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BIG ENTROPY FLUCTUATIONS IN STATISTICAL EQUILIBRIUM:THE MACROSCOPIC KINETICSB. V. Chirikov *, O. V. Zhirov **Budker Institute of Nulear Physis630090, Novosibirsk, RussiaSubmitted 20 November 2000Large entropy �utuations in the equilibrium steady state of lassial mehanis are studied in extensive numer-ial experiments in a simple strongly haoti Hamiltonian model with two degrees of freedom desribed by themodi�ed Arnold at map. The rise and fall of a large separated �utuation is shown to be desribed by the(regular and stable) �marosopi� kinetis, both fast (ballisti) and slow (di�usive). We abandon a vagueproblem of the �appropriate� initial onditions by observing (in a long run) a spontaneous birth and death ofarbitrarily big �utuations for any initial state of our dynamial model. Statistis of the in�nite hain of �utu-ations similar to the Poinaré reurrenes is shown to be Poissonian. A simple empirial relation for the meanperiod between the �utuations (the Poinaré �yle�) is found and on�rmed in numerial experiments. Wepropose a new representation of the entropy via the variane of only a few trajetories (�partiles�) that greatlyfailitates the omputation and at the same time is su�iently aurate for big �utuations. The relation of ourresults to long-standing debates over the statistial �irreversibility� and the �time arrow� is brie�y disussed.PACS: 05.45.Gg, 05.40.-a1. INTRODUCTION: MACROSCOPIC VS.MICROSCOPIC FLUCTUATIONSFlutuations are an inseparable part of statistiallaws. This is well known sine Boltzmann. What isapparently less known are the peuliar properties ofrare big �utuations (BF) that are di�erent from, andeven in a sense opposite to the properties of small sta-tionary �utuations. In this paper, we onsider thesimplest type of haoti dynamial systems, namely aHamiltonian system with a �nite number of the degreesof freedom that admits the (stable) statistial equilib-rium (SE). This lass of dynamial models is still pop-ular (sine Boltzmann!) in debates over the dynamialfoundations of statistial mehanis (see, e.g., �RoundTable on Irreversibility� in [1℄, and [2℄).A su�iently simple piture of BFs in suh systemsis well understood by now, although not yet well known.To Boltzmann, this piture was the basis of his �utu-ation hypothesis for our Universe. It is also well under-stood that this hypothesis is totally inompatible withthe present struture of the Universe beause it would*E-mail: B.V.Chirikov�inp.nsk.su**E-mail: zhirov�inp.nsk.su

immediately imply the notorious �heat death� (see,e.g., [3℄). For this reason, one may even term suh sys-tems the heat death models. Nevertheless, they an beand atually are widely used in desribing and studyingloal statistial proesses in thermodynamially losedsystems. The latter term means the absene of anyheat exhange with the environment. We note, how-ever, that under onditions of the exponential instabil-ity of motion, whih are typial of haoti systems, theonly dynamially losed system would be the �entireUniverse�. In partiular, this exludes the hypotheti-al �veloity reversal� that also is popular in debatesover �irreversibility� sine Loshmidt (for a disussion,see, e.g., [4℄).In any ase, dynamial models with the SE do nottell us the whole story of either the Universe or evena typial marosopi proess therein. The prinipalsolution of this problem, unknown to Boltzmann, isquite lear by now: the �equilibrium-free� models arerequired. Various lasses of suh models are intensivelystudied today. Moreover, the elebrated osmi mi-rowave bakground tells us that our Universe was bornalready in the state of a heat death, whih, however,beame unstable due to the well-known Jeans gravi-214



