
ÆÝÒÔ, 2001, òîì 120, âûï. 2 (8), ñòð. 470�479  2001
PHASE SEPARATION IN SYSTEMSWITH CHARGE ORDERINGM. Yu. Kagan a*, K. I. Kugel b, D. I. Khomskii a Kapitza Institute for Physial Problems, Russian Aademy of Sienes117334, Mosow, Russiab Institute of Theoretial and Applied Eletrodynamis, Russian Aademy of Sienes127412, Mosow, Russia Laboratory of Applied and Solid State Physis, Materials Siene Center,University of Groningen9747AG, Groningen, the NetherlandsSubmitted 25 Deember 2000A simple model of harge ordering is onsidered. It is expliitly shown that at any deviation from half-�lling(n 6= 1=2), the system is unstable with respet to the phase separation into the harge-ordered regions withn = 1=2 and metalli regions with a smaller eletron or hole density. A possible struture of this phase-separatedstate (metalli droplets in a harge-ordered matrix) is disussed. The model is extended to aount for the strongHund-rule onsite oupling and the weaker intersite antiferromagneti exhange. The analysis of this extendedmodel allows us to determine the magneti struture of the phase-separated state and to reveal the harateristifeatures of the manganites and other substanes with harge ordering.PACS: 71.45.Lr, 75.10.-b, 75.30.Mb, 75.30.Kz1. INTRODUCTIONThe problem of harge ordering in magneti oxidesattrats attention of theorists sine the disovery of theVerwey transition in magnetite in the end of the thir-ties [1℄. An early theoretial desription of this phe-nomenon was given, e.g., in [2℄. This problem was re-ently reexamined in a number of papers in onnetionwith the olossal magnetoresistane in manganites, see,e.g., [3�5℄. The mehanisms stabilizing the harge-or-dered state an be di�erent: the Coulomb repulsion ofharge arriers (the energy minimization requires kee-ping the arriers as far away as possible, similarly to theWigner rystallization) or the eletron�lattie intera-tion leading to the e�etive repulsion of eletrons atthe nearest-neighbor sites. In all ases, harge orderingan arise in mixed-valene systems if the eletron band-width is su�iently small for the large eletron kinetienergy to stabilize the homogeneous metalli state. Inreal materials, in ontrast to the Wigner rystallization,*E-mail: kagan�kapitza.ras.ru

the underlying lattie periodiity determines the prefe-red types of harge ordering. Thus, in the simplest bi-partite lattie, whih ours in the olossal magnetore-sistane manganites of the type R1�xAxMnO3 (whereR = La, Pr and A = Ca, Sr) or layered manganitesR2�xAxMnO4, R2�2xA1+2xMn2O7, the optimum on-ditions for the formation of the harge-ordered stateexist for the doping x = 1=2. At this value of x,the onentrations of Mn3+ and Mn4+ are equal andthe simple hekerboard arrangement is possible. Themost remarkable experimental fat here is that even atx 6= 1=2 (in the underdoped manganites with x < 1=2),only the simplest version of harge ordering is exper-imentally observed with the alternating hekerboardstruture of the oupied and empty sites in the basalplane [6℄. In other words, this struture orresponds tothe doubling of the unit ell, whereas more ompliatedstrutures with a longer period (or even inommensu-rate strutures) do not atually appear in this ase.A natural question then arises as to how the extraor missing eletrons an be redistributed for an arbi-trary doping level suh that the superstruture remains470



