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PHYSICAL PROPERTIES OF SCALAR AND SPINOR FIELD STATESWITH THE RINDLER�MILNE (HYPERBOLIC) SYMMETRYV. I. Ritus *Tamm Department of Theoretial Physis, Lebedev Physial Institute, Russian Aademy of Sienes117924, Mosow, RussiaSubmitted 19 Marh 2001It is shown that right and left ombinations of the positive- and negative-frequeny hyperbolially symmetrisolutions of the Klein�Fok�Gordon equation possess an everywhere timelike urrent density vetor with a def-inite Lorentz-invariant sign of the harge density, and similar ombinations of solutions to the Dira equationpossess the energy-momentum tensor with everywhere real eigenvalues and a de�nite Lorentz-invariant sign ofthe energy density. These right and left modes, just as their �-frequeny omponents, are eigenfuntions ofthe Lorentz boost generator with the eigenvalue �. The sign of the harge (energy) density oinides with thesign of � for the right salar (spinor) modes and is opposite to it for the left modes. It is then reasonable toassume that the partiles (antipartiles) are preisely desribed by the right modes with � > 0 (� < 0) and bythe left modes with � < 0 (� > 0).PACS: 11.10.-z, 11.30.-j1. INTRODUCTIONThree omplete sets of solutions of the Klein�Fok�Gordon (KFG) and Dira equations are usually onsid-ered in relation to the Unruh e�et [1℄. One of thesesolution sets is the usual planewave set and the othertwo are the sets of �eld modes with a hyperboli sym-metry. The hyperbolially symmetri modes radiallydi�er from the planewave modes by singularities our-ring on the light one. As a result, the orrespondingharge and energy densities osillate with inreasingthe frequeny at Compton distanes near the one andbeome in�nite on the one. It is not surprising thatthe harge density of the salar �eld and the energydensity of the spinor �eld an have either sign near thesingularity. This means that these modes ontain bothpartiles and antipartiles near the light one. It isthen di�ult to distinguish the hyperbolially symmet-ri �eld state reated by external soures on the lightone from the state reated by the measuring devie it-self. Nevertheless, there exist right and left states withthe hyperboli symmetry for whih the harge densityof the salar �eld and the energy density of the spinor*E-mail: ritus�lpi.a.ru

�eld possess an everywhere de�nite Lorentz-invariantsign. 2. PLANE WAVES WITH DEFINITEMOMENTUM AND FREQUENCYFor salar plane waves'(�)p (x) = 1p2E exp [i(pz �Et)℄ ;E =pm2 + p2; x� = (t; z); (1)the urrent densities j(�)�p (x) = (�1; p=E) are timelikevetors. The signs of the harge densities oinside withthe frequeny signs. The energy-momentum tensor t��has the omponentst(�)00 ; t(�)33 ; t(�)03 = E; p2=E; �p; (2)with sign t(�)00 > 0.For spinor plane waves with de�nite momentum andfrequeny and with the double spin projetion s,�(�)ps (x) = '(�)p (x)pmu(�)s (�);�u(!)s (�)u(!0)s0 (�) = 2!Æ!!0Æss0 (3)242



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Physial properties of salar and spinor �eld : : :(the bispinors u(�)s (�) are given in (41) in the hiral rep-resentation in the transposed form), the urrent densi-ties j(�)�ps (x) = (1; p=E) are timelike vetors with pos-itive time omponents. The energy-momentum tensort�� orresponding to (3) has the omponentst(�)00 ; t(�)33 ; t(�)03 = �E; �p2=E; �p; (4)where sign t(�)00 ? 0:A superposition of the salar positive (negative)-frequeny plane waves, unlike the partial waves them-selves, does not possess a positive (negative) de�niteharge density in general. Thus, if�(x) = Z dp p'(+)p (x); (5)the harge density may not be everywhere positive be-ause of osillations of the integrand in the representa-tionj0(x) = i ��(x) $�t �(x) = ZZ dp dp0(E +E0)p2E2E0 �� exp fi [(p0 � p)z � (E0 �E)t℄g �pp0 : (6)However, the total harge of the paket is positive andtime-independent,Q = Z dzj0(x) = 2� Z dp jpj2: (7)Similarly, a superposition of the spinor positive(negative)-frequeny plane waves does not possess aneverywhere positive (negative) energy density in gen-eral. Thus, the positive-frequeny wave paket�s(x) = Z dp p�(+)ps (x) (8)has the energy densityt00(x) = 12 i�+s (x) $�t �s(x) == 12 ZZ dp dp0(E +E0)p2E2E0 �� exp fi [(p0 � p)z � (E0 �E)t℄g ��mu(+)+s (�)u(+)s (�0) �pp0 (9)that may not be everywhere positive, but the total en-ergy of the paket is positive and onserved,E = Z dz t00(x) = 2� Z dp jpj2E(p): (10)The negative harge (energy) density for a positive-frequeny salar (spinor) wave paket an our be-ause the paket is nonstationary (annot be repre-sented as exp(�iEt)f(z); E > 0). Expressions (6) and

