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Large entropy fluctuations in the equilibrium steady state of classical mechanics are studied in extensive numer-
ical experiments in a simple strongly chaotic Hamiltonian model with two degrees of freedom described by the
modified Arnold cat map. The rise and fall of a large separated fluctuation is shown to be described by the
(regular and stable) «macroscopic» kinetics, both fast (ballistic) and slow (diffusive). We abandon a vague
problem of the «appropriate» initial conditions by observing (in a long run) a spontaneous birth and death of
arbitrarily big fluctuations for any initial state of our dynamical model. Statistics of the infinite chain of fluctu-
ations similar to the Poincaré recurrences is shown to be Poissonian. A simple empirical relation for the mean
period between the fluctuations (the Poincaré «cycle») is found and confirmed in numerical experiments. We
propose a new representation of the entropy via the variance of only a few trajectories («particles») that greatly
facilitates the computation and at the same time is sufficiently accurate for big fluctuations. The relation of our
results to long-standing debates over the statistical «irreversibility» and the «time arrow» is briefly discussed.

PACS: 05.45.Gg, 05.40.-a

1. INTRODUCTION: MACROSCOPIC VS.
MICROSCOPIC FLUCTUATIONS

Fluctuations are an inseparable part of statistical
This is well known since Boltzmann. What is
apparently less known are the peculiar properties of
rare big fluctuations (BF) that are different from, and
even in a sense opposite to the properties of small sta-
tionary fluctuations. In this paper, we consider the
simplest type of chaotic dynamical systems, namely a
Hamiltonian system with a finite number of the degrees
of freedom that admits the (stable) statistical equilib-
rium (SE). This class of dynamical models is still pop-
ular (since Boltzmann!) in debates over the dynamical
foundations of statistical mechanics (see, e.g., «Round
Table on Irreversibility» in [1], and [2]).

laws.

A sufficiently simple picture of BFs in such systems
is well understood by now, although not yet well known.
To Boltzmann, this picture was the basis of his fluctu-
ation hypothesis for our Universe. It is also well under-
stood that this hypothesis is totally incompatible with
the present structure of the Universe because it would
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immediately imply the notorious «heat death» (see,
e.g., [3]). For this reason, one may even term such sys-
tems the heat death models. Nevertheless, they can be
and actually are widely used in describing and studying
local statistical processes in thermodynamically closed
systems. The latter term means the absence of any
heat exchange with the environment. We note, how-
ever, that under conditions of the exponential instabil-
ity of motion, which are typical of chaotic systems, the
only dynamically closed system would be the «entire
Universey. In particular, this excludes the hypotheti-
cal «velocity reversal» that also is popular in debates
over «irreversibility» since Loschmidt (for a discussion,
see, e.g., [4]).

In any case, dynamical models with the SE do not
tell us the whole story of either the Universe or even
a typical macroscopic process therein. The principal
solution of this problem, unknown to Boltzmann, is
quite clear by now: the «equilibrium-free» models are
required. Various classes of such models are intensively
studied today. Moreover, the celebrated cosmic mi-
crowave background tells us that our Universe was born
already in the state of a heat death, which, however,
became unstable due to the well-known Jeans gravi-
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tational instability [5]. This resulted in developing a
rich variety of collective processes, or synergetics, the
term recently introduced or, better to say, put in use
by Haken [6]. The most important peculiarity of such a
collective instability is that the total overall relaxation
(to somewhere?) with the ever increasing total entropy
is accompanied by an also increasing phase space inho-
mogeneity of the system, particularly with respect to
the temperature. In other words, the entire system and
its local parts become more and more nonequilibrium
to the extent of the birth of a secondary dynamics that
can be, and sometimes is as perfect as, e.g., the celestial
mechanics (see, e.g., [4, 7, 8] for a general discussion).

We stress that all these inhomogeneous nonequilib-
rium structures are not BF-like in the SE but are a
result of a regular collective instability; therefore, they
are immediately formed under a certain condition. In
addition, they are typically dissipative structures ac-
cording to Prigogine [9] due to the energy and entropy
exchange with the infinite environment. The latter is
the most important feature of such processes, and at
the same time the main difficulty in studying the dy-
namics of those models both theoretically and in nu-
merical experiments, which are so much simpler for SE
systems.

