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BIG ENTROPY FLUCTUATIONS IN STATISTICAL EQUILIBRIUM:THE MACROSCOPIC KINETICSB. V. Chirikov *, O. V. Zhirov **Budker Institute of Nu
lear Physi
s630090, Novosibirsk, RussiaSubmitted 20 November 2000Large entropy �u
tuations in the equilibrium steady state of 
lassi
al me
hani
s are studied in extensive numer-i
al experiments in a simple strongly 
haoti
 Hamiltonian model with two degrees of freedom des
ribed by themodi�ed Arnold 
at map. The rise and fall of a large separated �u
tuation is shown to be des
ribed by the(regular and stable) �ma
ros
opi
� kineti
s, both fast (ballisti
) and slow (di�usive). We abandon a vagueproblem of the �appropriate� initial 
onditions by observing (in a long run) a spontaneous birth and death ofarbitrarily big �u
tuations for any initial state of our dynami
al model. Statisti
s of the in�nite 
hain of �u
tu-ations similar to the Poin
aré re
urren
es is shown to be Poissonian. A simple empiri
al relation for the meanperiod between the �u
tuations (the Poin
aré �
y
le�) is found and 
on�rmed in numeri
al experiments. Wepropose a new representation of the entropy via the varian
e of only a few traje
tories (�parti
les�) that greatlyfa
ilitates the 
omputation and at the same time is su�
iently a

urate for big �u
tuations. The relation of ourresults to long-standing debates over the statisti
al �irreversibility� and the �time arrow� is brie�y dis
ussed.PACS: 05.45.Gg, 05.40.-a1. INTRODUCTION: MACROSCOPIC VS.MICROSCOPIC FLUCTUATIONSFlu
tuations are an inseparable part of statisti
allaws. This is well known sin
e Boltzmann. What isapparently less known are the pe
uliar properties ofrare big �u
tuations (BF) that are di�erent from, andeven in a sense opposite to the properties of small sta-tionary �u
tuations. In this paper, we 
onsider thesimplest type of 
haoti
 dynami
al systems, namely aHamiltonian system with a �nite number of the degreesof freedom that admits the (stable) statisti
al equilib-rium (SE). This 
lass of dynami
al models is still pop-ular (sin
e Boltzmann!) in debates over the dynami
alfoundations of statisti
al me
hani
s (see, e.g., �RoundTable on Irreversibility� in [1℄, and [2℄).A su�
iently simple pi
ture of BFs in su
h systemsis well understood by now, although not yet well known.To Boltzmann, this pi
ture was the basis of his �u
tu-ation hypothesis for our Universe. It is also well under-stood that this hypothesis is totally in
ompatible withthe present stru
ture of the Universe be
ause it would*E-mail: B.V.Chirikov�inp.nsk.su**E-mail: zhirov�inp.nsk.su

immediately imply the notorious �heat death� (see,e.g., [3℄). For this reason, one may even term su
h sys-tems the heat death models. Nevertheless, they 
an beand a
tually are widely used in des
ribing and studyinglo
al statisti
al pro
esses in thermodynami
ally 
losedsystems. The latter term means the absen
e of anyheat ex
hange with the environment. We note, how-ever, that under 
onditions of the exponential instabil-ity of motion, whi
h are typi
al of 
haoti
 systems, theonly dynami
ally 
losed system would be the �entireUniverse�. In parti
ular, this ex
ludes the hypotheti-
al �velo
ity reversal� that also is popular in debatesover �irreversibility� sin
e Los
hmidt (for a dis
ussion,see, e.g., [4℄).In any 
ase, dynami
al models with the SE do nottell us the whole story of either the Universe or evena typi
al ma
ros
opi
 pro
ess therein. The prin
ipalsolution of this problem, unknown to Boltzmann, isquite 
lear by now: the �equilibrium-free� models arerequired. Various 
lasses of su
h models are intensivelystudied today. Moreover, the 
elebrated 
osmi
 mi-
rowave ba
kground tells us that our Universe was bornalready in the state of a heat death, whi
h, however,be
ame unstable due to the well-known Jeans gravi-214
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tuations : : :tational instability [5℄. This resulted in developing ari
h variety of 
olle
tive pro
esses, or synergeti
s, theterm re
ently introdu
ed or, better to say, put in useby Haken [6℄. The most important pe
uliarity of su
h a
olle
tive instability is that the total overall relaxation(to somewhere?) with the ever in
reasing total entropyis a

