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CHARACTERISTIC PREDICTIONS OF TOPOLOGICALSOLITON MODELSV. B. Kopeliovih *Institute for Nulear Researh, Russian Aademy of Sienes117312, Mosow, RussiaSubmitted 20 Marh 2001Charateristi preditions of hiral soliton models (the Skyrme model and its extentions) are disussed. Thehiral soliton model preditions of low-lying dibaryon states qualitatively agree with the reent evidene forthe existene of narrow dibaryons in reations of the inelasti proton sattering on deuterons and the doublephoton radiation pp ! pp. The onnetion between magneti moment operators and inertia tensors validfor arbitrary SU(2) skyrmion on�gurations allows us to estimate the eletromagneti deay width of somestates of interest. Preditions of a di�erent type are multibaryons with a nontrivial �avor (strangeness, harmor bottom), whih an be found, in partiular, in high-energy heavy ions ollisions. It is shown that the large-Bmultiskyrmions given by the rational map ansatze an be desribed within the domain-wall approximation or asa spherial bag with the energy and the baryon number density onentrated at its boundary.PACS: 12.39.D, 13.75.Cs, 14.65.-q1. INTRODUCTIONThe hiral soliton approah provides a very eo-nomial method of desribing baryoni systems withdi�erent baryon numbers, starting with several basionepts and ingredients inorporated in the model La-grangian [1, 2℄. The latter is the trunated Lagrangianof e�etive �eld theories widely used in desribing thelow-energy meson and baryon interations [3℄. Withinthis approah, baryons or baryoni systems appear asquantized solitoni solutions of the equations of mo-tion haraterized by the so-alled winding number ortopologial harge. If the onept of topologial soli-ton models is aepted and the baryons are indeedskyrmions, it is lear why isospin exists in Nature: thenumber 3 of the SU(2) isospin group generators o-inides with the number of spae dimensions, therebyallowing a orrelation between SU(2) hiral �elds andspae oordinates resulting in the appearene of topo-logial solitons.It has been found numerially that the lowest-energy hiral �eld on�gurations possess di�erent topo-logial properties � the shape of the mass and B-number distribution � for di�erent values of B. A*E-mail: kopelio�al20.inr.troitsk.ru

sphere ours for the B = 1 hedgehog [1℄, a torusfor B = 2 [4℄, a tetrahedron for B = 3, a ube forB = 4 [5℄, and higher polyhedrons for greater baryonnumbers [5�7℄. A paradoxial feature of the approah isthat the baryon/nuleon individuality is absent in thelowest-energy stati on�gurations (we note that any ofthe known lowest-energy on�gurations an be made ofa number of slightly deformed tori). It is believed thatthe standard piture of nulei must emerge when themotion due to nonzero modes (vibration and breathing)is taken into aount. Finding the relative position ofstates with di�erent quantum numbers (spin, isospin,�avor, SU(3) representation, et.) requires alulatingthe zero-mode quantum orretions to the energy ofa baryoni system. Corretions of this type were �rstalulated for on�gurations of the �hedgehog� type [8℄and later, for axially symmetri on�gurations [9, 10℄and for more general on�gurations for the SU(2) [11℄and SU(3) symmetry groups [12, 13℄.The hiral soliton approah provides the oneptof nulear matter that is di�erent from the ommonlyaepted assumption that the nulear matter is on-struted from separate nuleons only. To �nd the�smoking gun� for this unusual onept, it is neessaryto �nd some states that annot be made of separatenuleons, e.g., beause of the Pauli exlusion prini-499



V. B. Kopeliovih ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001ple. The simplest possibility is to onsider the B = 2system, where the Pauli priniple stritly and unam-biguosly forbids de�nite sets of quantum numbers forthe system onsisting of separate nuleons.In this paper, we �rst disuss the SU(2) ase(Se. 2), where supernarrow low-lying dibaryons werepredited [14℄, and estimate their eletromagneti de-ay width. We next onsider the SU(3) extentionof the hiral soliton model and extend the previousestimates of the spetra of multibaryons with �avor(strangeness, harm or bottom quantum number) tohigher baryon numbers, where the neessary theoreti-al information on multiskyrmions is available [7℄. Asimpli�ed model for large-B multiskyrmions given byrational maps (RM) [15℄ is presented that allows us toestablish the relation to the domain-wall or bag ap-proximation (Se. 4). The tehnial details requiredfor alulations are available in the literature; some ofthem are given in the Appendies, where several state-ments valid for any hiral soliton are proved and usefulexpressions for the SU(2) skyrmion inertia tensors (stilllaking in the literature) are presented.2. NARROW DIBARYONS BELOW THE NN�THRESHOLDThe topologial hiral solitons (skyrmions) are las-sial on�gurations of hiral �elds inorporated in aunitary matrix U 2 SU(2) or SU(3) and haraterizedby the topologial, or winding number identi�ed withthe baryon number B. The lassial energy (mass) ofthese on�gurations Ml is usually found by minimiz-ing the energy funtional that depends on hiral �elds.As any extended objet, skyrmions also possess otherharateristis, e.g., inertia moments � (inertia ten-sors in the general ase, see Appendix A), mean squareradii of the mass and baryon number distribution, et.The quantization of the zero modes of hiral solitonsallows obtaining the spetrum of states with di�erentvalues of quantum numbers: spin, isospin, strangeness,et. [8�13℄. Beause this approah leads to a reasonabledesription of various properties of baryons, nuleons,and hyperons, it is interesting to onsider preditionsof the models of this type for baryoni systems withB � 2. The energy of SU(2) quantized states with theaxial symmetry an be written as [9, 10℄E =Ml + I(I + 1)2�I + J(J + 1)2�J ++ (Jbf3 )22B2�3�1� �3�I �B2�3�J �; (1)