In the latter case, a BF consists of two symmetric
parts: the rise of a fluctuation followed by its return,
or relaxation, back to the SE (see Figs. 1 and 2). Both
parts are described by the same kinetic (e.g., diffusion)
equation, the only difference being in the sign of time.
This relates the time-symmetric dynamical equations
to the time-antisymmetric kinetic (but not statistical!)
equations. The principal difference between the two
types of equations, sometimes overlooked, is that the
kinetic equations are generally understood as describ-
ing the relaxation only, i.e., the increase of the entropy
in a closed system, whereas in fact they do so (at least,
in the SE) for the rise of BF as well, i.e., for the entropy
decrease. All this was qualitatively known already to
Boltzmann [10]. The first simple example of a symmet-
ric BF was considered by Schrédinger [11]. A rigorous
mathematical theorem for the diffusive (slow) kinetics
was proved by Kolmogorov in 1937 in the paper en-
titled «Zur Umkehrbarkeit der statistischen Naturge-
setze» («Concerning reversibility of statistical laws in
Nature») [12] (see also [13]). Regrettably, the princi-
pal Kolmogorov theorem still remains unknown to both
the participants of heated debates over «irreversibil-
ity» and the physicists actually studying such BFs (see,
e.g., [14]).

At present, there exists a well developed ergodic
theory of dynamical systems (see, e.g., [15]). In particu-
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lar, it proves that the relaxation (correlation decay, or
mixing) eventually proceeds in both directions of time
for almost any initial conditions in a chaotic dynami-
cal system. However, the relaxation must not always
be monotonic, which simply means a BF on the way,
depending on the initial conditions. To eliminate this
apparently confusing (to many) «freedomy», we take a
different approach to the problem: instead of discussing
the «true» initial conditions and/or a «necessary» re-
striction of those, we start our numerical experiments
at arbitrary initial conditions (most likely correspond-
ing to the SE) and observe what the dynamics and
statistics of BF are like. This approach is obviously
based on the fundamental hypothesis that all the sta-
tistical laws are contained in, and can be principally de-
rived from the underlying fundamental (Hamiltonian)
dynamics. To the best of our knowledge, there is as
yet no contradiction to this principal hypothesis. We
note, however, that this approach can be directly ap-
plied to fluctuations in finite systems with a statistical
equilibrium only (see [4] and [16] for a discussion). In
these and only these systems, infinitely many BFs grow
up spontaneously, independently of the initial condi-
tions of the motion. This is similar to the well-known
Poincaré recurrences (see Sec. 4).

In spite of essential restrictions, simple SE mod-
els allow us to better understand the mechanism and
the role of BF in statistical physics. In addition to
the removal of the vague problem of initial conditions,
these models are very helpful in clarifying the relation
between macroscopic and microscopic descriptions of
chaotic systems. In particular, a spontaneous rise of a
BF out of the SE is a macroscopic event as well as is
its subsequent relaxation back to the SE, even in a sys-
tem with a few degrees of freedom. Similarly to other
macroscopic processes, BFs are not only perfectly reg-
ular by themselves but also surprisingly stable against
any perturbations, either regular or chaotic. Moreover,
the perturbations must not be small. At a first glance,
this looks very strange in a chaotic, highly unstable
dynamics. The resolution of this apparent paradox is
that the dynamical instability of motion affects the BF
instant of time only. The BF evolution is determined
by the kinetics independently of its mechanism, from a
purely dynamical one, as in model (2.2) used in this pa-
per, to a completely noisy (stochastic) one. As a mat-
ter of fact, the fundamental Kolmogorov theorem [12] is
precisely related to the latter case but remains valid in
a much more general situation. A surprising stability of
BFs is similar to the less known concept of robustness
for the Anosov (strongly chaotic) systems [17] whose
trajectories are only slightly deformed under a small
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perturbation (see [4] for a discussion).

In this paper, we consider a particular type of BFs
characterized by a large concentration of «particles»
in a small phase space domain of the dynamical sys-
tem. In other words, «our» fluctuations are localized
in phase space and separated in time. A more accurate
definition of these fluctuations is given in Sec. 3 (see
Eq. (3.6)). The same fluctuations in a stochastic model
(with noise) were studied in detail in [14]. Obviously,
there exist many other fluctuations with their own pe-
culiarities (see, e.g., [18]). The primary object of our
studies is the macroscopic kinetics of big fluctuations
in the background of small stationary microscopic fluc-
tuations. A brief outline of our results was presented
in [16].