ompanied by an also in
reasing phase spa
e inho-mogeneity of the system, parti
ularly with respe
t tothe temperature. In other words, the entire system andits lo
al parts be
ome more and more nonequilibriumto the extent of the birth of a se
ondary dynami
s that
an be, and sometimes is as perfe
t as, e.g., the 
elestialme
hani
s (see, e.g., [4, 7, 8℄ for a general dis
ussion).We stress that all these inhomogeneous nonequilib-rium stru
tures are not BF-like in the SE but are aresult of a regular 
olle
tive instability; therefore, theyare immediately formed under a 
ertain 
ondition. Inaddition, they are typi
ally dissipative stru
tures a
-
ording to Prigogine [9℄ due to the energy and entropyex
hange with the in�nite environment. The latter isthe most important feature of su
h pro
esses, and atthe same time the main di�
ulty in studying the dy-nami
s of those models both theoreti
ally and in nu-meri
al experiments, whi
h are so mu
h simpler for SEsystems.In the latter 
ase, a BF 
onsists of two symmetri
parts: the rise of a �u
tuation followed by its return,or relaxation, ba
k to the SE (see Figs. 1 and 2). Bothparts are des
ribed by the same kineti
 (e.g., di�usion)equation, the only di�eren
e being in the sign of time.This relates the time-symmetri
 dynami
al equationsto the time-antisymmetri
 kineti
 (but not statisti
al!)equations. The prin
ipal di�eren
e between the twotypes of equations, sometimes overlooked, is that thekineti
 equations are generally understood as des
rib-ing the relaxation only, i.e., the in
rease of the entropyin a 
losed system, whereas in fa
t they do so (at least,in the SE) for the rise of BF as well, i.e., for the entropyde
rease. All this was qualitatively known already toBoltzmann [10℄. The �rst simple example of a symmet-ri
 BF was 
onsidered by S
hrödinger [11℄. A rigorousmathemati
al theorem for the di�usive (slow) kineti
swas proved by Kolmogorov in 1937 in the paper en-titled �Zur Umkehrbarkeit der statistis
hen Naturge-setze� (�Con
erning reversibility of statisti
al laws inNature�) [12℄ (see also [13℄). Regrettably, the prin
i-pal Kolmogorov theorem still remains unknown to boththe parti
ipants of heated debates over �irreversibil-ity� and the physi
ists a
tually studying su
h BFs (see,e.g., [14℄).At present, there exists a well developed ergodi
theory of dynami
al systems (see, e.g., [15℄). In parti
u-

lar, it proves that the relaxation (
orrelation de
ay, ormixing) eventually pro
eeds in both dire
tions of timefor almost any initial 
onditions in a 
haoti
 dynami-
al system. However, the relaxation must not alwaysbe monotoni
, whi
h simply means a BF on the way,depending on the initial 
onditions. To eliminate thisapparently 
onfusing (to many) �freedom�, we take adi�erent approa
h to the problem: instead of dis
ussingthe �true� initial 
onditions and/or a �ne
essary� re-stri
tion of those, we start our numeri
al experimentsat arbitrary initial 
onditions (most likely 
orrespond-ing to the SE) and observe what the dynami
s andstatisti
s of BF are like. This approa
h is obviouslybased on the fundamental hypothesis that all the sta-tisti
al laws are 
ontained in, and 
an be prin
ipally de-rived from the underlying fundamental (Hamiltonian)dynami
s. To the best of our knowledge, there is asyet no 
ontradi
tion to this prin
ipal hypothesis. Wenote, however, that this approa
h 
an be dire
tly ap-plied to �u
tuations in �nite systems with a statisti
alequilibrium only (see [4℄ and [16℄ for a dis
ussion). Inthese and only these systems, in�nitely many BFs growup spontaneously, independently of the initial 
ondi-tions of the motion. This is similar to the well-knownPoin
aré re
urren
es (see Se
. 4).In spite of essential restri
tions, simple SE mod-els allow us to better understand the me
hanism andthe role of BF in statisti
al physi
s. In addition tothe removal of the vague problem of initial 
onditions,these models are very helpful in 
larifying the relationbetween ma
ros
opi
 and mi
ros
opi
 des
riptions of
haoti
 systems. In parti
ular, a spontaneous rise of aBF out of the SE is a ma
ros
opi
 event as well as isits subsequent relaxation ba
k to the SE, even in a sys-tem with a few degrees of freedom. Similarly to otherma
ros
opi
 pro
esses, BFs are not only perfe
tly reg-ular by themselves but also surprisingly stable againstany perturbations, either regular or 
haoti
. Moreover,the perturbations must not be small. At a �rst glan
e,this looks very strange in a 
haoti
, highly unstabledynami
s. The resolution of this apparent paradox isthat the dynami
al instability of motion a�e
ts the BFinstant of time only. The BF evolution is determinedby the kineti
s independently of its me
hanism, from apurely dynami
al one, as in model (2.2) used in this pa-per, to a 
ompletely noisy (sto
hasti
) one. As a mat-ter of fa
t, the fundamental Kolmogorov theorem [12℄ ispre
isely related to the latter 
ase but remains valid ina mu
h more general situation. A surprising stability ofBFs is similar to the less known 
on
ept of robustnessfor the Anosov (strongly 
haoti
) systems [17℄ whosetraje
tories are only slightly deformed under a small215
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ussion).In this paper, we 
onsider a parti
ular type of BFs
hara
terized by a large 
on
entration of �parti
les�in a small phase spa
e domain of the dynami
al sys-tem. In other words, �our� �u
tuations are lo
alizedin phase spa
e and separated in time. A more a