(9) imply that the time-averaged values of the hargeand energy densities are equal to zero at any point inspae. This means that harge and energy ome fromin�nity and go to in�nity. In a �nite region of spae�z,they an therefore reah pereptible values �Q and �Eonly for a �nite time interval �t. In addition, eah ofthe quantities �Q(t) = Z�z dz j0(x)and �E(t) = Z�z dz t00(x)an also be negative. This indiates the appearane ofthe antipartile in this spae-time region.3. POSITIVE- AND NEGATIVE-FREQUENCYSCALAR WAVES WITH THE HYPERBOLICSYMMETRYThese salar waves are de�ned by the integral rep-resentation [2℄�(�)� (x) = 12 1Z�1 d� exp [i(pz �Et)� i��℄ ;p = m sh �; E = m h �; (11)where � = Arth(p=E) is the rapidity. In the right andleft setors of the Minkowski plane, these funtions anbe represented by the Madonald funtion of a real ar-gument, exp(���=2� i�v)Ki�(�);exp(���=2� i�v)Ki�(�);� = mpz2 � t2; v = Arth(t=z); (12)and in the future and past setors by the Madonaldfuntion of an imaginary argument,exp(�i�w)Ki�(�i�); exp(�i�w)Ki�(�i�);� = mpt2 � z2; w = Arth(z=t): (13)Using the Rindler metrids2 = dz02 � (az0)2dt02in the R and L setors and the Milne metrids2 = (at0)2dz02 � dt02in the F and P setors, we an write� = �mz0; v = �at0;243 2*



V. I. Ritus ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001� = �mt0; w = �az0;where z0 and t0 are spae and time oordinates in theRindler or Milne spaes, see [3℄. It is essential that �(�)�inludes plane waves with unlimited energy.The salar waves have the following properties.a) �(�)� (x) are analytial and �nite funtions inthe lower/upper half-planes of the omplex variablesx+ = t+ z and x� = t� z.b) The hyperboli symmetry implies that �(�)� areeigenfuntions of the Lorentz boost operator: under thetransformationz; t ! z0 = z � �tp1� �2 ; t0 = t� �zp1� �2 ; (14)the variables � and � remain invariant, while the ylivariables v and w go to v0 = v � � and w0 = w � �;where � = Arth� is the rapidity orresponding to theLorentz transformation veloity �. Then�(�)� (z; t) ! �(�)� (z0; t0) = ei���(�)� (z; t); (15)and therefore, ei�� is an eigenvalue of the Lorentz boostoperator e���v or e���w ; � is an eigenvalue of theLorentz boost generator i(t�z + z�t) = i�v or i�w andis interpreted as the frequeny for a Rindler observeror the momentum for a Milne observer.) �(+)� and �(�)� are related by omplex onjugationaompanied by hanging the sign of �,�(+)�� (x) = �(�)�� (x) ; �(�)�� (z; t) = �(�)� (�z; t) : (16)The omplex onjugation is equivalent to time re�e-tion. The last property is equivalent to spae re�etion.d) As a striking property of �(�)� , we note that al-though the urrent density vetors orresponding tothe plane wave omponents of �(�)� are everywheretimelike, the urrent densities j(�)�� orresponding to�(�)� themselves are not timelike vetors in the entireMinkowski spae: there are spae�time regions insidethe light one where the urrent densities are spaelike.The urrent density j� for the Minkowski observeris related to the urrent density J� for Rindler or Milneobservers (more exatly, for loal Lorentz observers mo-mentarily omoving to them) by the Lorentz transfor-mation j0 = J0 + �J3p1� �2 ; j3 = J3 + �J0p1� �2 : (17)For the Rindler observer in the R setor with� = t=z, we haveJ (�)0� = 2m�e���� K2i�(�) ; J (�)3 = 0: (18)

