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CRITICAL BEHAVIOR OF DILUTE ELECTROLYTE SOLUTIONSA. R. Muratov *Institute for Oil and Gas Researh, Russian Aademy of Sienes117971, Mosow, RussiaSubmitted 24 November 2000A theory of the ritial behavior of a dilute ioni solution is onstruted. An expression for the suseptibility ina wide temperature region is obtained. It is shown that ioni solutions belong to the universality lass of theIsing model. The Ginzburg parameter of the ioni solutions dereases with the inrease of the solvent onen-tration. In the general ase, the suseptibility ritial exponent nonmonotonially depends on the temperaturein the rossover region from the Ising-like to the mean-�eld behavior. In the viinity of the transition point, theDebye�Hükel sreening radius is proportional to the orrelation length. As T ! T, it tends to in�nity andthe sreening disappears. The voltage between the two phases of the ioni solution is proportional to the orderparameter and hanges as jT=T � 1j� in the viinity of the phase transition point.PACS: 61.20.Qg, 64.60.Fr, 05.70.Jk1. INTRODUCTIONCritial phenomena in liquids and liquid mixturesare an extensively studied region of ondensed matterphysis [1, 2℄. In general, the behavior of physial har-ateristis near the ritial (onsolution) point an bedesribed su�iently well as a rossover between theIsing-like asymptoti behavior and the mean-�eld be-havior [3, 4, 5℄. The Ising-like behavior ours in anarrow viinity of the ritial point forjT=T � 1j � G;where T is the temperature, T is the ritial tempera-ture, and G is the so-alled Ginzburg parameter. Themean-�eld behavior ours forjT=T � 1j � G:For liquids, the parameter G is of the order 0.01�0.1.Critial behavior of ioni solutions was disussedin a number of works (see [6, 7, 8, 9, 10℄). Experi-mental studies show that the ritial behavior of ele-trolyte solutions signi�antly di�ers from that of or-dinary solutions. This di�erene ours for both non-aqueous [11, 12, 13℄ and aqueous solutions [14℄. Themain feature of the eletrolyte solutions is their mean-�eld behavior in the regionjT=T � 1j > tx;*E-mail: muratov�ogri.ru

where tx varies from 1 to 10�4 for di�erent solu-tions [15℄. Numerous attempts to understand theioni ritiality have been made reently (see, e.g.,[15, 16, 17℄). In a reent experimental work [14℄, itwas stated that the rossover behavior is not mono-toni and the e�etive suseptibility exponent  has itsmaximum value in the rossover region exeeding theasymptoti value  � 1:24.2. THEORYWe onsider the eletrolyte solution near the riti-al (or onsolute) point of the solvent. We let '(r) be a�eld proportional to the order parameter (the solutiondensity for the ritial point or the onentration forthe onsolute point), �(r) be the eletri potential �eld,and �1(r) and �2(r) be the respetive volume densitiesof the ion numbers with positive and negative harges.For simpliity, we assume that these harges are equalto e and �e respetively.Near the transition point, the ioni solution onsistsof two subsystems: the �fast� subsystem that dependson the ion densities �1 and �2 and the �slow� subsys-tem that depends on the order parameter ' and theeletri potential �. As in the standard Debye�Hükel(Hartree) approah, ions an be onsidered in the av-erage long-wavelength �eld �(r) and, in our ase, '(r).We �rst evaluate the �utuational orretions to the104



ÆÝÒÔ, òîì 120, âûï. 1 (7), 2001 Critial behavior of dilute eletrolyte solutionsHamiltonian of the �slow� part of the system that areaused by the �fast� subsystem and then onsider onlythe part of the Hamiltonian ontaining the density �eld' and the eletri potential �eld �.The main interation terms of the �elds �, ' and�1, �2 an be written asHint = Z dr�(e�1(r)� e�2(r))�(r) ++ (1�1(r)� 2�2(r))'(r)�: (1)The �rst interation term in Eq. (1) is the ordinaryeletrostati interation, the seond term is some phe-nomenologial interation between the order parameterand the ion densities, and 1 and 2 are the interationonstants.It is easy to see from Eq. (1) that the values��1(r) = e�(r) + 1'(r);��2(r) = �e�(r)� 2'(r) (2)an be onsidered as loal additional orretions to thehemial potentials of the respetive positive (�1) andnegative (�2) ions. The Gauss distribution of the ther-modynami �utuations of the hemial potential isgiven by (see [18℄)w / exp������T � = exp�� ��2T 2 (��)2� ; (3)where T is the absolute temperature in energy unitsand �� = N=V is the average volume density of parti-les.Inserting expressions (2) in Eq. (3), we obtain the�utuation orretion to the Hamiltonian of the �slow�part of the system,�H = Z dr��� ��12T (e�(r)+1'(r))2+ ��22T (e�(r)+2'(r))2� : (4)For the ioni solution, we must add expression (4)and the expression for the eletrostati energyZ dr (E �D=8�)(where D = "E) to the standard Landau Hamiltonianof the system near the ritial point. Taking into a-ount that ��1 = ��2 = �;we obtain the e�etive HamiltonianHeff = Z dr�12 �a+ �T (21+22)�'2+12�(r')2++ �T e2�2 + "8� (r�)2 + �T e(1 + 2)�' + �'4� : (5)