ÆÝÒÔ, òîì 120, âûï. 1 (7), 2001 Big entropy �utuations : : :tational instability [5℄. This resulted in developing arih variety of olletive proesses, or synergetis, theterm reently introdued or, better to say, put in useby Haken [6℄. The most important peuliarity of suh aolletive instability is that the total overall relaxation(to somewhere?) with the ever inreasing total entropyis aompanied by an also inreasing phase spae inho-mogeneity of the system, partiularly with respet tothe temperature. In other words, the entire system andits loal parts beome more and more nonequilibriumto the extent of the birth of a seondary dynamis thatan be, and sometimes is as perfet as, e.g., the elestialmehanis (see, e.g., [4, 7, 8℄ for a general disussion).We stress that all these inhomogeneous nonequilib-rium strutures are not BF-like in the SE but are aresult of a regular olletive instability; therefore, theyare immediately formed under a ertain ondition. Inaddition, they are typially dissipative strutures a-ording to Prigogine [9℄ due to the energy and entropyexhange with the in�nite environment. The latter isthe most important feature of suh proesses, and atthe same time the main di�ulty in studying the dy-namis of those models both theoretially and in nu-merial experiments, whih are so muh simpler for SEsystems.In the latter ase, a BF onsists of two symmetriparts: the rise of a �utuation followed by its return,or relaxation, bak to the SE (see Figs. 1 and 2). Bothparts are desribed by the same kineti (e.g., di�usion)equation, the only di�erene being in the sign of time.This relates the time-symmetri dynamial equationsto the time-antisymmetri kineti (but not statistial!)equations. The prinipal di�erene between the twotypes of equations, sometimes overlooked, is that thekineti equations are generally understood as desrib-ing the relaxation only, i.e., the inrease of the entropyin a losed system, whereas in fat they do so (at least,in the SE) for the rise of BF as well, i.e., for the entropyderease. All this was qualitatively known already toBoltzmann [10℄. The �rst simple example of a symmet-ri BF was onsidered by Shrödinger [11℄. A rigorousmathematial theorem for the di�usive (slow) kinetiswas proved by Kolmogorov in 1937 in the paper en-titled �Zur Umkehrbarkeit der statistishen Naturge-setze� (�Conerning reversibility of statistial laws inNature�) [12℄ (see also [13℄). Regrettably, the prini-pal Kolmogorov theorem still remains unknown to boththe partiipants of heated debates over �irreversibil-ity� and the physiists atually studying suh BFs (see,e.g., [14℄).At present, there exists a well developed ergoditheory of dynamial systems (see, e.g., [15℄). In partiu-

lar, it proves that the relaxation (orrelation deay, ormixing) eventually proeeds in both diretions of timefor almost any initial onditions in a haoti dynami-al system. However, the relaxation must not alwaysbe monotoni, whih simply means a BF on the way,depending on the initial onditions. To eliminate thisapparently onfusing (to many) �freedom�, we take adi�erent approah to the problem: instead of disussingthe �true� initial onditions and/or a �neessary� re-strition of those, we start our numerial experimentsat arbitrary initial onditions (most likely orrespond-ing to the SE) and observe what the dynamis andstatistis of BF are like. This approah is obviouslybased on the fundamental hypothesis that all the sta-tistial laws are ontained in, and an be prinipally de-rived from the underlying fundamental (Hamiltonian)dynamis. To the best of our knowledge, there is asyet no ontradition to this prinipal hypothesis. Wenote, however, that this approah an be diretly ap-plied to �utuations in �nite systems with a statistialequilibrium only (see [4℄ and [16℄ for a disussion). Inthese and only these systems, in�nitely many BFs growup spontaneously, independently of the initial ondi-tions of the motion. This is similar to the well-knownPoinaré reurrenes (see Se. 4).In spite of essential restritions, simple SE mod-els allow us to better understand the mehanism andthe role of BF in statistial physis. In addition tothe removal of the vague problem of initial onditions,these models are very helpful in larifying the relationbetween marosopi and mirosopi desriptions ofhaoti systems. In partiular, a spontaneous rise of aBF out of the SE is a marosopi event as well as isits subsequent relaxation bak to the SE, even in a sys-tem with a few degrees of freedom. Similarly to othermarosopi proesses, BFs are not only perfetly reg-ular by themselves but also surprisingly stable againstany perturbations, either regular or haoti. Moreover,the perturbations must not be small. At a �rst glane,this looks very strange in a haoti, highly unstabledynamis. The resolution of this apparent paradox isthat the dynamial instability of motion a�ets the BFinstant of time only. The BF evolution is determinedby the kinetis independently of its mehanism, from apurely dynamial one, as in model (2.2) used in this pa-per, to a ompletely noisy (stohasti) one. As a mat-ter of fat, the fundamental Kolmogorov theorem [12℄ ispreisely related to the latter ase but remains valid ina muh more general situation. A surprising stability ofBFs is similar to the less known onept of robustnessfor the Anosov (strongly haoti) systems [17℄ whosetrajetories are only slightly deformed under a small215