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Phase separation in systems with harge orderingthe same as for x = 1=2? To answer this question,the experimentalists introdued the onept of the in-ipient harge-ordered state orresponding to the dis-tortion of a long-range harge ordering by mirosopimetalli lusters [7℄. In fat, the existene of this stateimplies a ertain phase separation. We note that thephase separation senario in manganites is very popularpresently [8�15℄. There is a growing evidene suggest-ing that an interplay between the harge ordering andthe tendeny toward phase separation plays an essen-tial role in the physis of materials with the olossalmagnetoresistane.In this paper, we onsider a simple model allowingus to larify the situation at an arbitrary doping. Themodel inludes both the Coulomb repulsion of eletronson the neighboring sites and the magneti interationsresponsible for the magneti ordering in manganites.After demonstrating the instability of the system to-ward phase separation in ertain doping ranges, we on-sider the simplest form of the phase separation � theformation of metalli droplets in the insulating matrix.We estimate parameters of suh droplets and onstrutthe phase diagram illustrating the interplay betweenharge ordering, magneti ordering, and phase separa-tion.We note that the harge ordering mehanism on-sidered below (the Coulomb repulsion) is not the onlyone. The eletron�lattie interation an also play animportant role, see, e.g., [16℄. In appliation to man-ganites, one must also take the orbital and magnetiinterations into aount [4, 16, 17℄. These may be im-portant, in partiular, in explaining the fat that theharge ordering in half-doped perovskite manganites isa hekerboard one only in the basal plane, but it is�in-phase� along the -diretion. However, the natureof this harge ordering is not lear yet and presentsa separate problem: it is not evident that the domi-nant mehanism is indeed given by the magneti in-terations responsible for this staking of ab-planes in[16℄. We also emphasize that the harge ordering isoften observed in manganites at higher temperaturesthan the magneti ordering, and one must seek a modelthat does not heavily rely on magneti interations. Inontrast to magneti interations, the Coulomb inter-ation is one of the important fators that is alwayspresent in the systems under onsideration. Moreover,it has a universal nature and does not ritially de-pend on spei� features of a partiular system. Con-sequently, our treatment an also be applied to othersystems with harge ordering suh as magnetite Fe3O4[1℄, obaltites [18℄, nikelates [19℄, et.

2. THE SIMPLEST MODEL FOR CHARGEORDERINGWe onsider a simple lattie model for harge or-dering,Ĥ = �tXhi;ji +i j + V Xhi;ji ninj � �Xi ni; (1)where t is the hopping integral, V is the nearest-neigh-bor Coulomb interation (a similar nn repulsion analso be obtained via the interation with the breathing-type optial phonons), � is the hemial potential, and+i and j are one-eletron reation and annihilation op-erators, ni = +i i. The symbol hi; ji denotes the sum-mation over the nearest-neighbor sites. Here, we omitspin and orbital indies for simpliity. As mentioned inthe Introdution, the spin and orbital e�ets play animportant role in the formation of the real struture inspei� ompounds; in this setion, however, we em-phasize the most robust e�ets related to the nearest-neighbor Coulomb repulsion. The magneti e�ets aredisussed in Se. 5. We also assume that the doubleoupany does not our in this model beause of thestrong onsite repulsion between eletrons.Hamiltonian (1) expliitly aounts for the orre-lation e�et that is most important for the formationof harge ordering, namely, the eletron repulsion onneighboring sites. The long-range part of the Coulombinteration only leads to the renormalization of thebandwidth W and does not signi�antly a�et theproperties of the uniform harge-ordered state. How-ever, it an produe a qualitative e�et on the strutureof the phase-separated state (see the disussion in thebeginning of Se. 4).The models of type (1) with the nn repulsion re-sponsible for the harge ordering are the most pop-ular ones in desribing this phenomenon, see, e.g.,[2, 3, 5, 20℄ and referenes therein. Hamiltonian (1)aptures the main physial e�ets; if neessary, one anadd some extra terms to it, whih we do in Se. 5.In the main part of this paper, we always speakabout eletrons. However, in appliation to real man-ganites, we mostly have in mind less than half-doped(underdoped) systems of the type R1�xAxMnO3 withx < 1=2. For a real system, one must therefore substi-tute holes for our eletrons. All the theoretial treat-ment de�nitely remains the same (from the very begin-ning, we ould de�ne the  and + operators in (1) asthe operators of holes); we hope that this does not leadto any misunderstanding.In what follows, we onsider the simplest ase ofsquare (2D) or ubi (3D) latties, where the simple471