uratede�nition of these �u
tuations is given in Se
. 3 (seeEq. (3.6)). The same �u
tuations in a sto
hasti
 model(with noise) were studied in detail in [14℄. Obviously,there exist many other �u
tuations with their own pe-
uliarities (see, e.g., [18℄). The primary obje
t of ourstudies is the ma
ros
opi
 kineti
s of big �u
tuationsin the ba
kground of small stationary mi
ros
opi
 �u
-tuations. A brief outline of our results was presentedin [16℄.2. A HAMILTONIAN MODEL: MOST SIMPLEBUT STRONGLY CHAOTICThe systems with a SE 
an be des
ribed in terms ofmodels that are very simple as regards both the theo-reti
al analysis and numeri
al experiments (of whi
hthe latter are even more important for us). In thepresent paper, we use one of the most simple and pop-ular models spe
i�ed by the so-
alled Arnold 
at map(see [19, 20℄) p = p+ x mod 1;x = x+ p mod 1 (2:1)that is a linear 
anoni
al map on a unit torus. It has noparameters and is 
haoti
 and even ergodi
. The rateof the lo
al exponential instability, the Lyapunov ex-ponent � = ln (3=2 +p5=2) = 0:96, implies a fast (bal-listi
) kineti
s with the relaxation time tr � 1=� � 1.Throughout the paper, t denotes the time in the mapiterations.A minor modi�
ation of this mapp = p+ x� 1=2 mod C;x = x+ p� C=2 mod 1; (2:2)where C is a 
ir
umferen
e of the phase spa
e torusallows studying both the fast (exponential) ballisti
kineti
s (for C = 1) and the slow (di�usive) relax-ation in p (for C � 1) with the 
hara
teristi
 timetp � C2=4Dp � 1, where Dp = 1=12 is the di�usionrate in p. In 
ontrast to the slow di�usion in p, the re-laxation time in x does not depend on C (tr � 1), andthe subsequent values of x are therefore pra
ti
ally un-
orrelated. Map (2.2) has the (unstable) �xed point atx = x0 = 1=2 and p = p0 = C=2.

A 
onvenient 
hara
teristi
 of the BF size is the rmsvolume (area) in the 2D phase spa
e (x; p)�(t) = �p(t)�x(t) (2:3)o

upied by a group of N traje
tories (parti
les). Inthe ergodi
 motion at equilibrium, � = �0 = C=12. Be-
ause of a severe restri
tion to small N . 10 in the nu-meri
al experiments (see below), we have to use simple(average) 
hara
teristi
s like (2.3) only. On the otherhand, these are pre
isely the ma
ros
opi
 variables inwhi
h we are interested.In what follows, we also restri
t ourselves to a par-ti
ular 
ase of BFs with the �xed pres
ribed positionin the phase spa
e,xfl = x0 = 12 ; pfl = p0 = C2 : (2:4)The varian
e of the phase spa
e size v = �2 = �2p�2x isthen determined by�2p = hp2i � p20 ; �2x = hx2i � x20 (2:5)where the bra
kets h: : : i denote averaging over Ntraje
tories. In the ergodi
 motion at equilibrium,v = vSE = C2=122. In what follows, we use the dimen-sionless measure ~v = v=vSE ! v and omit the tilde. Inthe di�usive approximation of the kineti
 equation, thevariable v(t) is espe
ially 
onvenient be
ause it variesproportionally to time. Moreover, v ! vp in this 
asebe
ause of a qui
k relaxation vx ! 1 in x.In all the advantages of v, the relation of this vari-able to the fundamental 
on
ept of the entropy is highlydesirable. The standard de�nition of the entropy, whi
h
an be tra
ed ba
k to Boltzmann, readsS = �hln f(x; p)i+ S0; (2:6)where f(x; p) is a 
oarse-grained distribution fun
tion,or the phase-spa
e density, and S0 an arbitrary 
on-stant to be �xed later. We note that the distribution
al
ulated from any �nite number of traje
tories is al-ways a 
oarse-grained one. However, the dire
t appli-
ation of Eq. (2.6) requires too many traje
tories, espe-
ially for a small-size BF. Nevertheless, pre
isely in thelatter 
ase, whi
h is the main problem under 
onsider-ation, we have found a simple approximate relationS(t) � 12 ln v(t) (2:7)that gives at least a rough estimate for the entropy evo-lution [16℄. Moreover, if the distribution is Gaussian,f(x; p)! f(p) = exp ��(p� p0)2=2v�p2�v (2:8)216
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Fig. 1. Mixed kineti
s for two big �u
tuations of dif-ferent sizes. Filled/open 
ir
les show the time de-penden
e of the mean varian
e hv(t � ti)i aroundthe BF maximum at t = ti; the upper horizon-tal straight line is the equilibrium and the lower lineindi
ates the empiri
al value of the dynami
al s
alevd = 0:015, Eq. (3.4), with the parameter Fd � 1=3.Two oblique straight lines represent the expe
ted fastkineti
s, Eq. (3.3), and two solid 
urves do so forthe initial di�usive kineti
s, Eq. (3.5). The respe
-tive run parameters and results are given by C = 15,N = 1, vb = 3:9 � 10�11=6:25 � 10�10 (vxb = vpb),v(0) = 1:96 � 10�14=3:1 � 10�13, n = 1971=4459,w = 500. The average period between su