2. A HAMILTONIAN MODEL: MOST SIMPLE
BUT STRONGLY CHAOTIC

The systems with a SE can be described in terms of
models that are very simple as regards both the theo-
retical analysis and numerical experiments (of which
the latter are even more important for us). In the
present paper, we use one of the most simple and pop-
ular models specified by the so-called Arnold cat map
(see [19, 20])

+ 2 mod 1,
+p mod1

S~

b (2.1)

that is a linear canonical map on a unit torus. It has no
parameters and is chaotic and even ergodic. The rate
of the local exponential instability, the Lyapunov ex-
ponent A = In (3/2 ++/5/2) = 0.96, implies a fast (bal-
listic) kinetics with the relaxation time ¢, ~ 1/A ~ 1.
Throughout the paper, ¢t denotes the time in the map
iterations.
A minor modification of this map

+2—-1/2 mod C,

p=r (2.2)
T=x+p—C/2 modl,

where C' is a circumference of the phase space torus
allows studying both the fast (exponential) ballistic
kinetics (for ¢ = 1) and the slow (diffusive) relax-
ation in p (for C' > 1) with the characteristic time
t, ~ C?/4D, > 1, where D, = 1/12 is the diffusion
rate in p. In contrast to the slow diffusion in p, the re-
laxation time in 2 does not depend on C' (¢, ~ 1), and
the subsequent values of x are therefore practically un-
correlated. Map (2.2) has the (unstable) fixed point at
x=x9=1/2and p=py =C/2.
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A convenient characteristic of the BF size is the rms
volume (area) in the 2D phase space (x, p)

o(t) = op(t)os(t)

occupied by a group of N trajectories (particles). In
the ergodic motion at equilibrium, o = 0o = C/12. Be-
cause of a severe restriction to small N < 10 in the nu-
merical experiments (see below), we have to use simple
(average) characteristics like (2.3) only. On the other
hand, these are precisely the macroscopic variables in
which we are interested.

In what follows, we also restrict ourselves to a par-
ticular case of BFs with the fixed prescribed position
in the phase space,

(2.3)

C
= = — = = —. 24
Tp=w0= 50 P =P = (2.4)
The variance of the phase space size v = 0% = 0207 is
then determined by
op = (*) =g, o= (%)~} (2.5)

where the brackets (...) denote averaging over N
trajectories. In the ergodic motion at equilibrium,
v =wvggp = C?/12% In what follows, we use the dimen-
sionless measure © = v/vggp — v and omit the tilde. In
the diffusive approximation of the kinetic equation, the
variable v(t) is especially convenient because it varies
proportionally to time. Moreover, v — v, in this case
because of a quick relaxation v, — 1 in z.

In all the advantages of v, the relation of this vari-
able to the fundamental concept of the entropy is highly
desirable. The standard definition of the entropy, which
can be traced back to Boltzmann, reads

S = —(lnf(x,p)) + SO', (26)

where f(x,p) is a coarse-grained distribution function,
or the phase-space density, and Sy an arbitrary con-
stant to be fixed later. We note that the distribution
calculated from any finite number of trajectories is al-
ways a coarse-grained one. However, the direct appli-
cation of Eq. (2.6) requires too many trajectories, espe-
cially for a small-size BF. Nevertheless, precisely in the
latter case, which is the main problem under consider-
ation, we have found a simple approximate relation

Loty

~ —Inw
that gives at least a rough estimate for the entropy evo-

S(t
0~
lution [16]. Moreover, if the distribution is Gaussian,

2.7)

_exp (—=(p—po)?/2v)

f(a,p) = f(p) (2.8)

27v
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(v) = (vpva) of the regular part of BFs, or the kinetic subdynamics
' Ny ' according to Balescu (see [21] and references therein),
equilibrium R R .
1 : - from the stationary fluctuations. The separation was
----- ) - il done by the plain averaging of the individual v; values
anti- % Q% diffusion C_ i
1075 L diffusion % o® } (¢ =1,...,n) over all the n BFs collected in a run.
% ot The size of the BF chosen for the subsequent ana-
qg 2‘ lysis is fixed by the condition that
107101 e g .
&% o®
‘%‘ U(t) < vy (31)
1091 o 4
. ballistics . at some time instant ¢ ~ t;, the moment of a BF. Here,
—20 -10 0 10 20 a prescribed value v, is the main input parameter of
t—t the run. This condition actually determines the border
of the entire fluctuation domain (FD) as 0 < v < vp.
Fig.1. Mixed kinetics for two big fluctuations of dif- (FD) b