M. Yu. Kagan, K. I. Kugel, D. I. Khomskii ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001two-sublattie ordering ours for x = 1=2. As men-tioned in the Introdution, this is the ase in layeredmanganites, whereas in 3D perovskite manganites, thisordering ours only in the basal plane (the ordering is�in-phase� along the  diretion). A more ompliatedmodel is apparently needed to aount for this behav-ior.For n = 1=2, model (1) was analyzed in many pa-pers; we follow the treatment in Ref. [2℄. As mentionedabove, the Coulomb repulsion (the seond term in (1))stabilizes the harge ordering in the form of a heker-board arrangement of the oupied and empty sites,whereas the �rst term (band energy) opposes this ten-deny. At arbitrary values of the eletron density n,we �rst onsider a homogeneous harge-ordered solu-tion and use the same ansatz as in [2℄, namelyni = n[1 + (�1)i� ℄: (2)This expression implies the doubling of the lattie pe-riodiity, with the loal densitiesn1 = n(1 + �); n2 = n(1� �)at the neighboring sites. We note that at n = 1=2 for ageneral form of the eletron dispersion without nesting,the harge-ordered state exists only for a su�ientlystrong repulsion V > 2t [2℄. The order parameter is� < 1 for �nite V=2t, and the ordering is not ompletein general, i.e., an average eletron density ni di�ersfrom zero or one even at T = 0.We use the oupled Green's funtion approah asin [2℄, whih yields8><>: (E + �)G1 � tkG2 � zV n(1� �)G1 = 12� ;(E + �)G2 � tkG1 � zV n(1 + �)G2 = 0; (3)where G1 and G2 are the Fourier transforms of the nor-mal lattie Green's funtionsGil = hhi+l iifor the respetive sites i and l belonging to the samesublattie or to di�erent sublatties, z is the numberof nearest neighbors, and tk is the Fourier transform ofthe hopping matrix element. In deriving (3), we per-formed a mean-�eld deoupling and replaed the aver-ages h+i ii by the onsite densities ni in Eq. (2). Thesolution of Eqs. (3) leads to the following spetrum:E + � = V nz �q(V n�z)2 + t2k = V nz � !k: (4)The spetrum de�ned by (4) resembles the super-ondutor spetrum, and hene, the �rst term under

the square root is analogous to the superondutinggap squared. In other words, we an introdue theharge-ordering gap by the formula� = V n�z:It depends on the density not only expliitly, but alsovia the density dependene of � .We thus obtain!k =q�2 + t2k: (5)We note a substantial di�erene between the spetrumof harge-ordered state (5) and the superondutingstate: here, the hemial potential does not enter underthe square root in (5) for n 6= 1=2, whih is in ontrastto the superondutor spetrum, where!k =p(tk � �)2 +�2:We an then �nd the Green's funtions8>>>>>>>>>>>>><>>>>>>>>>>>>>:
G1 = AkE + �� V nz � !k + i0++ BkE + �� V nz + !k + i0 ;G2 = tk2!k 12� � 1E + �� V nz � !k + i0�� 1E + �� V nz + !k + i0� ; (6)

whereAk = 14� �1� �!k� ; Bk = 14� �1 + �!k� : (7)After the standard Wik transformationE + i0! iEin the expression for G1, we �nd the densitiesn1 = n(1 + �) == Z ��1� �!k� fF (!k � �+ V nz)++ �1 + �!k� fF (�!k � �+ V nz)� dk2
BZ ;n2 = n(1� �) == Z ��1 + �!k� fF (!k � �+ V nz)++ �1� �!k� fF (�!k � �+ V nz)� dk2
BZ ;
(8)
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ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Phase separation in systems with harge orderingwhere fF (y) = 1ey=T + 1is the Fermi distribution funtion and 
BZ is the vol-ume of the �rst Brillouin zone.Adding and subtrating the two equations for n1and n2, we obtain the resulting system of equations forn and �:1 = V z Z 1!k [fF (�!k � �+ V nz) �� fF (!k � �+ V nz)℄ dk2
BZ ;n = Z [fF (�!k � �+ V nz)++ fF (!k � �+ V nz)℄ dk2
BZ : (9)
For low temperatures (T ! 0) and n � 1=2, it is rea-sonable to assume that ��V nz is negative. Therefore,fF (!k � �+ V nz) = 0;fF (�!k � �+ V nz) = �(�!k � �+ V nz)is the step funtion.It is easy to see that for n = 1=2, the system ofequations (9) yields idential results for all�� � �� V nz � �:From this standpoint, n = 1=2 is the indi�erent equi-librium point. For in�nitely small deviations fromn = 1=2, that is, for densities n = 1=2�0, the hemialpotential must be de�ned as� = ��+ V z2 = V z2 (1� �):If we onsider the strong oupling ase V � 2t andassume a onstant density of states inside the band, wehave � = 1� 2W 23V 2z2 ;for a simple ubi lattie and therefore,� = W 23V z ; (10)whereW = 2zt is the bandwidth. We note that for thedensity n = 1=2, the harge-ordering gap � appears foran arbitrary interation strength V . This is due to theexistene of nesting in our simple model. In the weakoupling ase V � 2t and with the perfet nesting, wehave � /W exp��WV z�

