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FORMATION OF HEAVY-FERMION STATESIN NON-FERMI-LIQUID IMPURITY SYSTEMSL. A. Manakova *RRC �Kurhatov Institute�123182, Mosow, RussiaSubmitted 6 July 2000A mehanism for the ourrene of heavy-fermion states in non-Fermi-liquid (NFL) metals with f -shell impu-rities is proposed. The impurity with an unstable valeny is suggested to have the energy spetrum onsistingof a deep f -level and quasiontinuum states (narrow band) in resonane with the Fermi energy. Depending onthe impurity onentration, the single-site NFL states are generated by the two-hannel Kondo sattering forthe low onentration (the �Kondo regime�) or by the sreening interation for a relatively high onentration(the �X-ray edge regime�). It is shown that the NFL states are unstable against the sattering of the NFLexitations by eletron states of the narrow band. This sattering generates additional narrow Fermi-liquid (FL)resonanes at/near the Fermi level in the �Kondo regime� and in the �X-ray edge regime�. The mixed-valenestates are shown to be indued by new FL resonanes. The mixed valeny mehanism is loal and is relatedto the instability of single-site NFL states. The FL resonanes lead to the existene of additional energy salesand of pseudogaps near the Fermi level in the mixed-valene states. They also onsiderably narrow the regionwith a nearly integer valeny.PACS: 72.10.Fk, 72.15.Qm, 73.20.-r1. INTRODUCTIONAt present, intermetalli ompounds with thef -shell atoms Ce or U are an important lass of alloysin whih the NFL behavior is observed (see [1; 2℄ fora review). The anomalous temperature dependenesof their linear spei� heat, magneti suseptibility,and resistivity strongly support the NFL senario.The Ce and U ions arry magneti dipole or eletriquadrupole moments that interat with the spins andharges of the ondution eletrons, thereby givingrise to the Kondo e�et and the NFL behavior at lowtemperatures. The f -eletron ompounds of interesthave been alloyed with nonmagneti elements (witha few possible exeptions) [2; 3℄. The thermodynamimeasurements evidene in favor of the quadrupoletwo-hannel Kondo model introdued in [4℄. We notethat aording to photoemission spetra, the U-basedompounds look muh more like the mixed-valeneones (see referenes in [5; 6℄). Reently [7℄, it wasshown that the temperature behavior of the spei�*E-mail: manakova�kurm.polyn.kiae.su

heat and magneti suseptibility is governed bynonuniversal power-law dependenes for a relativelyhigh onentration of the f -shell atoms.Taking the foregoing into aount, it would behighly desirable to have the uni�ed treatment involvingthe explanation of two essential fats:(1) the oexistene of the single-ion two-hannelKondo e�et and the mixed-valene state;(2) the possibility of non-universal power-law en-ergy dependenes on the parameters.It should be noted that the role of instabilities of theNFL states in forming the heavy-fermion (HF) stateshas not been ompletely lari�ed. At the same time,it is well known that the single-ion NFL state is un-stable against any perturbation that eliminates the or-bital or spin degeneray of the impurity. Two instabil-ity mehanisms are presently known in the two-hannelquadrupole and orbital Kondo model. In [4℄, the insta-bility is indued by the Jahn�Teller distortions of theimpurity site. The seond mehanism [8℄ attributes theinstability to the hannel anisotropy. As shown in [9℄and [10℄, there ours a new physial realization of thetwo-hannel quadrupole Kondo model and of the NFL450



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Formation of heavy-fermion states : : :state instability against the sattering generated by thetunnel proess in the doped size-quantized strutures.The physial reason of the instability is the existene ofthe additional narrow FL resonanes indued by tun-neling.For a metal ontaining orbitally degenerated deepimpurity states, it was shown in [11℄ that the NFL statean be unstable against the sattering of the multipar-tile exitations having di�erent z projetions of thequadrupole moment.In this paper, we propose a new mehanism forthe ourrene of HF states in NFL metals with thef -shell impurities. We assume that a spei� featureof atoms with an unstable valeny is the energy spe-trum that ontains two un�lled shells: the orbitallydegenerate deep f -level states and the atomi quasi-ontinuum states (narrow band) near the Fermi level.As shown below, the sattering of the NFL exitationsby atomi quasiontinuum states, whih is potential inits harater, generates additional FL resonanes nearthe Fermi level. Along with the NFL exitations, newFL resonanes form an additional branh of heavy-fermion states with the harateristi energy that ismuh smaller than the width of the NFL resonane(even in the ase of the Kondo e�et). New FL res-onanes generate the mixed-valene state. The hea-vy-fermion states have a loal origin within the treat-ment proposed below.In onlusion, we brie�y disuss the temperaturetransitions within the proposed framework and the roleof single-site NFL �utuations in the �onentrated�heavy-fermion systems.2. THE IMPURITY MODEL AND THESCATTERING PROBLEM FOR ANINTERACTING SYSTEM2.1. It is ommonly known that an ion with un�lledd- or f -shells partially retains its atomi properties ina rystal. This is possible due to the presene of a en-trifugal barrier separating the region A in whih theatomi fores at from the region B where the lattiepotential ats. The height of the barrier is ompara-ble to other harateristi energies of the system, i.e.,the Fermi energy and the interatomi interation en-ergy. The typial energy spetrum of lanthanide andatinide ions with an unstable valeny seems to ontainquasiloal deep f -levels together with the quasiontin-uum states under the entrifugal barrier. The atomiquasiontinuum may be formed by the d-shell states be-ing in resonane with the ondution band states at the
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Fig. 1. The initial eletron spetrum. A and B are theimpurity region and the ondution band, respetively,U is the Hubbard repulsion. The A-band onsists ofthe impurity states in resonane with the Fermi levelFermi level. A similar impurity model with a highly de-generate f -level was also onsidered in [12℄. The initialeletron spetrum before mixing is depited in Fig. 1.The Hamiltonian of the system is given byH = HA +HB +HAB ; (2.1)where HB and HA are the Hamiltonians of the ondu-tion band and of the impurity region. The HamiltonianHAB desribes the hybridization Hh and the satteringHs between eletron states of the ondution band andthe impurity region. The Hamiltonian of the impurityregion is given byHA = Hf0 +Hd0 +HfU ;where Hf0 is the Hamiltonian of the deep level, HfU isthe Hubbard repulsion, and Hd0 is the Hamiltonian ofthe narrowA-band. In what follows, we do not onsiderthe intraband interations assuming that they are weakompared to the interation between the deep level andthe band eletrons. Therefore, Hd0 is the Hamiltonianof the noninterating d-eletrons. It is also assumedthat the d- and f -shells are not mixed in the impurityregion. We start from the low-lying eletron on�gura-tion of the isolated ion and then take the mixing withthe ondution eletrons into aount in the spirit ofthe Anderson model with two un�lled shells.We onsider the situation where the deep level isa �3 quadrupole (non-Kramers) doublet of the rystal�eld interating with the �8 quartet of the ondu-451 15*



