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CRITICAL BEHAVIOR OF DILUTE ELECTROLYTE SOLUTIONSA. R. Muratov *Institute for Oil and Gas Resear
h, Russian A
ademy of S
ien
es117971, Mos
ow, RussiaSubmitted 24 November 2000A theory of the 
riti
al behavior of a dilute ioni
 solution is 
onstru
ted. An expression for the sus
eptibility ina wide temperature region is obtained. It is shown that ioni
 solutions belong to the universality 
lass of theIsing model. The Ginzburg parameter of the ioni
 solutions de
reases with the in
rease of the solvent 
on
en-tration. In the general 
ase, the sus
eptibility 
riti
al exponent nonmonotoni
ally depends on the temperaturein the 
rossover region from the Ising-like to the mean-�eld behavior. In the vi
inity of the transition point, theDebye�Hü
kel s
reening radius is proportional to the 
orrelation length. As T ! T
, it tends to in�nity andthe s
reening disappears. The voltage between the two phases of the ioni
 solution is proportional to the orderparameter and 
hanges as jT=T
 � 1j� in the vi
inity of the phase transition point.PACS: 61.20.Qg, 64.60.Fr, 05.70.Jk1. INTRODUCTIONCriti
al phenomena in liquids and liquid mixturesare an extensively studied region of 
ondensed matterphysi
s [1, 2℄. In general, the behavior of physi
al 
har-a
teristi
s near the 
riti
al (
onsolution) point 
an bedes
ribed su�
iently well as a 
rossover between theIsing-like asymptoti
 behavior and the mean-�eld be-havior [3, 4, 5℄. The Ising-like behavior o

urs in anarrow vi
inity of the 
riti
al point forjT=T
 � 1j � G;where T is the temperature, T
 is the 
riti
al tempera-ture, and G is the so-
alled Ginzburg parameter. Themean-�eld behavior o

urs forjT=T
 � 1j � G:For liquids, the parameter G is of the order 0.01�0.1.Criti
al behavior of ioni
 solutions was dis
ussedin a number of works (see [6, 7, 8, 9, 10℄). Experi-mental studies show that the 
riti
al behavior of ele
-trolyte solutions signi�
antly di�ers from that of or-dinary solutions. This di�eren
e o

urs for both non-aqueous [11, 12, 13℄ and aqueous solutions [14℄. Themain feature of the ele
trolyte solutions is their mean-�eld behavior in the regionjT=T
 � 1j > tx;*E-mail: muratov�ogri.ru

where tx varies from 1 to 10�4 for di�erent solu-tions [15℄. Numerous attempts to understand theioni
 
