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CRITICAL BEHAVIOR OF DILUTE ELECTROLYTE SOLUTIONS
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A theory of the critical behavior of a dilute ionic solution is constructed. An expression for the susceptibility in
a wide temperature region is obtained. It is shown that ionic solutions belong to the universality class of the
Ising model. The Ginzburg parameter of the ionic solutions decreases with the increase of the solvent concen-
tration. In the general case, the susceptibility critical exponent nonmonotonically depends on the temperature
in the crossover region from the Ising-like to the mean-field behavior. In the vicinity of the transition point, the
Debye—Hiickel screening radius is proportional to the correlation length. As T — T., it tends to infinity and
the screening disappears. The voltage between the two phases of the ionic solution is proportional to the order
parameter and changes as |T/T. — 1|° in the vicinity of the phase transition point.

PACS: 61.20.Qg, 64.60.Fr, 05.70.Jk

1. INTRODUCTION

Critical phenomena in liquids and liquid mixtures
are an extensively studied region of condensed matter
physics [1, 2]. In general, the behavior of physical char-
acteristics near the critical (consolution) point can be
described sufficiently well as a crossover between the
Ising-like asymptotic behavior and the mean-field be-
havior [3, 4, 5]. The Ising-like behavior occurs in a
narrow vicinity of the critical point for

IT/T. - 1| < G,

where T' is the temperature, T, is the critical tempera-
ture, and G is the so-called Ginzburg parameter. The
mean-field behavior occurs for

IT/T. - 1]> G.

For liquids, the parameter G is of the order 0.01-0.1.

Critical behavior of ionic solutions was discussed
in a number of works (see [6, 7, 8, 9, 10]). Experi-
mental studies show that the critical behavior of elec-
trolyte solutions significantly differs from that of or-
dinary solutions. This difference occurs for both non-
aqueous [11, 12, 13] and aqueous solutions [14]. The
main feature of the electrolyte solutions is their mean-
field behavior in the region

IT/T. — 1| > t,,
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where t, varies from 1 to 10~* for different solu-
tions [15]. Numerous attempts to understand the
ionic criticality have been made recently (see, e.g.,
[15, 16, 17]). In a recent experimental work [14], it
was stated that the crossover behavior is not mono-
tonic and the effective susceptibility exponent v has its
maximum value in the crossover region exceeding the
asymptotic value y ~ 1.24.

2. THEORY

We consider the electrolyte solution near the criti-
cal (or consolute) point of the solvent. We let ¢(r) be a
field proportional to the order parameter (the solution
density for the critical point or the concentration for
the consolute point), ¢(r) be the electric potential field,
and pq(r) and pa(r) be the respective volume densities
of the ion numbers with positive and negative charges.
For simplicity, we assume that these charges are equal
to e and —e respectively.

Near the transition point, the ionic solution consists
of two subsystems: the «fasty subsystem that depends
on the ion densities p; and ps and the «slow» subsys-
tem that depends on the order parameter ¢ and the
electric potential ¢. As in the standard Debye—Hiickel
(Hartree) approach, ions can be considered in the av-
erage long-wavelength field ¢(r) and, in our case, ¢(r).
We first evaluate the fluctuational corrections to the
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Hamiltonian of the «slow» part of the system that are
caused by the «fast» subsystem and then consider only
the part of the Hamiltonian containing the density field
¢ and the electric potential field ¢.

The main interaction terms of the fields ¢, ¢ and
p1, p2 can be written as

Hint = [ de((epa(x) = epa@)ote) +

+ (1 () = 2p2(x)(x)). (1)

The first interaction term in Eq. (1) is the ordinary
electrostatic interaction, the second term is some phe-
nomenological interaction between the order parameter
and the ion densities, and y; and v, are the interaction
constants.

It is easy to see from Eq. (1) that the values

Apa(r) = ed(r) +mp(r),

Apz(r) = —ed(r) — 7250(r)
can be considered as local additional corrections to the
chemical potentials of the respective positive (u1) and
negative (us2) ions. The Gauss distribution of the ther-
modynamic fluctuations of the chemical potential is
given by (see [18])

w o exp <— A'L}Ap> = exp (—2—;2(A,u)2) , (3)

where T is the absolute temperature in energy units
and p = N/V is the average volume density of parti-
cles.

