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ASYMMETRIC DARK SOLITONS IN NONLINEAR LATTICESS. Darmanyan *Institute of Spetrosopy, Russian Aademy of Sienes142190, Troitsk, RussiaA. KobyakovShool of Optis/CREOL, University of Central Florida4000 Central Florida Blvd., Orlando, FL 32816-2700, USAF. LedererInstitute of Solid State Physis and Theoretial Optis,Friedrih-Shiller-Universität Jena07743, Jena, GermanySubmitted 16 February 2001New types of stable disrete solitons are disovered. They represent the �rst example of asymmetri darksolitons and shok waves with a nonzero bakground. Both types of solutions exhibit a strong intrinsi phasedynamis. Their existene domains and stability riteria are identi�ed. Numerial experiments support theanalytial �ndings.PACS: 63.20.Pw, 42.65.Tg, 05.45.YvNumerous reent studies have evidened that theinherent disreteness of nonlinear systems an quali-tatively alter their dynamial behavior ompared totheir ontinuous ounterparts. Beause many physi-al systems are disrete by de�nition, these e�ets at-trat a steadily inreasing interest in various branhesof physis (for a detailed overview, see the review pa-pers [1℄ and referenes therein). In these studies, parti-ular emphasis was given to stationary, loalized stru-tures that are frequently termed as disrete solitons.One option to ategorize them is by their degree ofloalization. Strongly loalized solitons (SLSs), wherethe exitation is resting and involves only a few lattiesites, exhibit properties that originate from the verydisreteness of the system [2℄. Thus, their behavior dif-fers in many aspets from solutions of related ontinu-ous models. It was shown that SLSs an signi�antlyontribute to the heat transfer and other thermody-nami and magneti e�ets in solids. Moreover, ertaindestabilization senarios an be used for signal proess-ing and swithing appliations in disrete optial sys-tems suh as the oupled waveguide arrays [1, 2, 3, 4℄.*E-mail: sdarmanyan�yahoo.om

Up to now, various types of SLSs have been reportedto exist. Bright [3, 4, 5, 6, 7℄ and dark [8, 9, 10, 11℄stable SLSs exhibiting interesting new topologies andshapes were identi�ed in various nonlinear evolutionequations.However, similarly to ontinuum models, all thesesolutions are (anti-) symmetri and do not exhibit anintrinsi phase dynamis. The existene and stabilityof asymmetri bright SLSs that are quasi-periodi intime were studied in [12℄. In this paper, we reveal thata disreteness may indue new soliton formation meh-anisms resulting in the existene of shok waves withtwo �nite bakgrounds as well as asymmetri dark soli-tons. They exhibit a nontrivial intrinsi phase dynam-is, i.e., the bakgrounds osillate at two di�erent fre-quenies and the transition region is haraterized byombinations of these frequenies.Our model is based on the disrete nonlinearShrödinger equation (DNLSE), whih is among themost prominent model equations in nonlinear physis.Vibron modes in biomoleules, the Heisenberg ferro-magnet or Frenkel exitons in a hain with two-levelatoms an be mentioned among numerous phenomena486
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Lattie site numberFig. 1. Disrete shok wave with a �nite bakground (a) and asymmetri disrete dark soliton (b)desribed by this equation [1℄. Moreover, the DNLSEalso desribes light propagation in arrays of weakly ou-pled nonlinear optial waveguides exhibiting the Kerrnonlinearity [13℄. Reently, the existene and dynam-is of disrete solitons in the latter environment wereexperimentally veri�ed [14℄.We onsider the DNLSE in the generi formi _ n + ( n�1 +  n+1) + �j nj2 n = 0; (1)where  n denotes the amplitude exitation at the n-thsite,  and � = �1 are the linear and nonlinear ou-pling oe�ients, respetively, and the dot denotes thederivative with respet to the evolution variable t.Traditionally, one seeks a resting solution to (1)with the ommon frequeny ! in the form  n == fn exp(i!t), where the loalization involves only se-veral lattie sites n. In