riti
ality have been made re
ently (see, e.g.,[15, 16, 17℄). In a re
ent experimental work [14℄, itwas stated that the 
rossover behavior is not mono-toni
 and the e�e
tive sus
eptibility exponent 
 has itsmaximum value in the 
rossover region ex
eeding theasymptoti
 value 
 � 1:24.2. THEORYWe 
onsider the ele
trolyte solution near the 
riti-
al (or 
onsolute) point of the solvent. We let '(r) be a�eld proportional to the order parameter (the solutiondensity for the 
riti
al point or the 
on
entration forthe 
onsolute point), �(r) be the ele
tri
 potential �eld,and �1(r) and �2(r) be the respe
tive volume densitiesof the ion numbers with positive and negative 
harges.For simpli
ity, we assume that these 
harges are equalto e and �e respe
tively.Near the transition point, the ioni
 solution 
onsistsof two subsystems: the �fast� subsystem that dependson the ion densities �1 and �2 and the �slow� subsys-tem that depends on the order parameter ' and theele
tri
 potential �. As in the standard Debye�Hü
kel(Hartree) approa
h, ions 
an be 
onsidered in the av-erage long-wavelength �eld �(r) and, in our 
ase, '(r).We �rst evaluate the �u
tuational 
orre
tions to the104
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al behavior of dilute ele
trolyte solutionsHamiltonian of the �slow� part of the system that are
aused by the �fast� subsystem and then 
onsider onlythe part of the Hamiltonian 
ontaining the density �eld' and the ele
tri
 potential �eld �.The main intera
tion terms of the �elds �, ' and�1, �2 
an be written asHint = Z dr�(e�1(r)� e�2(r))�(r) ++ (
1�1(r)� 
2�2(r))'(r)�: (1)The �rst intera
tion term in Eq. (1) is the ordinaryele
trostati
 intera
tion, the se
ond term is some phe-nomenologi
al intera
tion between the order parameterand the ion densities, and 
1 and 
2 are the intera
tion
onstants.It is easy to see from Eq. (1) that the values��1(r) = e�(r) + 
1'(r);��2(r) = �e�(r)� 
2'(r) (2)
an be 
onsidered as lo
al additional 
orre
tions to the
hemi
al potentials of the respe
tive positive (�1) andnegative (�2) ions. The Gauss distribution of the ther-modynami
 �u
tuations of the 
hemi
al potential isgiven by (see [18℄)w / exp������T � = exp�� ��2T 2 (��)2� ; (3)where T is the absolute temperature in energy unitsand �� = N=V is the average volume density of parti-
les.Inserting expressions (2) in Eq. (3), we obtain the�u
tuation 
orre
tion to the Hamiltonian of the �slow�part of the system,�H = Z dr��� ��12T (e�(r)+
1'(r))2+ ��22T (e�(r)+
2'(r))2� : (4)For the ioni
 solution, we must add expression (4)and the expression for the ele
trostati
 energyZ dr (E �D=8�)(where D = "E) to the standard Landau Hamiltonianof the system near the 
riti
al point. Taking into a
-
ount that ��1 = ��2 = �;we obtain the e�e
tive HamiltonianHeff = Z dr�12 �a+ �T (
21+
22)�'2+12�(r')2++ �T e2�2 + "8� (r�)2 + �T e(
1 + 
2)�' + �'4� : (5)

There are three di�erent �u
tuation 
orre
tions inHamiltonian (5). The 
orre
tion proportional to �2des
ribes the Debye�Hü
kel s
reening. The 
orre
tionproportional to '2 shifts the bare temperature of thephase transition. The 
orre
tion proportional to �'
ouples the ele
tri
 potential �eld to the order parame-ter. Far from the phase transition point, the parametera is not small and the last two 
orre
tions to the Hamil-tonian are not relevant. In the near-
riti
al region, theparameter a / jT=T
 � 1jis small and we must take these 
orre
tions and the '4term in the Hamiltonian into a

ount.In what follows, the angular bra
kets denote averag-ing over e�e
tive Hamiltonian (5). The quadrati
 partof e�e
tive Hamiltonian (5) determines the bare valuesof the 
orrelation fun
tions. The inverse 
orrelationfun
tion is equal to h'(k)'(�k)i h'(k)�(�k)ih�(k)'(�k)i h�(k)�(�k)i !�1 = 1T �� a+�k2+�(
21+
22)=T e�(
1+
2)=Te�(
1+
2)=T "(k2+�2)=4� ! ; (6)where � = p8��e2=T" is the inverse Debye�Hü
kelradius. Cal
ulating the inverse matrix, we obtainh'(k)'(�k)i == T~a+ �k2(1 + b�2=(k2 + �2)) ;h'(k)�(�k)i == � T (
1 + 
2)=2e~a+ (k=�)2(~a+ b��2 + �(k2 + �2)) ;h�(k)�(�k)i == 4�T="k2 + �2(~a+ �k2)=(~a+ b��2 + �k2) ;~a = a+ �2T (
1 � 
2)2;b = "16��e2 (
1 + 
2)2 = �2T��2 (
1 + 
2)2:
(7)