where I and J are the isospin and the spin of the sys-tem, J3 is the body-�xed third (or z) omponent of theangular momentum, whih an be onsidered as an ad-ditional internal quantum number of the system, andB = n is the azimuthal winding number for the lowest-energy axially symmetri on�gurations. This formula,rigorously obtained from a model Lagrangian [9, 10℄,has a very transparent physial interpretation. Thetehnial details involving the known Lagrangian of theSkyrme model, expressions forMl, inertia tensors, andsome other formulas an be found in Appendix A.The (generalized) axial symmetry of the on�gura-tion with B = 2 leads to a ertain onstraint on thebody-�xed third omponents of the isospin and the an-gular momentum:Jbf3 = �nIbf3 = �nL(see [9, 10℄). For the states with I = 1 and J = 0, orI = 0 and J = 1, and also I = J = 1, it then followsthat Ibf3 = Jbf3 = L = 0:Therefore, the last term in (1), whih is proportionalto Jbf 23 , is absent in these ases. Beause the parityof the on�guration is equal to P = (�1)L [10℄, all theabove states have a positive parity. For the state withI = 0 and J = 2, we an also haveIbf3 = Jbf3 = 0;as well as Ibf3 = L = 1; Jbf3 = �2:At large B, it an also be shown (see Appendix A)that only the �rst two terms in (1), those proportionalto I(I+1) and J(J+1), are important in the quantumorretion to the energy.It was noted a long time ago [9℄ that the quan-tum orretion for the deuteron-like state with I = 0,J = 1, given by Erotd = 1=�J(B = 2) is by approx-imately 30 MeV smaller than the orretion for the�quasi-deuteron� state with I = 1, J = 0 given byErotd0 = 1=�I(B = 2). This ours for all the knownversions of the model, without any tuning of the pa-rameters, and an therefore be onsidered as an in-trinsi property of the hiral soliton models originat-ing from e�etive �eld theories. Further investiga-tions of nonzero modes of the two-nuleon system haveshown that with many (albeit not all) of them takeninto aount, the binding energy of the deuteron anbe redued to � 6 MeV [16℄ if it is onsidered as adi�erene between states with the deuteron and thequasideuteron quantum numbers. As previously, we500



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Charateristi preditions : : :here onsider the di�erenes of the quantized state en-ergies beause they are free of many unertainties, e.g.,those due to unknown loop orretions to the massesof skyrmions (see [17, 18℄ and disussions below).In aordane with Eq. (1), some dibaryons are pre-dited to be deoupled from the 2-nuleon hannel asa onsequene of the Pauli priniple [14℄. For exam-ple, there is a predition for the state with the isospinI = J = 1, positive parity, and the energy below thethreshold for the deay into NN� withErotD = 1=�J(B = 2) + 1=�I(B = 2):This dibaryon annot be seen in nuleon�nuleon in-terations diretly, but an be observed in the reationNN ! NN, where one photon is required to pro-due D and the seond appears from the deay of D,e.g., pp! D++ ! pp:The hiral soliton models predit the state D with theisospin I = J = 1 at the energy about 50�60 MeVabove the NN threshold [14℄.In [10℄, it was shown that the states for whih thesum I + J is even (0; 2; et.) and the parity is po-sitive are forbidden by onstraints of the Finkelstein�Rubinstein type arising as a onsequene of the require-ment that the on�guration an be presented as a sys-tem of two unit hedgehogs at large relative distanessuh that these unit skyrmions possess fermioni prop-erties. This implies that the on�gurations that an-not be onsidered as onsisting of two nuleons wereignored in [10℄. In [14℄, on the ontrary, we abandonedthis requirement. We also note that the state withI = 0, J = 2, whih was forbidden in [10℄, an in fatbe the 3D2 state of two nuleons and should not beforbidden by the FR onstraint. This partiular asemust therefore be analyzed more arefully.It is possible to estimate the width of the radia-tive deay D ! NN. Eletromagneti nuleon form-fators an be desribed su�iently well within theSkyrme soliton model in a wide interval of momen-tum transfers [19℄. A reasonable agreement with thedata takes plae for the deuteron and 2N systems [10℄,and therefore, one an expet reasonable preditions forsystems with greater baryon numbers or with unusualproperties. The dimensional estimate of the narrowdibaryon deay width was made in [14℄ providing thelower bound for the deay width given by several eV.To make a more realisti estimate, one an onsider atransition of the magneti type, D ! NN or d. The

amplitude of the diret proess due to the magnetidipole transition an be written asMD!NN = ie ~�D!NN �iklFik	Dl �y1�2; (2)where ~� is the value of the transition magneti momentassumed to be of the same order as �p, Fik = eiqk�ekqiis the eletromagneti �eld strength, and 	Dl ; �1, and�2 are the respetive wave funtions of the dibaryonand the nuleons. For the width of this diret deay,we then obtain�D!NN = ��M2 ~�2D!NN945�2 (�=M)7=2 (3)whih is numerially less than 0.1 eV for� � �p � �n � 4:7=2MN ;here, � =MD � 2M is the energy release, or the max-imum energy of the emitted photon. This estimateagrees with that made previously [14℄, but the �nalstate interation ould inrease it by several orders ofmagnitude.To roughly take it into aount, one must on-sider the transition D ! d0, where d0 is the spin-zeroquasideuteron, or D+ ! d. At this point, an impor-tant statement is that the isovetor magneti transi-tion operator for any skyrmion is simply related to itsmixed, or interferene inertia tensor �intab . This state-ment, known in some partiular ases [8, 10℄ is provedin Appendix B for arbitrary skyrmions and for any typeof hiral soliton models: we show that~�ai = �12Raj(A)�intjk Oki (A0); (4)where Raj = D1aj = Tr(Ay�aA� j)=2, Oki are the �-nal rotation matries, and a is the isotopial (otet inSU(3)) index (for the eletromagneti interation, wemust set a = 3). �intjk is given in Appendix A.For on�gurations with the generalized axial sym-metry and for several known multiskyrmions, only thediagonal elements of �int are di�erent from zero, andmoreover, only the 33-omponent remains in the axiallysymmetri ase; we then have~�3i = �12R33(A)�int33 O3i (A0); (5)where �int33 = 2�I33 = 14:8 GeV�1 for B = 2 and theaepted values of model parameters, see also Table 1below. To obtain numerial values of the transitionmagneti moments, we must alulate the rotation ma-trix elements between the wave funtions of the initial501



V. B. Kopeliovih ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001and �nal states. In terms of the �nal rotation matriesDII3;L, these are given by (see, e.g., [20℄)	DI;I3;J;J3 =r2I + 18�2 DII3Lr2J + 18�2 DJJ3;�2L: (6)For the D state, we have I = J = 1 and L = 0, and forthe �nal d0 state, I = 1 and J = 0. Beause R33 = D100,the isotopial part of the matrix element for theD ! d0transition is proportional tohD1I30D100D1I30i = Z D1I30D100D1I30d� == C1;I31;0;1;I3C1;01;0;1;0=3: (7)One of the Clebsh�Gordan oe�ients vanishes,C1;01;0;1;0 = 0, and therefore, the D ! d0 transitionmagneti moment is equal to zero for all states inlud-ing D++ and D0, not only for D+ ! d0+ (whih istrivial); this is a onsequene of symmetry propertiesof the rotator wave funtion with L = 0.For the transition D+ ! d, the isotopial part ofthe matrix element di�ers from zero, hD10;0D100D000i == 1=3, but the angular momentum part proportionalto hD1J30D100D1J30i is again equal to zero. However, thedeay D+ ! np is possible as a result of the seond-order isospin violation in the eletromagneti intera-tion, due to a virtual emission and reabsorption of thephoton and due to the isospin violation by the massdi�erene of the u and d quarks. The order of mag-nitude estimate of the width of this deay due to thevirtual eletromagneti proess is�D!pn � �2M4�r�M ; (8)whih is about � 1 keV. We note that for the ompo-nents of D with the harge +2 or 0, the deay into thepp or nn �nal states is stritly forbidden by the rigor-ous onservation of the angular momentum and by thePauli priniple.For the transitionsD++ ! pp; D0 ! nn;and D+ ! (pn)I=1;the isosalar magneti moment operator gives anonzero ontribution. The orresponding matrixelement isMD!d0 = ie ~�0D!d0 �iklFik	Dl 	d0y: (9)