B. V. Chirikov, O. V. Zhirov ÆÝÒÔ, òîì 120, âûï. 1 (7), 2001perturbation (see [4℄ for a disussion).In this paper, we onsider a partiular type of BFsharaterized by a large onentration of �partiles�in a small phase spae domain of the dynamial sys-tem. In other words, �our� �utuations are loalizedin phase spae and separated in time. A more auratede�nition of these �utuations is given in Se. 3 (seeEq. (3.6)). The same �utuations in a stohasti model(with noise) were studied in detail in [14℄. Obviously,there exist many other �utuations with their own pe-uliarities (see, e.g., [18℄). The primary objet of ourstudies is the marosopi kinetis of big �utuationsin the bakground of small stationary mirosopi �u-tuations. A brief outline of our results was presentedin [16℄.2. A HAMILTONIAN MODEL: MOST SIMPLEBUT STRONGLY CHAOTICThe systems with a SE an be desribed in terms ofmodels that are very simple as regards both the theo-retial analysis and numerial experiments (of whihthe latter are even more important for us). In thepresent paper, we use one of the most simple and pop-ular models spei�ed by the so-alled Arnold at map(see [19, 20℄) p = p+ x mod 1;x = x+ p mod 1 (2:1)that is a linear anonial map on a unit torus. It has noparameters and is haoti and even ergodi. The rateof the loal exponential instability, the Lyapunov ex-ponent � = ln (3=2 +p5=2) = 0:96, implies a fast (bal-listi) kinetis with the relaxation time tr � 1=� � 1.Throughout the paper, t denotes the time in the mapiterations.A minor modi�ation of this mapp = p+ x� 1=2 mod C;x = x+ p� C=2 mod 1; (2:2)where C is a irumferene of the phase spae torusallows studying both the fast (exponential) ballistikinetis (for C = 1) and the slow (di�usive) relax-ation in p (for C � 1) with the harateristi timetp � C2=4Dp � 1, where Dp = 1=12 is the di�usionrate in p. In ontrast to the slow di�usion in p, the re-laxation time in x does not depend on C (tr � 1), andthe subsequent values of x are therefore pratially un-orrelated. Map (2.2) has the (unstable) �xed point atx = x0 = 1=2 and p = p0 = C=2.

A onvenient harateristi of the BF size is the rmsvolume (area) in the 2D phase spae (x; p)�(t) = �p(t)�x(t) (2:3)oupied by a group of N trajetories (partiles). Inthe ergodi motion at equilibrium, � = �0 = C=12. Be-ause of a severe restrition to small N . 10 in the nu-merial experiments (see below), we have to use simple(average) harateristis like (2.3) only. On the otherhand, these are preisely the marosopi variables inwhih we are interested.In what follows, we also restrit ourselves to a par-tiular ase of BFs with the �xed presribed positionin the phase spae,xfl = x0 = 12 ; pfl = p0 = C2 : (2:4)The variane of the phase spae size v = �2 = �2p�2x isthen determined by�2p = hp2i � p20 ; �2x = hx2i � x20 (2:5)where the brakets h: : : i denote averaging over Ntrajetories. In the ergodi motion at equilibrium,v = vSE = C2=122. In what follows, we use the dimen-sionless measure ~v = v=vSE ! v and omit the tilde. Inthe di�usive approximation of the kineti equation, thevariable v(t) is espeially onvenient beause it variesproportionally to time. Moreover, v ! vp in this asebeause of a quik relaxation vx ! 1 in x.In all the advantages of v, the relation of this vari-able to the fundamental onept of the entropy is highlydesirable. The standard de�nition of the entropy, whihan be traed bak to Boltzmann, readsS = �hln f(x; p)i+ S0; (2:6)where f(x; p) is a oarse-grained distribution funtion,or the phase-spae density, and S0 an arbitrary on-stant to be �xed later. We note that the distributionalulated from any �nite number of trajetories is al-ways a oarse-grained one. However, the diret appli-ation of Eq. (2.6) requires too many trajetories, espe-ially for a small-size BF. Nevertheless, preisely in thelatter ase, whih is the main problem under onsider-ation, we have found a simple approximate relationS(t) � 12 ln v(t) (2:7)that gives at least a rough estimate for the entropy evo-lution [16℄. Moreover, if the distribution is Gaussian,f(x; p)! f(p) = exp ��(p� p0)2=2v�p2�v (2:8)216