ferent sizes. Filled/open circles show the time de-
pendence of the mean variance (v(¢t — ¢;)) around
the BF maximum at ¢ = ¢;; the upper horizon-
tal straight line is the equilibrium and the lower line
indicates the empirical value of the dynamical scale
vg = 0.015, Eq. (3.4), with the parameter F; ~ 1/3.
Two oblique straight lines represent the expected fast
kinetics, Eq. (3.3), and two solid curves do so for
the initial diffusive kinetics, Eq. (3.5). The respec-
tive run parameters and results are given by C = 15,
N =1 v = 3.9-1071/6.25 - 1071 (v, = vp),
v(0) 1.96 - 1071/3.1 - 10713, n = 1971/4459,
w = 500. The average period between successive fluc-
tuations is (P) &~ 1.4 - 107/3.5 - 10° iterations

estimate (2.7) becomes exact because it is directly de-
rived from the definition of the entropy in Eq. (2.6).
The two relations for the entropy are compared in the
end of Sec. 3 for a typical BF.

A great advantage of (2.7) is that the computation
of S does not require very many trajectories as does the
distribution function. In fact, even a single trajectory
is sufficient, as is demonstrated by Fig. 1 in [16] and
Fig. 1 in this paper!

A finite number of trajectories used for calculating
the variance v is similar to a coarse-grained distribu-
tion, as required in relation (2.6), but with a free bin
size that can be arbitrarily small.

We can now turn to the numerical experiments.

3. MACROSCOPIC KINETICS: COMPLETE,
REGULAR, AND STABLE

In this section, we consider the regular BF kinet-
ics. The data were obtained by simultaneously run-
ning N trajectories for a very long time in order to
collect sufficiently many BFs for a reliable separation
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The event of entering the FD is the macroscopic
«cause» of the BF whose obvious «effect» is the subse-
quent relaxation to the equilibrium. However, the main
point of our study is that the second «effect» of the
same «cause» was preceding the rise of the BF in an
apparent contradiction with the «causality principle»
(for a discussion, see [16] and Sec. 4 below). In any
event, the second effect requires the permanent mem-
ory of trajectory segments within some time window
w, which is another important input parameter of the
run.

The exact procedure of data processing during the
run is as follows. Starting from arbitrary (random) ini-
tial conditions, selection rule (3.1) is checked at each
iteration. Suppose that it is satisfied at some instance
tin when the bundle of trajectories enters the FD. In
the first approximation, we could consider it as the fluc-
tuation maximum (or the variance minimum) ¢; = t;,,
where the subscript i is the number of the current fluc-
tuation in a run. However, this simple procedure would
cause an asymmetry with respect to t = t;. A better
choice would be given by the rule t; = (tin + tout)/2,
where t,,; is the time instance of the exit from the FD.
Instead, we have accepted a more complicated proce-
dure that better restores the true BF symmetry, as we
hope. Starting from the moment ¢;,, we search for
the minimum of v(¢) inside a sufficiently large interval
tin < t < tin +w. If a minimum is found at some
t = tmin, we check that it also is the minimum in-
side the next interval t,,;n < t < tmin + w. If this is
the case, we identify this minimum with the BF top
and set t; = t;nin; otherwise, we set t,,;, equal to the
time of a better minimum and repeat the last step.
Obviously, the parameter w must be small compared
to (P), the mean period of the BF, but sufficiently
long for the trajectory to leave FD (3.1). Typically,
we chose w > C?, the total diffusion time. After fixing
the current ¢; value, the computation within the inter-
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val t; < t < t; + w was completed, and only then the
search for the next BF is continued.

As mentioned above, there are two quite simple
limiting cases of generally very complicated kinetics,
namely the fast (ballistic) and the slow (diffusive) li-
mits. An example of both in one run for N =1 (!)
is presented in Fig. 1 for two fluctuations of different
sizes. In this case, general condition (3.1) was checked
separately for p and z,

Up(t) <wvpy and vy (t) < vgp, (3.2)

with vy = v ~ 107° and v, = Upp Vg ~ 1010,
The fast part of kinetics is approximately described
by

v(7) & v(0) exp (4A1), (3.3)

where 7 = t — t;, A is the Lyapunov exponent (see
Sec. 2), and v(0) ~ 107! is the minimal variance av-
eraged over all n fluctuations observed in the run. We
note that the latter value is considerably smaller than
the border value v, ~ 10719 This is because of the
penetration of trajectories into the FD. Interestingly,
the ratio vy /v(0) = 2000 is the same for both runs in
Fig. 1.