L. A. Manakova ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001tion eletrons. However, we emphasize that the meh-anism proposed here an be applied for all ompoundsin whih the symmetry allows the loal quartet of on-dution states to ouple to the two-fold degenerate leveland an additional potential sattering of the multipar-tile exitations exists.For U-based ompounds, the �3 doublet in the 5f2on�guration is formed as a result of splitting the multi-plet with the total moment J = 4 with the ubi rystal�eld. The �3 doublet has an eletri quadrupole mo-ment and no magneti dipole moment. The quantumnumbers of the �3-level eletron are the numbers oflines � for the irreduible representation of the pointgroup ��3 = �1. The two quantum number values� = �1 orrespond to the projetions of the quadrupolemoment on the z-axis, i.e., Qzz = �8.The multipartile on�guration of the un�lled shellis denoted by jn;�i, where n indiates the number ofeletrons and � is the set of quantum numbers hara-terizing the on�guration.For relatively large values of the Hubbard repulsionin the absene of hybridization, the ground state on-�guration of the ion U4+ is the singly oupied �3 dou-blet with the eletron on�gurations j1;+1i and j1;�1iand the energy Ef . The eletron reation operatorsand eletron numbers orrespond to the singly ou-pied states:f+�=+1 = j1;+1ih0; 0j; f+�=�1 = j1;�1ih0; 0j;nf� = f+� f�; X� nf� = 1;Hf0 =Xn;� En;�jn;�ihn; �j �X� Ef�f+� f�;HfU =X��0 U��0nf�nf�0(1� Æ��0): (2.2)

The �3 states are hybridized with the partial on-dution band waves having the total angular momen-tum j = 5=2. Taking the splitting of the j = 5=2 multi-plet by the ubi rystal �eld into aount amounts tothe transition from the angular momentum represen-tation to the irreduible representations of the pointgroup of the rystal. The latter representation hasthe quartet �8 that an be hybridized with the �3doublet. The �8 quartet possesses two groups of thestates: �(+)8 , �(�)8 with �(+)8 = j�8; 2i; j�8; 1i and�(�)8 = j�8;�2i; j�8;�1i. The groups �(+)8 and �(�)8orrespond to di�erent signs of jz. Di�erent signs ofjz orrespond to di�erent sings of the spin projetion�z . In addition, the states j�8;�2i and j�8;�1i havethe respetive z omponents of the quadrupole momentQzz = �8.In other words, the quartet �8 of partial waves de-omposes into the tensor produt �3
�7. It is thereforedesribed by a ombination of the �orbital� (�3) andthe �spin� (magneti) (�7) indies.The partial states of the ondution eletrons mixedwith the �3 doublet an therefore be lassi�ed by thequantum numbers j"; ; �i, where " = vF k�"F , with kbeing the wave vetor modulus and "F being the Fermienergy. In what follows, we hoose the position of theFermi level as zero. The quantum number  = 2, 1 � �orresponds to the two values of the quadrupole mo-ment within the groups �(+)8 and �(�)8 ; the magnetiquantum numbers � = � distinguish the respetivegroups �(+)8 and �(�)8 . The operators a+B��(") desribethe states j";�; �i in the B-band.In terms of these states, the hybridization Hamilto-nian
Hh =Xk�n X�n+1�n �V f�n+1�n�(k)a+B�(k)jn+ 1;�n+1ihn;�nj+H..� ;where a+B�(k) reates the ondution band eletron with the spin � and the wave vetor k, an be written asHh =X�� +1Z�1 d"�0B(")�V f��(")a+B��(")f� +H..� : (2.3)Here, �0B(") is the density of states (DOS) in the B-ontinuum, the terms with V f��0�("), � 6= �0, are ne-gleted beause of the ubi symmetry, and the matrixelements V f���(") are denoted by V f��(").In �nding the interation Hamiltonian in what fol- lows, it is signi�ant that beause of the band statesymmetry, the hybridization matrix elements V f��(")are nonzero for both omponents of the �3 doubletwith � = �1. This means that the matrix elements452



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Formation of heavy-fermion states : : :V f�n+1�n�(k) are spatially nonloal. We additionallyassume the hybridization matrix elements to be inde-pendent of the sign of the z omponent jz of the totalmomentum j, i.e., V f�� � V f� .The Hamiltonian HAB in Eq. (2.1) also involves thesattering between eletron states of the A- and B-bands. In terms of the partial states, the satteringHamiltonian is given byHs =X�� +1Z�1 d"�0A(")�� +1Z�1 d"0�0B("0)TAB�� ("; "0)a+A��(")aB��("0); (2.4)where the operators aA��(") desribe the states in theatomi ontinuum (A). The sattering with � 6= �0 isabsent beause of the ubi symmetry. We assume thatthe sattering matrix elements as well as the hybridiza-tion ones are independent of the quantum number �.In de�ning the NFL states, it is important to a-ount for the splitting of the f doublet ground statedue to a loal deviation from the ubi symmetry atthe impurity site. In the Hamiltonian, the splitting isdesribed by the termH� = ��̂zf : (2.5)Beause the Hubbard repulsion U is the largest param-eter in the problem, it is onvenient �rst to take the ef-fetive interation indued by U into aount and thento use the multi-partile states as a basis for solving thesattering problem. As shown below, the system de-sribed by the Hamiltonian H in (2.1) has two physialmehanisms generating singularities at/near the Fermilevel. The Hubbard repulsion U generates the e�etiveinteration between ondution eletrons and the deeplevel. This interation indues an NFL resonane atthe Fermi level in the B-band. The sattering of themultipartile exitations in the ondution band by theeletron states of the A-band generated by Hs resultsin the formation of additional Fermi-liquid (FL) reso-nanes near the Fermi level.2.2. In the system with the Hamiltonian H , the ex-itations are ompletely desribed by the Green's fun-tion Ĝf�(z) = hf�j(z � Ĥ)�1jf�i:Beause the energy U is dominant, it is essential toproperly treat orrelations on the site. To alulateĜf�(z), we use the method of the equations of mo-