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Fig. 1. Mixed kinetis for two big �utuations of dif-ferent sizes. Filled/open irles show the time de-pendene of the mean variane hv(t � ti)i aroundthe BF maximum at t = ti; the upper horizon-tal straight line is the equilibrium and the lower lineindiates the empirial value of the dynamial salevd = 0:015, Eq. (3.4), with the parameter Fd � 1=3.Two oblique straight lines represent the expeted fastkinetis, Eq. (3.3), and two solid urves do so forthe initial di�usive kinetis, Eq. (3.5). The respe-tive run parameters and results are given by C = 15,N = 1, vb = 3:9 � 10�11=6:25 � 10�10 (vxb = vpb),v(0) = 1:96 � 10�14=3:1 � 10�13, n = 1971=4459,w = 500. The average period between suessive �u-tuations is hP i � 1:4 � 107=3:5 � 106 iterationsestimate (2.7) beomes exat beause it is diretly de-rived from the de�nition of the entropy in Eq. (2.6).The two relations for the entropy are ompared in theend of Se. 3 for a typial BF.A great advantage of (2.7) is that the omputationof S does not require very many trajetories as does thedistribution funtion. In fat, even a single trajetoryis su�ient, as is demonstrated by Fig. 1 in [16℄ andFig. 1 in this paper!A �nite number of trajetories used for alulatingthe variane v is similar to a oarse-grained distribu-tion, as required in relation (2.6), but with a free binsize that an be arbitrarily small.We an now turn to the numerial experiments.3. MACROSCOPIC KINETICS: COMPLETE,REGULAR, AND STABLEIn this setion, we onsider the regular BF kinet-is. The data were obtained by simultaneously run-ning N trajetories for a very long time in order toollet su�iently many BFs for a reliable separation

of the regular part of BFs, or the kineti subdynamisaording to Balesu (see [21℄ and referenes therein),from the stationary �utuations. The separation wasdone by the plain averaging of the individual vi values(i = 1; : : : ; n) over all the n BFs olleted in a run.The size of the BF hosen for the subsequent ana-lysis is �xed by the ondition thatv(t) < vb (3:1)at some time instant t � ti, the moment of a BF. Here,a presribed value vb is the main input parameter ofthe run. This ondition atually determines the borderof the entire �utuation domain (FD) as 0 < v < vb.The event of entering the FD is the marosopi�ause� of the BF whose obvious �e�et� is the subse-quent relaxation to the equilibrium. However, the mainpoint of our study is that the seond �e�et� of thesame �ause� was preeding the rise of the BF in anapparent ontradition with the �ausality priniple�(for a disussion, see [16℄ and Se. 4 below). In anyevent, the seond e�et requires the permanent mem-ory of trajetory segments within some time windoww, whih is another important input parameter of therun.The exat proedure of data proessing during therun is as follows. Starting from arbitrary (random) ini-tial onditions, seletion rule (3.1) is heked at eahiteration. Suppose that it is satis�ed at some instanetin when the bundle of trajetories enters the FD. Inthe �rst approximation, we ould onsider it as the �u-tuation maximum (or the variane minimum) ti = tin,where the subsript i is the number of the urrent �u-tuation in a run. However, this simple proedure wouldause an asymmetry with respet to t = ti. A betterhoie would be given by the rule ti = (tin + tout)=2,where tout is the time instane of the exit from the FD.Instead, we have aepted a more ompliated proe-dure that better restores the true BF symmetry, as wehope. Starting from the moment tin, we searh forthe minimum of v(t) inside a su�iently large intervaltin < t < tin + w. If a minimum is found at somet = tmin, we hek that it also is the minimum in-side the next interval tmin < t < tmin + w. If this isthe ase, we identify this minimum with the BF topand set ti = tmin; otherwise, we set tmin equal to thetime of a better minimum and repeat the last step.Obviously, the parameter w must be small omparedto hP i, the mean period of the BF, but su�ientlylong for the trajetory to leave FD (3.1). Typially,we hose w & C2, the total di�usion time. After �xingthe urrent ti value, the omputation within the inter-217