For the rational map parameterization, we have the ap-proximate relation ~�03 � J3Bhr20i3�J ; (10)where hr20i is the mean square radius of the B-numberdistribution. Equation (10) oinides with the resultin [8℄ for B = 1 and is lose to the result in [10℄ forB = 2. The derivation of (10) that is valid for the ra-tional map parameterization of skyrmions will be givenelsewhere. The oe�ient after J3 in (10) has a remark-ably weak dependene on the baryon number, as anbe seen from Table 1. However, numerially, Eq. (10)gives about half the result for B = 1 in [8℄ for theparameters taken here. We thus have~�0D!d0 � 2hr20i3�J : (11)For the deay width, we then obtain�D!d0 = �4~�2D!d0�33 : (12)Numerially, ~�D!d0 � 0:35 GeV�1, and it follows from(12) that �D!d0 � 0:3 keV (�=60 MeV)3. The sameestimate is valid for the deay rate of D+ ! np withthe np-system in the I = 1 isospin state.The experimental evidene for the existene of thenarrow dibaryon D in the reation pp! pp has beenobtained in Dubna [21℄, although these data have notbeen on�rmed in the Uppsala bremsstrahlung exper-iment [22℄. Even more lear indiations for the exis-tene of low-lying dibaryons were obtained in the ex-periment at the Mosow meson fatory in the reationpd! pX [23℄. As regards its importane, the on�rma-tion of these results is omparable to the disovery ofa new elementary partile. The absene of suh stateswould provide de�nite restritions on the appliabilityof the hiral soliton approah and e�etive �eld theo-ries.It should be noted that the model involves a prob-lem with the lowest state with I = J = 0, whih shouldbe lower than the deuteron-like state. The deuteronmust therefore deay into this (0; 0) state and a pho-ton, but a two-nuleon system in the singlet 1S0 stateannot deay beause the 0! 0 transition is forbiddenfor the eletromagneti interation. The loop orre-tions to the energy of states, or the Casimir energy [16℄,are di�erent for states that an go over into two nule-ons, and for states that annot. Their ontribution anhange the relative position of these states and shift the(0; 0) state above the deuteron, but a highly nontrivialalulation must be done to verify this.502



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Charateristi preditions : : :Some low-lying states with strangeness are also pre-dited that annot deay strongly due to the parity andisospin onservation in strong interations [14℄. Forexample, the dibaryon with the strangeness S = �2,I = 0, and J = 1 and with the positive parity has theenergy by � 0:17 GeV above the �� threshold [24℄,and it annot deay into two �-hyperons beause ofthe Pauli priniple, and into the ��� �nal state by theisospin onservation. Therefore, the width of the ele-tromagneti deay of this state must not exeed severaltenths of keV. It is, of ourse, a speial ase. Other pos-sible states with the �avor s;  or b are disussed in thenext setion.The masses of neutron-rih light nulides, suh asthe tetra-neutron, sexta-neutron, et., an be esti-mated using Eq. (1). For the multineutron state withI = B=2, the isorotation energy isErot = B(B + 2)8�I ;and these nulides are predited well above the thresh-old for the strong deay into �nal nuleons. With in-reasing the baryon numbers, the energies of neutron-rih states with a �xed di�erene N �Z derease, andtheir widths an therefore be very small. The massdi�erene of states with the isospin I and the groundstates with I = 0 (for even B) is equal to�E(B; I) = I(I + 1)2�I;B :For the pairs of nulei suh as 8Li�8Be, 12B�12C and16N�16O, it is equal to�E(B; 1) = 1�I;Band dereases with inreasing B (i.e., the atomi num-ber), both theoretially (see Table 1 below) and aord-ing to data. For B = 16, this di�erene is 10.9 MeV;this is to be ompared with the theoretial value of15.8 MeV, whih is not bad for suh a rude model.3. FLAVORED MULTIBARYONSAnother harateristi predition is that of multi-baryons with di�erent values of �avors, suh as thestrangeness, harm, or bottom quantum numbers. Thebound-state approah of multiskyrmions with di�erent�avors is an adequate method to alulate the bindingenergies of states with quantum numbers s;  or b. Theso-alled rigid osillator model is the most transparent

and ontrollable version of this method [25℄. The refer-enes to the pioneering papers an also be found in [26℄.For the strangeness quantum numbers, the preditedbinding energies of �avored states are smaller than thebinding energies of the ordinary nulei. For the harmor bottom quantum numbers, the relation is reversed.We now present the main results for �avored multi-baryons following [26℄ and extending them to highervalues of the baryon numbers.To quantize solitons in the SU(3) on�gurationspae in the spirit of the bound-state approah to thedesription of strangeness, we onsider the olletive o-ordinate motion of the meson �elds inorporated intoa matrix U 2 SU(3) (see Appendix A),U(r; t) = R(t)U0(O(t)r)Ry(t);R(t) = A(t)S(t); (13)where U0 is the SU(2) soliton embedded into SU(3)in the standard way (into the upper-left orner),A(t) 2 SU(2) desribes SU(2) rotations, S(t) 2 SU(3)desribes rotations in the �strange�, �harm� or �bot-tom� diretions, and O(t) desribes rigid rotations inreal spae. We haveS(t) = exp(iD(t)); D(t) = Xa=4;::: ;7Da(t)�a; (14)where �a are the Gell-Mann matries of the (u; d; s),(u; d; ) or (u; d; b) SU(3) groups. The (u; d; ) and(u; d; b) SU(3) groups are totally similar to the (u; d; s)one. For the (u; d; ) group, a simple rede�niton of thehyperharge must be made. For the (u; d; s) group,D4 = K+ +K�p2 ; D5 = iK+ �K�p2 ;et., and for the (u; d; ) group,D4 = D0 + �D0p2 ;et.The angular veloities of the isospin rotations arede�ned in the standard way asAy _A = �i! � �=2:We do not onsider the usual spae rotations expliitlybeause the orresponding inertia moments for bary-oni systems are muh greater than the isospin inertiamoments, see Table 1, and for the lowest possible valuesof the angular momentum J , the orresponding quan-tum orretion is either exatly zero (for even B) orsmall.503



