spin-dependent part of the hadroni oneH(p)�� ; with the given j-omponent of the proton spin)to the spin-independent one (whih is aused by theontration of L�� with H(u)�� ),P j = d�(p)(�; Sj ; k1; k2; p1; p2)d�(u)(�; k1; k2; p1; p2) : (7)We note that P j is nonzero even if � = 0 (the aseof the unpolarized eletron beam) beause of nonzerosingle-spin orrelations in semi-inlusive proesses.517



A. V. Afanasev, I. Akushevih, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001In priniple, three independent omponents an bemeasured in proess (1): P l (longitudinal), P t (trans-verse), and Pn (normal), whih ould be taken relativeto the de�nite physial diretions and planes reated by3-momenta of the partiles partiipating in the proess.If no additional partile (photons and e+e�-pairs) ra-diated by eletrons with the 4-momenta k1 and k2 aredeteted, there are three independent diretions alongp2, k1, and k2: In this ase, any omponent of theproton polarization and the orresponding proton spinomponents Sj are de�ned for the Born kinematis andtheir diretions are not a�eted by the radiation.Combining formulas (2) for the ross-setion, de�-nitions (3) and (4) of the lepton and (5) and (6) of thehadron tensors and taking the above disussion intoaount, we an write the ross-setion of proess (1)as"2E2 d�(�; Sj ; k1; k2; p1; p2)d3k2d3p2 == ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 �� d�B(�; Sj ; k̂1; k̂2; p1; p2)d3k̂2d3p2 ; (8)where j = l; t; n: The fator 1=x1 that enters the def-inition of L�� is absorbed into the �ow in the reduedBorn ross-setion that is by de�nition given by (seeEq. (2))"̂2E2 d�B(�; Sj ; k̂1; k̂2; p1; p2)d3k̂2d3p2 = �2(2SA + 1)V̂ (2�)3 �� LB��(k̂1; k̂2; �)H��(Sj ; q̂; p1; p2)2q̂4 ;where V̂ = x1V: Within the hosen auray, represen-tation (8) is valid for both the spin-dependent (d�(p))and spin-independent (d�(u)) parts of the ross-setion.In theoretial alulations, it is often useful to pa-rameterize the proton spin 4-vetor, whih enters thede�nition of the hadron tensor, in terms of the partile4-momenta [20℄. In our ase, we have four 4-momentato express any omponent of the proton spin Sj suhthat Sj = Sj(k1; k2; p1; p2): (9)We temporarily imagine that the hosen parameteriza-tion in the right-hand side of Eq. (9) is stabilized bythe relative substitutionk1 ! k̂1; k2 ! k̂2;

Sjs(k1; k2; p1; p2) = Sjs(k̂1; k̂2; p1; p2):(In what follows, we label suh stabilized parameteriza-tions by an index with a lower-ase letter.) In this ase,we an write the Born ross-setion in the integrand inthe right-hand side of Eq. (8) as"̂2E2 d�B(�; Sj ; k̂1; k̂2; p1; p2)d3k̂2d3p2 == "̂2E2 d�Bj (�; k̂1; k̂2; p1; p2)d3k̂2d3p2 : (10)If the proton spin SJ is unstable under the abovesubstitution (in this ase, we use a apital letter index),it an always be expressed in terms of the stabilized oneby means of an orthogonal matrix,SJ(k1; k2; p1; p2) =AJj(k1; k2; p1; p2)Sj(k̂1; k̂2; p1; p2);AJj = �SJSj : (11)Using this formula and realling that in the lass ofproesses onsidered here, the hadron tensor dependson the proton spin linearly, we an write the masterrepresentation for the spin-dependent part (d�(p)) ofthe ross-setion of proess (1) for an arbitrary orien-tation of the proton spin as"2E2 d�(�; SJ ; k1; k2; p1; p2)d3k2d3p2 == AJj ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 �� d�Bj (�; k̂1; k̂2; p1; p2)d3k̂2d3p2 ; (12)where the summation over the index j = l; t; n is im-plied.This representation is the eletrodynamial ana-logue of the Drell�Yan formula well known in QCD [14℄,whih has previously been applied to alulate theeletromagneti radiative orretions to the totalross-setion of the eletron�positron annihilation intohadrons [17℄, to the small-angle Bhabha satteringross-setion at LEP1 [18℄, to unpolarized [21℄ andpolarized deep-inelasti ross-setions [12℄, and to thepolarized elasti eletron�proton sattering [13℄. Inthe next setion, we show how this representation anbe used to desribe the leading radiative orretions inpolarized semi-inlusive deep-inelasti events. Withinthe leading auray, we must �nd adequate param-eterizations of the proton spin 4-vetor, alulatethe elements of the orthogonal matrix AJj , derive518