essive �u
-tuations is hP i � 1:4 � 107=3:5 � 106 iterationsestimate (2.7) be
omes exa
t be
ause it is dire
tly de-rived from the de�nition of the entropy in Eq. (2.6).The two relations for the entropy are 
ompared in theend of Se
. 3 for a typi
al BF.A great advantage of (2.7) is that the 
omputationof S does not require very many traje
tories as does thedistribution fun
tion. In fa
t, even a single traje
toryis su�
ient, as is demonstrated by Fig. 1 in [16℄ andFig. 1 in this paper!A �nite number of traje
tories used for 
al
ulatingthe varian
e v is similar to a 
oarse-grained distribu-tion, as required in relation (2.6), but with a free binsize that 
an be arbitrarily small.We 
an now turn to the numeri
al experiments.3. MACROSCOPIC KINETICS: COMPLETE,REGULAR, AND STABLEIn this se
tion, we 
onsider the regular BF kinet-i
s. The data were obtained by simultaneously run-ning N traje
tories for a very long time in order to
olle
t su�
iently many BFs for a reliable separation

of the regular part of BFs, or the kineti
 subdynami
sa

ording to Bales
u (see [21℄ and referen
es therein),from the stationary �u
tuations. The separation wasdone by the plain averaging of the individual vi values(i = 1; : : : ; n) over all the n BFs 
olle
ted in a run.The size of the BF 
hosen for the subsequent ana-lysis is �xed by the 
ondition thatv(t) < vb (3:1)at some time instant t � ti, the moment of a BF. Here,a pres
ribed value vb is the main input parameter ofthe run. This 
ondition a
tually determines the borderof the entire �u
tuation domain (FD) as 0 < v < vb.The event of entering the FD is the ma
ros
opi
�
ause� of the BF whose obvious �e�e
t� is the subse-quent relaxation to the equilibrium. However, the mainpoint of our study is that the se
ond �e�e
t� of thesame �
ause� was pre
eding the rise of the BF in anapparent 
ontradi
tion with the �
ausality prin
iple�(for a dis
ussion, see [16℄ and Se
. 4 below). In anyevent, the se
ond e�e
t requires the permanent mem-ory of traje
tory segments within some time windoww, whi
h is another important input parameter of therun.The exa
t pro
edure of data pro
essing during therun is as follows. Starting from arbitrary (random) ini-tial 
onditions, sele
tion rule (3.1) is 
he
ked at ea
hiteration. Suppose that it is satis�ed at some instan
etin when the bundle of traje
tories enters the FD. Inthe �rst approximation, we 
ould 
onsider it as the �u
-tuation maximum (or the varian
e minimum) ti = tin,where the subs
ript i is the number of the 
urrent �u
-tuation in a run. However, this simple pro
edure would
ause an asymmetry with respe
t to t = ti. A better
hoi
e would be given by the rule ti = (tin + tout)=2,where tout is the time instan
e of the exit from the FD.Instead, we have a

epted a more 
ompli
ated pro
e-dure that better restores the true BF symmetry, as wehope. Starting from the moment tin, we sear
h forthe minimum of v(t) inside a su�
iently large intervaltin < t < tin + w. If a minimum is found at somet = tmin, we 
he
k that it also is the minimum in-side the next interval tmin < t < tmin + w. If this isthe 
ase, we identify this minimum with the BF topand set ti = tmin; otherwise, we set tmin equal to thetime of a better minimum and repeat the last step.Obviously, the parameter w must be small 
omparedto hP i, the mean period of the BF, but su�
ientlylong for the traje
tory to leave FD (3.1). Typi
ally,we 
hose w & C2, the total di�usion time. After �xingthe 
urrent ti value, the 
omputation within the inter-217



B. V. Chirikov, O. V. Zhirov ÆÝÒÔ, òîì 120, âûï. 1 (7), 2001val ti < t < ti + w was 
ompleted, and only then thesear
h for the next BF is 
ontinued.As mentioned above, there are two quite simplelimiting 
ases of generally very 
ompli
ated kineti
s,namely the fast (ballisti
) and the slow (di�usive) li-mits. An example of both in one run for N = 1 (!)is presented in Fig. 1 for two �u
tuations of di�erentsizes. In this 
ase, general 
ondition (3.1) was 
he
kedseparately for p and x,vp(t) < vpb and vx(t) < vxb; (3:2)with vpb = vxb � 10�5 and vb = vpbvxb � 10�10.The fast part of kineti
s is approximately des
ribedby v(�) � v(0) exp (4��); (3:3)where � = t � ti; � is the Lyapunov exponent (seeSe
. 2), and v(0) � 10�13 is the minimal varian
e av-eraged over all n �u
tuations observed in the run. Wenote that the latter value is 
onsiderably smaller thanthe border value vb � 10�10. This is be
ause of thepenetration of traje
tories into the FD. Interestingly,the ratio vb=v(0) = 2000 is the same for both runs inFig. 1.A surprisingly sharp 
rossover to the di�usive kine-ti
s, 
learly seen in Fig. 1, is related to the dynami
als
ale of the di�usion 
orresponding to a 
ertain sizevd of the in
reasing varian
e at whi
h the exponen-tial growth stops. Roughly, it o