tion [19℄ that orretly aounts for these on-site or-relations. This givesĜf�(z) = Ĝ0f�(z)1��A�(z)�B�(z)D̂AB� (z) ; (2.6)where Ĝ0f�(z) = hz � "f � �̂hB�(z)i�1is the Green's funtion of the interating system with-out sattering; we then haveD̂AB� (z) = 1��sA�(z)ŴB�(z);ŴB�(z) = �sB�(z) + �sB�(z)�s�B(z)Ĝ0f�(z):Equation (2.6) implies that the full Green's funtionĜf�(z) has features of two types. The funtion Ĝ0fr�(z)desribes the ontributions of the multipartile reso-nanes at the Fermi level due to the interation be-tween the ondution eletrons and the deep level. Theseond fator in Eq. (2.6) is generated by the sat-tering of the multipartile exitations via the atomiquasiontinuum states. The sattering results in addi-tional singularities, namely, simple poles near the Fermilevel. The pole positions are determined by the equa-tion D̂AB� (z) = 0. The self-energy funtions �hB�(z)and �s��(z) with � = A;B are expressed as spetralexpansions of multipartile Green's funtions of the A-and B-bands,�s��(z) = jT �� (0)j2Xp 1z � "�(p) == jT �� (0)j2 Z d"��(")f(")z � " ;�hB�(z) = jV f� (0)j2 Z d"�B(")f(")z � " ; (2.7)where "�(p) is the exitation spetrum at the Fermilevel, ��(") is the DOS orresponding to this spetrum,and f(") is the Fermi funtion. In Eqs. (2.7), it is as-sumed that V f� (") � V f� (0) and the sattering matrixelements are separable:TAB�� ("; "0) � TAB(0; 0) = TA� (0)TB� (0);where TA� (0) is dimensionless.Without the interation, we have ��(") = �0� andĜ0f�(z) = [z � �"f� � if�℄�1, where �"f� is the energyof the deep level renormalized by the hybridization andf� is the width of this level. In this ase, both Ĝ0f�(z)and �0��(z) have no singularities near the Fermi level.In the interating system as U ! 1, we are inter-ested in the ase where the dominant e�et of the in-teration is the generation of a multipartile resonane453



L. A. Manakova ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001(the fr-level) near the Fermi level. The Green's fun-tion Ĝ0fr�(z) of this resonane must then be insertedin Eq. (2.6). The multipartile peaks in Ĝ0fr�(z) at theFermi level determine the properties of the DOS �B(")and of the self-energy funtions �s;hB� (z).To obtain the density of states at the Fermi levelin the interating system, the following onsiderationan be used. It is known [19℄ that the exat Green'sfuntion of the ondution eletrons in the impurityAnderson model is given by (in our notation)G��(k; k0; z) = Æ��0Æ��0Æ(k � k0)G0��(k; k0; z) ++G0��(k; z)V f��� (k)G(0)f��(z)V f��(k0)G0��(k; z); (2.8)whereG0��(k; z) is the Green's funtion of noninterat-ing eletrons (in aordane with the de�nition givenabove, the variables k and " are idential). Beauseof the symmetry properties, the funtion G(0)f��(z) anhave only diagonal omponents. The Green's funtionof an impurity state G(0)f��(z) involves all the intera-tions indued by the Hubbard repulsion U . Near theFermi level, the multipartile resonane Green's fun-tion Ĝ0fr�(z) must be inserted in Eq. (2.8). Thus,the DOS of multipartile exitations at the Fermi leveltakes the form�B(")� �0B(") = � 1�A� Im Sp Ĝ0fr�("); " > 0;where A� / B�0B , B � P� B� and B� �� jV f� j2�0B .With the foregoing taken into aount, the ompletesolution of the sattering problem requires determiningthe main interation and alulating the Green's fun-tion Ĝ0fr�(z).3. THE INTERACTION HAMILTONIAN ANDTHE NON-FERMI-LIQUID STATE3.1. To derive the e�etive interation between thedeep f -doublet and the ondution eletrons, we sup-pose that for relatively large values of the Hubbard re-pulsion, the ground state on�guration of the ion U4+is the singly oupied �3 doublet with the eletron on-�gurations j1;+1i, j1;�1i and the energy Ef . Takingvirtual transitions into the exited states with the en-ergies E2 = 2Ef +U into aount and using either theprojetion operator tehniques or the Shri�er�Wol�

transformation for the Hamiltonian HfU +Hf0 +Hh, weobtain the standard expressionHint = X��0��0 ZZ d"d"0�0B(")�0B("0)�� V��0 ("; "0)a+B��(")aB�0�0("0)f+� f�0 : (3.1)As U��0 !1, the matrix elements in Eq. (3.1) beomeV��0 ("; "0) � V f�� (")V f�0("0)"f ; "F �Ef � "f :The doubly degenerate f -level ontaining one ele-tron an be onveniently desribed in terms of the pseu-dospin variable �̂f . The projetions of the pseudospinoperator �̂f on the oordinate axes oinide with theomponents of the quadrupole moment tensor. Theprojetion �̂zf � Qzz on the z axis has two values or-responding to the oupation of the di�erent orbitalsof the doublet. The operator �̂xf / J2x � J2y inverts thepseudospin, and we an therefore write�̂ if = X��0=�1 f+� �i��0f�0 ;where �i are the Pauli matries.The index � = � is magneti, and therefore, itannot hange under the sattering by the eletriquadrupole moment of the impurity nonmagneti �3doublet desribed by (2.4). In other words, for Hamil-tonian (2.4) to possess the time reversal property, thequantum number � must be onserved during thesattering. The sattering proesses hange only thestates belonging to the same group (�(+)8 or �(�)8 ) andthese states form a representation for the pseudospin�̂f = 1=2.The time reversal symmetry therefore guaranteesthe transfer from Hamiltonian (2.4) to the two-hannelquadrupole exhange Hamiltonian with the hannel in-dex �,Hint = X��0� Xi=x;y;z ZZ d"d"0�0B(")�0B("0)�� Vi("; "0)a+B��(")�i��0aB��0("0)�̂ if ;Vi("; "0)�i��0 � V��0 ("; "0): (3.2)Beause the hybridization matrix elements are om-plex in general, Eqs. (3.1) and (3.2) ontain the terminvolving �̂yf along with the term involving �̂xf . Weare interested in the ase where the dominant e�et ofthe interation is the generation of a multipartile res-onane at the Fermi level. The Green's funtion or-responding to this resonane an be alulated using454