Inserting expressions (2) in Eq. (3), we obtain the
fluctuation correction to the Hamiltonian of the «slow»
part of the system,

AH:/er

x (Lh(eom)+mp)? +L2 (o) +ra0)?) . (1)

For the ionic solution, we must add expression (4)
and the expression for the electrostatic energy

/dr (E-D/8n)

(where D = ¢E) to the standard Landau Hamiltonian
of the system near the critical point. Taking into ac-
count that

(2)

p1 = p2 = p,
we obtain the effective Hamiltonian
Hor = | d 1 P o, 2 2 1 V)2
erf = [ dr| 5 (at700472) ) 0" +5a(Ve) +

n %e%s? n 8%(%)2 n %e(*yl + )b + A@‘*) NG

There are three different fluctuation corrections in
Hamiltonian (5). The correction proportional to ¢?
describes the Debye—Hiickel screening. The correction
proportional to ¢? shifts the bare temperature of the
phase transition. The correction proportional to ¢y
couples the electric potential field to the order parame-
ter. Far from the phase transition point, the parameter
a is not small and the last two corrections to the Hamil-
tonian are not relevant. In the near-critical region, the
parameter

aox|T/T.—1]

is small and we must take these corrections and the ¢*
term in the Hamiltonian into account.

In what follows, the angular brackets denote averag-
ing over effective Hamiltonian (5). The quadratic part
of effective Hamiltonian (5) determines the bare values
of the correlation functions. The inverse correlation
function is equal to

( (p(K)p(-K)  (p(K)o(-K)) ) 1
(B(k)e(-K))  (6(k)g(-K))

T
y ( atak®+p(1}+93)/T  ep(11+12)/T ) -
ep(n+) /T e(B+s)/4n )

where k = /8mpe?/Te is the inverse Debye-Hiickel
radius. Calculating the inverse matrix, we obtain

T(n1+192)/2e

Q

(k/k)2(a + bar? + a(k? + k2))’ ™)
(6(k)o(-k)) =
_ 47T /e
k2 4 k2(a+ ak?) /(@ + bak? 4+ ak?)’
a=a+ %(% - 72)%,
= Toraan t 12)? = Tz N +92)%.

The correlation function of the electric potential
field in Eqgs. (7) describes the Coulomb screening near
the critical point of the ionic solution. It is easy to
see that the screening has the ordinary form far from
the critical point, where a > py?/T. In the vicinity
of the phase transition point @ = 0 in the mean-field
approximation, the screening radius behaves as

a + bak?

1
rs = —
K a
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As a — 0, the screening radius tends to infinity and
the screening disappears.

The density correlation function in Egs. (7) has the
asymptotic behavior

<¢(k)¢(—k)>~m-, k< K,
8
P PO
a+ﬁ(71+”yg) +ak

The interaction between the mass density field (or-
der parameter) and the charge density field redefines
bare correlation function (4) in the long-wavelength re-
gion as

a—a, o—a(l+d).

(9)

The asymptotic forms of correlation function (8) in
the long and short wavelength regions are analogous to
the ordinary form of the correlation function near the
critical point. This means that the behavior of physical
characteristics in the corresponding limits is the same
as in the non-ionic case. The bare critical point

a=—p(i+)/T

and the real singularity point

a=—p(n —1)*/2T

are now different, both of them are less than the pure
solvent transition point a = 0.

In the mean-field approximation, the correlation
length in vicinity of the transition point is given by

a(l+0b)

re =4/ ——.

a

In the vicinity of the transition point, the screening
length is proportional to the correlation length and

their ratio is
_ Jajak®+b
N 1+06

The mean-field aproximation does not correctly de-
scribe the behavior of the system near the transition
point. It can be used in the region far from the tran-
sition point, where @ > G. In a close vicinity of the
transition point, the fluctuation effects must be taken
into account.

Ts
T'e

3. RENORMALIZATION

We now calculate the expression for the susceptibil-
ity, which is an experimentally measured value [13, 14].
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Fig.1. One-loop corrections to the effective Hamilto-
nian parameters a and \. The solid line corresponds to
the field ¢. The circle in the vertex is equal to A

We must apply the standard renormalization procedure
to effective Hamiltonian (5). The leading corrections to
the coefficients @ and A due to fluctuation effects can
be represented by the diagrams in Fig. 1. The renor-
malization equations for these coefficients are given by

di 1. a(A)AA)ATD
dA 3 AT o2/ (A £ 22
_ (10)
@ _x /\Q(A)Ad 5
dA (14 br2 /(A2 4 K2))2’

where A is the renormalization equation parameter

([A] = k) and

18T'S,

(2m)da?’