A surprisingly sharp crossover to the diffusive kine-
tics, clearly seen in Fig. 1, is related to the dynamical
scale of the diffusion corresponding to a certain size
vg of the increasing variance at which the exponen-
tial growth stops. Roughly, it occurs at the time in-
stance 7 = 74, when |z — x¢| ~ |p — po| ~ 1/2, whence
vza ~ 12/4 = 3 and vpy ~ 3/C?. We can therefore
characterize the dynamical scale as

9F,
v(T4) = vg = FqUpqUpd = C’—; ,
(3.4)
_ In(va/v(0))
4\ '

where F, is an empirical factor and 74 is found from
Eq. (3.3). The data in Fig. 1 imply the dynamical
scale vy & 0.015 independently of v, which gives the
empirical factor Fy &~ 1/3.

In the diffusion region (v > v,4), the initial kinetics
is described by a simple relation for the free diffusion
(see Sec. 2),

==

2
which is also shown in Fig. 1. It involves two correc-
tions, 75 and vy, due to the exponential ballistic ki-
netics. The first one (with opposite signs for the two
symmetric parts of the fluctuation) takes the «lost»
time after (or prior to) the anti-diffusion (diffusion) into

o(T) ~ +vg, T4<TLC? (3.5)
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equilibrium

anti-diffusion diffusion

0
—10000

0 5000 10000
t—1t;

T
—5000

Fig.2. The same as in Fig. 1 for a typical diffusive ki-
netics (anti-diffusion/diffusion): the solid curve shows
the average over all n = 20259 fluctuations in a run
and the wiggle line is the same for the first 28 fluc-
tuations. Two oblique straight lines represent the ex-
pected initial diffusive kinetics, Eq. (3.5), with 7¢ = 0
and the empirical value vfiemp) = 0.045, while the the-
ory in (3.15) gives vg = 0.02. Other run parame-
ters/results are given by C' = 50, N = 5, v, = 0.0256,
w =10, (P) ~ 7.7-10°/8.7-10°, and B = 306/348;
(P)/w =~ T7/87

account, while the second correction describes a finite

fluctuation size at the crossover from (to) the diffusion.

The mean empirical value 7, = 7 used in Fig. 1 is close

to the value 74 = 6.5 found from Eq. (3.4) with another

empirical quantity vg = 0.015.
The large ratio

(P)

— > 1

B:C2

(3.6)
of the mean fluctuation period (P) to the characteris-
tic time of the diffusion relaxation (see Eq. (3.5)) is the
definition of a big fluctuation. It guarantees the time
separation of successive fluctuations.

We now turn to the main subject of our study, the
purely diffusive kinetics of BFs. For this, we first elimi-
nate the z-statistics by excluding v, from selection con-
dition (3.1), which now reads

v(t) = vp < vpp = V. (3.7

Next, the variance v, must now exceed the new dynam-
ical border,

12

c?

1 (see Eq. (3.4) and

Vp > Vg = Vpa & fp (3.8)

with some empirical factor f, ~
the discussion below).
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Fig.3. The histogram of integrated distribution (3.9)
for the data in Fig. 2. Each circle shows the num-
ber of periods P,, > mAP, for m = 0,1,....
Py = n, AP = 1.5.10° Ppin/w = 1.0027;

Praz/(P) = 12.63; (P) = 765084. The straight line
is the expected distribution n exp (—P/(P))

A typical example of a diffusive BF is shown in
Fig. 2. Both the regular macroscopic kinetics of the
anti-diffusion/diffusion and the irregular fluctuations
around are clearly seen. We note that their size is
rapidly decreasing toward the BF maximum. It may
even seem that the motion becomes regular in that re-
gion, hence the term «optimal fluctuational path» [14].
In fact, the motion remains diffusive down to the dy-
namical scale v ~ v in Eq. (3.8).

Even though a separate BF is sufficiently regular,
the time instance of its spontaneous appearance t;,
and hence the individual period P, are random in the
chaotic system. Due to the statistical independence of
BFs under condition (3.6), the expected distribution in
P is Poissonian (Fig. 3)

3

_ exp (=P/(P))

f(P)= ) (3.9)

The principal characteristic of the period statistics,
(P), can be estimated as follows. From the ergodicity
of motion in the N-dimensional momentum space, we
have
_ (Ty)

(P)

Pfl
Peq

. (3.10)

This is an exact relation (in the limit as t,,, — o0),
with T being the total sojourn time of trajectories
within the FD (under the condition v(t) < wvp) dur-
ing the entire run time t,,, and (Tg) the same per
fluctuation. Both ratios are equal to the ratio of the
N-dimensional momentum volume P of the fluctuation
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Py
20 T T T T T