ontrast to this onventionalansatz, we searh for solutions that are haraterizedby a ombinational frequeny. This ombinational fre-queny is determined by interation of the lattie sitesof the loalization region with both bakgrounds. Weshow that typial stable SLSs of this type are, e.g.,shok waves with two �nite bakgrounds (Fig. 1a) orasymmetri dark solitons (Fig. 1b). A new family ofsymmetri dark solitons without the phase jump � inthe soliton enter is also identi�ed in what follows.The asymmetri SLSs displayed in Fig. 1 have theform = f ng = f(: : : ; 1; 1; 1) exp(i!1t);  �N ; : : :: : :  N ; (A;A;A; : : : ) exp(i!2t)g;where the amplitude of the left bakground is saledto unity. Strong loalization implies  � 1 [4; 6�11℄and a small number N of onstituents of the transi-tion region. It is evident from Eq. (1) that the twobakground frequenies, !1 = 2 + � for n < �N and

!2 = 2 + �A2 for n > N , do not oinide. For thesesolutions to exist, the loalization between both bak-grounds (n = �N; : : : ; N) must have the form n(t) = fn exp(i!1t) + gn exp(i!2t) +mn(t); (2)where mn(t) ontains an in�nite sum of terms withvarious ombinational frequenies of both bakgrounds.We follow the onventional terminology [3℄, assumingthat odd (even) SLSs have an odd (even) number oftransition sites, and we omit the site n = 0 for evenmodes. As an be seen in the ansatz, we assumeunstaggered bakgrounds, whih requires � = �1 formodulationally stable solutions [15℄. Beause (1) is in-variant under the transformation � ! ��, t ! �t; n ! (�1)n n, the results also hold for staggeredbakgrounds with � = 1 .In what follows, we assume that A is real-valued,thus dealing with either the in-phase (A > 0) or out-of-phase (A < 0) bakground at t = 0. Substitutionof (2) into (1) results in a system of equations, wherein the strong loalization limit [2�7℄, we only keep theterms in the lowest order in the small parameter :SHOCK WAVES WITH A FINITEBACKGROUNDWe begin with SLSs of the narrowest possible width,namely with �nite bakground shok waves (Fig. 1a).It is an even SLS with N = 1; and therefore, onlytwo sites n = �1; 1 onstitute the transition region.Within the �rst-order approximation in , the solutionto Eq. (1) is given by �1 � �1� 2� ei!1t��A3ei!2t+�Aei(2!1�!2)t; 1 � �A� 2A� ei!2t��ei!1t+�A2ei(2!2�!1)t; (3)487
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Fig. 2. Temporal evolution of the amplitude of a stableshok wave; A = 3,  = 0:08; step-like exitationwhere � = (A2 � 1)2 � 2(1 +A2)and the osillation of eah site in the transition regionis determined by a ombination of three frequenies.Other ombinations of the bakground frequenies !1and !2 appear only as higher-order terms in  and donot signi�antly ontribute to the dynamis of this SLS.Two onstraints must be satis�ed for solution (3) beingvalid, namely, j�A3j � 1 for jAj > 1 and j�j � jAj forjAj < 1:We also mention that the limit A! 1 requires tak-ing the seond-order terms in  into aount. The trans-formation �! �(1�), where the respetive signs �+�and ��� orrespond to the seond and third terms inEq. (3), provides a more aurate solution in this ase.Without loss of generality, we onsider the ase wherejAj � 1, thereby normalizing with respet to the lowerbakground amplitude.We performed numerial experiments to prove theexistene and to probe the robustness of this new SLS.We diretly integrated Eq. (1) using solution (3) as theinitial ondition. The results have shown that the soli-ton an be easily exited. Moreover, the solution isvery robust against rather strong perturbations of theinitial onditions. We used a step-like pro�lefn = (: : : ; 1; 1; 1; A;A;A; : : : )for exitation and obtained the robust propagation dis-played in Fig. 2. A zoomed piture of the amplitude