V. B. Kopeliovih ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001The magnitude of the D �eld is small, at least of theorder 1=pN, where N is the number of QCD olors.We an therefore safely expand the matrix S in D. Tothe lowest order in D, the Lagrangian of the model inEq. (A.1) an be written asL = �Ml;B + 4�F;B _Dy _D �� ��B �m2D + ~�B(F 2D � F 2� )�DyD �� iNB2 (Dy _D � _DyD); (15)where �m2D = (F 2D=F 2� )m2D �m2�:Here and below, D is the doublet K+; K0 (D0; D� orB+; B0) and �F is the inertia moment for the rotationinto the ��avor� diretion (with F = s;  or b and theindex  denoting the harm quantum number, exeptin N),�F;B = 18 Z (1� f )�� �F 2D + 1e2�(rf)2 + s2f (rni)2��d3r; (16)where f is the pro�le funtion of the skyrmion, FD isthe �avor deay onstant, i.e., kaon, D meson, or Bmeson deay onstant, and�B = F 2�2 Z (1� f )d3r: (17)The mass term ontribution to the stati soliton energyis related to � by M:t: = m2��=2:The quantity ~�B arises when the �avor symmetrybreaking is taken into aount in �avor deay onstants:~�B = 14 Z f �(rf)2 + s2f (rni)2�d3r: (18)It is related to other alulated quantities by~� = 2(M (2)l =F 2� � e2�SkF );where M (2)l is the seond-order ontribution to statimass of the soliton and �SkF is the Skyrme term ontri-bution to the �avor inertia moment. The ontributionproportional to ~�B is suppressed in (15) ompared tothe term � � by the small fator � F 2D=m2D, and ismore important for strangeness. The term proportionalto NB arises in (15) from the Wess�Zumino term inthe ation and is responsible for the di�erene of the

strangeness and antistrangeness (in the general ase,�avor and anti�avor) exitation energies [25, 26℄.Following the anonial quantization proedure, wewrite the Hamiltonian of the system inluding theterms of the order N0 as [25℄HB =Ml;B + 14�F;B�y�++��B �m2D + ~�B(F 2D � F 2� ) + N2B216�F;B�DyD ++ i NB8�F;B (Dy���yD); (19)where � is the anonially onjugate momentum tothe variable D that desribes the osillator-type mo-tion of the (u; d) SU(2) soliton in the SU(3) on�gura-tion spae. After the diagonalization that an be doneexpliitly [25℄, the normal-ordered Hamiltonian an bewritten asHB =Ml;B + !F;Baya+ �!F;Bbyb+O(1=N); (20)where ay and by are the reation operators of thestrangeness (i.e., of antikaons) and antistrangeness (�a-vor and anti�avor) quantum numbers, and !F;B and�!F;B are the frequenes of �avor (anti�avor) exita-tions. D and � are related to a and b by [25℄Di = bi + ayipNB�F;B ; �i = pNB�F;B(bi � ayi)2i (21)with�F;B =s1 + 16( �m2D�B + (F 2D � F 2� )~�B�F;B)(NB)2 :For the lowest states, the values of D are small:D � �16�B�F;B �m2D +N2B2��1=4;they inrease as (2jF j+1)1=2 with inreasing the �avornumber jF j. As noted in [25℄, deviations of the �eldD from the vauum derease with inreasing the massmD, as well as with inreasing the number of olorsN,and the method works for any mD (and also for harmand bottom quantum numbers). We have!F;B = NB(�F;B � 1)8�F;B ;�!F;B = NB(�F;B + 1)8�F;B : (22)It was observed in [26℄ that to the leading order in N,the di�erene �!F;B � !F;B = NB4�F;B504



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Charateristi preditions : : :Table 1. Charateristis of the bound states of skyrmions with the baryon numbers up to B = 22B Ml �(0)F �I �I;3 ��J � ~� hr0 i !s ! !b1 1:702 2:05 5:55 5:55 5:55 4:80 15 2:51 0:309 1:542 4:822 3:26 4:18 11:5 7:38 23 9:35 22 3:46 0:293 1:511 4:763 4:80 6:34 14:4 14:4 49 14:0 27 4:10 0:289 1:504 4:754 6:20 8:27 16:8 20:3 78 18:0 31 4:53 0:283 1:493 4:745 7:78 10:8 23:5 19:5 126 23:8 35 5:10 0:287 1:505 4:756 9:24 13:1 25:4 27:7 178 29:0 38 5:48 0:287 1:504 4:757 10:6 14:7 28:9 28:9 220 32:3 43 5:72 0:282 1:497 4:758 12:2 17:4 33:4 31:4 298 38:9 46 6:15 0:288 1:510 4:799 13:9 20:5 37:7 37:7 375 46 47 6:49 0:291 1:517 4:7712 18:4 28:0 48:5 48:5 636 64 54 7:31 0:294 1:526 4:7916 24:5 38:9 63:1 63:1 1107 91 63 8:31 0:301 1:543 4:8117 25:9 41:2 66:1 66:1 1219 96 65 8:48 0:300 1:542 4:8122 33:7 56:0 84:2 84:2 2027 135 73 9:55 0:308 1:560 4:8432� 49:1 86:7 118 118 4154 218 87 11:3 0:319 1:585 4:84The lassial mass of solitons Ml is expressed in GeV, the moments of inertia �F ; �I and �I;3, �J , hr0i, �, and~� in GeV�1, and the exitation frequenies for �avor F , !s;;b in GeV; hr0i = pr2B, �J de�nes the value of themultiskyrmion isosalar magneti moment. For higher baryon numbers, beginning with B = 9, alulations aremade using the RM ansatz. For B = 32, it was assumed that the ratio I=B2 = 1:28 as for the RM B = 22skyrmion. The external parameters of the model are F� = 186 MeV and e = 4:12. The auray of alulations isbetter than 1% for the masses and several per ent for other quantities.oinides with the expression obtained in the olletiveoordinate approah [24℄.The �avor symmetry breaking (FSB) in the �avordeay onstants, i.e., the fat that FK=F� � 1:22 andFD=F� = 1:7 � 0:2 (where we take FD=F� = 1:5 andFB=F� = 2) leads to the inrease of the �avor exita-tion frequenes, in better agreement with the data forharm and bottom. It also leads to some inrease ofthe binding energies of baryon system [26℄.The values of ��J shown in Table 1 are 1=3 ofthe trae of the orresponding inertia tensor, see Ap-pendix A. As an be seen from Table 1, the �avor ex-itation energies inrease again for the largest valueB = 22, and the important property of binding be-omes weaker for higher B. However, this an be anartefat of the RM approximation disussed in the nextsetion. In partiular, for B � 9, the inertia moments�I and �3 are 1=3 of the trae of the orrespondinginertia tensors, see Appendix A.