and � is exponentially small. For V z �W or, aord-ingly, for V � 2t, it follows that � � V z=2 and � ! 1.As mentioned above, for a general form of the eletrondispersion without nesting, the harge ordering existsonly if the interation strength V exeeds a ertain rit-ial value of the order of the bandwidth W [2℄. In whatfollows, we restrit ourselves to the physially more in-strutive strong-oupling ase V � 2t.For the onstant density of states (�at band), theintegrals in (9) an be taken expliitly and the systemof equations (9) an be easily solved for arbitrary n. Wenote, however, that in the strong-oupling ase V � 2tand for small density deviations from 1/2 (Æ � 1), theresults are not very sensitive to the form of the ele-tron dispersion. That is why we do not need to solvethe system of equations (9) exatly.We now onsider the ase where n = 1=2� Æ, withÆ � 1 being the density deviation from 1=2. In thisase, � = �(Æ; �) and we have two oupled equationsfor � and � . As a result,�(Æ) � V nz(1� �)� 4W 2V z Æ2 �� W 23V z + 4W 23V z Æ +O(Æ2): (11)The energy of the harge-ordered state is thereforegiven byECO(Æ) = ECO(0)� W 23V z Æ � 2W 23V z Æ2 +O(Æ3); (12)where ECO(0) = �W 26V zis the energy preisely orresponding to the densityn = 1=2 and jECO(0)j � W . At the same time, theharge-ordering gap � is given by� � V z2 �1� 2Æ � 2W 23V 2z2 (1 + 4Æ)� : (13)The dependene of the hemial potential � and the to-tal energy E on Æ in Eqs. (11) and (12) atually stemsfrom this linear derease of the energy gap � with thedeviation from half-�lling.For n > 1=2, the energy of the harge-ordered statestarts to inrease rapidly due to a large ontributionof the Coulomb repulsion (the upper Verwey band ispartially �lled for n > 1=2). For n > 1=2, ontraryto the ase where n < 1=2, eah extra eletron putinto the hekerboard harge-ordered state neessarilyhas oupied nearest-neighbor sites, inreasing the to-473



M. Yu. Kagan, K. I. Kugel, D. I. Khomskii ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001tal energy by V zjÆj. For jÆj = n � 1=2 > 0, we thenhaveECO(Æ) = ECO(0) ++�V z � W 23V z� jÆj � 2W 23V z Æ2 +O(Æ3): (14)Aordingly, the hemial potential is given by�(Æ) = V z � W 23V z � 4W 23V z jÆj+O(Æ2): (15)It undergoes a jump equal to V z as � ! 1. We notethat the gap � is symmetri for n > 1=2 and is givenby � � V z2 �1� 2jÆj � 2W 23V 2z2 (1 + 4jÆj)� :We ould make the entire piture symmetri with re-spet to n = 1=2 by shifting all the one-eletron energylevels and the hemial potential by V z=2, i.e., de�ning�0 = �� V z=2:In terms of �0, Eqs. (11) and (15) an be written as�0 = �V z2 + W 23V z + 4W 23V z Æ; n < 12 ;�0 = V z2 � W 23V z � 4W 23V z jÆj; n > 12 :Similarly to the situation in semiondutors, wehave �0 = 0 preisely at the point n = 1=2, whihmeans that the hemial potential lies in the middle ofthe band gap (see Fig. 1). At densities n = 1=2 � 0,the hemial potential �0 = �V z=2 oinides with theupper edge of the �lled Verwey band.3. PHASE SEPARATIONWe now hek the stability of the harge-orderedstate. At the densities lose to n = 1=2, the dependeneof energy on the harge density has the form illustratedin Fig. 2. This �gure learly indiates a possible insta-bility of the harge-ordered state. Indeed, the mostremarkable impliation of Eqs. (11)�(15) is that theompressibility � of the homogeneous harge-orderedsystem is negative for the densities di�erent from 1=2,1� / d�dn = �d�dÆ = d2EdÆ2 = �4W 23V z < 0; (16)where Æ = 1=2� n. This is a manifestation of the ten-deny toward the phase separation harateristi of theharge-ordered system with Æ 6= 0. The presene of a