There are three di�erent �utuation orretions inHamiltonian (5). The orretion proportional to �2desribes the Debye�Hükel sreening. The orretionproportional to '2 shifts the bare temperature of thephase transition. The orretion proportional to �'ouples the eletri potential �eld to the order parame-ter. Far from the phase transition point, the parametera is not small and the last two orretions to the Hamil-tonian are not relevant. In the near-ritial region, theparameter a / jT=T � 1jis small and we must take these orretions and the '4term in the Hamiltonian into aount.In what follows, the angular brakets denote averag-ing over e�etive Hamiltonian (5). The quadrati partof e�etive Hamiltonian (5) determines the bare valuesof the orrelation funtions. The inverse orrelationfuntion is equal to h'(k)'(�k)i h'(k)�(�k)ih�(k)'(�k)i h�(k)�(�k)i !�1 = 1T �� a+�k2+�(21+22)=T e�(1+2)=Te�(1+2)=T "(k2+�2)=4� ! ; (6)where � = p8��e2=T" is the inverse Debye�Hükelradius. Calulating the inverse matrix, we obtainh'(k)'(�k)i == T~a+ �k2(1 + b�2=(k2 + �2)) ;h'(k)�(�k)i == � T (1 + 2)=2e~a+ (k=�)2(~a+ b��2 + �(k2 + �2)) ;h�(k)�(�k)i == 4�T="k2 + �2(~a+ �k2)=(~a+ b��2 + �k2) ;~a = a+ �2T (1 � 2)2;b = "16��e2 (1 + 2)2 = �2T��2 (1 + 2)2:
(7)

The orrelation funtion of the eletri potential�eld in Eqs. (7) desribes the Coulomb sreening nearthe ritial point of the ioni solution. It is easy tosee that the sreening has the ordinary form far fromthe ritial point, where a � �2=T . In the viinityof the phase transition point ~a = 0 in the mean-�eldapproximation, the sreening radius behaves asrs = 1�r~a+ b��2~a :105



A. R. Muratov ÆÝÒÔ, òîì 120, âûï. 1 (7), 2001As ~a ! 0, the sreening radius tends to in�nity andthe sreening disappears.The density orrelation funtion in Eqs. (7) has theasymptoti behaviorh'(k)'(�k)i � T~a+ �(1 + b)k2 ; k � �;h'(k)'(�k)i � T~a+ �2T (1+2)2+�k2 ; k � �: (8)The interation between the mass density �eld (or-der parameter) and the harge density �eld rede�nesbare orrelation funtion (4) in the long-wavelength re-gion as a! ~a; �! �(1 + b): (9)The asymptoti forms of orrelation funtion (8) inthe long and short wavelength regions are analogous tothe ordinary form of the orrelation funtion near theritial point. This means that the behavior of physialharateristis in the orresponding limits is the sameas in the non-ioni ase. The bare ritial pointa = ��(21 + 22)=Tand the real singularity pointa = ��(1 � 2)2=2Tare now di�erent, both of them are less than the puresolvent transition point a = 0.In the mean-�eld approximation, the orrelationlength in viinity of the transition point is given byr =r�(1 + b)~a :In the viinity of the transition point, the sreeninglength is proportional to the orrelation length andtheir ratio is rsr =r~a=��2 + b1 + b :The mean-�eld aproximation does not orretly de-sribe the behavior of the system near the transitionpoint. It an be used in the region far from the tran-sition point, where ~a � G. In a lose viinity of thetransition point, the �utuation e�ets must be takeninto aount.3. RENORMALIZATIONWe now alulate the expression for the suseptibil-ity, whih is an experimentally measured value [13; 14℄.