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Radiative orretions to polarized : : :the spin-independent and spin-dependent parts of theBorn ross-setion for a given parameterization Sj ; anddetermine the x1 and x2 integration limits in masterformula (12).3. THE ANALYSIS OF SEMI-INCLUSIVEDEEP-INELASTIC EVENTS WITH THEPOLARIZATION TRANSFERWe begin with the parameterizations of the protonspin 4-vetor in proess (1). To desribe this proess,we use the set of invariant variablesz = 2p1p2V ; z1;2 = 2k1;2p2V ;y = 2p1(k1 � k2)V ;x = �q22p1q ; V = 2p1k1; q = k1 � k2: (13)It is physially justi�ed to determine the longitu-dinal omponent of the proton spin along the dire-tion of �p1 as seen from the rest frame of the deteted

proton. This diretion is not a�eted by the leptonollinear radiation and the orresponding parameteri-zation is given bySl� = zp2� � 2�2p1�mpz2 � 4�1�2 ; �1 = M2V ; �2 = m2V ; (14)where M(m) is the mass of the target nuleus (de-teted proton). It is easy to verify that in the restframe of the proton (p2 = (m; 0)), this longitudinalomponent is equal to (0;�n1); where n1 = p1=jp1j;and in the laboratory system (p1 = (M; 0)), it is equalto (jp2j; E2n2)=m; where n2 is the unit vetor in thediretion of the deteted proton 3-momentum.For the �xed longitudinal omponent, we have seve-ral possibilities to determine the transverse and normalomponents. We �rst take the transverse omponentin the plane (k1; p2) and the normal omponent inthe plane that is perpendiular to it. The orientationsof these planes do not hange under the substitutionk1 ! k̂1; and we therefore haveSt� = (z2�4�1�2)k1�+(2z1�1�z)p2�+(2�2�zz1)p1�pV (z2 � 4�1�2)[1℄ ; Sn� = 2(�k1p1p2)pV 3[1℄ ; (15)[1℄ = zz1 � �2 � z21�1; (SjSi) = �Æji:Totally similarly to the above proedure, we an determine another stabilized set of transverse and normal om-ponents relative to the plane (k2; p2),~St� = (z2 � 4�1�2)k2� + (2z2�1 � z(1� y))p2� + (2�2(1� y)� zz2)p1�pV (z2 � 4�1�2)[2℄ ;~Sn� = 2(�k2p1p2)pV 3[2℄ ; [2℄ = zz2(1� y)� �2(1� y)2 � z22�1: (16)The sets in Eqs. (15) and (16) represent the omplete list of stabilized parameterizations of the proton spinomponents under the ondition that the longitudinal omponent is hosen in aordane with Eq. (14). Thereare many unstable parameterizations that an be taken relative to an arbitrary plane (ak1 + bk2; p2) with ar-bitrary numbers a and b: In what follows, we onsider only the physially favorable set with a = �b = 1. Theorresponding transverse and normal omponents are given byST� = (z2 � 4�1�2)q� + (2(z1 � z2)�1 � zy)p2� + (2y�2 � z(z1 � z2))p1�pV (z2 � 4�1�2)[q℄ ;SN� = 2(�qp1p2)pV 3[q℄ ; (17)[q℄ = zy(z1 � z2) + xy(z2 � 4�1�2)� (z1 � z2)2�1 � y2�2:We now onsider the relation between the stabilized set (for de�niteness, we work with set (15)) and an unstableone. It is obvious that this relation an be written asSN = Sn os � + St sin �; ST = �Sn sin � + St os �; (18)519



A. V. Afanasev, I. Akushevih, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001where os � = �(SNSn) = �(STSt) = z(z1(1 + y)� z2) + xy(z2 � 4�1�2)� 2z1(z1 � z2)�1 � 2y�22p[1℄[q℄ ;sin � = �(SNSt) = (STSn) = �2sz2 � 4�1�2[1℄[q℄ ;� = sign[(p1p2k1k2)℄r 16V 4 (p1p2k1k2)2;(p1p2k1k2) = �����p1�p2�k1�k2� ;16(p1p2k1k2)2V 4 = x2y2(4�1�2 � z2) ++ 2xy[z(z2 + z1(1� y))�� 2z1z2�1 � 2(1� y)�2℄� (z2 � z1(1� y))2:One an verify that the neessary ondition os2 � ++ sin2 � = 1 is satis�ed.We an now write the spin-independent part (whihis atually independent of the proton spin only) andthe spin-dependent part of the ross-setion of pro-ess (1) as"2E2 d�(u);Ld3k2d3p2 == ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 d�̂B(u);ld3k̂2d3p2 ; (19)"2E2 d�Nd3k2d3p2 = Z Z dx1dx2x22 D(x1)D(x2)"̂2E2 �� �os � d�̂Bnd3k̂2d3p2 + sin � d�̂Btd3k̂2d3p2 � ; (20)"2E2 d�Td3k2d3p2 = ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 �� �� sin � d�̂Bnd3k̂2d3p2 + os � d�̂Btd3k̂2d3p2 � ; (21)where d�̂B with any lower-ase index denotes the orre-sponding Born ross-setion given at the shifted valuesof k1;2 ! k̂1;2: The orresponding shifted dimensionlessvariables introdued by relation (13) are given byx̂ = x1xyx1x2+y�1 ; ŷ = x1x2+y�1x1x2 ; V̂ = x1V;ẑ = zx1 ; ẑ1 = z1; ẑ2 = z2x1x2 : (22)