B. V. Chirikov, O. V. Zhirov ÆÝÒÔ, òîì 120, âûï. 1 (7), 2001val ti < t < ti + w was ompleted, and only then thesearh for the next BF is ontinued.As mentioned above, there are two quite simplelimiting ases of generally very ompliated kinetis,namely the fast (ballisti) and the slow (di�usive) li-mits. An example of both in one run for N = 1 (!)is presented in Fig. 1 for two �utuations of di�erentsizes. In this ase, general ondition (3.1) was hekedseparately for p and x,vp(t) < vpb and vx(t) < vxb; (3:2)with vpb = vxb � 10�5 and vb = vpbvxb � 10�10.The fast part of kinetis is approximately desribedby v(�) � v(0) exp (4��); (3:3)where � = t � ti; � is the Lyapunov exponent (seeSe. 2), and v(0) � 10�13 is the minimal variane av-eraged over all n �utuations observed in the run. Wenote that the latter value is onsiderably smaller thanthe border value vb � 10�10. This is beause of thepenetration of trajetories into the FD. Interestingly,the ratio vb=v(0) = 2000 is the same for both runs inFig. 1.A surprisingly sharp rossover to the di�usive kine-tis, learly seen in Fig. 1, is related to the dynamialsale of the di�usion orresponding to a ertain sizevd of the inreasing variane at whih the exponen-tial growth stops. Roughly, it ours at the time in-stane � = �d, when jx � x0j � jp� p0j � 1=2, whenevxd � 12=4 = 3 and vpd � 3=C2. We an thereforeharaterize the dynamial sale asv(�d) = vd = Fdvpdvxd = 9FdC2 ;�d = ln (vd=v(0))4� ; (3.4)where Fd is an empirial fator and �d is found fromEq. (3.3). The data in Fig. 1 imply the dynamialsale vd � 0:015 independently of vb, whih gives theempirial fator Fd � 1=3.In the di�usion region (v > vd), the initial kinetisis desribed by a simple relation for the free di�usion(see Se. 2),v(�) � � � �dC2 + vd; �d < � � C2 (3:5)whih is also shown in Fig. 1. It involves two orre-tions, �d and vd, due to the exponential ballisti ki-netis. The �rst one (with opposite signs for the twosymmetri parts of the �utuation) takes the �lost�time after (or prior to) the anti-di�usion (di�usion) into
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Fig. 2. The same as in Fig. 1 for a typial di�usive ki-netis (anti-di�usion/di�usion): the solid urve showsthe average over all n = 20259 �utuations in a runand the wiggle line is the same for the �rst 28 �u-tuations. Two oblique straight lines represent the ex-peted initial di�usive kinetis, Eq. (3.5), with �d = 0and the empirial value v(emp)d = 0:045, while the the-ory in (3.15) gives vd = 0:02. Other run parame-ters/results are given by C = 50, N = 5, vb = 0:0256,w = 104, hP i � 7:7 � 105=8:7 � 105, and B = 306=348;hP i=w � 77=87aount, while the seond orretion desribes a �nite�utuation size at the rossover from (to) the di�usion.The mean empirial value �d = 7 used in Fig. 1 is loseto the value �d = 6:5 found from Eq. (3.4) with anotherempirial quantity vd = 0:015.The large ratio B = hP iC2 � 1 (3:6)of the mean �utuation period hP i to the harateris-ti time of the di�usion relaxation (see Eq. (3.5)) is thede�nition of a big �utuation. It guarantees the timeseparation of suessive �utuations.We now turn to the main subjet of our study, thepurely di�usive kinetis of BFs. For this, we �rst elimi-nate the x-statistis by exluding vx from seletion on-dition (3.1), whih now readsv(t) = vp < vpb = vb: (3:7)Next, the variane vb must now exeed the new dynam-ial border, vb > vd = vpd � fp 12C2 (3:8)with some empirial fator fp � 1 (see Eq. (3.4) andthe disussion below).218