2� = V z�0 = 0
Fig. 1. Band struture of model (1) at n = 1=2. Thelower Verwey band is ompletely �lled. The upper Ver-wey band is empty. Chemial potential �0 = 0 lies inthe middle of the band gap with the width 2�E 1/2 n
Fig. 2. Energy of the harge-ordered state versusharge density as n! 1=2kink in ECO(Æ) (f. Eqs. (12) and (14)) implies thatone of the states into whih the system might sepa-rate would orrespond to the hekerboard harge-or-dered state with n = 1=2, whereas the other wouldhave a ertain density n0 smaller or larger than 1/2.This onlusion resembles that in [4℄ (see also [10, 14℄),although the detailed physial mehanism is di�erent.The possibility of a phase separation in model (1) awayfrom half-�lling was also reported earlier in [12℄ for thein�nite-dimensional ase. In what follows, we fousour attention on the situation with n < 1=2 (under-doped manganites); the ase where n > 1=2 apparentlyhas ertain speial properties � the existene of stripephases et. [13℄, the detailed origin of whih is not yetlear.474



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Phase separation in systems with harge orderingIt is easy to understand the physis of the phase sep-aration in our ase. As follows from (13), the harge-or-dered gap dereases linearly with the deviation fromthe half-�lling. Correspondingly, the energy of the ho-mogeneous harge-ordered state rapidly inreases, andit is more favorable to �extrat� extra holes from theharge-ordered state, putting them into one part of thesample, while reating the �pure� hekerboard hargeordering state in the other part. The energy loss due tothis redistribution of holes is overompensated by thegain provided by a better harge ordering.However, the hole-rih regions would not be om-pletely �empty�, similarly to pores (lusters of vaan-ies) in rystals: we an gain an extra energy by �dis-solving� a ertain amount of eletrons there. In doingthis, we derease the band energy of the eletrons dueto their deloalization. Thus, this seond phase wouldbe a metalli one. The simplest state of this kind isa homogeneous metal with the eletron onentrationnm. This onentration, as well as the relative vol-ume of the metalli and harge-ordered phases, an beeasily alulated by minimizing the total energy of thesystem. The energy of the metalli part of the sampleEm is given byEm = �tznm + t(nm)5=3 + V (nm)2; (17)where  is a onstant.Minimizing (17) with respet to nm, we �nd theequilibrium eletron density in the metalli phase. Forthe strong oupling ase V > zt, we obtain (negletinga relatively small orretion provided by the term with(nm)5=3) nm0 � tz=2V: (18)In aordane with this simple treatment, the sys-tem with nm0 < n < 1=2 would therefore undergo thephase separation into the harge-ordered phase withn = 1=2 and the metalli phase with n = nm0. Forarbitrary n, the relative volumes vm and vCO of thesephases an be found from the Maxwell onstrution,vmvCO = 1=2� nn� nm0 ; (19)whih implies that the metalli phase oupies the partvm of the total volume v given byvmv = 1=2� n1=2� nm0 : (20)The metalli phase oupies the entire sample when thetotal eletron density n is less than nm0.