Equations (19)�(21) are the straightforward onse-quenes of master representation (12). Obviously, inorder to obtain d�n and d�t in the left-hand sides ofEqs. (20) and (21), we must set os � = 1, sin � = 0:Next, we must derive the Born ross-setions thatenter the right-hand sides of Eqs. (19)�(21). The spin-independent part of the ross-setion for the longitu-dinally polarized eletron beam (with the degree �) isexpressed in terms of the hadron struture funtionsh1; : : : ; h5 as"2E2 d�B(u)d3k2d3p2 = �2V2(2SA + 1)(2�)3q4H1; (23)H1 = �2xyV h1+(1�y�xy�1)h2+(z1z2�xy�2)h3++ (z2 + z1(1� y)� xyz)h4 � ��h5:We note that the phase spae of the deteted protonan also be expressed in terms of invariant variables(13) as d3p2E2 = V2j�jdz1dz2dz: (24)If the proton spin is direted along Sl, the spin-dependent part of the Born ross-setion is given by"2E2 d�Bld3k2d3p2 = � �2V 3�pz2 � 4�1�28(2SA + 1)m(2�)3q4 �� �H2 + z(z1 � z2)� 2y�2z2 � 4�1�2 H3� ; (25)H2 = (2� y)h6 + (z1 + z2)h8 + �� (�1h7 + �2h9);H3 = (2� y)h10 + (z1 + z2)h12 + �� (�1h11 + �2h13);�1 = y [z2�z1(1�y)�xz(2�y)+2x(z1+z2)�1℄ ;�2 = (z1�z2) (z2�z1(1�y))+xyz(z1+z2)�2xy(2�y)�2:For the transverse orientation of the spin (along St),we have520



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Radiative orretions to polarized : : :
"2E2 d�Btd3k2d3p2 = �2V 2�8(2SA + 1)(2�)3q4 ��r Vz2 � 4�1�2 " H3 � z2 � 4�1�2p[1℄ H4# ; (26) == xy(z2�4�1�2)+(z�2z1�1)(z1�z2)+(zz1�2�2)yp[1℄ == 2p[q℄ os �;where H4 an be obtained from H1 by the simple re-plaement hi ! hi+13:Finally, for the normal orientation of the protonspin (along Sn) the spin-dependent part of the ross-setion of proess (1) is given by"2E2 d�Bnd3k2d3p2 = �2V 2pV8(2SA + 1)(2�)3q4 �� "� �2p[1℄H3 �  H4# : (27)We must also determine the integration limits forx1 and x2 in master representation (12). They anbe obtained from the ondition that the semi-inlusivedeep-inelasti proess ours. For the eletron�protonsattering, this is possible under the ondition that thehadron state involves at least a proton and a pion. Thisleads to the inequalityx1x2+y�1�x1xy � x2Æ; Æ = (m+m�)2�m2V ; (28)where m� is the pion mass. For the integration limits,we then have1 > x2 > 1� y + xyx1x1 � Æ ; 1 > x1 > 1 + Æ � y1� xy : (29)For the eletron�nuleus sattering proess (1) onsid-ered here, we must hange the pion mass entering thede�nition of Æ by the bound energy of the ejeted pro-ton in a given nuleus.It is interesting to note that in the ase where the�nal proton polarizations are measured relative to sta-bilized orientations, the orresponding Born values andthe leading radiative orretions to them are expressedin terms of the same hadron struture funtions. Thesituation hanges radially if the polarizations are mea-sured relative to unstable orientations. In this ase, the