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105104103102101 P=hP iFig. 3. The histogram of integrated distribution (3.9)for the data in Fig. 2. Eah irle shows the num-ber of periods Pm > m�P , for m = 0; 1; : : : .P0 = n, �P = 1:5 � 105; Pmin=w = 1:0027;Pmax=hP i = 12:63; hP i = 765084. The straight lineis the expeted distribution n exp (�P=hP i)A typial example of a di�usive BF is shown inFig. 2. Both the regular marosopi kinetis of theanti-di�usion/di�usion and the irregular �utuationsaround are learly seen. We note that their size israpidly dereasing toward the BF maximum. It mayeven seem that the motion beomes regular in that re-gion, hene the term �optimal �utuational path� [14℄.In fat, the motion remains di�usive down to the dy-namial sale v � vd in Eq. (3.8).Even though a separate BF is su�iently regular,the time instane of its spontaneous appearane ti,and hene the individual period P , are random in thehaoti system. Due to the statistial independene ofBFs under ondition (3.6), the expeted distribution inP is Poissonian (Fig. 3),f(P ) = exp (�P=hP i)hP i : (3:9)The prinipal harateristi of the period statistis,hP i, an be estimated as follows. From the ergodiityof motion in the N -dimensional momentum spae, wehave � = Tstf = hTsihP i = PflPeq : (3:10)This is an exat relation (in the limit as trun ! 1),with Ts being the total sojourn time of trajetorieswithin the FD (under the ondition v(t) < vb) dur-ing the entire run time trun and hTsi the same per�utuation. Both ratios are equal to the ratio of theN -dimensional momentum volume P of the �utuation
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Fig. 4. The omparison of the diretly measuredratio �emp given by Eq. (3.10) with the theoret-ial approximation �th, Eq. (3.12) for N = 1�10:�1 = �emp=�th; the average over 71 runs is h�1i == 1:015�0:11 (the standard deviation); the bars showstatistial errors 1=pn for eah run; the total numberof �utuations in all runs is 127346at � = 0 to that in the equilibrium. The ratio � wasalso measured during the run. It follows thathP i = hTsi� : (3:11)The next more di�ult step is the valuation ofTs = 2Tex from the di�usion equation, where Texis the exit (or entrane due to symmetry) timefrom (or to) the FD. A simple rude estimate isTex � vb=Dp = vbC2 (see Se. 2). However, the �rstnumerial experiments have already revealed that theatual exit time is muh shorter, roughly by the fator1=N2. A plausible explanation is that inside the FD,the distribution is onentrated in a relatively narrowlayer at the surfae of the N -dimensional sphere deter-mined by the seletion ondition v(t) < vb in Eq. (3.7).The relative width of the layer � 1=N then implies theobserved fator � 1=N2. Further, the ratio�(vb; N) = vN=2b �(N); (3:12)with the geometrial funtion�(N) � ��e6 �N=2 (1� 1=6N)p�N ; (3:13)admits a relatively aurate approximation down toN = 1 (see Fig. 4).Colleting all the above formulas, we arrive at our�nal empirial relationhP i � F� 2vbAC2N2 � F 2AC2N2 v1�N=2b�(N) (3:14)219



B. V. Chirikov, O. V. Zhirov ÆÝÒÔ, òîì 120, âûï. 1 (7), 2001with two �tting fators, A for the layer width and F forall the other approximations made above. The two fa-tors annot be united in one beause the former entersa new expression for the dynamial sale that naturallygeneralizes Eq. (3.8). Together with inequality (3.6) fora big �utuation, the new dynamial sale was used inseleting purely di�usive BFs desribed by Eq. (3.14).The orresponding inequality reads (f. Eq. (3.8))vb > vd; vd AN2 � fp 12C2 ; (3:15)whih means that even a small part (A=N2 < 1) of theFD must exeed the dynamial sale.All the empirial parameters were optimized as fol-lows. The values of two fators, B in Eq. (3.6) andfp in (3.15), are not ruial; larger values of these fa-tors orrespond to a better seletion of purely di�usiveBF, but redue the amount of the empirial data avail-able. A ompromise was found at B = 7 and fp = 1,whih leaves 36 runs of 61 done and 34429 of the total75053 BFs omputed with N = 2�10 for omparisonto Eq. (3.14). This was exeuted as follows. For eahseleted run with the parameters N , C, and vb andthe omputed values hP i and �, the empirial fatorF (that was assumed to be a onstant) was alulatedfrom the �rst equation in (3.14). The value of A washosen by minimizing the relative standard deviationto �F=hF i = 0:17. For a given set of data, the resultwas A � 6. The �nal dependene F (N) is shown inFig. 