urs at the time in-stan
e � = �d, when jx � x0j � jp� p0j � 1=2, when
evxd � 12=4 = 3 and vpd � 3=C2. We 
an therefore
hara
terize the dynami
al s
ale asv(�d) = vd = Fdvpdvxd = 9FdC2 ;�d = ln (vd=v(0))4� ; (3.4)where Fd is an empiri
al fa
tor and �d is found fromEq. (3.3). The data in Fig. 1 imply the dynami
als
ale vd � 0:015 independently of vb, whi
h gives theempiri
al fa
tor Fd � 1=3.In the di�usion region (v > vd), the initial kineti
sis des
ribed by a simple relation for the free di�usion(see Se
. 2),v(�) � � � �dC2 + vd; �d < � � C2 (3:5)whi
h is also shown in Fig. 1. It involves two 
orre
-tions, �d and vd, due to the exponential ballisti
 ki-neti
s. The �rst one (with opposite signs for the twosymmetri
 parts of the �u
tuation) takes the �lost�time after (or prior to) the anti-di�usion (di�usion) into

00.51.0
�5000�10000 0 5000 10000

hvi
diffusion t� tianti-diffusion

equilibrium

Fig. 2. The same as in Fig. 1 for a typi
al di�usive ki-neti
s (anti-di�usion/di�usion): the solid 
urve showsthe average over all n = 20259 �u
tuations in a runand the wiggle line is the same for the �rst 28 �u
-tuations. Two oblique straight lines represent the ex-pe
ted initial di�usive kineti
s, Eq. (3.5), with �d = 0and the empiri
al value v(emp)d = 0:045, while the the-ory in (3.15) gives vd = 0:02. Other run parame-ters/results are given by C = 50, N = 5, vb = 0:0256,w = 104, hP i � 7:7 � 105=8:7 � 105, and B = 306=348;hP i=w � 77=87a

ount, while the se
ond 
orre
tion des
ribes a �nite�u
tuation size at the 
rossover from (to) the di�usion.The mean empiri
al value �d = 7 used in Fig. 1 is 
loseto the value �d = 6:5 found from Eq. (3.4) with anotherempiri
al quantity vd = 0:015.The large ratio B = hP iC2 � 1 (3:6)of the mean �u
tuation period hP i to the 
hara
teris-ti
 time of the di�usion relaxation (see Eq. (3.5)) is thede�nition of a big �u
tuation. It guarantees the timeseparation of su

essive �u
tuations.We now turn to the main subje
t of our study, thepurely di�usive kineti
s of BFs. For this, we �rst elimi-nate the x-statisti
s by ex
luding vx from sele
tion 
on-dition (3.1), whi
h now readsv(t) = vp < vpb = vb: (3:7)Next, the varian
e vb must now ex
eed the new dynam-i
al border, vb > vd = vpd � fp 12C2 (3:8)with some empiri
al fa
tor fp � 1 (see Eq. (3.4) andthe dis
ussion below).218
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0 4 8 12100
105104103102101 P=hP iFig. 3. The histogram of integrated distribution (3.9)for the data in Fig. 2. Ea
h 
ir
le shows the num-ber of periods Pm > m�P , for m = 0; 1; : : : .P0 = n, �P = 1:5 � 105; Pmin=w = 1:0027;Pmax=hP i = 12:63; hP i = 765084. The straight lineis the expe
ted distribution n exp (�P=hP i)A typi
al example of a di�usive BF is shown inFig. 2. Both the regular ma
ros
opi
 kineti
s of theanti-di�usion/di�usion and the irregular �u
tuationsaround are 
learly seen. We note that their size israpidly de
reasing toward the BF maximum. It mayeven seem that the motion be
omes regular in that re-gion, hen
e the term �optimal �u
tuational path� [14℄.In fa
t, the motion remains di�usive down to the dy-nami
al s
ale v � vd in Eq. (3.8).Even though a separate BF is su�
iently regular,the time instan
e of its spontaneous appearan
e ti,and hen
e the individual period P , are random in the
haoti
 system. Due to the statisti
al independen
e ofBFs under 
ondition (3.6), the expe
ted distribution inP is Poissonian (Fig. 3),f(P ) = exp (�P=hP i)hP i : (3:9)The prin
ipal 
hara
teristi
 of the period statisti
s,hP i, 
an be estimated as follows. From the ergodi
ityof motion in the N -dimensional momentum spa
e, wehave � = Tstf = hTsihP i = PflPeq : (3:10)This is an exa
t relation (in the limit as trun ! 1),with Ts being the total sojourn time of traje
torieswithin the FD (under the 
ondition v(t) < vb) dur-ing the entire run time trun and hTsi the same per�u
tuation. Both ratios are equal to the ratio of theN -dimensional momentum volume P of the �u
tuation