For large values of FD=F� = �D and the mass mD,the following approximate formula for the �avor exi-tation frequenes an be obtained:!F;B � ~mD�1� 2 �SkF;B�2D�B�� NB2�2D�B (23)with ~m2D = m2D + F 2� ~�B=�B. It is lear from (23)that !'s are smaller than the meson masses mD, andtherefore, the binding always ours and is to a largedegree due to the ontribution of the Skyrme term tothe �avor inertia �SkF . As �D ! 1, it follows that!F ! mD. Beause the ratio ~�B=�B dereases with in-reasing B and �F;B=�B inreases as B inreases from1 to 4�7, the energies !F;B derease for these B num-bers, thereby leading to the inrease of the binding of�avored mesons by SU(2) solitons with inreasing B upto 4�7. However, for B = 22 and 32, the ratio�F;B=�Bis smaller than for B = 1, and indeed, !'s are the sameand even larger than for B = 1.505



V. B. Kopeliovih ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001Table 2. The binding energy di�erenes ��s;;b for the states with the isospin I = Tr + jF j=2B ��s=�1 ��=1 ��b=�1 ��s=�2 ��=2 ��b=�22 �0:047 �0:03 0:02 �0:053 �0:07 0:023 �0:042 �0:01 0:04 �0:036 �0:03 0:064 �0:020 0:019 0:06 �0:051 0:022 0:105 �0:027 0:006 0:05 �0:063 0:001 0:086 �0:019 0:016 0:05 �0:045 0:023 0:107 �0:016 0:021 0:06 �0:041 0:033 0:118 �0:017 0:014 0:02 �0:040 0:021 0:039 �0:023 0:005 0:03 �0:10 �0:003 0:0612 �0:021 0:003 0:02 �0:09 �0:004 0:0417 �0:027 �0:013 0:00 �0:11 �0:03 �0:0022 �0:034 �0:028 �0:03 �0:14 �0:06 �0:03The binding energy di�erenes ��s;;b are the hanges of binding energies of the lowest baryon system withthe �avor s;  or b and the isospin I = Tr + jF j=2 ompared to the usual u; d nulei, for the �avor numbersS = �1; �2,  = 1; 2, b = �1 and �2 (see Eq. (24)). The SU(3) multiplets are (p; q) = (0; 3B=2) for even B and(p; q) = (1; (3B � 1)=2) for odd B.Table 3. The binding energy di�erenes for the states with the isospin I = 0B ��s=�1 ��=1 ��b=�1 ��s=�2 ��=2 ��b=�2 ��s=�3 ��=3 ��b=�3 ��s=�B2 � � � �0:075 �0:03 0:02 � � � �0:073 0:000 0:034 0:07 � � � �0:08 0:002 0:09 �0:084 � � � �0:047 0:030 0:09 � � � �0:135 �0:003 0:032 0:06 � � � �0:06 0:035 0:12 �0:156 � � � �0:044 0:025 0:09 � � � �0:217 0:000 0:040 0:07 � � � �0:04 0:068 0:15 �0:208 � � � �0:039 0:023 0:03 � � � �0:2812 � � � �0:046 0:00 0:03 � � � �0:5017 �0:020 �0:01 �0:00 � � � �0:08 �0:04 �0:01 �0:8222 � � � �0:073 �0:06 �0:06 � � � �1:332� � � � �0:088 �0:11 �0:13 � � � ��The binding energy di�erenes between the lowest �avored baryon system with the isospin I = 0 and the ground statewith the same value of B and I = 0 or I = 1=2. The �rst three olumns are for jF j = 1, the next three olumnsfor jF j = 2, and the next three for jF j = 3. The state with the �avor value jF j belongs to the SU(3) multiplet withTr = jF j=2. In the last olumn, the binding energy di�erenes are shown for the isosalar eletrially neutral stateswith S = �B. For jF j � 3, all estimates are very approximate.506



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Charateristi preditions : : :The binding energy di�erenes between �avoredmultibaryons and the ordinary nulei in the rigid os-illator approximation are given by��B;F = jF j�!F;1 � !F;B � 3(�F;1 � 1)8�2F;1�F;1 �� Tr(�F;B � 1)4�F;B�F;B � (jF j+ 2)(�F;B � 1)28�2F;B�F;B �; (24)and the lowest SU(3) multiplets are onsidered withthe isospin of the �avorless omponent Tr = 0 for evenB and Tr = 1=2 for odd B. This formula is orretfor jF j = 1 and for any jF j if the baryon number issu�iently large to ensure the isospin balane.The values of �� shown in Table 2 must be on-sidered as an estimate. They illustrate the restritedpossibilities of the RM approximation for large-B mul-tiskyrmions.The isosinglet baryon systems, in partiular thosewith jF j = B, are of speial interest. As argued in [26℄,these states do not belong to the lowest possible SU(3)irreduible representations, they must have Tr = jF j=2.It makes sense to alulate the di�erene between thebinding energy of this state and the minimal state(pmin; qmin) with zero �avor, whih we identify withthe standard nuleus (the ground state). We have��B;F = jF j�!F;1 � !F;B � 3(�F;1 � 1)8�2F;1�F;1 ++ (jF j+ 2)(�F;B � 1)8�2F;B�F;B ��� 12�T;B � jF j(jF j+ 2)4 � Tminr (Tminr + 1)� ; (25)where Tminr = 0, or 1=2 as above.Aording to Table 3, the total binding energy, e.g.,of the state with B = 22 and S = �2 is smaller thanthat of the nuleus with A = 22 by 73 MeV, and thisstate must therefore be well bound. The model usedhere is too rude for large �avor values, and the resultsobtained an be used only as an illustration and as astarting point for further investigations. Similar resultsare also obtained in other versions of the model [27℄, inpartiular in the quark�meson soliton model [28℄. Forthe baryon numbers B = 3; 4, estimates of the spetraof baryoni systems with the harm quantum numberwere made in [29℄ within the onventional quark model.They are in a relatively good agreement with ours.In the hannel with B = 2, the near-threshold statewith the strangeness S = �1 was observed a longtime ago in the reation pp! p�K+ [30℄ and reently