5, where the bars are the statistial errors F=pnfor eah run.Coming to the analysis of our main theoretial re-sult, the seond equation in (3.14), we �rst remark thatit does not desribe a single trajetory (N = 1). This isbeause we exluded vxb from seletion ondition (3.7)(f. Eq. (3.2)) and thus redued the phase spae di-mension to the minimal value, the unity. In this ase,a single trajetory repeatedly rosses the FD with theperiod P � C2, the entire di�usion time around thephase spae torus, whih is independent of the FD size.More formally, this also follows from Eq. (3.14), be-ause ondition (3.6) annot be satis�ed for small vb.For two trajetories (N = 2), the period does notdepend on vb, and for the data in Fig. 5, we have theratio hP i=C2 � 8:7. Beause of �utuations, the a-tual values of this ratio are in the interval 7.4�11.0,still not too big for a BF. Apparently, this leads to arelatively large sattering of points with N = 2, whihalso persists for N = 3.The main dependene in Eq. (3.14), the expo-nential of N , is readily derived from a graphi pi-ture of N statistially independent partiles gather-
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NFig. 5. The omparison of the empirial data for 36runs seleted from 61 runs omputed for N = 2�10 bythe two rules, Eq. (3.6) with B > 7 and Eq. (3.15) withA = 6, to theoretial relation (3.14) with the main �t-ting fator Fm, m = 1; : : : ; 36 (see text). The averagevalue is hF i = 1:51(1�0:17) (the standard deviation);the bars show statistial errors Fm=pn for eah run;the total number of �utuations in 36 runs is 34429ing together inside a small domain with the proba-bility � 1=P � vN=2b . Suh estimates are known forthe Poinaré reurrenes sine Boltzmann [10℄. Theestimate is espeially vivid in the geometrial pitureof the N -dimensional sphere of the radius pvb onsid-ered above. Our empirial relation (3.14) onsiderablyimproves the simple estimate by inluding a weakerpower-law dependene, whih is evident in Fig. 5.In our studies desribed above, we �xed the posi-tion of a BF in phase spae, Eq. (2.4). If we lift thisrestrition, the probability of a BF inreases by the fa-tor v�1=2b , whih orresponds to dereasing N by one(N ! N � 1) beause only N � 1 trajetories thenremain independent. With the latter hange, all theabove relations presumably remain valid.Our main relation (3.14) desribes the di�usive ki-netis for vb > vd, Eq. (3.15), when a big �utuation isnot too big. In the opposite ase vb � vd of a very big�utuation, as in Fig. 1, the dependene hP (vb)i be-omes muh simpler (see Eqs. (3.11)�(3.13) and [16℄):hP (vb)i = hTsi� � 2vN=2b �(N) � 2v�N=2b : (3:16)This is explained by a fast exponential kinetis near theBF top (Fig. 1), whih implies the shortest exit timeTex � 1, and hene, Ts � 2. Indeed, for both BFs inFig. 1, we have the empirial value hP i� = 1:98.In the onlusion of this setion, we show in Fig. 6the marosopi kinetis of the BF entropy, both the�exat� one in Eq. (2.6), alulated for the partition220
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t� tiFig. 6. The marosopi kinetis of the BF entropy: thelower line is the �exat� entropy given by Eq. (2.6),to be ompared with approximation (2.7), the middleline; the upper line is the same approximation for thedi�usion theory, Eq. (3.5) with �d = 0 and the empir-ial value v(emp)d = 0:02. The run parameters/resultsare C = 50, N = 5, vb = 0:01, w = 104, n = 4580,hP i � 3:3�106, B = 1314; hP i=w � 329. The numberof partition bins for alulating (2.6) is Np = 401of the entire interval (0 < p < C) into Np = 401bins, and the one given by our approximation (2.7).Both entropies were alulated for the same 5 trajeto-ries in one run. The neessary statistis for the exatentropy was obtained at the expense of a large num-ber n = 4580 of �utuations in the run. To omparethe two entropies, we must adjust the onstant S0 inEq. (2.6). As is easily veri�ed, Gaussian distribution(2.8) leads exatly to relation (2.7) ifS0 = �12 ln (2�e) � �1:4189 � �p2: (3:17)Approximation (2.7) is valid for the most part of theBF exept a relatively small domain near the equilib-rium, where the distribution in p approahes the homo-geneous one. The exat entropy (with onstant (3.17))in the equilibrium isSSE = �12 ln��e6 � � �0:18 (3:18)instead of zero in approximation (2.7). The di�ereneis relatively small, the smaller the larger is the �utu-ation. In the main part of the BF, our simple relationfor the entropy in Eq. (2.7) reprodues exat relation(2.6) to a surprisingly good auray. This on�rmsthat the distribution in p is indeed very lose to theGaussian one in Eq. (2.8), as expeted.