4. AN EXAMPLE: THE PHASE SEPARATEDSTATE WITH METALLIC DROPLETSAs argued above, the system with a short-range re-pulsion desribed by Eq. (1) is unstable with respet tothe phase separation for n lose to but di�erent from1/2. The long-range Coulomb fores, however, preventthe full phase separation into large regions ontainingall extra holes and the pure n = 1=2 harge-orderedregion. We an avoid this energy loss by forming, in-stead of one big metalli phase with many eletrons,�nite metalli lusters with fewer eletrons. The limit-ing ase would be a set of spherial droplets, eah on-taining one eletron. This state is similar to magnetipolarons (�ferrons�) onsidered in the phase separationproblem for doped magneti insulators [8, 14, 11℄.We now estimate the harateristi parameters ofthese droplets. The main purpose of this treatment isto demonstrate that the energy of the state onstrutedin this way is lower than the energy of the homogeneousstate, even if we treat these droplets rather rudely anddo not optimize all their properties. In partiular, wemake the simplest assumption that the droplets havesharp boundaries and that the harge-ordered stateexisting outside these droplets is not modi�ed in theirviinity. This state an be treated as a variational one:optimizing the struture of the droplet boundary anonly derease its energy.The energy (per unit volume) of the droplet statewith the onentration of droplets nd an be writtenin total analogy with the ferron energy in the double-exhange model (see [14, 11℄). This yieldsEdroplet = �tnd�z � �2a2R2 ��� W 26V z "1� nd 43��Ra �3# ; (21)where a is the lattie onstant and R is the dropletradius. The �rst term in (21) orresponds to the ki-neti energy gain of the eletron deloalization insidethe metalli droplets and the seond term desribes theharge ordering energy in the remaining insulating partof the sample.Minimization of the energy in (21) with respet toR gives Ra � �2Vt �1=5 : (22)The ritial onentration nd orresponds to theon�guration where metalli droplets start to overlap,475



M. Yu. Kagan, K. I. Kugel, D. I. Khomskii ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001i.e., where the volume of the harge-ordered phase (theseond term in (21)) tends to zero. Hene,nd = 34� � aR�3 / � tV �3=5 : (23)Atually, one should inlude the surfae energy on-tribution to the total energy of the droplet. The sur-fae energy must be of the order W 2R2=V . For largedroplets, this ontribution is small ompared to theterm / R3 in (21); it would also be redued for a �soft�droplet boundary. It is easy to show that even in theworst ase of a small droplet (of the order of severallattie onstants) with a sharp boundary, R=a aquiresthe fator 1 � 0:2(t=2V )1=5 related to the surfae on-tribution. Thus, the orretions related to the surfaewould not exeed about 20% of the bulk value. Thatis why we ignore this term below.Comparing (12) with (21) and (22), we see that forthe deviations from half-�lling suh that0 < Æ � Æ = 1=2� nd;the energy of the phase-separated state is always lowerthan the energy of the homogeneous harge-orderedstate. The energy of the droplet state (21) withthe radius given by (22) is also lower than the en-ergy of the fully phase-separated state obtained by theMaxwell onstrution from homogeneous metalli state(17). Correspondingly, the ritial onentration nd inEq. (23) is larger than nm0 in Eq. (18). There is noontradition here: in the droplet state that we on-struted, the eletrons are on�ned to spheres of theradius R, and even when these droplets start to over-lap at n = nd, oupying the entire sample, the ele-trons, by onstrution, are still on�ned within theirown spheres and avoid eah other. In other words,a ertain degree of harge-ordering orrelations is stillpresent in our droplet state, dereasing the repulsionand hene the total energy.Thus, the energy of the phase-separated state withthe droplets orresponds to the global minima of theenergy for all 0 < Æ � Æ. This justi�es our onlu-sion about the phase separation into the harge-orderedstate with n = 1=2 and a metalli state with smallspherial droplets.The situation enountered here resembles that ofa partially �lled strongly interating Hubbard model,with the harge-ordered state orresponding to the an-tiferromagneti state of the latter and with the nearest-neighbor interation V playing the role of Hubbard'sU . In both ases, the kineti energy of doped arrierstends to destroy this �antiferro� or harge ordering,