For the L setor, we must replae e��� ! �e���: Theurrent density vetor is timelike.For the Milne observer with � = z=t, we haveJ (�)0� = � �pt2 � z2 ;J (�)3� = � sign(t)2m�� jKi�(i�)j2: (19)The urrent density squared(j(�)� )2 = � �2t2 � z2 �1� 4�2�2 jKi�(i�)j4� (20)an have either sign when � = mpt2 � z2 � 1; but isnegative for � & 1:Thus, inside the light one at invariant distanesless than the Compton length from the one, there arespaetime regions where the urrent densities j(�)�� arespaelike vetors and the harge density j(+)0� ; � > 0;is negative, while j(�)0� ; � > 0; is positive. Beause theurrent densities are timelike vetors for the real parti-les, we an relate the spaelike urrent density j(+)� toantipartiles of the virtual pairs reated in regions witha very high energy onentration. The total harge ofthe �(+)� state on any spaelike surfae in Minkowskispae is positive and is equal to the harge on this sur-fae entirely situated in the P , L+R or F setor. Butthe harge density j0 for this state with � > 0 is pos-itive only in R setor, is negative in the L setor, andan have either sign in the P and F setors.Thus, unlike the sign of the total harge, the signof the harge density is not well de�ned by the fre-queny sign of the �(�)� states. This situation ours inexternal �eld problems due to a possible pair reationby the external �eld, or in problems of forming wavepakets with a high energy density. The appearane ofa negative harge density in the P , F , and L setorsfor the positive-frequeny state �(+)� is a onsequeneof the hyperboli symmetry of the state. The hyper-boli symmetry divides Minkowski spae into spaelikeand timelike subspaes with the Rindler and Milne met-ris. These metris have singularities on the light one(whih is their ommon boundary) and an be onsid-ered as a limiting ase of a global nonsingular smoothmetri of the spae with a nonzero external �eld nearthe light one. The pair reation by this �eld is thenpossible and the appearane of a negative harge den-sity in the positive-frequeny state �(+)� after swithingthe �eld o� an be understood.The states �(+)� and �(�)� possess respetively thepositive and negative total harge but do not possess aneverywhere positive and negative harge density. Thismeans that both the partile and the antipartile anbe deteted in any of these states.244



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Physial properties of salar and spinor �eld : : :4. RIGHT AND LEFT SCALAR MODESIn eah of the R and L setors, �(+)� and �(�)� di�eronly by fators. Aording to Unruh [1℄, one an �ndremarkable right and left ombinations�R� = ���(+)� +���(�)� ; �L� = ���(+)� +���(�)� ; (21)suh that �R� = 0 in the L setor and �L� = 0 in the Rsetor. In these ombinations,�� = ���e���; �� = e��=2p2 sh��;j��j2 � j��j2 = "� � sgn�: (22)For � < 0, we have psh�� = ipsh�j�j . The set�R;L� possesses the same hyperboli symmetry as theset �(�)� , but the striking property of these funtionsis that the orresponding urrent densities jR�� andjL�� are timelike vetors in the entire spaetime regionwhere they are nonzero. Lorentz transformation (17)again relates the urrent density j� for the Minkowskiobserver to the urrent density J� for the Rindler orMilne observers.For the Rindler observer with � = t=z, we haveJR0� = 4m� sh�j�j� jKi�(�)j2; JR3� = 0: (23)The urrent density vetor is then timelike.For the Milne observer with � = z=t, we haveJR;L0� = � sgn(�t)�pt2 � z2 ;JR;L3� = � sgn(�t)�2�pt2 � z2 sh�� jJi�(�)j2: (24)The Lorentz invariant urrent density squared is non-positive,(jR;L� )2 = � �2t2 � z2 �� �1� � ��sh���2 jJi�(�)j4� � 0; (25)for all real � and � > 0 [4℄. The urrent density vetoris timelike.It is interesting to note that in the R setor, the ur-rent density squared (jR� )2 tends to in�nity as � ! 0,but in the P or F setors, it is �nite at � = 0:(jR� )2j�!0 = � �2m21 + �2 + : : : (26)The state �R� (�L� ) desribes a wave with the hy-perboli symmetry and the harge density that is only