00.51.01.52.0
102 4 6 8 N

�1

Fig. 4. The 
omparison of the dire
tly measuredratio �emp given by Eq. (3.10) with the theoret-i
al approximation �th, Eq. (3.12) for N = 1�10:�1 = �emp=�th; the average over 71 runs is h�1i == 1:015�0:11 (the standard deviation); the bars showstatisti
al errors 1=pn for ea
h run; the total numberof �u
tuations in all runs is 127346at � = 0 to that in the equilibrium. The ratio � wasalso measured during the run. It follows thathP i = hTsi� : (3:11)The next more di�
ult step is the valuation ofTs = 2Tex from the di�usion equation, where Texis the exit (or entran
e due to symmetry) timefrom (or to) the FD. A simple 
rude estimate isTex � vb=Dp = vbC2 (see Se
. 2). However, the �rstnumeri
al experiments have already revealed that thea
tual exit time is mu
h shorter, roughly by the fa
tor1=N2. A plausible explanation is that inside the FD,the distribution is 
on
entrated in a relatively narrowlayer at the surfa
e of the N -dimensional sphere deter-mined by the sele
tion 
ondition v(t) < vb in Eq. (3.7).The relative width of the layer � 1=N then implies theobserved fa
tor � 1=N2. Further, the ratio�(vb; N) = vN=2b �(N); (3:12)with the geometri
al fun
tion�(N) � ��e6 �N=2 (1� 1=6N)p�N ; (3:13)admits a relatively a

urate approximation down toN = 1 (see Fig. 4).Colle
ting all the above formulas, we arrive at our�nal empiri
al relationhP i � F� 2vbAC2N2 � F 2AC2N2 v1�N=2b�(N) (3:14)219
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tors, A for the layer width and F forall the other approximations made above. The two fa
-tors 
annot be united in one be
ause the former entersa new expression for the dynami
al s
ale that naturallygeneralizes Eq. (3.8). Together with inequality (3.6) fora big �u
tuation, the new dynami
al s
ale was used insele
ting purely di�usive BFs des
ribed by Eq. (3.14).The 
orresponding inequality reads (
f. Eq. (3.8))vb > vd; vd AN2 � fp 12C2 ; (3:15)whi
h means that even a small part (A=N2 < 1) of theFD must ex
eed the dynami
al s
ale.All the empiri
al parameters were optimized as fol-lows. The values of two fa
tors, B in Eq. (3.6) andfp in (3.15), are not 
ru
ial; larger values of these fa
-tors 
orrespond to a better sele
tion of purely di�usiveBF, but redu
e the amount of the empiri
al data avail-able. A 
ompromise was found at B = 7 and fp = 1,whi
h leaves 36 runs of 61 done and 34429 of the total75053 BFs 
omputed with N = 2�10 for 
omparisonto Eq. (3.14). This was exe
uted as follows. For ea
hsele
ted run with the parameters N , C, and vb andthe 
omputed values hP i and �, the empiri
al fa
torF (that was assumed to be a 
onstant) was 
al
ulatedfrom the �rst equation in (3.14). The value of A was
hosen by minimizing the relative standard deviationto �F=hF i = 0:17. For a given set of data, the resultwas A � 6. The �nal dependen
e F (N) is shown inFig. 5, where the bars are the statisti
al errors F=pnfor ea
h run.Coming to the analysis of our main theoreti
al re-sult, the se
ond equation in (3.14), we �rst remark thatit does not des
ribe a single traje
tory (N = 1). This isbe
ause we ex
luded vxb from sele
tion 
ondition (3.7)(
f. Eq. (3.2)) and thus redu
ed the phase spa
e di-mension to the minimal value, the unity. In this 
ase,a single traje
tory repeatedly 
rosses the FD with theperiod P � C2, the entire di�usion time around thephase spa
e torus, whi
h is independent of the FD size.More formally, this also follows from Eq. (3.14), be-
ause 
ondition (3.6) 
annot be satis�ed for small vb.For two traje
tories (N = 2), the period does notdepend on vb, and for the data in Fig. 5, we have theratio hP i=C2 � 8:7. Be
ause of �u
tuations, the a
-tual values of this ratio are in the interval 7.4�11.0,still not too big for a BF. Apparently, this leads to arelatively large s
attering of points with N = 2, whi
halso persists for N = 3.The main dependen
e in Eq. (3.14), the expo-nential of N , is readily derived from a graphi
 pi
-ture of N statisti
ally independent parti
les gather-