with d being the space dimension and S; the unit

sphere surface. Equations (10) are written in the

one-loop approximation, which corresponds to the first

approximation in the parameter ¢ = 4 — d. For sim-

plicity, we do not use the e-expansion but consider the

one-loop renormalization equations directly for d = 3.
It is easy to see from Eqs. (10) that

K =

da a @A)
—_ =, = t. 11
ax 3x A@) o (11)
The solution of the equation for the interaction vertex
is given by
1/A 5
1 1 1+ k222
———=K [ d . 12
MA) A ‘/ x(l—l—(l—}—b)n?x?) (12)
0

Calculating the integral in (12) and taking Eq. (11) into
account, we find

_A() _oay . a(co)
AMA) = TF(A)’ a(A) = W’ (13)
where
K\(x)
F(A) = In(d + D)2 X
X (t(2 + 1-|-—2t2) + b(b+ 4) arctan t) , (14)

t= 1+0.

il
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To obtain the expressions for physical quantities
valid in a wide region near the transition point, it is
neccesary to choose a mathching point A* for solu-
tions (13). The matching point can be chosen in the
same way as in [3] (see also [19]),

a(A*)

Q

AT = (15)

Inserting this in Eq. (13), we obtain the equation for

the susceptibility,
( ()

1/3
+ b(b+4) arctant*)) =a(o0), (16)

2

b
2 -
+1+t*2

KA(0)

a(A*) <1 + 72*@(1 FARE

where
o (1+b)ar?
a(A*)

Equation (16) determines the susceptibility in a
wide temperature region in the one-loop approxima-
tion. The critical exponent 7 is equal to 6/5 in this ap-
proximation. It is neccesary to modify this expression
in order to apply it to experimental data. The simplest
way is to replace the exponent 1/3 in (16) with 2—2/~,
where v = 1.24.

4. DISCUSSION

The expressions obtained can be used for electrolyte
solutions (strong or weak) if the ion density p is small.
As p — 0, all the expressions transform to the ordinary
form valid for non-ionic liquids. The pure solvent limit
can also be obtained as b — 0, i.e., if the density is
weakly coupled to the charge density.

The Debye—Hiickel screening radius in the vicinity
of the transition point is proportional to the correla-
tion length. As T' — T, the screening radius tends to
infinity and the screening disappears.

The asymptotic forms of the density correlation
function for k£ > k and k < k are the same as for
the non-ionic liquid, and therefore, the corresponding
(mean-field or Ising-like) asymptotic behavior is the
same. The value of F(A*)y/a* in the ionic solution is
similar to the Ginzburg parameter G for the ordinary
liquids. It decreases as the salt concentration increases,
and the Ising-like region of ionic solutions therefore
decreases as the concentration increases, which agrees
with the experimental data.

Equation (16) determines the behavior of the sus-
ceptibility in the crossover region. The dependence of
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Fig.2. The dependence of the effective susceptibility

critical exponent s on the value of b for the model

system. The curve where b = 0 corresponds to the
non-ionic solution

the effective exponent v on the temperature for the
model system is presented in Fig. 2. For small valu-
es of b, this dependence has the usual shape, but it
becomes nonmonotonic for b ~ 1. For the real experi-
mental situation in [14], this specific behavior occurs in
a close vicinity of the transition point and it is difficult
to reveal it. The authors of [14] state that they see this
peculiarity.

The shape of the crossover curve depends on the
dimensionless parameter b (Eqgs. (7)), i.e., on v; + 2.
This quantity can be estimated from a simple electric
measurement. In the mean-field approximation, Eq. (5)

gives
(p) = \/?

for the two-phase state. Therefore, the voltage bet-
ween the two phases of the ionic solution is determined
by 41 + 72. Near the transition point, this voltage is
proportional to the order parameter and behaves as
(T/T.— 1)5.

The detailed comparison of the expressions ob-
tained with the experimental data is not a simple task.
The data presented in [11-13] have significant error
bars. The ionic solutions in [14,20] were ternary and
their behavior was studied near the consolute points.
These solutions had a high concentration (10%), and
there were additional problems due to the clustering
and the vicinity of double critical and tricritical points.
The data for a fixed concentration can be easily fitted
in accordance with Eq. (16). Unfortunately, this fit is
not informative, and further experimental studies are
necessary.

Y1+ 72
4e

Y1+ 72
2e

(¢) =— (17)
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