by �rst �spoiling� it in their viinity and eventuallyleading to the formation of the metalli state (Nagaokaferromagnetism). In the Hubbard model, we also faethe situation with the phase separation at a su�ientlysmall doping [21℄.We also note that for n > 1=2, the ompressibilityof the harge-ordered state is again negative,1� = d2EdÆ2 = �4W 23V z < 0;and has the same value as for n < 1=2. As a result, it isagain more favorable to reate a phase-separated statefor these densities. However, as already mentioned, thenature of the seond phase with n > 1=2 is not quitelear at present, and therefore, we do not onsider thisase here. 5. AN EXTENDED MODELWe an now extend the model disussed in the pre-vious setions by taking the essential magneti intera-tions into aount. In manganites, in addition to theondution eletrons in the eg bands, there also existpratially loalized t2g eletrons, whih we now inludein our onsideration. The orresponding Hamiltonianis given byĤ = �t Xhi;ji;� +i�j� + V Xhi;jininj � JHXi Si�i ++ JXhi;jiSiSj � �Xi ni: (24)In omparison to (1), the additional terms here or-respond to the strong Hund-rule onsite oupling JHbetween the loalized spins S and the spins of ondu-tion eletrons �, and a relatively weak Heisenberg anti-ferromagneti (AFM) exhange J between neighboringloal spins. In real manganites, the AFM ordering ofthe zigzag (CE) type in the harge-ordered phase isdetermined not only by the exhange of the loalizedt2g eletrons but to a large extent, by the harge- andorbitally-ordered eg eletrons themselves. For simpli-ity, we ignore this fator and assume the superexhangeinteration to be the same in the harge-ordered and inthe metalli phases.It is physially reasonable to onsider this model inthe limit JHS > V > W > JS2:In the absene of the Coulomb term, this is exatly theonventional double-exhange model (see, e.g., [8, 14℄).476



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Phase separation in systems with harge orderingAs it is usually assumed in the theory of the doubleexhange (that is, in the theory where JH � W ), themain role of the itinerant eletrons is to form a parallelarrangement of loal spins. The exhange-orrelatione�ets of the itinerant eletrons themselves are not veryimportant here and an be inluded in the renormal-ization of the e�etive bandwidth.We note that the absene of doubly oupied sitesin (24) is guaranteed by the large Hund's term. It alsofavors the metalliity in the system, beause the e�e-tive bandwidth depends on the magneti order in ourproblem. The estimate for the ritial onentrationis therefore di�erent from the one in (23). Similarlyto [14℄, the metalli droplets are ferromagneti (FM)beause of the double exhange. The energy of onesuh droplet is given byE = �t�z � �2a2R2 �� W 26V z "1� 43��Ra �3#++ zJS2 43��Ra �3 � zJS2 "1� 43��Ra �3# : (25)The last two terms in (25) desribe the loss of theHeisenberg AFM exhange energy inside the FM metal-li droplets and the gain of this energy in the AFMinsulating part of the sample, respetively. The mini-mization with respet to the droplet radius (as in (21))yields Ra / � tV + JS2t ��1=5 : (26)We note that at t=V � JS2=t, Eq. (26) gives thesame estimate for the radius of a FM metalli dropletRa � � tJS2�1=5as in [8, 14℄.In the opposite limit where t=V � JS2=t, we re-produe the same resultRa � �Vt �1=5as in (22). Finally, the ritial onentration n is esti-mated as n / � tV + JS2t �3=5 : (27)As a result, also taking the tendeny to the phaseseparation at very small values of n into aount