positive for � > 0 (� < 0) or only negative for � < 0(� > 0). We an then say that the respetive state de-sribes the partile or the antipartile. In other words,the state �L� desribes the partile or the antipartilewith the sign of � that is opposite to the sign used indesribing the �R� state [4℄.We note that omplex onjugation (time re�etion)of the funtions �R;L� is equivalent to hanging the signof �, while the spae re�etion is equivalent to hangingthe sign of � and replaing R� L :�R�� (x) = �R��(x); �L�� (x) = �L��(x);�R� (�z; t) = i�L��(z; t): (27)In the R setor, where � is interpreted as energy by theRindler observer and �L� = 0, partiles are desribed bythe funtions �R� ; � > 0, and antipartiles by the om-plex onjugate funtions, i.e., by �R� ; � < 0. In the For P setors, where � is interpreted as momentum bythe Milne observer, partiles with the momentum � aredesribed by the funtions �R� ; � > 0, and �L� ; � < 0,while antipartiles with same momenta are desribedby the omplex onjugate funtions �R�� and �L��.Completeness of the sets �(�)� and �R;L� is expressedby�(�)(x� x0) = �i 1Z�1 d�2�2�(�)� (x)�(�)�� (x0) == �i2�K0(mpy2) if y2 > 0;= 14 h"(y0)J0(mpjy2j)� iN0(mpjy2j)iif y2 < 0; y = x� x0; (28)�(y) =X� �(�)(y) == i 1Z�1 d�2�2 "� ��R� (x)�R�� (x0)� �L� (x)�L�� (x0)� == 12"(y0) �(�y2)J0(mpjy2j): (29)It is interesting to note that analytial propertiesof the funtions �R� and �L� in eah of the variables uand v are similar to the properties of the Pauli�Jordanfuntion �(x) in x2. Indeed, �(x) is also equal to thesum of the positive-frequeny and negative-frequenyfuntions �(�)(x); whih are boundary values of somefuntion F (x2) that is analytial in the omplex planeof x2 ut along the real negative semi-axis x2 < 0:�(�)(x) = �F (x2 � i" sgnx0); "! +0:245



V. I. Ritus ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001It follows that �(x) di�ers from zero only for x2 < 0and is equal to the jump of F (x2) on the ut.The solution of the Cauhy problem and the nor-malization ondition are given by�(y) = ZS d���(y � x) $�� �(x);i ZS d���(!)�� $�� �(!0)�0 = 2�2!Æ(�� �0)Æ!!0 ; (30)where S is a spaelike surfae in Minkowski spae orin any of the P , L + R, F setors. For the funtions�a� and �a0�0 ; a; a0 2 R;L, the right-hand side of thenormalization ondition is 2�2"�"aÆ(�� �0)Æaa0 , where"R = �"L = 1. In aordane with the normalizationondition, all the states have the same magnitude of theonserved total harge; the sign of the harge oinideswith the frequeny sign for the �(�)� states and with thesign of the produt "�"a for the �a� states, a 2 R;L:An arbitrary solution of the KFG equation an berepresented by the expansions�(x) = 1Z�1 dpp2E �� �p exp [i(pz �Et)℄ + d�p exp [i(pz +Et)℄� = (31)= 1Z�1 d�2�2 [a��(+)� (x) + b���(�)� (x)℄ == 1Z�1 d�2�2 [r��R� (x) + l���L� (x)℄: (32)As an example, we onsider�(x) = 1p2E1 exp [i(p1z �E1t)℄ ;p = Æ(p� p1); dp = 0:It then follows thata� = 2�p2E1 ei��1 ; b� = 0; �1 = Arth(p1=E1); (33)r� = "�� exp(��=2 + i��1)(pE1 sh��)� ;l�� = "�� exp(���=2 + i��1)(pE1 sh��)� : (34)

The spetra are given by (with g1 = 2�2=E1)jr�j2 = g1e2��e2�� � 1 ; � > 0; j0 > 0;g1e2�j�j � 1 ; � < 0; j0 < 0; (35)
jl�j2 = g1e2�� � 1 ; � > 0; j0 < 0;g1e2�j�je2�j�j � 1 ; � < 0; j0 > 0: (36)There are no reasons to assoiate these spetra withthermodynamial ones, espeially for a uniformly mov-ing Milne observer, for whom � is not the energy butthe momentum, and all the more so for a Minkowskiobserver, for whom � is an eigenvalue of the Lorentzboost generator and is odd under spae and time re-�etions. We have�(+)� = "�(����R� � ����L� );�(�)� = "�(����L� � ����R� ); (37)j��j2 = e2��e2�� � 1 ; j��j2 = 1e2�� � 1 ; � > 0; (38)j��j2 = 1e2�j�j�1 ; j��j2 = e2�j�je2�j�j�1 ; � < 0; (39)where j��=��j2 is the probability to �nd any nonzeronumber of pairs and j��j�2 is the probability to �nd nopairs in the state �(+)� ; � > 0, et, f. [5℄. This interpre-tation follows from the none-one-partile onsiderationof the wave equation solutions and does not requiretransition to the seondary quantization, although ison�rmed by it [6℄.We note that the modes �R;L� (x) with � = 0 are notde�ned by Eq. (21) beause the oe�ients �� and ��are in�nite at � = 0. The term with � = 0 in expan-sions (32) of an arbitrary solution of the KFG equationis nevertheless �nite and an be de�ned as the � ! 0limit ofr��R� + l���L� � a��(+)� + b���(�)� j�!0 == a0�(+)0 + b�0�(�)0 :A similar remark applies to the term with � = 0 inexpansion (29).246