ontributions to the polarizations aused by the radia-tive orretions due to the hard ollinear radiation areexpressed in terms of di�erent sets of hadron struturefuntions ompared to those used in the Born polar-izations. To make this more transparent, we write thespin-dependent part of the Born ross-setion for theorientations of the proton spin along SN and ST ,"2E2 d�BTd3k2d3p2 = �2V 2�4(2SA + 1)(2�)3q4 ��s V [q℄z2 � 4�1�2H3; (30)"2E2 d�BNd3k2d3p2 = � �2V 2pV [q℄4(2SA + 1)(2�)3q4H4: (31)These formulas an be derived from Eqs. (20) and (21)if the D(xi) funtions are taken to be the Æ-funtion,whih orresponds to the radiationless proess (or tothe Born approximation).4. SEMI-INCLUSIVE DEEP-INELASTICSCATTERING ON A POLARIZED TARGETIn this setion, we apply the master representationto the analysis of polarized phenomena in the semi-inlusive deep-inelasti sattering of the polarized nu-leus,~e�(k1) + ~A(p1)! e�(k2) +H(p2) +X; (32)whereH is an arbitrary hadron and the nuleus A has ade�nite vetor polarization P: In this ase, the leptonitensor is the same as above (see Eqs. (3) and (4)) andthe hadroni tensor has the same struture as de�nedby Eqs. (5) and (6), where the nuleus polarization Pmust be used instead of the proton spin S and (Sp1)must be replaed with (Pp2). We also use the nota-tion g1; : : : ; g18 for the orresponding hadron struturefuntions.To �nd the various asymmetries measured in study-ing the polarization phenomena, it is neessary toknow the polarization-independent and polarization-dependent parts of the ross-setion at di�erent orien-tations of the target polarization. The orrespondinganalysis an therefore be performed in the same way asin Se. 2.We �rst de�ne parameterizations of the nuleus po-larization 4-vetor in terms of the 4-momenta. As a521



A. V. Afanasev, I. Akushevih, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001stabilized set, we an hoose the longitudinal and trans-verse omponents given in Ref. [12℄,P l� = 2�1k1� � p1�M ;P t� = k2� � (1� y � 2xy�1)k1� � xyp1�pV xy(1� y � xy�1) ; (33)and for the normal omponent, we usePn� = 2(�k1k2p1)pV 3xy(1� y � xy�1) : (34)It is easy to verify that parameterizations (33) and (34)are not hanged after the substitution k1;2 ! k̂1;2: Inthe laboratory system, this set orresponds to the lon-gitudinal polarization direted along k1; the transversepolarization in the plane (k1;k2), and the normal onein the plane that is perpendiular to the (k1; k2) plane.Another set of polarizations an be hosen suh thatthe longitudinal omponent is along the q diretion inthe laboratory system and the transverse one is in theplane (q; k1): In this ase, the normal omponent o-inides with (34) andPL� = 2�1(k1� � k2�)� yp1�Mpy2 + 4xy�1 ;P T� == (1+2x�1)k2��(1�y�2x�1)k1��x(2�y)p1�pV x(1� y � xy�1)(y + 4x�1) : (35)The transformation between sets (35) and (33) isimplemented by the orthogonal matrixPL = os �1P l + sin �1P t;P T = � sin �1P l + os �1P t; (36)os �1 = y(1 + 2x�1)py(y + 4x�1) ;sin �1 = �2sx�1(1� y � xy�1)y + 4x�1 :Master equation (12) an be applied to thepolarization-independent part of ross-setion (32)and to the polarization-dependent part. Therefore, wemust derive the Born ross-setion for the stabilizedset. A simple alulation gives"2E2 d�B(u)d3k2d3p2 = �2V(2SA + 1)(2�)3q4G1: (37)We note that the numerial oe�ient in front of G1is twie the oe�ient in front of H1 in the right-hand

side of Eq. (23). The reason is that we do not �x thespin state of the �nal hadron H in this ase.The polarization-dependent part of the ross-setion for the longitudinal stabilized polarization isgiven by"2E2 d�Bld3k2d3p2 = � �2V 3�4(2SA + 1)M(2�)3q4 �� [(2�1z1 � z)G2 � y(1 + 2x�1)G3 + 2�1G4℄ ; (38)where the funtions Gi, i = 1; : : : ; 4; an be derivedfrom Hi by replaing the hadron struture funtionshj with gj .For the transverse polarization, the orrespondingpart of the ross-setion an be written as"2E2 d�Btd3k2d3p2 = ��2V 2�pV xy(1� y � xy�1)4(2SA + 1)(2�)3q4 �� �z2 � xyz � z1(1� y � 2xy�1)xy(1� y � xy�1) G2++ 2G3 + 1 + 2x�1x(1� y � xy�1)G4� : (39)For the normal polarization, the spin-dependentpart of the ross-setion is"2E2 d�Bnd3k2d3p2 = �2V 24(2SA + 1)(2�)3q4 ��s Vxy(1� y � xy�1) �� ��2G2 � y�z2(1 + 2x�1)�� z1(1� y � 2x�1)� xz(2� y)�G4�: (40)Using master representation (12) leads to the radia-tively orreted ontributions (within the leading au-ray) to the ross-setion of proess (32),"2E2 d�(u);Nd3k2d3p2 == ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 d�̂B(u);nd3k̂2d3p2 ; (41)"2E2 d�Ld3k2d3p2 = ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 �� �os �1 d�̂Bld3k̂2d3p2 + sin �1 d�̂Btd3k̂2d3p2 � ; (42)"2E2 d�Td3k2d3p2 = ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 �� �� sin �1 d�̂Bld3k̂2d3p2 + os �1 d�̂Btd3k̂2d3p2 � : (43)522