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Formation of heavy-fermion states : : :the bosonization method by reduing the HamiltonianH0 to the resonane-level model proposed in [14℄. Toredue the Hamiltonian H0 = H00 + Hint + H� withthe two-hannel exhange in Eq. (3.2) to the resonane-level model, it is onvenient to rewrite H0 asH0 = ivF X��0� +1Z�1  +��(x)�x ��(x) ++ 12X�� Xi=x;y;z Vi +��(0)�̂i��0 �0�(0)�̂ if +��̂zf ; (3.3)where  ��(x) = +1Z�1 dk eikxaB��(k)and  ��(0) =  ��(x = 0):The bosoni representation of the fermion �elds ��(x) takes the form ��(x) = �̂�� e�i���(x)(2�a)1=2 ; �̂2�� = 1;���(x) = (�)1=2 24 xZ�1 dx0P��(x0) + '��(x)35 ; (3.4)where '��(x) is the boson �eld, P��(x0) is the anon-ially onjugate momentum, ['��(x); P�0�0(x0)℄ == iÆ(x � x0)Æ��0Æ��0 , and a is the lattie onstant.The operators �̂�� ensure the antiommutation rela-tions between di�erent speies of fermions. The boson�elds '��(x) and P��(x) an be rewritten in terms ofthe olletive variables that are introdued by meansof the anonial transformation of '��(x) and P��(x):';f = 12[('11 + '12)� ('21 + '22)℄;'s;(sf) = 12[('11 � '12)� ('21 � '22)℄: (3.5)Similar expressions an be written for the onjugate�elds P��(x), �; � = 1; 2. The Fourier omponentsof the boson �elds k1=2'l(k) orrespond to the harge(), �avour (f), pseudospin (s), and mixed (�avour-quadrupole, sf) density operators �l(k). The �avour isgenerated by the hannel index �.In terms of the olletive bosoni variables, the spin-less fermion olletive �elds are given by l(x) = e�i�l(x)(2�a)1=2 ; l = ; f; s; (sf): (3.6)

The Hamiltonian H0 an be represented as a sum offour terms orresponding to the four spinless fermionolletive hannels. The harge and �avour hannelsare not oupled to the impurity pseudospin. The otherhannels give the following terms in the HamiltonianH0 = H00 +Hint +H�:H00 = ivF Xl=s;(sf) +1Z�1 dx +l (x)�x l(x);Hint +H� = Vx(2a�)1=2 [ +sf (0) +  sf (0)℄�̂xf ++ ~Vz +s (0) s(0)�̂zf +��̂zf ; ~Vz � 2(Vz � �vF ): (3.7)The Hamiltonian in Eq. (3.7) orresponds to theresonane-level model that yields a multipartile reso-nane (the fr level) at the Fermi level. The fr level anbe desribed in terms of the fermion operators d+ andd oupled to the pseudospin operator �̂f via the Ma-jorana representation: d+ = �̂+f �̂, �̂zf = d+d � (1=2),where �̂ is the Majorana (real) fermion operator suhthat �̂2 = 1. The Green's funtion Ĝ(0)fr (z) of the reso-nane level ontains the anomalous omponents / hddiand / hd+d+i in addition to the normal omponents/ hdd+i beause the number of fermions is not on-served in the models desribed by Eq. (3.7).3.2. It is known [15; 16℄ that the two-hannel modeldesribed by Eqs. (3.3) and (3.7) has two regions withessentially di�erent physial properties depending onthe relation between TK and �, where TK is the expo-nential Kondo temperature.We onsider the region of the parameters where theKondo physis plays the key role. This ase is referredto as the �Kondo regime� in what follows. It oursunder the ondition TK � �: (3.8)In this ase, the model desribed by (3.7) renormalizesto the strong oupling limit [15; 16℄. In this limit, thequantites �K = ��0BV 2x and � renormalize to TK and�2=TK , respetively. The �xed point lies on the line~Vz = 0 [8℄ (the Emery�Kivelson line) and the sreen-ing interation is not essential for small energies. Thequantity TK is de�ned on the Emery�Kivelson line anddepends on Vx only. For this reason, the parametersTK and � are independent. The NFL state is gener-ated by the impurity degrees of freedom that are nothybridized with the ondution eletrons [14; 17℄. Nearthe Fermi level at T = 0, the Green's funtion beomesĜ(0)fr (z) = � � �̂0 � �̂xz ��K(z) + �̂0 + �̂xz � ; (3.9)455



L. A. Manakova ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001where �K(z) is the self-energy part determined by thehybridization term in Eq. (3.7), and � orresponds toRe(z)><0. As usual, the exponential pole at jzj / TKin the �rst term of Ĝ(0)fr (z) has the exponentially smallresidue ZK / exp(�"�3=B), TK / "FZK .On the other hand, under the onditionsTK � �; ~Vz � Vx;y; (3.10)the model does not renormalize to the strong ouplinglimit (or equivalently, to the �xed point at ~Vz = 0) forlow temperatures beause of a very weak renormaliza-tion of � [15℄. In this ase, the NFL state is gener-ated by the sreening interation in Eq. (3.7) and bythe non-hybridized impurity degrees of freedom. Thismehanism is referred to as the �X-ray edge regime�in what follows. In this ase, the hybridization our-ring in the sf -hannel an be treated as a perturbationof the ground state obtained at Vx = 0. At Vx = 0,the problem is solved exatly. To obtain the Green'sfuntion Ĝ(0)fr (z) at Vx = 0, we use the tehnique thatwas previously applied to the well-known problem ofthe X-ray absorption in metals.We �rst diagonalize the HamiltonianHs00+Hs+H�in (3.7) at Vx;y = 0. For this, we introdue the bosonoperators bsk = k�1=2�s(k) and b+sk = k�1=2�s(�k),where�s(k) = 1N1=2 kD�kXq=0  +s (q) s(q + k);�s(�k) = 1N1=2 kDXq=k +s (q) s(q � k); k � 0; (3.11)are density operators,  s(k) are Fourier omponents ofthe �elds  s(x), and the ut-o� ours at kD � a�1.Using the operators bsk and b+sk, we write the Hamilto-nian asHs00+Hs+��̂zf = vF Xk>0 kb+skbsk+~Vz �d+d�12���Xk>0� kN �1=2 (b+sk + bsk) + ��̂zf : (3.12)This is diagonalized by the anonial transformationUB = exp ~Vz�0B �d+d�12�Xk>0(kN)�1=2(bsk�b+sk)! :Under this operation, the HamiltonianHs00 +Hs +��̂zf is transformed to~Hs = vF Xk>0 k~b+sk~bsk + ~�� ~d+ ~d� 12� ; (3.13)