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Physial properties of salar and spinor �eld : : :5. DIRAC EQUATION SOLUTIONS WITH THEHYPERBOLIC SYMMETRYSolutions  (�)�s of the Dira equation in the Rindleror Milne spae are related to solutions �(�)�s of this equa-tion in Minkowski spae by the Lorentz transformation (�)�s (x) = e���3=2�(�)�s (x); � = Arth�;�3 = diag(�3;��3); (40)where � = t=z or z=t for the Rindler or the Milne spaerespetively. We use the hiral representation�(�)�s (x) = 12 1Z�1 d� exp [i(pz �Et)� i��℄u(�)s (�);p = m sh �; E = m h �;~u(�)1 (�) = (e��=2; 0;�e��=2; 0);~u(�)�1 (�) = (0;�e��=2; 0; e��=2); (41)where s = �1 are the eigenvalues of the matrix�3 = diag(�3; �3):This representation de�nes the bispinor �(+)�s (x)(�(�)�s (x)) as an analytial funtion in the lower(upper) half-plane of the respetive omplex variablex+ = t+ z and x� = t� z.Bispinor omponents of  �s and ��s an be ex-pressed through the Madonald funtions with the in-dies i� � 1=2. For example, in the R and F setors, (�)�1 an be represented by the respetive expressionexp(���=2� i�=4� i�v)0BBBB� Ki��1=2(�)0�iKi�+1=2(�)0 1CCCCA and
exp(�i�w)0BBBB� Ki��1=2(�i�)0�Ki�+1=2(�i�)0 1CCCCA : (42)In other setors, these funtions an be obtained usingthe symmetry relations (�)�s (t; z) = �3 (�)�s (�t;�z) == �� (�)��s(t;�z) = �� (�)��s (�t; z); (43)where�3 =  �3 00 ��3 ! ; � =  0 11 0 ! : (44)

The funtions  (�)��1 with the opposite spin diretion anbe obtained from (42) by transposing the �rst row ele-ments with the fourth row and the third row elementswith the seond row.The orthogonality and normalization ondition for (�)�s isZS d�� � (!)�s (x)�(x) (!0)�0s0 (x) == 2�2m Æ!!0Æss0Æ(�� �0): (45)This involves an oriented surfae element d�� = n�d�,where d� is the invariant surfae measure and n� isthe timelike normal to the surfae. Beause  (�)�sare solutions of the ovariant Dira equation with theoordinate-dependent metri g�� and the matries �(see, e.g., � 3.8 in [3℄), the normalization ondition forthese funtions also ontains �(x) and it is onvenientto hoose the spaelike integration surfae S entirelyin one of the P , L+R or F subspaes with either theMilne or the Rindler metri. For a onstant-t0 surfaeS, the surfae element redues tod�0 = dz0p n0; n0 = p�g00and  = jg33j is the determinant of the spae metri.Beause the Rindler and Milne spaes and the or-responding metris only represent nonstandard oor-dinate forms of the �at spae-time, the solutions  (�)�smust be related to the solutions �(�)�s of the usual Diraequation in Minkowski spae by a Lorentz transforma-tion. These solutions satisfy the same symmetry rela-tions (43) and orthogonality and normalization ondi-tion (45) with the standard  matries. For a onstant-tsurfae S, the surfae element beomes d�0 = dz andthe right-hand side of (45) immediately follows whenone uses integral representation (41) for �(�)�s and per-forms the integration over z �rst.In representation (42), the funtions �(�)�s di�erfrom  (�)�s by the fators ev=2 and e�v=2 of the �rstand the third bispinor elements in the R setor and byew=2 and e�w=2 in the F setor.Under Lorentz transformation (14), the funtions�(�)�s go to�(�)�s (x0) = exp(i��� ��3=2)�(�)�s (x);� = Arth�; �3 = diag(�3;��3): (46)The eigenvalues are again independent of the fre-queny sign. The urrent densities j� and J� for theMinkowski and Rindler or Milne observers are againrelated by (17).247