The 
orrelation fun
tion of the ele
tri
 potential�eld in Eqs. (7) des
ribes the Coulomb s
reening nearthe 
riti
al point of the ioni
 solution. It is easy tosee that the s
reening has the ordinary form far fromthe 
riti
al point, where a � �
2=T . In the vi
inityof the phase transition point ~a = 0 in the mean-�eldapproximation, the s
reening radius behaves asrs = 1�r~a+ b��2~a :105
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reening radius tends to in�nity andthe s
reening disappears.The density 
orrelation fun
tion in Eqs. (7) has theasymptoti
 behaviorh'(k)'(�k)i � T~a+ �(1 + b)k2 ; k � �;h'(k)'(�k)i � T~a+ �2T (
1+
2)2+�k2 ; k � �: (8)The intera
tion between the mass density �eld (or-der parameter) and the 
harge density �eld rede�nesbare 
orrelation fun
tion (4) in the long-wavelength re-gion as a! ~a; �! �(1 + b): (9)The asymptoti
 forms of 
orrelation fun
tion (8) inthe long and short wavelength regions are analogous tothe ordinary form of the 
orrelation fun
tion near the
riti
al point. This means that the behavior of physi
al
hara
teristi
s in the 
orresponding limits is the sameas in the non-ioni
 
ase. The bare 
riti
al pointa = ��(
21 + 
22)=Tand the real singularity pointa = ��(
1 � 
2)2=2Tare now di�erent, both of them are less than the puresolvent transition point a = 0.In the mean-�eld approximation, the 
orrelationlength in vi
inity of the transition point is given byr
 =r�(1 + b)~a :In the vi
inity of the transition point, the s
reeninglength is proportional to the 
orrelation length andtheir ratio is rsr
 =r~a=��2 + b1 + b :The mean-�eld aproximation does not 
orre
tly de-s
ribe the behavior of the system near the transitionpoint. It 
an be used in the region far from the tran-sition point, where ~a � G. In a 
lose vi
inity of thetransition point, the �u
tuation e�e
ts must be takeninto a

ount.3. RENORMALIZATIONWe now 
al
ulate the expression for the sus
eptibil-ity, whi
h is an experimentally measured value [13; 14℄.

Fig. 1. One-loop 
orre
tions to the e�e
tive Hamilto-nian parameters a and �. The solid line 
orresponds tothe �eld '. The 
ir
le in the vertex is equal to �We must apply the standard renormalization pro
edureto e�e
tive Hamiltonian (5). The leading 
orre
tions tothe 
oe�
ients ~a and � due to �u
tuation e�e
ts 
anbe represented by the diagrams in Fig. 1. The renor-malization equations for these 
oe�
ients are given byd~ad� = 13K ~a(�)�(�)�d�5(1 + b�2=(�2 + �2))2 ;d�d� = K �2(�)�d�5(1 + b�2=(�2 + �2))2 ; (10)where � is the renormalization equation parameter([�℄ = k) and K = 18TSd(2�)d�2 ;with d being the spa
e dimension and Sd the unitsphere surfa
e. Equations (10) are written in theone-loop approximation, whi
h 
orresponds to the �rstapproximation in the parameter � = 4 � d. For sim-pli
ity, we do not use the �-expansion but 
onsider theone-loop renormalization equations dire
tly for d = 3.It is easy to see from Eqs. (10) thatd~ad� = ~a3�; ~a3(�)�(�) = 
onst: (11)The solution of the equation for the intera
tion vertexis given by1�(�) � 1� = K 1=�Z0 dx� 1 + �2x21 + (1 + b)�2x2�2 : (12)Cal
ulating the integral in (12) and taking Eq. (11) intoa

ount, we �nd�(�) = �(1)1 + F (�) ; ~a(�) = ~a(1)(1 + F (�))1=3 ; (13)whereF (�) = K�(1)2�(1 + b)5=2 ���t(2 + b21 + t2 ) + b(b+ 4) ar
tan t� ;t = ��p1 + b: (14)106
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al behavior of dilute ele
trolyte solutionsTo obtain the expressions for physi
al quantitiesvalid in a wide region near the transition point, it isne