and phase evolution of the two sites in the transitionregion is shown in Fig. 3, where an exellent agreementbetween analytial (Eq. (3)) and numerial results anbe reognized. However, this SLS exists only in a re-strited domain in the parameter spae beause for Aapproahing A� ! 1 � p + 3=2=8, the approximatesolution diverges, see Eq. (3). For example, if  = 0:08,then A+ � 1:29. Indeed, the numerial integrationof Eq. (1) with the step-like initial ondition reveals arapid deay of the initial exitation even for A = 1:45(Fig. 4). This behavior an be easily explained by re-alizing that, e.g., for n = �1, the ratio of the am-plitudes osillating at !2 and !1 amounts to approxi-mately 0.35. Thus higher-order terms beome essentialand evoke the SLS deay. If we require that this ratioshould be of the order of , we an estimate the SLSrobustness domain. The ondition �A3 �  � 1 givesthe approximate threshold value of the amplitude A asAth � 1:9 + : For A & 1:9, one an therefore expeta robust SLS behavior that has been on�rmed by ournumerial simulations.ASYMMETRIC DARK SOLITONSFollowing the same approah, we an �nd an oddsolution that takes form �1 � �1� 2� ei!1t; 0 � �ei!1t � Aei!2t; 1 � �A� 2A� ei!2t: (4)To our best knowledge, the solution represents the �rstexample of an asymmetri dark soliton (Fig. 1b) ex-hibiting a strong intrinsi phase dynamis. Numerialsolution of Eq. (1) with initial ondition (4) proves therobustness of the solution. Although both amplitudeswith n = 0 are small, the presene of two frequenyomponents is essential, beause the bakgrounds in-terat via the exitation at n = 0. Preisely this in-teration a�ets the stability of the dark soliton. Theexistene domain of this mode depends on the ouplingonstant  and the ratio of the bakground amplitudesA. If the bakgrounds are separated by more than twolattie onstants, wide solitons form. In fat, suh soli-tons an be viewed as two noninterating disrete frontwaves reported reently [7℄.Whereas the anonial ase where A = �1 has beeninvestigated previously and both even and odd dark so-lutions have been found [8, 9℄, the ase where A = 1488
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Fig. 3. Amplitude osillations and phase evolution of the exitations in the shok wave transition region: a) n = �1;b) n = 1; the parameters are as in Fig. 2. The solid lines show analytial results (3) and the dashed lines orrespond to thenumerial integration of Eq. (1)provides a new type of solutions, namely symmetridark solitons without a phase jump in the enter repre-senting a genuine dark soliton with regard to the am-plitude. This partiular solution has no intrinsi phasedynamis, i.e., all exitations osillate with frequeny! = 2+ �: There are odd, �1 =  1 � �1� 2� ei!t;  0 � �2ei!t; (5)and even, �2 =  2 � �1� 2� ei!t;  �1 =  1 � �ei!t; (6)solutions.Beause asymmetri dark soliton (4) is a fairly ex-oti objet, it is worthwhile to probe its stability by thelinear stability analysis. Introduing a omplex pertur-bation at eah site via  n !  n + �n and linearizingEq. (1) with respet to perturbations �n, we obtain theset of equations

i _��2 � 2��2 + ��1 � ���2e2i!1t = 0;i _��1 � 2(1� )��1 + (�0 + ��2)�� (1� )���1e2i!1t = 0;i _�0 + (��1 + �1) = 0;i _�1 � 2(A2 � )�1 ++ (�0 + �2)� (A2 � )��1e2i!2t = 0;i _�2 � 2A2�2 + �1 �A2��2e2i!2t = 0; (7)
where only the sites that belong to the transition regionand one site from eah bakground were taken into a-ount. Nevertheless, this set of equations an be easilyextended to any number of bakground sites.The approah suessfully used in studying the sta-bility of bright SLSs [4℄ annot be applied here, be-ause the oe�ients in Eqs. (7) depend expliitly onthe evolution variable. We therefore follow a di�erentproedure to takle the stability issue of multifrequenyloalized strutures. In doing this, we introdue theFourier transform of the perturbations,489
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Fig. 4. Temporal evolution of the amplitude of an un-stable shok wave; A = 1:45,  = 0:08; step-like exi-tation
�n = 1Z�1 Fn(
)ei
td
; ��n = 1Z�1 �n(
)ei
td
;where �n(
) = F �n (�
); and rewrite Eqs. (7) in thefrequeny domain. We eliminate funtions �0 and F0and redue the total number of equations to eight,(2 + 
)F�2(