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Radiative orretions to polarized : : :We also write the ross-setions in the left-handsides of Eqs. (42) and (43) in the Born approximation,"2E2 d�BLd3k2d3p2 = �2V 3�4(2SA + 1)(2�)3Mq4 �� "yz � 2(z1 � z2)�1py(y + 4x�1) G2 +py(y + 4x�1)G3# ; (44)"2E2 d�BTd3k2d3p2 = �2V 2�pV4(2SA + 1)(2�)3q4 �� "�s y + 4x�1x(1� y � xy�1)G4++ xz(2�y)�z2+z1(1�y)�2x�1(z1+z2)px(y + 4x�1)(1� y � xy�1) G2# : (45)Thus, the polarization-dependent parts of the Bornross-setion involve fewer hadron struture funtionsthan the radiatively orreted ross-setions.We an also use the 4-vetor p2 to parameterize thenuleus polarization 4-vetor. With the longitudinalpolarization hosen along p2 in the laboratory system,the stabilized set an be de�ned with respet to theplane (k1; p2) and the unstable set with respet tothe plane (q; p2) as in Se. 2; the orresponding al-ulations are very similar to those in Se. 2. But theparameterizations used in this setion look more phys-ial and an also be used to desribe the polarizationphenomena in inlusive deep-inelasti events.5. POLARIZATION TRANSFER FROM THETARGET TO THE DETECTED PROTONWe now onsider the e�ets of the polarizationtransfer from the vetor polarized target to the detetedproton in the proess~e �(k1) + ~A(p1) ! e�(k2) + ~p(p2) +X (46)for the longitudinally polarized eletron beam and thevetor polarization of the target. In this ase, the ge-neral form of the hadroni tensor is given byH�� = H(u)�� +H(S)�� +H(W )�� +H(SW )�� ; (47)where S(W ) labels the vetor polarization of the tar-get (the spin of the deteted proton). All the e�etsaused by the �rst three terms in the right-hand sideof Eq. (47) were onsidered in previous setions and wenow investigate the radiative orretions to the hadron

double-spin orrelations that preisely arise due to thelast term,H(SW )�� = (Sp2)(Wp1)�f1~g��+f2~p1�~p1�+f3~p2�~p2�++ f4(~p1~p2)�� + if5[~p1~p2℄���++ (Sp2)(Wq)�f6~g�� + f7~p1�~p1� + f8~p2�~p2� ++ f9(~p1~p2)�� + if10[~p1~p2℄���++ (Sp2)(WN)�f11(~p1N)�� + if12[~p1N ℄�� ++ f13(~p2N)�� + if14[~p2N ℄���++ (Sq)(Wp1)�f15~g�� + f16~p1�~p1� + f17~p2�~p2� ++ f18(~p1~p2)�� + if19[~p1~p2℄���++ (Sq)(Wq)�f20~g�� + f21~p1�~p1� + f22~p2�~p2� ++ f23(~p1~p2)�� + if24[~p1~p2℄���++ (Sq)(WN)�f25(~p1N)�� + if26[~p1N ℄�� ++ f27(~p2N)�� + if28[~p2N ℄���++ (SN)(Wp1)�f29(~p1N)�� + if30[~p1N ℄�� ++ f31(~p2N)�� + if32[~p2N ℄���++ (SN)(Wq)�f33(~p1N)�� + if34[~p1N ℄�� ++ f35(~p2N)�� + if36[~p2N ℄���++(SN)(WN)�f37~g��+f38~p1�~p1�+f39~p2�~p2�++ f40(~p1~p2)�� + if41[~p1~p2℄���: (48)Thus, the oe�ients of the polarization transfer fromthe target to the deteted proton are desribed, in gen-eral, by 41 struture funtions. If the eletron beam isunpolarized, only the symmetri part of the hadronitensor ontributes, whih orresponds to double-spin(hadron�hadron) orrelations in the ross-setion ofproess (46). The antisymmetri part of the hadrontensor ontributes in the ase of the longitudinallypolarized eletron beam due to triple-spin (eletron�hadron�hadron) orrelations.The orresponding radiatively orreted parts of theross-setion for the unstable orientations of the targetnuleus polarization SJ (given by Eq. (35)) and thedeteted proton spin W I (given by Eq. (17)) an bewritten as"2E2 d�JId3k2d3p2 =Xj;i AJjBIi �� ZZ dx1dx2x22 D(x1)D(x2)"̂2E2 d�̂Bjid3k̂2d3p2 ; (49)where the Born ross-setion in the integrand is de�nedfor the stable orientations of Sj (given by Eqs. (33) and(34)) andW i (given by Eqs. (14) and (15)) and dependson the shifted variables523