4. CONCLUSION: THERMODYNAMICARROW?We have presented the results of extensive numeri-al experiments on big entropy �utuations (BFs) in astatistial equilibrium (SE) of lassial dynamial sys-tems and disussed their peuliarities.All numerial experiments were arried out on thebasis of a very simple model given by Arnold at map(2.1) on a unit torus with only two minor, but impor-tant and helpful, modi�ations:(1) expanding the torus in the p diretion, Eq. (2.2),for a more impressive di�usive kinetis of BFs out of theequilibrium (Fig. 2), and(2) inserting a speial (unstable) �xed point for abetter demonstration of the exponential ballisti kinet-is (Fig. 1). In addition, this point was used as a �xedposition of BFs, whih relates our studies of BFs to an-other interesting and important problem, the Poinaréreurrenes (see Eq. (2.2)).The most important distintion of our approah isthat we have abandoned the vague question of initialonditions, in partiular, a �neessary� restrition ofthose in statistial physis. Instead, we started ournumerial experiments at arbitrary initial onditions(most likely orresponding to the SE), and did observethe dynamis and statistis of BFs. In other words, westudied the spontaneous BFs only.It is also important that suh a spontaneous rise ofa BF out of the SE and its subsequent relaxation bakto the SE an be onsidered as a statistial marosopievent, even in a system with a few degrees of freedomas the one in Eq. (2.2). The term �marosopi� refersto average quantities inluding variane, entropy, meanperiod, distribution funtion, et.We onsider a partiular lass of BFs that we allthe Boltzmann �utuations. They are obviously sym-metri under the time reversal (see Figs. 1, 2, and 6),and therefore, at least in this ase, there is no physi-al reason at all for the onept of the notorious �timearrow�. Nevertheless, a related onept�the thermo-dynami arrow pointing in the diretion of the averageinrease of entropy�makes sense in spite of the timesymmetry [16℄. The point is that the BF harateristirelaxation time is determined by the model parameterC only and does not depend on the BF itself. On theontrary, the expetation time for a given BF, or themean period between suessive �utuations, rapidlygrows with the BF size and with the number of traje-tories (or the degrees of freedom), Eq. (3.14). A largeratio of the two quantities, B = hP i=C2 � 1, is our de-�nition of a big �utuation, Eq. (3.6). A similar result221



B. V. Chirikov, O. V. Zhirov ÆÝÒÔ, òîì 120, âûï. 1 (7), 2001was reently obtained in [22℄, but the authors missedthe prinipal di�erene between the time arrow and thethermodynami arrow.A related notion of the ausality arrow, whihby de�nition points from an independent marosopiause to its e�et, also makes some physial sense(see [16℄ and Se. 3 for a disussion). For the Boltz-mann BFs onsidered in the present paper, the dire-tions of both arrows oinide independently of the di-retion of time. In our opinion, the last statement is themost important, philosophial �moral� that the prini-pally well-known Boltzmann �utuations do teah us.Even though we disuss and interpret our empiri-al results in terms of entropy (S), whih is the mostfundamental onept in statistial physis, we atuallyuse another entropy-like quantity, the variane v(t) fora group of N trajetories, Eq. (2.5). One reason istehnial: the omputation of v is muh simpler thanthat of S(t), whih is either very time-onsuming innumerial experiments (for exat S given by (2.6)) orapproximate in aordane with (2.7). In addition, fordi�usive kinetis, in whih we are mainly interested,the variane is a natural variable that makes the BFpiture most simple and omprehensible.Originally, we planned to over both sides of the BFphenomenon, the regular marosopi kinetis and theaompanying mirosopi �utuations (noise) around.However, our numerial experiments revealed a muhmore ompliated struture of the latter, as an exam-ple in Fig. 2 demonstrates. The dependene v(t) lookslike a fratal urve on a variety of time sales, rangingfrom the minimal one � 1 iteration up to � C2, whihis omparable to that of the BF itself. This interestingproblem ertainly requires and deserves further studies.Only the �utuations in lassial mehanis are on-sidered in this paper. General quantum �utuations arequite di�erent. However, aording to the Correspon-dene Priniple, the dynamis and statistis of a quan-tum system in the semilassial region are lose to thelassial ones at the appropriate time sales, the longestof whih orresponds to the di�usive kinetis and en-sures the transition to the lassial limit (see [4, 23℄ fordetails). Curiously, the omputer lassial dynamisthat is the simulation of a lassial dynamial system ondigital omputer is of a qualitatively similar harater.This is beause any quantity is disrete (�overquan-tized�) in the omputer representation. As a result,the orrespondene between the lassial ontinuousdynamis and its omputer representation in numeri-al experiments is generally restrited to ertain �nitetime sales as in quantum mehanis (see the �rst tworeferenes in [23℄).
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