1.5

1.0

0.5F .
0 1 1 1 1 1
2 4 6 8 10 y
Fig.4. The comparison of the directly measured

ratio ®.mp given by Eq. (3.10) with the theoret-

ical approximation ®;,, Eq. (3.12) for N = 1-10:

@1 = Pepnp/Pys; the average over 71 runs is (®y)

= 1.015+0.11 (the standard deviation); the bars show

statistical errors 1/y/n for each run; the total number
of fluctuations in all runs is 127346

at 7 = 0 to that in the equilibrium. The ratio ® was
also measured during the run. It follows that

(Ts)
P)y=— 11
(P) =2 (3.11)
The next more difficult step is the valuation of
Ts = 2T,, from the diffusion equation, where T,

is the exit (or entrance due to symmetry) time
from (or to) the FD. A simple crude estimate is
Tew ~ vp/Dp = vpC? (see Sec. 2). However, the first
numerical experiments have already revealed that the
actual exit time is much shorter, roughly by the factor
1/N2%. A plausible explanation is that inside the FD,
the distribution is concentrated in a relatively narrow
layer at the surface of the N-dimensional sphere deter-
mined by the selection condition v(t) < v, in Eq. (3.7).
The relative width of the layer ~ 1/N then implies the
observed factor ~ 1/N2. Further, the ratio

N/2

B(vy, N) = vpH(N), (3.12)
with the geometrical function
me\N/2 (1-1/6N)
N)=~|(— 7 1
o~ (T) 5 B

admits a relatively accurate approximation down to
N =1 (see Fig. 4).

Collecting all the above formulas, we arrive at our
final empirical relation

_F 20,AC% _ 24C2 o,

(P~ G —N7 N2 4(N)

(3.14)
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with two fitting factors, A for the layer width and F' for
all the other approximations made above. The two fac-
tors cannot be united in one because the former enters
a new expression for the dynamical scale that naturally
generalizes Eq. (3.8). Together with inequality (3.6) for
a big fluctuation, the new dynamical scale was used in
selecting purely diffusive BFs described by Eq. (3.14).
The corresponding inequality reads (cf. Eq. (3.8))

A

Vd =

12
N2 27

vy > Vg, ~ fpc— (3.15)
which means that even a small part (A/N? < 1) of the
FD must exceed the dynamical scale.

All the empirical parameters were optimized as fol-
lows. The values of two factors, B in Eq. (3.6) and
fp in (3.15), are not crucial; larger values of these fac-
tors correspond to a better selection of purely diffusive
BF, but reduce the amount of the empirical data avail-
able. A compromise was found at B = 7 and f, = 1,
which leaves 36 runs of 61 done and 34429 of the total
75053 BFs computed with N = 2-10 for comparison
to Eq. (3.14). This was executed as follows. For each
selected run with the parameters N, C, and v, and
the computed values (P) and ®, the empirical factor
F' (that was assumed to be a constant) was calculated
from the first equation in (3.14). The value of A was
chosen by minimizing the relative standard deviation
to AF/(F) = 0.17. For a given set of data, the result
was A = 6. The final dependence F(N) is shown in
Fig. 5, where the bars are the statistical errors F'/\/n
for each run.

Coming to the analysis of our main theoretical re-
sult, the second equation in (3.14), we first remark that
it does not describe a single trajectory (N = 1). This is
because we excluded v, from selection condition (3.7)
(cf. Eq. (3.2)) and thus reduced the phase space di-
mension to the minimal value, the unity. In this case,
a single trajectory repeatedly crosses the FD with the
period P ~ C?, the entire diffusion time around the
phase space torus, which is independent of the FD size.
More formally, this also follows from Eq. (3.14), be-
cause condition (3.6) cannot be satisfied for small vj.

For two trajectories (N = 2), the period does not
depend on vy, and for the data in Fig. 5, we have the
ratio (P)/C? ~ 8.7. Because of fluctuations, the ac-
tual values of this ratio are in the interval 7.4-11.0,
still not too big for a BF. Apparently, this leads to a
relatively large scattering of points with N = 2, which
also persists for N = 3.