0
1.53.0

2 4 6 8 10
F

NFig. 5. The 
omparison of the empiri
al data for 36runs sele
ted from 61 runs 
omputed for N = 2�10 bythe two rules, Eq. (3.6) with B > 7 and Eq. (3.15) withA = 6, to theoreti
al relation (3.14) with the main �t-ting fa
tor Fm, m = 1; : : : ; 36 (see text). The averagevalue is hF i = 1:51(1�0:17) (the standard deviation);the bars show statisti
al errors Fm=pn for ea
h run;the total number of �u
tuations in 36 runs is 34429ing together inside a small domain with the proba-bility � 1=P � vN=2b . Su
h estimates are known forthe Poin
aré re
urren
es sin
e Boltzmann [10℄. Theestimate is espe
ially vivid in the geometri
al pi
tureof the N -dimensional sphere of the radius pvb 
onsid-ered above. Our empiri
al relation (3.14) 
onsiderablyimproves the simple estimate by in
luding a weakerpower-law dependen
e, whi
h is evident in Fig. 5.In our studies des
ribed above, we �xed the posi-tion of a BF in phase spa
e, Eq. (2.4). If we lift thisrestri
tion, the probability of a BF in
reases by the fa
-tor v�1=2b , whi
h 
orresponds to de
reasing N by one(N ! N � 1) be
ause only N � 1 traje
tories thenremain independent. With the latter 
hange, all theabove relations presumably remain valid.Our main relation (3.14) des
ribes the di�usive ki-neti
s for vb > vd, Eq. (3.15), when a big �u
tuation isnot too big. In the opposite 
ase vb � vd of a very big�u
tuation, as in Fig. 1, the dependen
e hP (vb)i be-
omes mu
h simpler (see Eqs. (3.11)�(3.13) and [16℄):hP (vb)i = hTsi� � 2vN=2b �(N) � 2v�N=2b : (3:16)This is explained by a fast exponential kineti
s near theBF top (Fig. 1), whi
h implies the shortest exit timeTex � 1, and hen
e, Ts � 2. Indeed, for both BFs inFig. 1, we have the empiri
al value hP i� = 1:98.In the 
on
lusion of this se
tion, we show in Fig. 6the ma
ros
opi
 kineti
s of the BF entropy, both the�exa
t� one in Eq. (2.6), 
al
ulated for the partition220
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0S
t� tiFig. 6. The ma
ros
opi
 kineti
s of the BF entropy: thelower line is the �exa
t� entropy given by Eq. (2.6),to be 
ompared with approximation (2.7), the middleline; the upper line is the same approximation for thedi�usion theory, Eq. (3.5) with �d = 0 and the empir-i
al value v(emp)d = 0:02. The run parameters/resultsare C = 50, N = 5, vb = 0:01, w = 104, n = 4580,hP i � 3:3�106, B = 1314; hP i=w � 329. The numberof partition bins for 
al
ulating (2.6) is Np = 401of the entire interval (0 < p < C) into Np = 401bins, and the one given by our approximation (2.7).Both entropies were 
al
ulated for the same 5 traje
to-ries in one run. The ne
essary statisti
s for the exa
tentropy was obtained at the expense of a large num-ber n = 4580 of �u
tuations in the run. To 
omparethe two entropies, we must adjust the 
onstant S0 inEq. (2.6). As is easily veri�ed, Gaussian distribution(2.8) leads exa
tly to relation (2.7) ifS0 = �12 ln (2�e) � �1:4189 � �p2: (3:17)Approximation (2.7) is valid for the most part of theBF ex
ept a relatively small domain near the equilib-rium, where the distribution in p approa
hes the homo-geneous one. The exa
t entropy (with 
onstant (3.17))in the equilibrium isSSE = �12 ln��e6 � � �0:18 (3:18)instead of zero in approximation (2.7). The di�eren
eis relatively small, the smaller the larger is the �u
tu-ation. In the main part of the BF, our simple relationfor the entropy in Eq. (2.7) reprodu
es exa
t relation(2.6) to a surprisingly good a

ura
y. This 
on�rmsthat the distribution in p is indeed very 
lose to theGaussian one in Eq. (2.8), as expe
ted.