[8�11; 14℄, we arrive at the following phase diagram forthe extended model (f. [11℄):1. At 0 < n < �JS2=t�3=5, it orresponds to thephase separation into a FM metal with n = n0 > 0embedded into the AFM insulating matrix (n = 0).To minimize the Coulomb energy, it may again be fa-vorable to split this metalli region into droplets withthe onentration n0 and the average radius given byEq. (26) with t=V = 0, eah ontaining one eletronand kept apart from one another.2. At �JS2=t�3=5 < n < �t=V + JS2=t�3=5 < 1=2,the system is a FM metal. Of ourse, we need a win-dow of parameters to satisfy the inequality in the right-hand side. In atual manganites, where t=V � 1=2�1/3 and JS2=t � 0:1, these onditions imposed on nare not neessarily satis�ed. Experiments suggest thatthis window is present for La1�xCaxMnO3, but it isde�nitely absent for Pr1�xCaxMnO3 [11℄.3. Finally, at �t=V + JS2=t�3=5 < n < 1=2, wehave the phase separation in the form of FM metallidroplets inside the AFM harge-ordered matrix.This phase diagram is in a good qualitative agree-ment with many available experimental results for realmanganites [22�25℄, in partiular with the observationof the small-sale phase separation lose to the dop-ing 0.5 [26℄. We also note that our phase diagram hasertain similarities with the phase diagram obtainedin [27; 28℄ for the problem of spontaneous ferromag-netism in doped exitoni insulators.6. CONCLUSIONSSummarizing, we have shown that the narrow-bandsystem that has the hekerboard harge ordering atn = 1=2 (orresponding to the doping x = 0:5) is un-stable toward phase separation away from half-�lling(n 6= 1=2). The system separates into regions with theideal harge ordering (n = 1=2) and other regions whereextra eletrons or holes are trapped. The simplest formof these metalli regions ould be spherial metallidroplets embedded into the harge-ordered insulatingmatrix. Simple onsiderations allow estimating the sizeof these droplets and the ritial onentration, or do-ping x = 1=2�Æ, at whih the metalli phase oupiesthe entire sample and the harge-ordered phase disap-pears. The aount of the magneti interations doesnot hange these onlusions but somewhat modi�esthe harateristi parameters of the metalli droplets.The long-range Coulomb interation may also mod-ify the results, but we do not expet any qualitativehanges. For realisti values of the parameters, the size477



M. Yu. Kagan, K. I. Kugel, D. I. Khomskii ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001of metalli droplets is still mirosopi (about 10Å) andthe exess harge ontained in them is rather small.The obtained piture orresponds rather well tothe known properties of 3D and layered manganiteslose to (less than) half doping, x � 1=2. The pero-lation piture of transport properties emerging fromthis treatment is on�rmed by the results reportedin [7; 15; 22; 24�26℄; moreover, the oexistene of fer-romagneti re�etions and those of the CE type mag-neti struture typial of the harge-ordered state atx = 0:5 were observed by the neutron sattering [29℄.Thus, the general behavior of the underdoped mangan-ites (x � 0:5) is in a good qualitative agreement withour results.Our treatment also leads to the same tendenyto the phase separation (instability of the homoge-neous harge-ordered phase) for the overdoped regimex > 0:5. It is still not lear what would be the seondphase in this ase. Therefore, we did not onentrateour attention on this ase.Our treatment is also appliable to other systemswith the harge ordering, suh as obaltites [18℄ andnikelates [19℄. It would be interesting to study themfor harge arrier onentrations di�erent from theommensurate �hekerboard� one.A number of important problems still remainunresolved (the origin of the �in-phase� orderingalong the -diretion in perovskite manganites, thedetailed desription of inhomogeneous states in theoverdoped regime x > 1=2, and the behavior at�nite temperatures). Nevertheless, in spite of theintrodued simpli�ations, our model seems to apturethe essential physis underlying the interplay betweenphase separation and harge ordering in transitionmetal oxides.We are grateful to N. M. Plakida and M. S. Ma-r'enko for stimulating disussions. D. Kh. expressesgratitude to S.-W. Cheong and Y. Moritomo for dis-ussions of the experimental aspets of the problem.The work was supported by INTAS (grants � 97-0963and 97-11954), the Russian Foundation for Basi Re-searh (projets � 00-02-16255 and 00-15-96570), andby the Russian�Duth Program for Sienti� Cooper-ation funded by the Netherlands Organization for Si-enti� Researh (NWO). M. Yu. K. aknowledges thesupport of the Russian President Program (grant� 96-15-9694). The work of D. Kh. was also supported bythe Netherlands Foundation for the Fundamental Re-searh of Matter (FOM) and by the European networkOXSEN.
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