A. V. Afanasev, I. Akushevih, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001"̂2E2 d�̂Bjid3k̂2d3p2 = "̂2E2 d�B(�; Sj ;W i; k̂1; k̂2; p1; p2)d3k̂2d3p2 :In aordane with the alulations in Ses. 3 and4, the matries AJj and BIi are given byAJj = 0B� 1 0 00 os � � sin �0 sin � os � 1CA ;BIi = 0B� os �1 sin �1 0� sin �1 os �1 00 0 1 1CA ; (50)
I; J = L; T;N ; i; j = l; t; n:If we write the hadron�hadron spin orrelations en-tering the Born ross-setion as"2E2 d�Bjid2k2d3p2 = �2V 4Xji16(2�)32(2SA + 1)q4 ; (51)the quantities Xji an be written as

Xll = 2rf�1�2 ��2(R29 + �R33) + 2V 2�1 �b(F1 + �F6)� d(F15 + �F20)�� ; (52)Xlt = �2s f�1[1℄ �bR11 � dR25 + 2�1F37 � 2 �2V 2fp[1℄(2bF6 � 2dF20 + �2V 2�1R33)� ; (53)Xln = �p�1 " (bR11 � dR25 + 2�1F37) + 2V 2p[1℄ (2bF6 � 2dF20 + �2V 2�1R33)# ; (54)Xtl =r fr�2 ��2d(R29 + �R33) + 4V 2 �2r(F15 + �F20) + �(F1 + �F6)�� ; (55)Xtt = �2s fr[1℄ "�R11 + 2rR25 + dF37 �  p[1℄�2V 2f (�2V 2dR33 + 4�F6 + 8rF20)# ; (56)Xtn = �pr " (�R11 + 2rR25 + dF37) + 1V 2p[1℄ (�2V 2dR33 + 4�F6 + 8rF20)# ; (57)Xnl = �r fr�2 ��1(R29 + �R33)� 4V 2 (F1 + �F6)� ; (58)Xnt = �pfr " � 4V 2F6 � �1R33�+ fp[1℄ (�1F37 � �2R11)# ; (59)Xnn = � �2pr " 1p[1℄ � 4V 2F6 � �1R33��  ��1�2F37 �R11�# ; (60)where we used the notationb = 2z1�1 � z; d = y(1 + 2x�1); f = z2 � 4�1�2; r = xy(1� y � xy�1);524