where ~d+ = UBd+U�1B � U0Bd+;~b+sk = UBb+skU�1B = b+sk + �0B ~Vz(kN)1=2 d+d;U0B = exp ~Vz�0BXk>0 bsk � b+sk(kN)1=2 ! ;~� = �� "U , and "U = ~V 2z �0B is the �polaron shift�.Equation (3.13) allows us to �nd the Green's fun-tion of the resonane level,Ĝ(0)fr (t) = Ĝ(00)fr (t)hU+0B(t)U0B(0)iD; (3.14)where U0B(t) is derived from U0B(0) by the substi-tution bsk ! bskei"kt. In Eq. (3.14), h: : : iD denotesaveraging over the states of the diagonalized Hamilto-nian Hs00+Hs and Ĝ(00)fr (t) is the Green's funtion withthe s-hannel interation disregarded. The averaging isperformed in the standard way using the relationseÂeB̂ = eÂ+B̂+(1=2)[Â;B̂℄;he[F (b+;b)℄i = e(1=2)hF 2(b+;b)i;where F is an arbitrary linear ombination of bosonoperators. As a result, we �nd that at large times"F t� 1, the funtion in Eq. (3.14) is given byĜ(0)fr (t) � Ĝ(00)fr (t)t��s ; (3.15)where �s = (Æs=�)2 and Æs is the phase shift for thesattering desribed by Hs in the pseudospin hannel.At Vx;y = 0, we use Eq. (3.15) with Ĝ(00)fr (t) / e�i ~�tto obtain the known expression for the Green's funtionG(0)fr (z) = A(�)�(1� �s)z � ~�  z � ~�W !�s ; (3.16)where A(+) = �1 and A(�) = (�1)��s forRe(z � ~�)><0, respetively, �(x) is the gammafuntion, and W is the ut-o� parameter of the orderof the ondution band width.We next reall (e.g., from [23℄) that inluding thehybridization Vx as a perturbation in the �X-ray edge�Hamiltonian, we reover the previous �X-ray edge� re-sults with the energy shifted as i! ! i! + i�K sign!,�K = ��0FV 2x , in the resonane level Green's funtionĜfr . Within the framework of two-hannel model (3.5),the width due to the hybridization appears only for ahalf of the impurity degrees of freedom �x�3 hybridizedwith the ondution sf -hannel.The same result an be obtained by writting Hamil-tonian (3.5) in terms of the hybridized states and then456



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Formation of heavy-fermion states : : :onsidering the sreening interation for these states.One an readily show that additional interations in-dued by the transition to the new basis are propor-tional to ~Vz(Vx=W ) and are therefore muh smallerthan the sreening interation. In the new basis, Hamil-tonian (3.7) is redued under ondition (3.10) to aHamiltonian of the �X-ray edge� type. In the presentase, the hybridization in Eq. (3.7) gives the level widthrelated to a half of the degrees of freedom of the impu-rities hybridized with the ondution eletrons.Using Eqs. (3.14) and (3.15) withĜ(00)fr � (�̂0 � �̂x)e�i( ~��i�K)t + (�̂0 + �̂x)e�i ~�t;we thus obtain Ĝ(0)fr (z) in the energy representation,Ĝ(0)fr (z) = A(�)�(1� �s)�� " �̂0 � �̂xz � ~�+ i�K  z � ~� + i�KW !�s ++ �̂0 + �̂xz � ~�  z � ~�W !�s# ; (3.17)where �K �W B1B2"2f :Beause we alulate the retarded Green's funtion inEq. (3.17), we must have Im z < 0. If the radial partsof the wave funtions entering the matrix elements V f�are independent of �, we readily obtainB1 � B2 = B ; �K �W 2B"2f : (3.18)The power-law dependene ours in Eq. (3.17) underonditions (3.10).It follows from (3.17) that the multipartile NFLresonane at the Fermi level is generated by the mixed�avor-quadrupole (sf) mode. The interations in thepseudospin hannels having the sreening haraterlead to the e�etive broadening of the resonane level.The seond term in Eq. (3.17) is due to the impuritydegrees of freedom that are not hybridized with theondution eletrons.In onlusion of this setion, we write the expres-sion for the DOS �B(") near the Fermi level. The mul-tipartile resonanes at the Fermi level are desribed bythe Green's funtions in Eqs. (3.9), (3.17), and (3.16).These Green's funtions must be inserted in Eq. (2.8),after whih �B(") is derived. In partiular, inserting

Eq. (3.17) in Eq. (2.8), we �nd the DOS in the �X-rayedge� regime�B(")� �0B(") = � 1�A� Im Sp Ĝ(0)fr (") == A� Xi=1;2 sin �(1� �s) artg �i"� ~��W�s [("� ~�)2 + �2i ℄(1��s)=2 ;" > 0; (3.19)where A� � B�0B . The widths �1 = Æ ! 0+ and�2 = �K orrespond to the two ontributions into theGreen's funtion Ĝ(0)fr in Eq. (3.17).In the Kondo regime, the DOS is determined byfuntion (3.9).4. THE FERMI-LIQUID RESONANCES NEARTHE FERMI LEVEL4.1. The sattering of the multipartile exitationsdue to the term Hs results in simple poles near theFermi level in the omplete Green's funtion Ĝf�(z) inEq. (2.6). The poles orrespond to new Fermi-liquidresonanes. The positions z(�)r = "(�)r � i(�)r of thepoles are determined by the equationDAB� (z(�)r ) = 1��sA�(z(�)r )WB�(z(�)r ) = 0: (4.1)Beause this equation is the same for all terms ofthe matrix D̂AB� , the matrix indies are omitted inEq. (4.1).The expression for the Green's funtion (2.6) nearthe FL resonane with the energy zr� beomesĜf�(") = F�1r zr�Ĝ(0)fr (zr�)"� ~�� zr� ; (4.2)where we expanded the denominator in Eq. (2.6) nearthe resonane energy as D(") = D0(zr�)(" � ~�� zr�),where D0(zr�) � Fr=zr� (with the indies of the de-nominator omitted at the moment) and Fr is a fun-tion of the parameters of the order of unity. The energydependenes of �hs�� (z) in (2.6) are determined by theDOS ��("). In the model under onsideration, the fun-tion �sA�(z) has no features at the Fermi level, whihallows us to writeRe�sA�(0) � �0A(0); Im�sA�(0) = 0: (4.3)The self-energy funtions �sB�(z) have the featuresorresponding to the NFL peaks in the DOS �B(").In the Kondo regime, the main singular term ap-pears in �sB�(z) beause of the Æ-like ontribution to457