The main dependence in Eq. (3.14), the expo-
nential of N, is readily derived from a graphic pic-
ture of N statistically independent particles gather-
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3.0
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1.5__§_‘§__§__ _E____§__§_%__
: o
o]
0 1 1 1 1 1
2 6 8 10
Fig.5. The comparison of the empirical data for 36

runs selected from 61 runs computed for N = 2-10 by
the two rules, Eq. (3.6) with B > 7 and Eq. (3.15) with
A = 6, to theoretical relation (3.14) with the main fit-
ting factor Fi,,, m = 1,..., 36 (see text). The average
value is (F) = 1.51(1+0.17) (the standard deviation);
the bars show statistical errors F,, /\/n for each run;
the total number of fluctuations in 36 runs is 34429

ing together inside a small domain with the proba-
bility ~ 1/P ~ vé\m Such estimates are known for
the Poincaré recurrences since Boltzmann [10]. The
estimate is especially vivid in the geometrical picture
of the N-dimensional sphere of the radius /v, consid-
ered above. Our empirical relation (3.14) considerably
improves the simple estimate by including a weaker
power-law dependence, which is evident in Fig. 5.

In our studies described above, we fixed the posi-
tion of a BF in phase space, Eq. (2.4). If we lift this
restriction, the probability of a BF increases by the fac-
tor vb_l/Z., which corresponds to decreasing N by one
(N — N — 1) because only N — 1 trajectories then
remain independent. With the latter change, all the
above relations presumably remain valid.

Our main relation (3.14) describes the diffusive ki-
netics for vy > vy, Eq. (3.15), when a big fluctuation is
not too big. In the opposite case v, < vy of a very big
fluctuation, as in Fig. 1, the dependence (P(vy)) be-
comes much simpler (see Eqs. (3.11)—(3.13) and [16]):

() 2
& ()

N/2
~ 2v, /.

(P(vy)) =

(3.16)

This is explained by a fast exponential kinetics near the
BF top (Fig. 1), which implies the shortest exit time
T.. ~ 1, and hence, Ty ~ 2. Indeed, for both BFs in
Fig. 1, we have the empirical value (P)® = 1.98.

In the conclusion of this section, we show in Fig. 6
the macroscopic kinetics of the BF entropy, both the
«exact» one in Eq. (2.6), calculated for the partition

3
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Fig.6. The macroscopic kinetics of the BF entropy: the
lower line is the «exact» entropy given by Eq. (2.6),
to be compared with approximation (2.7), the middle
line; the upper line is the same approximation for the
diffusion theory, Eq. (3.5) with 74 = 0 and the empir-
ical value vfiemp) = 0.02. The run parameters/results
are C =50, N =5, v, = 0.01, w = 10*, n = 4580,
(P) =~ 3.3-10°, B = 1314; (P)/w = 329. The number
of partition bins for calculating (2.6) is N, = 401

of the entire interval (0 < p < C) into N, = 401
bins, and the one given by our approximation (2.7).
Both entropies were calculated for the same 5 trajecto-
ries in one run. The necessary statistics for the exact
entropy was obtained at the expense of a large num-
ber n = 4580 of fluctuations in the run. To compare
the two entropies, we must adjust the constant Sy in
Eq. (2.6). As is easily verified, Gaussian distribution
(2.8) leads exactly to relation (2.7) if

1
So = — In (27e) & —1.4189 ~ —V2. (3.17)

Approximation (2.7) is valid for the most part of the
BF except a relatively small domain near the equilib-
rium, where the distribution in p approaches the homo-
geneous one. The exact entropy (with constant (3.17))
in the equilibrium is

e

(5

1
SSEZ——ID (318)

: ) ~ —0.18

instead of zero in approximation (2.7). The difference
is relatively small, the smaller the larger is the fluctu-
ation. In the main part of the BF, our simple relation
for the entropy in Eq. (2.7) reproduces exact relation
(2.6) to a surprisingly good accuracy. This confirms
that the distribution in p is indeed very close to the
Gaussian one in Eq. (2.8), as expected.
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4. CONCLUSION: THERMODYNAMIC
ARROW?

We have presented the results of extensive numeri-
cal experiments on big entropy fluctuations (BFs) in a
statistical equilibrium (SE) of classical dynamical sys-
tems and discussed their peculiarities.

All numerical experiments were carried out on the
basis of a very simple model given by Arnold cat map
(2.1) on a unit torus with only two minor, but impor-
tant and helpful, modifications:

(1) expanding the torus in the p direction, Eq. (2.2),
for a more impressive diffusive kinetics of BFs out of the
equilibrium (Fig. 2), and

(2) inserting a special (unstable) fixed point for a
better demonstration of the exponential ballistic kinet-
ics (Fig. 1). In addition, this point was used as a fixed
position of BFs, which relates our studies of BFs to an-
other interesting and important problem, the Poincaré
recurrences (see Eq. (2.2)).