on�rmed in COSY experiment [31℄. A similar near-threshold �� state was observed by the KEK PS E224ollaboration [32℄. The Skyrme model explains thesenear-threshold states with B = 2 and predits sim-ilar states for higher values of B. For some valuesof B beginning with B � 5; 6, suh states with sev-eral units of strangeness an be stable with respet tostrong interations. Beause of the well-known relationQ = I3+(B+S)=2 between the harge, the isospin, andthe hyperharge of hadrons, the baryon system withseveral units of strangeness an appear as negativelyharged nulear fragments. For even B and the min-imal multiplets (p; q) = (0; 3B=2), the strangeness isS = �2I , and the ondition for the Q = �1 fragmentto appear is �1 = S + B=2, or �S = B=2 + 1. ForB = 6, this gives S = �4, for B = 8, S = �5, et. Forodd B, the Q = �1 state must have the strangenessjSj = (B � 1)=2 + 1;i.e., �3; �4, and �5 for B = 5; 7, and 9, et.The negatively harged long-lived nulear fragmentwith the mass about 7.4 GeV observed in NA52 CERNexperiment in a Pb + Pb ollision at the energy158A GeV [33℄ an be, within the hiral soliton mod-els, a fragment with B = 7 or 6 and the strangenessS = �4 or �5;�6. The on�rmation of this resultand the searh for other negatively harged fragmentswould be of great importane. For the harm or bottomquantum numbers, the binding energies are greater, butobserving these states requires onsiderably higher in-ident energies.4. LARGE-B MULTISKYRMIONS FROMRATIONAL MAPS IN THE DOMAIN-WALLAPPROXIMATIONThe treatment of multiskyrmions was onsiderablysimpli�ed by extensively using the rational map ansatzproposed in [15℄ (and also adopted in the present pa-per). At the same time, this ansatz leads to the pitureof the multibaryon system at large B that is prob-ably inompatible with the piture for the ordinarynulei. To larify this point, we here onsider large-B multiskyrmions in some kind of a toy model � inthe domain-wall approximation; in spite of its simpli-ity, this model gives relatively good numerial resultsfor the known RM multiskyrmions exept those withB = 1; 2. Within the rational map ansatz [15℄, theenergy of the skyrmion is given byM = 13� Z �ANr2f 02+2Bs2f (f 02+1)+I s4fr2�dr (26)507



V. B. Kopeliovih ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001in the universal units 3�2F�=e.The oe�ient AN = 2(N � 1)=N orresponds tothe symmetry group SU(N) [34℄. For SU(2), the quan-tity I is given in Appendix A. There is the inequalityI � B2. Diret numerial alulations have shown andour analytial treatment supports that at large B, andhene, large I, the multiskyrmion looks like a spherialball with the pro�le given by f = � inside and f = 0outside the ball. The energy and the B-number densityof this on�guration is onentrated at its boundary,similarly to the domain wall system onsidered in [35℄in onnetion with osmologial problems.We onsider suh a large-B skyrmion within the�inlined step� approximation. If W is the width ofthe step and r0 is the radius of the skyrmion (wherethe pro�le is given by f = �=2), we havef = �=2�(r�r0)�=W for r0�W=2 � r � r0+W=2:We note that this approximation desribes the usualdomain wall energy [35℄ with the auray � 9%.We write the energy in terms of W and r0 and thenminimize it with respet to both these parameters and�nd the minimum energy value. WithM(W; r0) == 13� ��2W (B +ANr20) +W�B + 3I8r20�� ; (27)this gives Wmin = �� B +ANr20B + 3I=8r20 �1=2 (28)and after the minimization,r20min =r 3I8AN :In dimensional units, we then haver0 = (6I=AN )1=4F�e :Beause I � B2, the radius of the minimized on�gu-ration grows at least as pB. It follows that Wmin = �,whih is therefore independent of B for any SU(N).The energy is given byMmin � 2B +p3ANI=23 : (29)For the SU(2) model, AN = 1 and the energyMmin = (2B+p3I=2)=3 should be ompared with thelower bound MLB = (2B +pI)=3. The formula gives

the numbers for B = 3; : : : ; 22 in a remarkably goodagreement (within 2�3%) with the alulation withinthe RM approximation [7℄.It is not di�ult to alulate the orretions to theseexpressions, of the relative order 1=B; 1=B2; : : : :M(W; r0) � 13� ��2W (B +ANr20)++ W�B(1 + �) + 3I8r20 (1 + )�� ; (30)where � = �212B ;  = 2�2 + 17p24I :It follows thatMmin � [2B(1 + �=2) +p3I=2(1 + =2)℄=3: (31)However, the �rst-order orretion in W does not im-prove the desription of masses, and the summation ofall terms seems to be required1).We thus see that a very simple approximation on-�rms the piture emerging from the numerial alu-lation of the RM skyrmion as a two-phase objet, aspherial ball with the pro�le f = � inside and f = 0outside the ball, and a �xed-width envelope with the�xed surfae energy density,�M � 2B +p3I=212�r20 :We also onsider the e�et of the mass term. Itgives the ontributionM:t: = ~m Z r2(1� os f)dr; (32)where ~m = 8m2�3�F 2�e2 :For the strangeness, harm or bottom, the masses mK ,mD or mB must be inserted instead of m�. In the�inlined step� approximation, we then obtainM:t: � ~m�23r30 +O(W 2)�: (33)In view of this struture of the mass term, it does nota�et the width of the step W in the lowest order, butthe dimension of the soliton r0 beomes smaller:r0 ! r0 � ~mr20(B +ANr20)4�B : (34)1) Detailed analytial treament of multiskyrmions performedby the author in Pis'ma v ZhETF 73, 667 (2001) on�rms theresults and onlusions of this setion.508



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Charateristi preditions : : :
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r; 1=F�eThe mass density distribution of the rational map mul-tiskyrmion with B = 22 as a funtion of the distanefrom the enter of the skyrmion for di�erent values ofmass in the hiral symmetry breaking term; a � pionmass in the mass term, b � kaon mass,  � D-mesonmass, the mass density is devided by 10As was expeted from general grounds, dimensionsof the soliton derease with inreasing ~m. However,even for large values of ~m, the struture of the mul-tiskyrmion remains the same at large B: it is givenby the phase with the broken hiral symmetry insidethe spherial wall where the main ontribution to themass and topologial harge is onentrated. The be-havior of the energy density for B = 22 at di�erentvalues of � is shown in the Figure. The value of themass density inside the ball is ompletely determinedby the mass term with 1 � f = 2. The baryon num-ber density distribution is quite similar, with the onlydi�erene that it is equal to zero inside the bag. Itfollows from these results that the RM-approximatedmultiskyrmions annot model real nulei at large B,probably for B > 12 � 20, and on�gurations of theskyrmion rystal type may be more appropriate for thispurpose.In addition to the simple one-shell on�gurationsonsidered in [7, 15℄ and here, multishell on�gurationsan also be interesting. Some examples of two-shellon�gurations with B = 12; 13; 14 were onsidered re-ently [36℄. For these on�gurations, the pro�le is givenby f = 2� at r = 0 and dereases to f = 0 as r ! 1.We an also model this two-shell on�guration in thedomain-wall, or spherial bag approximation with theresultM � 2B1 +p3I1=23 + 2B2 +p3I2=23 ; (35)with the total baryon number B = B1+B2. The pro�lef dereases from 2� to � in the �rst shell, and from �to 0 in the seond. The radii of both shells must satisfythe ondition