V. I. Ritus ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001For the Rindler observer with � = t=z, we have inthe R setor:J (�)0� = 2e���jKi��1=2(�)j2; J (�)3� = 0: (47)For the L setor, we must replae e��� ! e���.For the Milne observer with � = z=t, we haveJ (�)0� = jKi��1=2(i�)j2 + jKi�+1=2(i�)j2;J (�)3� = �jKi��1=2(i�)j2 � jKi�+1=2(i�)j2: (48)The urrent density is a timelike vetor and its timeomponent is positive (a well known fat for the spinor�eld). But the striking feature of �(�)�s is that the eigen-values of the orresponding energy-momentum tensort(�)�� are not everywhere real. There are some plaes in-side the light one where these eigenvalues are omplexonjugate.The energy-momentum tensors t�� and T�� for theMinkowski and Rindler or Milne observers are relatedby the Lorentz transformationt00 = 2(T00 � 2�T03 + �2T33);t33 = 2(T33 � 2�T03 + �2T00);t03 = 2[T03(1 + �2)� �T00 � �T33℄; = (1� �2)�1=2: (49)For the Rindler observer with � = t=z in the R setor,we haveT (�)00 ; T (�)33 ; T (�)03 = 2m�e���� ��0B�jKi��1=2(�)j2; 1Z� d�� jKi��1=2(�)j2; 01CA : (50)For the L setor, we replae e��� ! �e���:For the Milne observer with � = z=t, we haveT (�)00 = �m�� 0� 1Z� d�� A(�) + ��1A ;T (�)33 = �m�� A(�); T (�)03 = m���2 ;A(�) = jKi�+1=2(i�)j2 � jKi��1=2(i�)j2: (51)The eigenvalues (invariants) of the energy-momen-tum tensor,�1;2 = 12(T33 � T00)�r14(T00 + T33)2 � T 203; (52)are real and have opposite signs in the Rindler spae,while in the Milne spae, they are omplex onjugate

for � � 1, when the momentum density (energy �ux)is greater than half the sum of the energy density andthe pressure:�1;2(�) � R(�)� � i �m��2 h�� + : : : ; � � 1: (53)As � ! 0, R(�) osillates with a �nite amplitude andan inreasing frequeny.6. RIGHT AND LEFT SPINOR MODESIn the spinor ase, the right and left superpositionsof the positive- and negative-frequeny modes are de-�ned as in the salar ase, but the Dira salar produtleads to di�erent Bogoliubov oe�ients,�R�s = ���(+)�s + ���(�)�s ;�L�s = ���(+)�s + ���(�)�s ;�� = i��e���; �� = e��=2p2 h��;j��j2 + j��j2 = 1: (54)Evidently, the right and left modes satisfy the orthog-onality and normalization onditionZS d�� ��a�s(x)��a0�0s0(x) = 2�2m Æaa0Æss0Æ(�� �0); (55)where a; a0 2 L;R and S is a spaelike surfae as in(30) or (45).The modes �(�)�s and �L;R�s form two omplete setsof Dira equation solutions and any other solution �(x)an be deomposed into the orresponding integrals�(x) = 1Z�1 d�2�2 ha�s�(+)�s (x) + b��s�(�)�s (x)i == 1Z�1 d�2�2 �r�s�R�s(x) + l��s�L�s(x)� ; (56)where summation over s is assumed.For example, for the positive-frequeny plane wavesolution with s = 1;�(+)p11(x) = 1p2E1 exp [i(p1z �E1t)℄u(+)1 (�1);�1 = Arth p1E1 ; (57)we have a�1 = 2�p2E1 ei��1 ; b��1 = 0; (58)248