L. A. Manakova ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001the spetral funtion indued by the seond term in theGreen's funtion (3.9) as z ! "+ i0+. In other words,this singular term is due to the impurity degrees offreedom that are not hybridized with the ondutioneletrons. The self-energy �sB�(z) takes the form�sB�(z) � onst+ V f� TB�� B�0Bz : (4.4)In the �X-ray edge� regime, using the density ofstates in Eq. (3.19), we obtain the ontribution of theresonane levels to the self-energy funtion at zero tem-perature,�sB�(z) � AB� (BB��0B) TB��V f�� !��� Wz � ~� + i�K�1��s (�1)�s�1; (4.5)where jAB�j � 1.In the Kondo regime, inserting (3.9) and (4.4)in (4.1) and taking the most singular term / 1=z3in WB�(z) into aount, we readily obtain two reso-nanes above and below the Fermi level that our dueto the sattering of the non-hybridized impurity de-grees of freedom. The energies of these resonanes aredetermined byjz(�)r jW = Ar (A��0A)1=3 (B�0B) ; (4.6)where Ar � 1 and A� = jTB� j2�0A. The resonanewidth above the Fermi level is muh smaller than theresonane width below the Fermi level. The formerwidth is determined by the terms in Eq. (4.1) that aremuh smaller than the leading singular term / 1=z3.Therefore, the pseudogap exists near the Fermi levelfor j"(�)j � (�)r and for j"(�)j � (�)r .In addition, Eq. (4.1) has two solutions above andbelow the Fermi level with jz + iK j � K . For thisreason, the shape and the width of the Kondo peakhange weakly at the Fermi level. In partiular, thewidth of the Kondo peak has a small additional term� TK (A��0A) (B�0B)� TK due to the sattering.The qualitative piture of the DOS in the Kondoregime near the Fermi level is shown in Fig. 2. We seethat the FL resonanes generate both the additional en-ergy sale r � TK and the pseudogap near the Fermilevel.We thus obtained the essential result that the sat-tering of the non-hybridized impurity degrees of free-dom by the eletron states of the narrow band leads tothe existene of new resonanes near the Fermi level.
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Fig. 2. The Kondo resonane (urve 1 ) and new FL res-onanes (urves 2 ) show the respetive FL resonaneswith j"�r j � �r and j"�r j � �rAording to the experimental data [2℄, there existsa onentration region where the Kondo energy TK ex-ponentially inreases with dereasing the impurity on-entration. At the same time, the hybridization matrixelements and, onsequently, the widths B and A� re-main approximately onstant in this region. We antherefore expet that the ondition jzrj � TK is sat-is�ed at su�iently low oentration of the impurityatoms.4.2. Using expressions (2.7) and (3.17), it is easyto verify that in the �X-ray edge� regime, Eq. (4.1)possesses solutions of two types with their energies sat-isfying the respetive onditionsjz(�)r j � �K ; the narrow resonanes;jz(�)r + i�K j � �K ; the �wide� resonanes:For simpliity, we here used the ondition~�� �K ; z(�)r :The signs ��� orrespond to the resonanes above andbelow the Fermi level. For j"(�)r j � (�)r ; j(�)r � �K j,the widths of the FL resonanes are determined by(�)rW = A1 �A�B��20B�1=(1��s) �� (B�0B)2=(1��s)� "fB��4 ; (�)r � �K ; (4.7)458
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Fig. 3. The NFL (urves 1 ) and FL resonanes in the �X-ray edge� regime: (a) the narrow resonanes for j"�r j � �r ;(b) these resonanes for j"�r j � �r
j(�)r � �K jW = A2 �A�B��20B�1=3(1��s) �� (B�0B)2=3(1��s) ; j(�)r � �K j � �K ; (4.8)where A1;2 � 1. In this ase, the FL resonanesmerge into a single weakly split resonane at the Fermilevel (Fig. 3b). For j"(�)r j � (�)r ; j(�)r � �K j, theenergies j"(�)r j are determined by the expressions inthe right-hand sides of Eqs. (4.7) and (4.8) and by(�)r = j"(�)r j sin' with ' � 1. In this ase, pairs ofthe FL resonanes appear above and below the Fermilevel (Fig. 3a). Pairs of the FL resonanes an existbeause the Green's funtion Ĝf�(z) has two branhesabove and below the Fermi level. For j"(�)r j � (�)r ,there are well-determined pseudogaps near the Fermilevel in the ase of the narrow resonanes.Two types of the FL resonanes orrespond to theexistene of the hybridized and non-hybridized impu-rity degrees of freedom. In partiular, the narrow reso-nanes, whih determine a new small energy sale nearthe Fermi level, are generated by the interband sat-tering of the non-hybridized impurity degrees of free-dom. In other words, the narrow resonanes result frombroadening and displaement of the zero-width termin the spetral funtion Ĝ(0)fr (see the seond term inEq. (3.17)) due to the interband sattering.Equations (4.7) and (4.8) imply that the FL reso-nanes exist for the deep level ("f � B) under theondition

A�B� � (B��0B)2�6�s �W"f �6(1��s) ; (4.9)whih is the same for the resonanes of both types.Condition (4.9) is satis�ed for all values of �s in thefollowing ases. First, for A� � B and su�iently�shallow� f -levels suh thatB � "f �W �BW �(1�3�s)=3(1��s) ; (4.10)and seond, for A� � B and "f �W .On the other hand, the widths of the NFL resonaneand, orrespondingly, the harateristi binding energyof the olletive states forming the NFL resonane anbe estimated as "K � �K � "F�K��s : (4.11)This estimate is derived from the NFL DOS inEq. (3.19). As �s inreases, the binding energy "Kalso inreases.The FL resonane an appear if the olletive statesde�ned in Eqs. (3.6) and (3.11) deay. Taking theforegoing into aount, we must bear in mind thatthe deay of olletive states beomes more di�ultas �s inreases. Therefore, the struture of the FLresonanes near the Fermi level essentially dependson the magnitude of the parameter �s that desribesthe sattering in the quadrupole (pseudospin) hannel.From the imaginary part of Eq. (4.1), we readily �ndthat the narrow resonanes exist for �s � 3=5. For1=7 < �s � 1=3, the narrow resonanes appear above459