r(2)0 � r(1)0 +W;and the external shell must therefore be su�ientlylarge, with the baryon number B2 given by several tensat least. Beause the ratio I=B2 is larger for smallerB, the energy in Eq. (35) is greater than the energyof the one-shell on�guration onsidered before. Cal-ulations performed in [36℄ also did not improve theresults obtained for the one-shell on�guration. How-ever, a more re�ned analysis would be of interest. Theobservation onerning the struture of large-B multi-skyrmions made above an be useful in view of possibleosmologial appliations of Skyrme-type models.5. CONCLUDING REMARKSWe have restrited ourselves to the Skyrme modeland its straightforward extentions. However, many ofthe result are valid in other versions of the model, e.g.,in the model with solitons stabilized by the expliitvetor (!) meson or by the baryon number densitysquared, in the hiral perturbation theory, et., see thedisussion in the seond paper in Ref. [14℄. The B = 2torus-like on�guration has been obtained within thesemodels and in the hiral quark�meson model [28℄, andit would be interesting to hek if there also exist mul-tiskyrmions with B � 3.We did not disuss a speial lass of SU(3)skyrmions, the SO(3) solitons and the problem of theirobservation. The relevant disussion an be foundin [12, 13℄.To onlude, the study of some proesses, inludingthose at intermediate energies, whih to some extentare out of fashion now, an provide a very importanthek of fundamental priniples and onepts of the el-ementary partile theory inluding the on�nement ofquarks and gluons. Con�rming the preditions of thehiral soliton approah would give a qualitatively newunderstanding of the origin of nulear fores. If theexistene of low-energy radiatively deaying dibaryonsis reliably established, it will hange the long-standingbelief that nulear matter fragments neessarily onsistof separate nuleons bound by their interations. It istherefore extremely important to on�rm and hek theresults of experiments on the dibaryon prodution andon the prodution of fragments of �avored matter. Thiswould be possible at aelerators of moderate energies,like COSY (Juelih, FRG), KEK (Japan), Mosow me-son fatory (Troitsk, Russia), ITEP (Mosow), and sev-eral others. The prodution of multistrange states andthe states with harm or bottom quantum numbers is509



V. B. Kopeliovih ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001possible in heavy ion ollisions and also on the aeler-ators like Japan Hadron Faility to be built in the nearfuture.The multiple �avor prodution realized in the pro-dution of �avored multibaryons that is possible, e.g.,in heavy ion ollisions, ertainly requires higher en-ergy, but multiple interation proesses and the nor-mal Fermi motion of nuleons inside the nulei makethe e�etive thresholds muh lower [37℄. It would allowmore omplete and reliable veri�ation of the modelpreditions.We �nally note that the low-energy dibaryonswere reently obtained in [38℄ using a quantizationproedure di�erent from ours.This work is supported by the Russian Founda-tion for Basi Researhes (grant � 01-02-16615), UKPPARC (grant PPA/V/S/1999/00004) and was pre-sented in part at the International seminar Quarks-2000, Pushkin, Russia, May 2000.APPENDIX AInertia tensors of multiskyrmionsThe Lagrangian density of the SU(2) Skyrme modelis given byL = �F 2�16 Tr(L�L�) + 132e2 TrG2�� ++ F 2�m2�16 Tr(U + U y � 2); (A.1)where L� = ��UU y is the left hiral derivative, L� == iL�;k�k, �k are the Pauli matries, and G�� == ��L� � ��L� is the hiral �eld strengh. The Wess�Zumino term present in the ation was disussed indetail in [13℄, and we omit this disussion here.We �rst give the expression for the energy of theSU(2) skyrmion as a funtion of the pro�le f and theunit vetor n, whih is espeially useful in some ases.Using the de�nition U = f + isfn � � and the relationL�;kL�;k = ��f��f + s2f��n��n; (A.2)we obtainMstat = Z (F 2�8 [(rf)2 + s2f (rni)2℄ + s2f4e2 ���2[rf�rni℄2+s2f [rni�rnk℄2�+�M:t:)d3r: (A.3)

For the ansatz based on rational maps, the pro�lef depends on only the variable r, and omponents of ndepend only on the angular variables �; �. We havenx = 2ReR1 + jRj2 ; ny = 2 ImR1 + jRj2 ; nz = 1� jRj21 + jRj2 ;where R is a rational funtion of the variablez = tg(�=2) exp(i�) de�ning a map S2 ! S2. Inthis ase, the gradients of f and n are orthogonal(reall that rr = nr�r + n���=r + n���=(rs�),nr = r=r = (s��; s�s�; �), n� = (���, ��s�; s�),and n� = (s�; ��; 0)) and [rf �rn1℄2 = f 02(rn1)2,et. Using the relationsn23[rn2 �rn3℄2 = n21[rn1 �rn2℄2;n23[rn1 �rn3℄2 = n22[rn1 �rn2℄2; (A.4)we an rewrite (A.3) asMstat = Z (F 2�8 [f 02 + s2f (rni)2℄ + s2f2e2 ���f 02(rni)2+s2f [rn1�rn2℄2n23 �+�M:t:)d3r: (A.5)Introduing the notationI = 14� Z r4 [rn1 �rn2℄2n23 d
 == 14� Z  (1 + jzj2)(1 + jRj2) jdRjjdzj !4 2idzd�z(1 + jzj2)2 (A.6)and using the equationZ r2(rnk)2d
 = 2 Z r2 j[rn1 �rn2℄jjn3j d
 == 2 Z 2idRd �R(1 + jRj2)2 = 8�N ; (A.7)we �nally obtainMstat = 4� Z (F 2�8 (f 02r2 + 2s2fN ) + s2f2e2 �� �2f 02N + s2fIr2 �+ r2�M:t:)dr: (A.8)To �nd the minimum energy on�guration at �xedN = B, one minimizes I and then �nds the pro�lef(r) by minimizing energy (A.8).To quantize zero modes, we use the ansatzU(t; r) = A(t)U(Oik(t)rk)Ay(t)510