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Physial properties of salar and spinor �eld : : :r�1 = � exp[��=2 + i��1℄pE1 h�� ;l��1 = �i� exp[���=2 + i��1℄pE1 h�� : (59)For the spetra of the right and left modes, we thenobtain (with g1 = 2�2=E1)jr�1j2 = g1e2��e2�� + 1 ; jl�1j2 = g1e2�� + 1 : (60)For the negative-frequeny plane wave solution, theoe�ients in expansions (56) area�1 = 0; b��1 = 2�p2E1 e�i��1 ; (61)r�1 = �i� exp[���=2� i��1℄pE1 h�� ;l��1 = � exp[��=2� i��1℄pE1 h�� : (62)The spetra for the left and right modes then oinidewith the respetive expressions in (60).Although these spetra resemble the thermal distri-bution of the Fermi-partile gas, this similarity seemsto be arti�ial for the same reasons as in the salarase. Moreover, deompositions (56) of the plane wavein the hyperboli modes �(�)�s or �R;L�s and the inverseexpansions of these modes in plane waves in Eqs. (41)and (54) on�rm the ompleteness of these three setsand the absene of the loss of information or purityof states. We see that the hyperboli symmetry and ade�nite frequeny sign preserve good analytial proper-ties of the modes but lead to an inde�nite sign of theirharge density or energy density.The �thermal� spetra appear when one preservesthe hyperboli symmetry of modes and requires thede�niteness of the harge density or energy densitysigns in the entire Minkowski spae. This an only beahieved at the expense of loosing good analytial prop-erties of the modes and essentially onsists in the tran-sition from the boundary value of an analytial funtionon the ut to its jump on this ut. We have�(+)�s = ����R�s+����L�s; �(�)�s = ����R�s+����L�s; (63)j��j2 = e2��e2�� + 1 ; j��j2 = 1e2�� + 1 ; (64)where j��j2 and j��j2 are the respetive probabilitiesto �nd no pairs (one pair) and one pair (no pairs) inthe state �(+)�s ; � > 0 (� < 0): This interpretation fol-lows from the none-one-partile analysis of wave equa-tion solutions and does not require the transition to

the seondary quantization, although is on�rmed byit [5; 6℄.For the Rindler observer with � = t=z, we haveTR00; TR33; TR03 = 4m� h��� ��0B�jKi��1=2(�)j2; 1Z� d�� jKi��1=2(�)j2; 01CA (65)and for the Milne observer with � = z=t,TR00 = �m��2 0�1 + ��h�� �Z0 d�� jJi�+1=2(�)j21A ;TR33 = �m��2 �1� ��h�� jJi�+1=2(�)j2� ;TR03 = �m��2 : (66)The energy density is greater than the pressure. As� ! 0, we haveTR00 � TR33 � TR03 = �m�=�2similarly to the energy-momentum tensor of eletro-magneti waves.It is interesting to note that in the R setor, theeigenvalues �R1;2 tend to in�nity as � ! 0, while in theP or F setors, they are �nite at � = 0,�R1;2j�!0 = � 2�m�1 + 4�2 � 2�m�1 + 4�2r1 + 4�29 + 4�2 + : : : (67)The sign of t00 is relativistially invariant in onlytwo ases:1) the eigenvalues �1 and �2 are real and have op-posite signs, �1�2 = T 203 � T00T33 < 0; (68)2) the eigenvalues are real, have the same sign, andthe energy density is greater than the pressure in mag-nitude: (�1 � �2)2 = (T00 + T33)2 � 4T 203 > 0;�1�2 > 0; sign(T 200 � T 233) > 0: (69)We note that the sign of (t200 � t233) is relativis-tially invariant only if �1 and �2 are real, i.e., if(�1 ��2)2 > 0: Then, if �1;2 are omplex or if they arereal and have the same sign, but sgn(T 200�T 233) < 0; thesign of t00 an be hanged by a Lorentz transformation.The tensor tR�� possesses the �rst property in the Rsetor and either the �rst or the seond property de-pending on the value of � in the F and P setors. In249



V. I. Ritus ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001the F and P setors, the eigenvalues �R1 and �R2 arereal beause of the inequality�Z0 d�� jJi�+1=2(�)j2 � jJi�+1=2(�)j2 > 0: (70)Inequalities (70) and (25) that are essential in this pa-per were not found in the mathematial literature.7. CONCLUSIONHyperboli symmetry of salar and spinor �eldstates requires plane waves with unlimited frequeniesto partiipate in the orresponding superpositions. Forsalar �eld, �eld states with the quantum number �that are formed as superpositions and are analyti inthe oordinates x� = t � z do not possess an every-where timelike urrent density, while for the spinor�eld, they do not possess the energy-momentum ten-sor with everywhere real eigenvalues. This means thatthese states desribe both partiles and antipartiles.Nevertheless, it is possible to onstrut hyperboliallysymmetri right and left states that are not analyti inx� but possess an everywhere timelike urrent densityand the energy-momentum tensor with everywhere realeigenvalues. Preisely these states desribe the partileor the antipartile.This implies that the harge densities jR0� and JR0�for the salar partile (antipartile) states �R� and theenergy densities tR�00 and TR�00 for the spinor partile(antipartile) states �R�s are everywhere positive (neg-ative) for � > 0 (� < 0) and are equal to zero in theL setor. This assertion remains valid after replaingR� L and hanging the sign of �.It is known [7℄ that if a wave paket is formed fromplane waves and is loalized in a region of the orderof or less than the Compton wave length, it must on-tain both positive and negative frequenies. The su-perpositions �(+)� and �(+)�s do not ontradit this as-sertion beause eah of them is loalized in a region ofthe order of the Compton length only for jtj . m�1,while for jtj � m�1, eah superposition onsists of twowaves that propagate along the light one boundariesz = �t, exponentially deaying outside the one for� = mpz2 � t2 � 1 and osillating and falling o� onlyas ��1 inside the one for � = mpt2 � z2 � 1. There-fore, these two waves remain oherently onneted in asingle wave paket with the width � 2jtj.In the well-known review [8℄, Pauli made the follow-ing remark about energy density in the Dira eletron�eld theory: �The onept of the energy density seems