L. A. Manakova ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001and below the Fermi level. For �s > 5=7, FL resonanesare absent.In addition to ondition (4.9), we thus �nd that thenarrow FL resonanes an exist when the pseudospinhannel interation ~Vz is not very strong.In the limiting ase where Vx;y = 0, the FL reso-nane exists above the Fermi level for �s � 1=3. Itsenergy is determined byjz(�)r jW � (A��0A)1=(1��s) �� (B�0B)1=(1��s) � B : (4.12)In the �X-ray edge� regime, the narrow FL reso-nanes provide peaks in the DOS with the widths muhsmaller than those of the NFL resonane (see Fig. 3).Thus, their existene allows us to obtain a new meha-nism for the appearane of the small energy sale.We also mention that as shown in [11℄, the modelwithout the ontinuum in the impurity region does notgive narrow FL resonanes, and therefore, does not leadto the small energy sale. The �wide� resonanes aboveand below the Fermi level and a loal state above theFermi level have been obtained in this model. Addi-tional mehanisms are required for broadening loalstates.At the same time, the existene of the narrow FLresonanes leads to the appearane of pseudogaps nearthe Fermi level in the �X-ray� regime. The pseudo-gap ours under the Fermi level for a single narrowFL resonane at 1=3 < �s � 3=5. At �s � 1=3 for thesplit FL resonanes, the pseudogap also splits into twobranhes above and below the Fermi level. The pseudo-gaps are well determined for j"rj � r. The minimumvalue of the DOS inside the pseudogaps is of the orderof the magnitude of the �wide� resonanes. The max-imum widths of the pseudogaps are of the order j"(�)r jand are determined by the expression in the right-handside of Eq. (4.7).The onditions required for the appearane of pseu-dogaps are idential to those for the existene of thenarrow FL resonanes.5. THE MIXED-VALENCE AND NEARLYINTEGER STATES5.1. The riterion that enables us to hoosebetween the two types of states involves the par-tial f -omponent �fr (0) of the DOS at the Fermilevel and the DOS �f ("f�) at the deep level. For�fr (0)� �f ("f�), the harged exitations play the keyrole at the Fermi level, while the opposite inequality

means that their role is negligible. The former aseorresponds to the mixed-valene state, and the latterase leads to the state with a nearly integer valeny.The Green's funtion G(0)f� (z) for jzj lose to the en-ergy "f� of the deep level an be represented asG(0)f� (z) � Zf�z � "f� ; (5.1)where Zf� � 1 is the residue at the pole z = "f�. Theenergy "f� renormalized by hybridization is determinedby the equation"f� = "f +�(0)B�("f�) � �"f + if�:The maximum value of the DOS at the deep level antherefore be estimated as�f ("f�) � �0B � "FB� : (5.2)We now verify our riterion for the Kondo reso-nane. It is well known [19; 20℄ that in this ase, thedensity of harged states is small at the Fermi level. Us-ing the �resonane�level� formalism, one an see thisfrom the small residue ZK that determines the poleontribution to the Green's funtion at jzj lose to theFermi energy,GK(z) � ZKz �EK ;�K(0) � ZKK � �0B � �f ("f�); (5.3)where EK � iK and K � TK . In aordane withour riterion, the inequality orresponds to a small on-tribution of the harged exitations at the Fermi level.However, for new FL resonanes with the widths �rin Eq. (4.6), the following unequality holds:�FLfr (0) � Wr �0B � �f ("f�): (5.4)Therefore, additional FL resonanes lead to the exis-tene of a mixed-valene state in the Kondo regime.In the �X-ray edge� regime, the NFL reso-nane is generated by the �avor-quadrupole and thequadrupole (pseudospin) modes that have a hargedue to the quadrupole ontribution. The omponent�NFLfr (0) = �(1=�) Im Sp Ĝ(0)fr (0) is then estimated as�NFLfr (0) � �0B � W�K�1��s �� �0B � �"fB�2(1��s) : (5.5)460



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Formation of heavy-fermion states : : :For the narrow FL resonanes, using expression (2.6)for the Green's funtion Gfr�(z), we readily arrive atthe estimate�FLfr (0) = � 1�X� Im Sp Ĝf�(0) �� �0B �Wr �(1��s) : (5.6)Assuming �"f � W and omparing (5.2) with (5.5)and (5.6), we �nd�NFLfr (0)� �f ("f�) at �s < 12 ;�NFLfr (0)� �f ("f�) at �s > 12 (5.7)and also the inequality�FLfr (0)� �NFLfr (0); �f ("f�) (5.8)that holds for all values of the parameters at whih FLresonanes exist.It is interesting to note that under the onditionsA� � B andW �BW �(1�2�s)=2(1��s) � "f ��W �BW �(1�3�s)=3(1��s) ; (5.9)the mixed-valene state and FL resonanes exist simul-taneously for all values of �s.Inequalities (5.7)�(5.8) imply that, �rst, the statewith a nearly integer valeny an be realized only whenFL resonanes are absent and the parameter �s is suf-�iently large. Seond, two types of the mixed-valenestates are generated in our system.The NFL mixed-valene state ours for �s < 1=2if FL resonanes are absent.In the extreme ase where V �x;y = 0, the mixed-va-lene state exists only owing to the additional FL reso-nane.The FL mixed-valene states are generated by theinstability of the NFL state against the interband sat-tering. These states are formed under the same ondi-tions that are neessary for the existene of FL reso-nanes at the Fermi level. The type of the FL mixed-valene state depends on the type of the FL resonane(narrow or �wide�) that an be realized for a given setof parameters.As shown above, narrow FL resonanes exist for allvalues �s < 1=2. Thus, the main features of the FLmixed-valene state are the appearane of a small en-ergy sale and the formation of pseudogaps.