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� 2!2) = 0; (15)where all funtions with shifted arguments must be on-sidered as independent. A omplete set of these equa-tions ontains an in�nite number of equations for thefuntions Fn(
�2l!1); Fn(
�2l!2); �n(
�2l!1); and�n(
�2l!2) with n = �1;�2 and l = 0; 1; 2; 3 : : : Thisfat is not surprising beause Eqs. (7) expliitly dependon time, and therefore, their solutions ontain all har-monis of the bakground frequenies !1 and !2: Theterms with denominators in Eqs. (8)�(15 ) are responsi-ble for higher harmonis. They are of the seond orderin  and ould therefore be omitted. The reason to keepthem is to aount for possible resonanes that appearas any denominators approahes zero, i.e., as 
 ! 0;
 � 2!1 ! 0; 
 � 2!2 ! 0: Outside the resonaneregions, these terms an be omitted and Eqs. (8)�(15)redue to two sets of four losed equations allowing thesolution of the respetive eigenvalue problem. The so-lution reveals that all eigenvalues are real, i.e., the SLSis stable. Thus, only the resonane regions are poten-tially responsible for the onset of instability. To treatthe set of equations (8)�(15), one needs to lose it bytrunating to a �nite number of equations. To proeedin this way, we note that only the terms �1(
� 2l!1)in (11) and ��1(
 � 2l!2) in (13) introdue new fre-quenies into the system. A more thorough analysisof Eqs. (8)�(15) shows that it is not neessary to on-sider these harmonis in the �rst-order approximationin  beause the amplitudes of these osillations areof a higher order in . In seeking the instability gainIm
j � , we an therefore drop these terms. We thenobtain eight losed equations with the oe�ients thatdepend nonlinearly on the eigenvalue 
. The orre-sponding eigenvalue problem represents a polynomial490
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Fig. 5. Amplitude evolution of disrete dark solitons: a) stable asymmetri dark soliton, A = 1:4,  = 0:065; b) unstableasymmetri dark soliton, A = 1:4,  = 0:1; ) stable symmetri dark soliton, A = 1,  = 0:07; d) unstable symmetri darksoliton, A = 1,  = 0:1of the 11th order possessing omplex solutions in somedomains of the parameter spae (; A). We found thatomplex eigenvalues appear for  > r1(A): Our anal-ysis also revealed the existene of stability windows forr2n(A) <  < r2n+1(A); where n = 1; 2; : : : . Aswas shown reently [10℄, the existene of suh windowsis due to the �nite size of the system used for model-ling. The windows tend to disappear with an inreas-ing number of lattie sites. With additional sites takeninto aount, we indeed observed this phenomenon. Wenote that the results obtained also hold for symmetridark soliton (5).Thus, we onlude that both asymmetri and sym-metri dark solitons destabilize provided the linear ou-pling exeeds the threshold  = r1(A): It is importantto note that the value r1(A) slightly depends on boththe number Ns of sites regarded for the stability anal-ysis, provided Ns � 5; and the ratio of the bakgroundamplitudes A. This value an be alulated with a

good auray by taking �ve sites into aount. To im-prove the auray, we also onsidered the ase of sevensites involved. The result obtained was r1 � 0:085:A diret numerial integration of Eq. (1) on�rms thispredition. Representative examples are displayed inFig. 5 for A = 1:4 (asymmetri dark soliton) and A = 1(symmetri dark soliton without a phase jump). Fi-gures 5a and 5 exhibit stable propagation below theritial oupling ( < r1), whereas the solitons deaybeyond that threshold ( = 0:1 > r1), whih is inagreement with the linear stability analysis (Figs. 5band 5d).In onlusion, we have shown that new types ofsolitons, not reported before in the literature, mayexist in nonlinear latties desribed by the disretenonlinear Shrödinger equation. These solitons areshok waves with a �nite bakground and asymmetridark solitons. They are peuliar in that they exhibit anontrivial intrinsi phase dynamis. Additionally, we491
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