to be more problemati in this theory than that of thevolume integrated total energy. The energy density isno longer positive de�nite for the theory of holes, inontradistintion to the ase for the theories disussedin �� 1 and 2. This is also shown in the  number theory;even if limitation is made to wave pakets in whih thepartial waves all have the same sign of the frequeny inthe phase exp i(k �x�k0x0) the energy density (as dis-tinguished from the total energy) annot be made pos-itive de�nite.� I do not know whether Pauli had someexample of suh a wave paket. In any ase, eah of themodes �(�)�s an serve as a spei� illustration to his re-mark. The energy density for eah of these modes anaept both signs near the light one owing to singu-larities on the one related to the hyperboli symmetryof the modes. On the other hand, eah of the modes�R;L�s is an example of suh a superposition of positive-and negative-frequeny spinor plane waves with a sign-de�nite energy density in the entire Minkowski spae.It is interesting that the salar eigenfuntions ofthe Lorentz boost operator appear in the analysis ofthe photon wave funtion in loalized near the photonpropagation plane 3 + 1-spae [9℄. However, a salarprodut di�erent from (30) is used in this analysis.I thank M. A. Soloviev for useful remarks. Thework was partly supported by the Russian Founda-tion for Basi Researh (grants � 00-15-96566 and99-02-17916a). APPENDIXThe integral JR��0 de�ned in [4℄ by Eq. (14), beingthe integral of a total di�erential, does not atually de-pend on the form of the spaelike surfae over whih itextends, but depends only on the parameters mt and� �xing the oordinates of the left boundary of thissurfae. Namely, the z oordinate of the left bound-ary is equal to pt2 + �2=m2, while the right bound-ary is at in�nity. When the left boundary tends tozero at a �xed ratio mt=�, we obtain the result (20)from [4℄ without any unertainties related to the fatorexp [i(�� �0)Arsh(mt=�)℄, whih eventually turns into1 at �xed mt=� and � = �0. Thus, the normalizationintegral (20) in [4℄ is orret for any spaelike surfaelying in the R setor with the left boundary at zero,rather than at z = jtj as was assumed in [4℄.Similarly, expression (28) for the normalization in-tegral JL��0 in [4℄ is orret for any spaelike surfaelying in the L setor with the right boundary at zero,rather than at z = �jtj as was assumed in [4℄.The integral JF��0 de�ned by Eqs. (22) and (23) in [4℄250



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Physial properties of salar and spinor �eld : : :is justi�ed for any spaelike surfae lying inside theF setor with the boundaries at the points de�ned by�xed values of mt and � = mpt2 � z2. The z oor-dinates of the left and right boundaries of this surfaeare then given by z1;2 = �pt2 � �2=m2. As t tendsto in�nity at �xed � , we obtain the result (25) from [4℄without any ambiguity related to the fator inside theparentheses in Eq. (23) in [4℄, whih turns into � at�xed � and � = �0. Thus, normalization integral (25)in [4℄ is orret for any spaelike integration surfaelying in the F setor and having the boundaries atz1;2 = �1 but not at z1;2 = �jtj, as was understoodin [4℄. A similar omment applies to the integral JP��0 .On any spaelike surfae entirely lying in the P ,L + R or F setors with the left and right boundariesat in�nities, eah of the states �(�)� has the same on-served total hargeQ(�)� = Q(�)�P = Q(�)�L +Q(�)�R = Q(�)�F ? 0: (71)Therefore, the fator 1/2 in the right-hand sides ofEqs. (34) and (35) in [4℄ must be replaed by 1.
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