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Charateristi preditions : : :and the evident relation�tU = _U = _AU(r(t))Ay +AU(r(t)) _Ay ++ _ri(t)A�iU(r(t))Ay; (A.9)where ri(t) = Oik(t)rk are body-�xed oordinates.The angular veloities of spatial (or orbital) rota-tions are introdued as_ri = _Oikr0k = _OikO�1kl rl(t) = ��ilm
mrl(t)and the integration is performed in the oordinate sys-tem bound to the soliton (body-�xed).The rotation, or the zero-mode energy of SU(2)skyrmions as a funtion of the angular veloities isErot = 12�Iab!a!b +�intab !a
b + 12�Jab
a
b: (A.10)The isotopial inertia tensor for an arbitrary SU(2)skyrmion is given by�Iab = Z s2f((Æab � nanb)�� F 2�4 + (rf)2e2 !+ s2fe2 �lna�lnb)d3r: (A.11)For the RM ansatz, the trae of this inertia tensor is�Iaa(RM) = 4� Z s2f ��(F 2�2 + 2e2 f 02 +N s2fr2!)r2dr: (A.12)The orbital inertia tensor gives the ontribution tothe energy �Jab
a
b=2; using the same notation for anarbitrary on�guration, we have�Jab = Z (F 2�4 (�if�kf ++ s2f�in�kn) + s2fe2 ��if�kf(rnl)2 + (rf)2�in�kn�� �if�lf�ln�kn� �kf�lf�ln�in++ s2f [(rnl)2�in�kn� (�in�ln)(�kn�ln)℄�)�� �i�a�k�br�r�d3r: (A.13)

For the RM ansatz, this expression an be simpli�ed as�Jab = Z s2f("F 2�4 + f 02e2 + s2fe2 (rnl)2#�� �(rnl)2(r2Æab � rarb)� �an�bnr2��� s2fe2 �(�in�kn)(�in�kn)(r2Æab � rarb)�� r2(�an�ln)(�bn�ln)�)d3r: (A.14)This allows us to obtain the trae of the inertia tensor�Jaa(RM) = 4� Z s2f ��(F 2�2 N + 2e2 f 02N + I s2fr2!)r2dr: (A.15)It is easy to establish inequality for the the traesof isotopial and orbital inertia tensors�Jaa �B�Iaa = 8�e2 (I �B2) Z s4fdr � 0; (A.16)beause I � B2. The interferene (mixed) inertia ten-sor, whih also de�nes the isovetor part of the mag-neti transition operator, is equal to�intab = Z s2f("F 2�4 + 1e2 �(��f)2 + s2f (��n)2�#�� �inl � 1e2 (�if��f + s2f�in��n)��nl)�� nk�kla�i�br�d3r: (A.17)The omponents of the spatial angular veloities inter-fere only with the omponents !1; !2; !3 of the angularrotation veloities in on�guration spae.Numerially, the omponents of the mixed inertiatensor are muh smaller than those of isotopial or or-bital inertia tensor, exept in speial ases of �hedge-hogs�, where �int = �I = �J ;and the axially symmetri on�gurations where thethree-dimensional omponents of inertia satisfy the re-lations �int33 = �n�I33 = ��J33=n:We �nally note that the most general formulas forinertia tensors are presented here for the �rst time. Forthe RM on�gurations, they di�er in some details fromthose given in the literature.511



V. B. Kopeliovih ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001APPENDIX BEletromagneti transition operatorsFor ompleteness, we here prove some statementsonerning the isovetor (otet in the SU(3) ase) ve-tor harge and the isovetor magneti moment operatorin the general form.The isovetor urrent and the isospin generator arerelated byV0;a = 12 Tr(Ay�aA�b)Ibfb = Rab(A)Ibfb ; (B.1)where in the body-�xed oordinate system (onnetedwith the soliton), the isospin generator isIbfb = �Lrot(!;
)�!b : (B.2)We have a; b = 1; 2; 3 for the SU(2) model anda; b = 1; : : : ; 8 for the SU(3) model. To prove this,we onsider the ansatzU = exp(�i�a�a=2)A(t)U0Ay(t) exp(i�a�a=2): (B.3)The Noether vetor urrent is the oe�ient before thederivative of the probe funtion, ���. In the lowestorder in �, we obtain the hiral derivativeUy�0U = A �Uy0Ay �� � _A� i2 _�A�U0 �Ay � _A� i2 _�A��Ay: (B.4)Using the de�nition of the rotation angular veloities!a in on�guration spae, we obtainAy _A� i2Ay _�A = � i2�b(!b +Rab(A) _�a); (B.5)where Rab(A) = 12 Tr(Ay�aA�b) (B.6)is a real orthogonal matrix. Beause the dependeneon _� redues to a simple addition to angular veloity inaordane with (B.5), Eq. (B.1) follows immediately.Beause of the well known relation,Q = B + I32 = B + V0;32 ; (B.7)the baryoni (topologial) harge and the third ompo-nent of the isospin generator ontribute to the hargeof the quantized skyrmion.We also prove that there is a simple relation be-tween the isovetor (otet for the SU(3) model) mag-neti momentum operator of the skyrmion and the

mixed (interferene) inertia tensor. We �rst note thatbeause of the Lorentz invariane, the Lagrangian of anarbitrary hiral model, not only the Skyrme model, anbe presented as a linear ombination of ontributionsof the formLM;N == Tr�Uy _UMU y _UN � U y�kUMU y�kUN�; (B.8)where M and N are some matries. For example,M = N = 1 for the seond-order term. The ontribu-tion of the �rst term in (B.8) to the rotational energythat is proportional to 
 and ! and therefore de�nesthe mixed (interferene) inertia tensor is (see (A.9))�intab !a
b = Z Tr�Uy0Ay _AU0 �Ay _A��� ~MU y0�kU0 ~N _rkd3r +�M $ N�; (B.9)where ~M = AyMA and ~N = AyNA. Thus,�intab = � i2�bjk Z rj(t) Tr(U y0�aU0 � �a)�� ~MU y0�kU0 ~Nd3r +�M $ N�; (B.10)where rj(t) and �k are body-�xed. From the seondterm in (B.8), we obtain the spatial omponents of thevetor urrent,V ak = i2 Tr�U y0Ay�aAU0 �Ay�aA��� ~MU y0�kU0 ~N +�M $ N�: (B.11)Realling thatAy�aA = Rab(A)�b; Rab = 12 TrAy�aA�b;�k = Olk�bfl ;we obtainV ak = i2RabOlk Tr�Uy0�bU0 � �b��� ~MU y0�lU0 ~N +�M $ N�: (B.12)By de�nition, �ai = 12�ijk Z rjV ak d3r; (B.13)512
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