esary to 
hoose a math
hing point �� for solu-tions (13). The mat
hing point 
an be 
hosen in thesame way as in [3℄ (see also [19℄),�� =r~a(��)� : (15)Inserting this in Eq. (13), we obtain the equation forthe sus
eptibility,~a(��)�1 + K�(1)2�(1 + b)5=2 �t��2 + b21 + t�2�++ b(b+ 4) ar
tan t���1=3 = ~a(1); (16)where t� =s (1 + b)��2~a(��) :Equation (16) determines the sus
eptibility in awide temperature region in the one-loop approxima-tion. The 
riti
al exponent 
 is equal to 6=5 in this ap-proximation. It is ne

esary to modify this expressionin order to apply it to experimental data. The simplestway is to repla
e the exponent 1=3 in (16) with 2�2=
,where 
 = 1:24. 4. DISCUSSIONThe expressions obtained 
an be used for ele
trolytesolutions (strong or weak) if the ion density � is small.As �! 0, all the expressions transform to the ordinaryform valid for non-ioni
 liquids. The pure solvent limit
an also be obtained as b ! 0, i. e., if the density isweakly 
oupled to the 
harge density.The Debye�Hü
kel s
reening radius in the vi
inityof the transition point is proportional to the 
orrela-tion length. As T ! T
, the s
reening radius tends toin�nity and the s
reening disappears.The asymptoti
 forms of the density 
orrelationfun
tion for k � � and k � � are the same as forthe non-ioni
 liquid, and therefore, the 
orresponding(mean-�eld or Ising-like) asymptoti
 behavior is thesame. The value of F (��)p~a� in the ioni
 solution issimilar to the Ginzburg parameter G for the ordinaryliquids. It de
reases as the salt 
on
entration in
reases,and the Ising-like region of ioni
 solutions thereforede
reases as the 
on
entration in
reases, whi
h agreeswith the experimental data.Equation (16) determines the behavior of the sus-
eptibility in the 
rossover region. The dependen
e of
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eff
b = 0:227b = 0 b = 3

jT=T
 � 1jFig. 2. The dependen
e of the e�e
tive sus
eptibility
riti
al exponent 
eff on the value of b for the modelsystem. The 
urve where b = 0 
orresponds to thenon-ioni
 solutionthe e�e
tive exponent 
 on the temperature for themodel system is presented in Fig. 2. For small valu-es of b, this dependen
e has the usual shape, but itbe
omes nonmonotoni
 for b � 1. For the real experi-mental situation in [14℄, this spe
i�
 behavior o

urs ina 
lose vi
inity of the transition point and it is di�
ultto reveal it. The authors of [14℄ state that they see thispe
uliarity.The shape of the 
rossover 
urve depends on thedimensionless parameter b (Eqs. (7)), i. e., on 
1 + 
2.This quantity 
an be estimated from a simple ele
tri
measurement. In the mean-�eld approximation, Eq. (5)gives h�i = �
1 + 
22e h'i = �
1 + 
24e r�~a� (17)for the two-phase state. Therefore, the voltage bet-ween the two phases of the ioni
 solution is determinedby 
1 + 
2. Near the transition point, this voltage isproportional to the order parameter and behaves as(T=T
 � 1)�.The detailed 
omparison of the expressions ob-tained with the experimental data is not a simple task.The data presented in [11�13℄ have signi�
ant errorbars. The ioni
 solutions in [14; 20℄ were ternary andtheir behavior was studied near the 
onsolute points.These solutions had a high 
on
entration (10%), andthere were additional problems due to the 
lusteringand the vi
inity of double 
riti
al and tri
riti
al points.The data for a �xed 
on
entration 
an be easily �ttedin a

ordan
e with Eq. (16). Unfortunately, this �t isnot informative, and further experimental studies arene
essary.107
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