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Radiative orretions to polarized : : :� = z2 � z1(1� y � 2xy�1)� xyz; � = z(z1 � z2)� 2y�2z2 � 4�1�2 :The funtions Rl and Fl entering the expressions for Xji are de�ned by the hadron struture funtions fn inEq. (48) as Rl = (2� y)fl + (z1 + z2)fl+2 + �� ��1fl+1 + �2fl+3�; (61)Fl = �2xyV fl + (1� y � xy�1)fl+1 + (z1z2 � xy�2)fl+2 + (z2 + z1(1� y)� xyz)fl+3 � ��fl+4: (62)6. HADRONIC VARIABLESThere exists the exprerimental possibility of mea-suring the total 4-momentum of the hadron systemX instead of reording the sattered eletron in semi-inlusive reations. In suh experiments, the momen-tum qh of the heavy intermediate photon that probes
the hadron struture an be determined expliitly. Theorresponding set of dynamial variables is usually re-ferred to as the hadroni one.For the hadroni variables, we must eliminate thephase spae of the sattered eletron and introdue theheavy photon phase spae using the identitiesd3k2"2 = 2x22xh d4qhQ2h Æ(x1 � xh); d4qhQ2h = dQ2hdxhdyhdzh4x2hj�hj ;xh = � Q2h2k1qh ; yh = 2p1qhV ; zh = 2p2qhV ; Q2h = �q2h; (63)�2h = Q2hV �(4�1�2 � z2) Q2hx2hV + 2�1� yhxh� (zz1 � 2�2) + 2�z1 � zhxh� (z � 2z1�1)�� (zh � z1yh)2:Therefore, ombining this with representation (3) for the leptoni tensor and also bearing in mind that thehadroni tensor is independent of x2; we an express the quantity L��d3k2="2 through the hadroni variables asd3k2"2 L�� = D(xh; Q2h)x2h LB��(k̂1; k̂1 � qh; �)dxhdyhdzhdQ2h2j�hj : (64)We note that for the events with the undeteted sattered eletron, the lower integration limit with respet to x2in Eq. (3) is equal to 0. In aordane with the Kinoshita�Lee�Nauenberg theorem [22℄, the mass singularitiesaused by the �nal-state radiation must disappear in this ase. In the language of the eletron struture funtions,this fat exhibits itself due to the relation 1Z0 D(x;Q2)dx = 1;whih was used in writing Eq. (64).In the Born approximation, the lepton tensor an be rewritten asLB��(k1; k1 � qh) = 2(k1qh)~g�� + 4~k1�~k1� � 2i�(��k1qh); (65)and the physially founded parameterizations for Sj in proess (1) and for P j in proess (32) remain stable withrespet to the saling transformation k1 ! xhk1: For example, one set an be hosen as in Eqs. (14) and (15) andthe other asSLh� = Sl�; STh� = (z2 � 4�1�2)qh� + (2zh�1 � zyh)p2� + (2yh�2 � zzh)p1�pV (z2 � 4�1�2)[qh℄ ; SNh� = 2(�qhp1p2)pV 3[qh℄ ;[qh℄ = zzhyh + Q2hV (z2 � 4�1�2)� z2h�1 � y2h�2; (66)525



A. V. Afanasev, I. Akushevih, G. I. Gakh, N. P. Merenkov ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001with the transverse omponent belonging to the plane (qh;p2) in the laboratory system.Two physial sets of the target polarizations, eah with the normal omponent perpendiular to the plane(k1;qh); an be hosen asP lh� = 2�1k1� � p1�M ; P th� = ��qh� +�yh + 2Q2h�1xhV � k1� � Q2hxhV p1��K�1; Pnh� = �2(�k1qhp1)V K ; (67)with the longitudinal omponent along k1 in the laboratory system andPLh� = 2�1qh� � yhp1�MG ;P Th� = ��y2h + 4�1Q2hV � k1� ��yh + 2Q2h�1xhV � qh� � Q2hV �2� yhxh� p1�� (KG)�1;PNh� = Pnh�; K =sQ2h�1� yhxh � Q2h�1x2hV �; G =ry2h + 4Q2h�1V ; (68)
with the longitudinal omponent along qh: The diffe-rent omponents of P Jh in the laboratory system arePLh = �0; nq); P Th =  0; n1 � (n1 � nq)nqp1� (n1 � nq)2 ! ;PNh =  0; nq � n1p1� (n1 � nq)2! ;nq = qhjqhj ; n1 = k1jk1j :All these sets of the proton spin and target polariza-tions given by Eqs. (66), (67), and (68) are stable withrespet to the initial-state ollinear radiation. This anbe veri�ed by replaing k1 with xhk1, whih impliesk1 ! xhk1; xh ! 1; yh ! yhxh ;zh ! zhxh ; z ! zxh ; V ! xhV; �1;2 ! �1;2xh : (69)To make the invariane of P j (j = l; t; n) andP J(J = L; T;N) under replaement (69) more trans-parent, we express xh in terms of Q2h and (k1qh): Then,e.g., K =rQ2h + yh2(k1qh)� 4(k1qh)2�1V ;and it is easy to see that this quantity is not hangedunder substitution (69). We also note that the quantity�h an be derived using the rule�h = xh��;where �� is determined from � with xy replaed byQ2h=V , z2 replaed with z1 � zh, and with the subse-quent replaement (69).