The most important distinction of our approach is
that we have abandoned the vague question of initial
conditions, in particular, a «necessary» restriction of
those in statistical physics. Instead, we started our
numerical experiments at arbitrary initial conditions
(most likely corresponding to the SE), and did observe
the dynamics and statistics of BFs. In other words, we
studied the spontaneous BFs only.

It is also important that such a spontaneous rise of
a BF out of the SE and its subsequent relaxation back
to the SE can be considered as a statistical macroscopic
event, even in a system with a few degrees of freedom
as the one in Eq. (2.2). The term «macroscopic» refers
to average quantities including variance, entropy, mean
period, distribution function, etc.

We consider a particular class of BFs that we call
the Boltzmann fluctuations. They are obviously sym-
metric under the time reversal (see Figs. 1, 2, and 6),
and therefore, at least in this case, there is no physi-
cal reason at all for the concept of the notorious «time
arrow». Nevertheless, a related concept—the thermo-
dynamic arrow pointing in the direction of the average
increase of entropy—makes sense in spite of the time
symmetry [16]. The point is that the BF characteristic
relaxation time is determined by the model parameter
C only and does not depend on the BF itself. On the
contrary, the expectation time for a given BF, or the
mean period between successive fluctuations, rapidly
grows with the BF size and with the number of trajec-
tories (or the degrees of freedom), Eq. (3.14). A large
ratio of the two quantities, B = (P)/C? > 1, is our de-
finition of a big fluctuation, Eq. (3.6). A similar result
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was recently obtained in [22], but the authors missed
the principal difference between the time arrow and the
thermodynamic arrow.

A related notion of the causality arrow, which
by definition points from an independent macroscopic
cause to its effect, also makes some physical sense
(see [16] and Sec. 3 for a discussion). For the Boltz-
mann BFs considered in the present paper, the direc-
tions of both arrows coincide independently of the di-
rection of time. In our opinion, the last statement is the
most important, philosophical «moral» that the princi-
pally well-known Boltzmann fluctuations do teach us.

Even though we discuss and interpret our empiri-
cal results in terms of entropy (S), which is the most
fundamental concept in statistical physics, we actually
use another entropy-like quantity, the variance v(t) for
a group of N trajectories, Eq. (2.5). One reason is
technical: the computation of v is much simpler than
that of S(t), which is either very time-consuming in
numerical experiments (for exact S given by (2.6)) or
approximate in accordance with (2.7). In addition, for
diffusive kinetics, in which we are mainly interested,
the variance is a natural variable that makes the BF
picture most simple and comprehensible.

Originally, we planned to cover both sides of the BF
phenomenon, the regular macroscopic kinetics and the
accompanying microscopic fluctuations (noise) around.
However, our numerical experiments revealed a much
more complicated structure of the latter, as an exam-
ple in Fig. 2 demonstrates. The dependence v(t) looks
like a fractal curve on a variety of time scales, ranging
from the minimal one ~ 1 iteration up to ~ C?, which
is comparable to that of the BF itself. This interesting
problem certainly requires and deserves further studies.

Only the fluctuations in classical mechanics are con-
sidered in this paper. General quantum fluctuations are
quite different. However, according to the Correspon-
dence Principle, the dynamics and statistics of a quan-
tum system in the semiclassical region are close to the
classical ones at the appropriate time scales, the longest
of which corresponds to the diffusive kinetics and en-
sures the transition to the classical limit (see [4, 23] for
details). Curiously, the computer classical dynamics
that is the simulation of a classical dynamical system on
digital computer is of a qualitatively similar character.
This is because any quantity is discrete («overquan-
tized») in the computer representation. As a result,
the correspondence between the classical continuous
dynamics and its computer representation in numeri-
cal experiments is generally restricted to certain finite
time scales as in quantum mechanics (see the first two
references in [23]).
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The discreteness of the computer phase space leads
to another peculiar phenomenon: generally, the com-
puter dynamics is irreversible due to the rounding-off
operation unless a special algorithm is used in numeri-
cal experiments. However, this does not affect the sta-
tistical properties of the chaotic computer dynamics. In
particular, the statistical laws remain time-reversible in
the computer representation in spite of the (nondissi-
pative) irreversibility of the underlying dynamics. This
simple example demonstrates that contrary to a com-
mon belief, the statistical reversibility is a more general
property than the dynamical reversibility.
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