4. CONCLUSION: THERMODYNAMICARROW?We have presented the results of extensive numeri-
al experiments on big entropy �u
tuations (BFs) in astatisti
al equilibrium (SE) of 
lassi
al dynami
al sys-tems and dis
ussed their pe
uliarities.All numeri
al experiments were 
arried out on thebasis of a very simple model given by Arnold 
at map(2.1) on a unit torus with only two minor, but impor-tant and helpful, modi�
ations:(1) expanding the torus in the p dire
tion, Eq. (2.2),for a more impressive di�usive kineti
s of BFs out of theequilibrium (Fig. 2), and(2) inserting a spe
ial (unstable) �xed point for abetter demonstration of the exponential ballisti
 kinet-i
s (Fig. 1). In addition, this point was used as a �xedposition of BFs, whi
h relates our studies of BFs to an-other interesting and important problem, the Poin
arére
urren
es (see Eq. (2.2)).The most important distin
tion of our approa
h isthat we have abandoned the vague question of initial
onditions, in parti
ular, a �ne
essary� restri
tion ofthose in statisti
al physi
s. Instead, we started ournumeri
al experiments at arbitrary initial 
onditions(most likely 
orresponding to the SE), and did observethe dynami
s and statisti
s of BFs. In other words, westudied the spontaneous BFs only.It is also important that su
h a spontaneous rise ofa BF out of the SE and its subsequent relaxation ba
kto the SE 
an be 
onsidered as a statisti
al ma
ros
opi
event, even in a system with a few degrees of freedomas the one in Eq. (2.2). The term �ma
ros
opi
� refersto average quantities in
luding varian
e, entropy, meanperiod, distribution fun
tion, et
.We 
onsider a parti
ular 
lass of BFs that we 
allthe Boltzmann �u
tuations. They are obviously sym-metri
 under the time reversal (see Figs. 1, 2, and 6),and therefore, at least in this 
ase, there is no physi-
al reason at all for the 
on
ept of the notorious �timearrow�. Nevertheless, a related 
on
ept�the thermo-dynami
 arrow pointing in the dire
tion of the averagein
rease of entropy�makes sense in spite of the timesymmetry [16℄. The point is that the BF 
hara
teristi
relaxation time is determined by the model parameterC only and does not depend on the BF itself. On the
ontrary, the expe
tation time for a given BF, or themean period between su

essive �u
tuations, rapidlygrows with the BF size and with the number of traje
-tories (or the degrees of freedom), Eq. (3.14). A largeratio of the two quantities, B = hP i=C2 � 1, is our de-�nition of a big �u
tuation, Eq. (3.6). A similar result221
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ently obtained in [22℄, but the authors missedthe prin
ipal di�eren
e between the time arrow and thethermodynami
 arrow.A related notion of the 
ausality arrow, whi
hby de�nition points from an independent ma
ros
opi

ause to its e�e
t, also makes some physi
al sense(see [16℄ and Se
. 3 for a dis
ussion). For the Boltz-mann BFs 
onsidered in the present paper, the dire
-tions of both arrows 
oin
ide independently of the di-re
tion of time. In our opinion, the last statement is themost important, philosophi
al �moral� that the prin
i-pally well-known Boltzmann �u
tuations do tea
h us.Even though we dis
uss and interpret our empiri-
al results in terms of entropy (S), whi
h is the mostfundamental 
on
ept in statisti
al physi
s, we a
tuallyuse another entropy-like quantity, the varian
e v(t) fora group of N traje
tories, Eq. (2.5). One reason iste
hni
al: the 
omputation of v is mu
h simpler thanthat of S(t), whi
h is either very time-
onsuming innumeri
al experiments (for exa
t S given by (2.6)) orapproximate in a

ordan
e with (2.7). In addition, fordi�usive kineti
s, in whi
h we are mainly interested,the varian
e is a natural variable that makes the BFpi
ture most simple and 
omprehensible.Originally, we planned to 
over both sides of the BFphenomenon, the regular ma
ros
opi
 kineti
s and thea

ompanying mi
ros
opi
 �u
tuations (noise) around.However, our numeri
al experiments revealed a mu
hmore 
ompli
ated stru
ture of the latter, as an exam-ple in Fig. 2 demonstrates. The dependen
e v(t) lookslike a fra
tal 
urve on a variety of time s
ales, rangingfrom the minimal one � 1 iteration up to � C2, whi
his 
omparable to that of the BF itself. This interestingproblem 
ertainly requires and deserves further studies.Only the �u
tuations in 
lassi
al me
hani
s are 
on-sidered in this paper. General quantum �u
tuations arequite di�erent. However, a

ording to the Correspon-den
e Prin
iple, the dynami
s and statisti
s of a quan-tum system in the semi
lassi
al region are 
lose to the
lassi
al ones at the appropriate time s
ales, the longestof whi
h 
orresponds to the di�usive kineti
s and en-sures the transition to the 
lassi
al limit (see [4, 23℄ fordetails). Curiously, the 
omputer 
lassi
al dynami
sthat is the simulation of a 
lassi
al dynami
al system ondigital 
omputer is of a qualitatively similar 
hara
ter.This is be
ause any quantity is dis
rete (�overquan-tized�) in the 
omputer representation. As a result,the 
orresponden
e between the 
lassi
al 
ontinuousdynami
s and its 
omputer representation in numeri-
al experiments is generally restri
ted to 
ertain �nitetime s
ales as in quantum me
hani
s (see the �rst tworeferen
es in [23℄).

The dis
reteness of the 
omputer phase spa
e leadsto another pe
uliar phenomenon: generally, the 
om-puter dynami
s is irreversible due to the rounding-o�operation unless a spe
ial algorithm is used in numeri-
al experiments. However, this does not a�e
t the sta-tisti
al properties of the 
haoti
 
omputer dynami
s. Inparti
ular, the statisti
al laws remain time-reversible inthe 
omputer representation in spite of the (nondissi-pative) irreversibility of the underlying dynami
s. Thissimple example demonstrates that 
ontrary to a 
om-mon belief, the statisti
al reversibility is a more generalproperty than the dynami
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