For hadroni variables, the ross-setion for boththe spin-independent and spin-dependent parts antherefore be written asE2 d�jd3p2dQ2hdxhdyhdzh == D(xh; Q2h)x2h E2 d�̂Bjd3p2dQ2hdŷhdẑh ; (70)whereE2 d�̂Bjd3p2dQ2hdŷhdẑh = �2C(2�)3(2SA + 1)V̂ Q4h2j��j �� L��(k̂1; k̂1 � qh; �)H��(qh; p1; p2;Sj(P j))and C is equal to 1/2 or 1 for the respetive proess(1) or (32).Representation (70) shows that using the hadronvariables allows us to tag the initial-state radiated pho-ton. Indeed, for a �xed 4-momentum Px, we an re-onstrut the 4-momentum qh, and onsequently, thevariable xh that is the energy fration of the photonradiated by the initial eletron (see Eq. (63)).The Born ross-setion in the right-hand side ofEq. (70) has the form that is very similar to the or-responding ross-setion for the leptoni variables. Wean formulate the following rules to write it:i) hange the phase spae di�erentials in the left-hand sides of the expressions valid for the leptoni vari-ables as"2d3k2 ! 2j�1hjdQ2hdyhdzh ; �1h = �h(xh = 1);526



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Radiative orretions to polarized : : :ii) apply the substitutionxy ! Q2hV ; y ! yh; z2 ! z1 � zhto the right-hand sides.These rules lead, e.g., to the formula for the spin-dependent part of the ross-setion of proess (1) inthe ase of the longitudinal polarization (whih followsfrom Eq. (25))E2 d�BLd3p2dQ2hdyhdzh == � �2V 3�1hpz2 � 4�1�28m(2SA + 1)(2�)3Q4h2j�1hj �� �H(h)2 + zzh � 2yh�2z2 � 4�1�2 H(h)3 � ; (71)H(h)2 = (2�yh)h6+(2z1�zh)h8+ ��1h (�(h)1 h7+�(h)2 h9);�(h)1 = Q2hV [2(2z1 � zh)�1 � z(2� yh)℄ + z1y2h � zhyh;�(h)2 = Q2hV [z(2z1 � zh)� 2(2� yh)�2℄� z2h + z1zhyh;where H(h)3 is derived from H(h)2 by the replaementhi ! hi+4:For the normal target polarization that follows fromEq. (40), the spin-dependent part of the ross-setionof proess (32) is given byE2 d�BNd3p2dQ2hdyhdzh == � �2V 34(2SA + 1)(2�)3Q4hK(xh = 1)2j�1hj ����21hG(h)2 � �yh(z1yh � zh)++ Q2hV �2�1(2z1 � zh)� z(2� yh)��G(h)4 � : (72)The remaining spin-dependent and spin-independentparts of the ross-setions for proesses (1) and (32)an be obtained totally similarly using the above rulesand the results in Ses. 3 and 4.The variable xh haraterizes the inelastiity of theinitial-state eletron and is equal to 1 in the absene ofradiation. The eletron struture funtion D(xh; Q2h)has a singularity at xh = 1 and representation (70)shows that this singularity is suh thatlimxh!1D(xh; Q2h)dxh = 1; (73)

beause in this limiting ase, the left-hand side ofEq. (70) multiplied by dxh must oinide with the Bornross-setion. 7. CONCLUSIONIn this paper, we onsider radiative orretions tothe polarization observables in a wide lass of semi-inlusive deep-inelasti proesses. We restrit ourselvesto the leading-log auray and neglet the ontributionof the pair prodution in the singlet hannel. This al-lows us to write a ompat formulas for the radiativelyorreted spin-independent and spin-dependent partsof the orresponding ross-setions in the form of theDrell�Yan representation in eletrodynamis by meansof the eletron struture funtions. The parameteriza-tion of the hadron spin 4-vetors in terms of the partile4-momenta is very important in the alulations. If themomentum of the intermediate photon that probes thehadron struture is determined in terms of the hadronivariables, the traes of the �nal-state radiation disap-pear in the �nal result within the adopted approxima-tion.In pratie, the orretions an be omputed adopt-ing some spei� model for the struture funtions. Theorretion then aquires some model dependene thatan ontribute to the systematial error in experimentalmeasurements. Another possibility is related to someiteration proedure, where the �t of the proessed ex-perimental data is used for the hosen model. We notethat the obtained leading-log formulas have a partlyfatorized form, whih is very onvenient for this pro-edure. The examples for the DIS ase an be foundin [20; 23℄.Apart from the lasses of experiments disussedabove, the results an also be adopted to exlusiveeletroprodution proesses, where the unobservablehadron state is one partile. In this ase, the struturefuntions involve an additional Æ-funtion, and there-fore, some analytial manipulations ould be neessary.The auray that is higher than the leading onesometimes beomes neessary. To go beyond the lead-ing auray, one must modify the master representa-tions. This modi�ation a�ets both the eletron stru-ture funtion and the ross-setion (the hard part) thatdepends on the shifted variables. To improve the hardpart, it su�ies to take the radiation of a single addi-tional nonollinear photon into aount and to add thenon-leading part of the one-loop orretion. The orre-sponding proedure is desribed in Ref. [21℄ for the un-polarized deep-inelasti sattering and in the seond of527
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