The transitions between the NFL and FL mixed-valene states are haraterized by hanging the va-leny from one noninteger value to another. Takingthe foregoing into aount, we onlude that ondi-tion (4.9) alone is neessary for the transitions betweentwo mixed-valene states.When ondition (4.9) is not satis�ed, the direttransition between the NFL mixed-valene state andthe state with a nearly integer valeny ours at�s � 1=2.Apparently, the most realisti way to generate thetransitions experimentally is to hange the lattie pa-rameter by doping [3℄. This leads to hanging the hy-bridization between ondution eletrons and the �3level that enters the interation matrix elements andthe widths B . We an thus obtain a series of transi-tions, whih are onsidered in detail elsewhere.6. CONCLUDING REMARKS6.1. The above results allow us to understand themehanisms of two important properties of HF NFLmetals.(1) The single-site two-hannel Kondo e�et andthe mixed valene state oexist beause of additionalFL resonanes at/near the Fermi level. The satter-ing of the non-hybridized impurity degrees of freedomby the narrow A-band eletrons generates these reso-nanes. Therefore, two energy sales TK and r existat the Fermi level. The FL resonane with the widthr orresponds to the loal mixed-valene state.(2) There are two possible energy dependenetypes in a system with the two-hannel quadrupoleexhange interation. In the Kondo regime (TK � �),one obtains the known universal energy depen-denes [14; 17; 22℄ beause the Green's funtion inEq. (3.9) has a single energy sale TK .In the �X-ray edge� regime (TK � �), nonuni-versal power-law energy dependenes must our inaordane with the form of the Green's funtion inEqs. (3.16) and (3.17).It follows from the experimental data [2℄ that theinrease of the impurity onentration x in the U-ompounds results in (a) dereasing TK(x), (b) inreas-ing the onentration of the impurity atoms by a notie-able value �, and () inreasing the anisotropy of theexhange parameters. Therefore, inreasing the impu-rity onentration must enable rossing over from theKondo regime with the universal energy dependenesto the �X-ray edge� regime with nonuniversal energydependenes.461



L. A. Manakova ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001As shown above, harateristi features of the NFLompounds with f -shell impurities are the di�erenttypes of the mixed-valene states with the NFL and FLexitation spetra and the fat that the heavy-fermionstate type depends on the interation parameter �s.In the other words, this parameter determines the roleof the harge and spin exitations in the formation ofheavy fermions.Small energy sales and the pseudogaps are induedby the narrow FL resonanes. Therefore, the instabil-ity of the NFL state provides a new physial meha-nism for the small energy sale. Unlike in the previousworks [6; 21℄, this mehanism is espeially appropriatefor impurities with an unstable valeny.Thus, the instability of the NFL state indued bythe interband sattering of multipartile exitationsonsiderably hanges the mehanisms of the formationof heavy-fermion states.6.2. We now brie�y onsider the features of thetemperature dependenes within the framework of themehanism proposed in the present paper. The en-ergy dependenes of the Green's funtions (2.6), (3.9),(3.16), and (3.17) imply that new types of the tem-perature transitions (rossovers) our in the system.When new FL resonanes generated by sattering arenot formed, a transition ours from the universal tem-perature dependenes of the physial quantities in theKondo regime to nonuniversal power-law dependenesin the �X-ray edge� regime. The harateristi tem-perature of this rossover is T1 � �. In partiular,the logarithmi dependene of the linear spei� heatC=T / ln(TK=T ) must be transformed into the power-law dependene C=T / T�1+�s . The former depen-dene was alulated in [14; 17℄ using expression (3.9)within the framework of the two-hannel Kondo model.The power-law dependenes follow from Eqs. (3.16) and(3.18) for the Green's funtions in the �X-ray edge�regime. As mentioned in this setion, the onditionTK � � an be realized at a relatively high onen-tration of the f -shell impurities. The power-law depen-denes of C=T observed in UxY1�xPd3 at x = 0:2 in [7℄an therefore be generated by the mehanism disussedhere. We reall that historially, the alloys UxY1�xPd3were the �rst systems where the NFL behavior induedby the two-hannel quadrupole Kondo model was ob-served [3; 5℄.In the two-hannel quadrupole Kondo model, themagneti suseptibility is known [2℄ to have the vanVlek ontribution between the �3 groundstate and the�rst exited rystalline eletri �eld. The van Vleksuseptibility is desribed by the temperature depen-dene � � �0 � �(T=TK)1=2. Aording to the exper-

imental data [7℄, this dependene is also transformedinto a power-law one as the impurity onentration in-reases.The quadrupole suseptibility �Q has the logarith-mi divergene / ln(TK=T ) in the Kondo regime. Itis experimentally determined from the nonlinear mag-neti suseptibility �3 [24℄. Correspondingly, �Q and�3 must exhibit the same rossover as the spei� heat.We emphasize that the rossover disussed here or-responds to the transition between the state with anearly integer valeny and the mixed-valene state.The existene of the FL resonanes generated bythe sattering of NFL exitations results in rossoversbetween the FL and NFL temperature dependeneswithin both the Kondo regime and the �X-ray edge�regime. The harateristi temperatures of theserossovers are T2 � r, where r are the widthsof the FL resonanes determined in Eqs. (4.6), (4.7).We note that the low-temperature transition to theFL state usually ours at T � �2=TK in the two-hannel Kondo model [3; 25℄. The maximum value ofthe linear spei� heat is equal to (C=T )max � TK=�2.Within the framework of our mehanism, it must be(C=T )max � �1r for r � �2=TK . It is possiblethat the additional small sale r enters the salingdependenes in the FL�NFL transition region. Theappearene of a new small energy sale is observed inthe low-temperature saling law of resistivity in [24℄.In the �X-ray edge� regions, the rossover at T � T2orresponds to the transition between the FL and NFLmixed-valene states.The temperature transitions between FL mixed-valene states of the di�erent origins were onsideredin [26℄.6.3. The above results are obtained for single-ionNFL e�ets. We now show that these e�ets an alsobe onsiderable in �onentrated� systems.The ground state of these systems signi�antly de-pends on the ompetition between the intersite intera-tion, i.e., the indiret exhange of the RKKY type forpseudospins, and the on-site Kondo sattering leadingto the sreening of the quadrupole impurity momentby ondution eletrons. The harateristi energy forthe two-hannel on-site Kondo sattering is determinedby expression (4.11). The harateristi energy sale ofthe RKKY interation is"RKKY � i�V 2ex"F � � i�K ; (6.1)where i is the onentration of the interating atoms.In onentrated systems, i.e., at i � 1, the energies "Kand "RKKY are suh that462
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