Fig. 1. One-loop orretions to the e�etive Hamilto-nian parameters a and �. The solid line orresponds tothe �eld '. The irle in the vertex is equal to �We must apply the standard renormalization proedureto e�etive Hamiltonian (5). The leading orretions tothe oe�ients ~a and � due to �utuation e�ets anbe represented by the diagrams in Fig. 1. The renor-malization equations for these oe�ients are given byd~ad� = 13K ~a(�)�(�)�d�5(1 + b�2=(�2 + �2))2 ;d�d� = K �2(�)�d�5(1 + b�2=(�2 + �2))2 ; (10)where � is the renormalization equation parameter([�℄ = k) and K = 18TSd(2�)d�2 ;with d being the spae dimension and Sd the unitsphere surfae. Equations (10) are written in theone-loop approximation, whih orresponds to the �rstapproximation in the parameter � = 4 � d. For sim-pliity, we do not use the �-expansion but onsider theone-loop renormalization equations diretly for d = 3.It is easy to see from Eqs. (10) thatd~ad� = ~a3�; ~a3(�)�(�) = onst: (11)The solution of the equation for the interation vertexis given by1�(�) � 1� = K 1=�Z0 dx� 1 + �2x21 + (1 + b)�2x2�2 : (12)Calulating the integral in (12) and taking Eq. (11) intoaount, we �nd�(�) = �(1)1 + F (�) ; ~a(�) = ~a(1)(1 + F (�))1=3 ; (13)whereF (�) = K�(1)2�(1 + b)5=2 ���t(2 + b21 + t2 ) + b(b+ 4) artan t� ;t = ��p1 + b: (14)106



ÆÝÒÔ, òîì 120, âûï. 1 (7), 2001 Critial behavior of dilute eletrolyte solutionsTo obtain the expressions for physial quantitiesvalid in a wide region near the transition point, it isneesary to hoose a mathhing point �� for solu-tions (13). The mathing point an be hosen in thesame way as in [3℄ (see also [19℄),�� =r~a(��)� : (15)Inserting this in Eq. (13), we obtain the equation forthe suseptibility,~a(��)�1 + K�(1)2�(1 + b)5=2 �t��2 + b21 + t�2�++ b(b+ 4) artan t���1=3 = ~a(1); (16)where t� =s (1 + b)��2~a(��) :Equation (16) determines the suseptibility in awide temperature region in the one-loop approxima-tion. The ritial exponent  is equal to 6=5 in this ap-proximation. It is neesary to modify this expressionin order to apply it to experimental data. The simplestway is to replae the exponent 1=3 in (16) with 2�2=,where  = 1:24. 4. DISCUSSIONThe expressions obtained an be used for eletrolytesolutions (strong or weak) if the ion density � is small.As �! 0, all the expressions transform to the ordinaryform valid for non-ioni liquids. The pure solvent limitan also be obtained as b ! 0, i. e., if the density isweakly oupled to the harge density.The Debye�Hükel sreening radius in the viinityof the transition point is proportional to the orrela-tion length. As T ! T, the sreening radius tends toin�nity and the sreening disappears.The asymptoti forms of the density orrelationfuntion for k � � and k � � are the same as forthe non-ioni liquid, and therefore, the orresponding(mean-�eld or Ising-like) asymptoti behavior is thesame. The value of F (��)p~a� in the ioni solution issimilar to the Ginzburg parameter G for the ordinaryliquids. It dereases as the salt onentration inreases,and the Ising-like region of ioni solutions thereforedereases as the onentration inreases, whih agreeswith the experimental data.Equation (16) determines the behavior of the sus-eptibility in the rossover region. The dependene of
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jT=T � 1jFig. 2. The dependene of the e�etive suseptibilityritial exponent eff on the value of b for the modelsystem. The urve where b = 0 orresponds to thenon-ioni solutionthe e�etive exponent  on the temperature for themodel system is presented in Fig. 2. For small valu-es of b, this dependene has the usual shape, but itbeomes nonmonotoni for b � 1. For the real experi-mental situation in [14℄, this spei� behavior ours ina lose viinity of the transition point and it is di�ultto reveal it. The authors of [14℄ state that they see thispeuliarity.The shape of the rossover urve depends on thedimensionless parameter b (Eqs. (7)), i. e., on 1 + 2.This quantity an be estimated from a simple eletrimeasurement. In the mean-�eld approximation, Eq. (5)gives h�i = �1 + 22e h'i = �1 + 24e r�~a� (17)for the two-phase state. Therefore, the voltage bet-ween the two phases of the ioni solution is determinedby 1 + 2. Near the transition point, this voltage isproportional to the order parameter and behaves as(T=T � 1)�.The detailed omparison of the expressions ob-tained with the experimental data is not a simple task.The data presented in [11�13℄ have signi�ant errorbars. The ioni solutions in [14; 20℄ were ternary andtheir behavior was studied near the onsolute points.These solutions had a high onentration (10%), andthere were additional problems due to the lusteringand the viinity of double ritial and triritial points.The data for a �xed onentration an be easily �ttedin aordane with Eq. (16). Unfortunately, this �t isnot informative, and further experimental studies areneessary.107
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